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Composting is a feasible biological treatment for the recycling of wastewater sludge 

as a soil amendment. The process can be optimized by selecting an initial compost recipe 

with physical properties that enhance microbial activity. The present study measured the 

microbial O2 uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the 

kinetics parameters of maximum growth rate μm and rate of organic matter hydrolysis Kh, as 

well as the initial biodegradable organic matter fractions present. The starting mixtures 

consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio 

(W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus 

to measure their OUR over 4 weeks. A microbial model based on the activated sludge process 

was used to calculate the kinetic parameters and was found to adequately reproduced OUR 

curves over time, except for the lag phase and peak OUR, which was not represented and 

generally over-estimated, respectively. The maximum growth rate μm, was found to have a 

quadratic relationship with MC and a negative association with BA particle size. As a result, 

increasing MC up to 50 % and using a smaller BA particle size of 8-12 mm was seen to 

maximize μm. The rate of hydrolysis Kh was found to have a linear association with both MC 

and BA particle size. The model also estimated the initial readily biodegradable organic 

matter fraction, MB0, and the slower biodegradable matter requiring hydrolysis, MH0. The 

sum of MB0 and MH0 was associated with MC, W/BA ratio and the interaction between these 

two parameters, suggesting that O2 availability was a key factor in determining the value of 

these two fractions. The study reinforced the idea that optimization of the physical 

characteristics of a compost mixture requires a holistic approach. 

 

Key words: composting, microbial kinetics, respirometry, sludge, wood residues. 
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 Composting the sludge produced by treatment plants receiving mainly domestic or 

food processing wastewaters is a sustainable method of recycling carbon with minimum 

greenhouse gas production (Amlinger et al., 2008). Composting relies mostly on the ability of 

microorganisms to biodegrade and stabilise the organic waste, to destroy pathogens and 

produce an esthetically acceptable soil conditioner (Insam and de Bertoldi, 2007; Metcalf and 

Eddy, 2003). Increasing urbanization and industrialization in cities resulted in the production 

of more sludge waste requiring disposal or anaerobic digestion (Adhikari, 2005). Otherwise, 

this sludge waste is landfilled where it is mostly transformed into CH4 because of ambient 

anaerobic conditions (Rashmussen and Khalil, 1984). At the landfill site, 45 to 58 % of 

organic waste on a dry mass basis is transformed into CH4, which can be captured at a cost to 

produce energy (Solid Waste Landfill Guidance, 1999). 

 Composting consists of 3 to 4 weeks of biodegradation in the active phase, followed 

by several months of maturation in the curing phase (Gupta and Garg, 2008).  As opposed to 

the curing phase which stabilizes the more resistant compounds (Haug, 1993), the microbial 

activity of the active phase can be manipulated and optimized through a better understanding 

of the interaction between the physical parameters. For the biodegradation and stabilization 

of compost mixtures, Mohajer et al. (2009) demonstrated the interaction on O2 uptake rate 

(OUR) of physical parameters, namely moisture content (MC), bulking agent (BA) particle 

size distribution and BA to waste (W) ratio.  

The interactive effect of physical parameters on compost decomposition as measured 

by Mohajer et al. (2009) can be further quantified by estimating microbial degradation 

parameters. Such microbial parameters can be estimated by assuming that the compost 

mixture OUR is similar to that of wastewater activated sludge systems decomposing BOD. 

The traditional approach to respirometric modeling associates changes in microbial O2 

consumption with the growth and decay of the biomass (Spanjers et al., 1998). Past literature 

has presented models estimating the influence on composting of parameters such as 

temperature (Haug, 1993; Tremier et al., 2005; Richard and Walker, 2006), moisture content 

(MC) (Richard et al., 2002) and aeration rate (Richard et al., 2006; de Guardia et al., 2008). 

Certain physical parameters, such as MC and BA properties however, have been shown to be 

particularly important due to their strong interdependent effect on microbial O2 uptake (Diaz 

et al., 2007; Mohajer et al., 2009). 

Tremier et al. (2005) developed a kinetics model describing microbial growth rate and 

sludge waste biodegradation. Based on the activate sludge model, the Tremier model 
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estimates kinetic parameters through the linear transformation of O2 consumption rate 

measured during the decomposition of organic matter by a heterotrophic biomass. The 

strength of the Tremier model lies in the fact that it considers the organic matter as split into 

three different fractions, mainly, the readily biodegradable fraction (MB), the biodegradable 

fraction requiring hydrolysis (MH) and the inert fraction (IM). Only a few composting models 

have included the hydrolysis process (Hamelers, 1993; Liwarska-Bizukojc et al., 2002), even 

though it was shown to be rate-limiting (Veeken and Hamelers, 1999; Sole-Mauri et al., 

2007). Although the Tremier model does not include all components and variables affecting 

composting, its strength lies in its simplicity and its inclusion of a hydrolysis step. 
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Accordingly and for compost mixtures, the objective of this study was to estimate the 

microbial kinetic parameters and organic matter biodegradation dynamics as a function of the 

interaction between the physical properties of moisture content (MC), bulking agent to waste 

ratio (BA/W ratio on a dry basis) and BA particle size. Consisting of slaughter house 

wastewater sludge and wood residues recycled from a composting operation, the 

experimental compost mixtures offered a wide range of combinations in term of physical 

properties. For individual compost mixtures, the O2 uptake rate (OUR) was measured during 

24 days using a respirometry apparatus (Mohajer et al., 2009). With the OUR data, the 

Tremier model was used to estimate the maximum microbial growth rate, μm and then the 

organic matter degradation parameters, namely organic matter hydrolysis rate, Kh, and the 

initial fractions of readily degradable organic matter, MB0, and that requiring hydrolysis, 

MH0.  

 
2. Material and Methods 

2.1. Conceptual approach of the model 

The model developed by Tremier et al. (2005) assumes that the substrate has three 

phases: a dry solid phase, an aqueous phase and a porous phase. Within this three phase 

matrix consisting of the BA and sludge mixture, the organic matter is assumed to offer three 

different initial fractions each with a specific biodegradation rate: the readily biodegradable 

faction, MB0, the fraction requiring hydrolysis, MH0, and that which is inert or not degraded, 

MI.  

The first fraction, MB0, is already soluble and is readily used as a source of carbon 

and energy by microorganisms. As a carbon source and depending on the biomass growth 

yield Y, part of MB is transformed to give new biomass. The microbial population grows as a 

function of available MB and its maximum growth rate and death coefficient: 
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dX/dt = Xt × { μm × MBt/(Kb + MBt) – b }     (1) 

 

where Xt is the biomass population in mmol O2 (kg dry matter)-1; t is time in h-1; μm is the 

maximum growth rate of the biomass in h-1; MBt is the mass of readily biodegradable organic 

matter at time t in mmol O2 (kg dry matter)-1; Kb is the saturation constant for MB set at 3 

mmol O2 (kg dry matter) -1; and b is the death coefficient of the biomass set at 0.05 h-1 

(Tremier et al., 2005).  

The energy needed for biomass growth is supplied through the oxidation of a fraction 

of MB and the dead biomass expressed as (1-Y) MB and (1- f ) Xt. Thus, the O2 uptake rate 

(OUR) can be expressed as: 

 

  RO2(t)  =  Xt ×{ (1-Y ) / Y × μm × MBt/(Kb + MBt) + b × (1-f ) }   (2) 

 

where RO2(t) is the O2 uptake rate (OUR) at time t in mmol O2 (kg of dry matter - h)-1; Y is the 

yield coefficient of the biomass growth set at 0.68 (dimensionless); f is the fraction of dead 

biomass contributing to MI, dimensionless, and MI is the fraction of inert organic matter in 

mmolO2 (kg of dry matter)-1. 

The second biodegradable fraction labeled MH supplies MB to the microorganisms 

through enzymatic hydrolysis: 

 

dMH/dt = Xt × { -Kh × MHt/Xt / (MHt/Xt + Kmh) }     (3) 

 

where MHt is the fraction of solid or soluble organic matter at time t which requires 

hydrolysis to become readily biodegradable in mmol O2 (kg of dry matter)-1 ; Kh is the rate of 

hydrolysis for the fraction MH in h-1 and Kmh is the hydrolysis saturation constant for the ratio 

MHt/Xt set at 6.5 (dimensionless).  

The resulting mass balance for the readily biodegradable MB fraction can thus be 

expressed as: 

dMB/dt =  Xt ×{ - 1/Y × μm × MBt/(Kb + MBt) + Kh × (MHt/Xt) / (MHt/Xt + Kmh) }  (4) 

 

The hydrolysis reaction is initiated from the very beginning but becomes the rate 

limiting process after the peak OUR, as microorganisms are left with the remaining complex 

organic macromolecules requiring hydrolysis and governed by the rate Kh. Resistant organic 
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matter, such as cellulose and lignin accumulated from the biodegradation of the two first 

fractions, are partly transformed into the third inert fraction MI. The degradation of the first 

two fractions also leads to the accumulation of dead biomass which, through degradation, is 

partly accumulated as inert matter, MI. The fraction of dead biomass contributing to MI is 

defined by the coefficient f with a value of 0.2 (Tremier et al., 2005).  
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2.2 Parameter Estimation  

Equations 1 to 4 were used to estimate the kinetic parameters μm, Kh and X0, and the 

organic matter fractions of MB0 and MH0 at time zero (Table 1). The dynamic biological 

model was fitted to the experimental OUR recorded through respirometry. For each trial, the 

output parameters of the model were calibrated to the experimental OUR using an 

optimization program designed by Tremier et al. (2005) for the SCILAB software (INRIA, 

France) based on a least squared method. Default values for Y, f, b, Kb, Kmh were chosen 

based on published literature corresponding to 0.68 (dimensionless), 0.2 (dimensionless), 

0.05 h-1, 3 mmol O2 (kg dry matter)-1 and 6.5 (dimensionless), respectively (Tremier et al., 

2005). The value of the kinetic parameters μm and Kh and for X0, MB0 and MH0 were 

optimized through fitting using linearization methods performed on the exponential rise and 

subsequent fall of the experimental OUR curves obtained from respirometry. The 

linearization method corresponds to a simplified way of interpreting the respirometry curve 

and the values were derived from an identification procedure based on structural identifiable 

procedures (Dochain et al., 1995; Sperandio and Paul, 2000). 

 
2.3. Substrate Material and chemical characterization 
 

The experimental materials consisted of sewage sludge from the wastewater treatment 

facility of a slaughter house and as BA, green waste or twigs and branches recycled from a 

composting process. For consistency, a large sludge sample obtained prior to the trial was 

split into 10 kg sub samples and stored until use at -20°C. Table 1 characterizes the 

experimental materials. 

The experimental materials were analyzed for dry matter (DM), organic matter (OM), 

total organic carbon (TOC), chemical O2 demand (COD) and total Kjeldahl nitrogen (TKN) 

prior to the start of the experiment. The DM was measured by drying the wet samples at 80°C 

to constant weight. A higher temperature was avoided to prevent the combustion of this type 

of sample during drying. The OM content was measured by burning the dried ground samples 
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at 550°C for 4 h using the standard method NF U 44-160 (Afnor, 1985).  The TOC was 

measured by oxidizing the dried ground samples to CO
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2 and using infrared spectrometry 

(SKALAR device) to measure CO2 production according to the standardized method NF-EN-

13137 (Afnor, 2001a).  The sample COD was determined by the oxidation of 50 mg of dried 

ground sample using potassium dichromate, according to an adaptation of the standard 

method described in the norm NF T 90-101 (Afnor, 2001b) for powdered samples. The TKN 

content was quantified on 50 mg of dried ground sample by mineralization with a strong acid 

medium (98% sulphuric acid), followed by steam distillation and titrimetric determination, an 

adaptation of the standard method NF ISO 11261 (Afnor, 1995) for powdered samples. 

 

2.4. Respirometric Measurement Method 

Mohajer et al. (2009) describes the respirometric apparatus used in this study to 

measure OUR resulting from the biodegradation of the waste mixtures (Figure 1). It consisted 

of six cylindrical 10 L airtight reactors made of stainless-steel and submersed in a water bath 

controlled at 40 °C, a temperature was found to produce optimal biodegradation conditions 

(Tremier et al., 2005). Inside the reactor, the substrate material was placed on a 3 mm mesh 

grid located 70 mm above the cell bottom forming a plenum receiving 65 L h-1 of air via a 

glass diffuser. As past studies have shown that an intermittent air supply can lead to O2 

limitations (Paletski and Young, 1995), a continuous air flow was supplied. Homogenous O2 

diffusion for the trials was ensured by re-circulating part of the exhaust air back into the cells. 

The entering and exhaust air streams were monitored for O2 content using a paramagnetic O2 

gas analyser (MAIHAK Technology, Nimburger, Germany).  

 To solely test the effect of the experimental physical factors on microbial activity, the 

apparatus controlled other environmental factors. Along with that of the sample, the 

temperature of the inlet air was preheated at 40 °C using a copper serpentine 10 mm in 

diameter, 2 mm in thickness and 2 m in length submerged in the water-bath. The temperature 

of the sample was monitored by means of a Pt100 temperature probe (OMNI Instruments, 

UK) inserted in the centre of the cell. The inflowing air was saturated with moisture by 

bubbling through two water-filled glass bottles immersed in the water-bath. Moisture 

condensing in the exhaust air was collected in beakers above the water-bath to prevent its 

return into the sample cells. Once the experiment began, the samples were left inside the 

respirometric cells until their OUR dropped to a low constant value, usually corresponding to 

four weeks.  
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2.5. Experimental design and statistical analysis 

 The 16 experimental mixtures were created by combining low, intermediate and high 

values of the three physical parameters namely MC, W/BA ratio and BA particle size (Table 

2), determined using a response surface method experimental design. Water or dried sludge 

were mixed with the appropriate amount of BA to obtain MCs of 20, 30, 45, 60 and 70 %, 

although actual experimentally recorded MC varied slightly (Table 2). The waste mixtures 

were manually mixed with BA to create W/BA ratios at 1/9.2, 1/7.9, 1/6, 1/4.1 and 1/2.1 on a 

dry basis. Finally, different BA particle sizes of 8 to12 mm, 12 to 20 mm, 20 to 30 mm, 30 to 

40 mm and over 40 mm were achieved by sieving through rotary screens. The C:N ratio of all 

experimental recipes ranged between 10 and 22, which are acceptable for sludge composting 

(Table 2). 

A 3 kg (wet mass) sample of each mixture was placed in individual cells to prevent 

BA breakage and to minimize mixture compaction. All O2 uptake rates (OUR) were 

expressed on the basis of initial mixture dry mass. Six compost recipes were tested at any one 

time. In total, 16 compost recipes were tested without duplication because of the wide range 

of incremental levels used in the combinations selected. 

Using the observed experimental respirometric data, univariate linear regression was 

first performed to delineate the marginal relationships of the measured MC, W/BA ratio and 

the mean BA particle size in each range, with each of μm, Kh, MB0 and MH0. Multivariate 

linear regression was subsequently performed to decipher the associations between the 

physical characteristics of each treatment including their interactions, upon each of the 

kinetic parameters and substrate matter fractions after 28 days of aeration, using the statistical 

software package Stata® (Statacorp LP, Texas, USA). The regression model was:  

 

E[Y] =β0 + β1χ1 + β2χ2 + β3χ3 + β12χ1χ2 + β13χ1χ3 + β23χ2χ3 +β11χ1
²+β22χ2

²+β33χ3
²  (5) 

 

where Y is the outcome of interest; β0 is the intercept; β1, β2, β3 are the linear coefficients;  

β12, β13, β23 are the interaction coefficients; β11, β22, β33 are the quadratic coefficients; χ1 is 

the MC in %; χ2
 is the BA particle size in mm, dimensionless, and; χ3 is the W/BA ratio.   

Analysis of variance (ANOVA) determined the significance of the models using the F-Test, 

at a confidence level of 90% (p < 0.1). Moreover, the significance of each regression model 

parameter (variable or interaction) was determined using a Student Test at a confidence level 
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of 75% (p < 0.25). The regression coefficient R² measured the global fit of the regression 

model with the experimental data and the adjustment of the models was considered acceptable 

for R² greater than 55 %. 
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3. Results 

3.1 Model validation 

 Figures 2 and 3 illustrate the OUR over time for experimental mixtures 4 and 9, 

respectively, obtained through experimental trials and model simulations using Scilab. 

Mixtures 4 and 9 offered the largest and smallest variations between the experimental and 

simulation curve, respectively, obtained after optimization of the cycles to improve the fit of 

the simulation curve. For all experimental mixtures, the general OUR curve was reproduced, 

except for the peak which was generally slightly overestimated. Considering that the area 

under the curve is used to estimate MB0 , this model overestimation introduces an error of 5 

% at the very most. Furthermore, the model accurately reflected the exponential rise in OUR 

determining mainly the maximum growth rate μm of the microbial population. The 

simulations however, lacked the ability to reproduce the brief lag phase observed at the 

beginning of the trials where microorganisms were acclimating to mixture conditions. 

Nonetheless, the relatively short lag phase of less than 12 hours did not interfere with the 

subsequent exponential rise in OUR, resulting in similar experimental and simulation curves. 

After the peak, the model simulation correlated closely with the subsequent and 

gradual drop in sample OUR. This period is presumed to correspond mainly to the 

biodegradation of the more complex organic fraction requiring hydrolysis, MH0, resulting in a 

drop in OUR. As less biodegradable matter remains accessible to the microbes, the OUR 

recesses to lower levels (Tremier et al., 2005). 

 

3.3. Influence of physical parameters on microbial kinetic coefficients 

 The experimental OUR curves were used to estimate the maximum growth rate and 

hydrolysis kinetics in each of the 16 experimental recipes (Table 3). The maximum growth 

rate μm varied from 0.07 h-1 achieved in mixture 6 (MC of 30 %, W/BA ratio of 1/7.9 and BA 

particle size of 30-40 mm), to 0.20 h-1 in mixture 3 (MC of 52 %, W/BA ratio of 1/6 and BA 

particle size of 8-12 mm). The average μm for all 16 experimental mixtures was 0.106 h-1. 

These values are somewhat lower than that found in other studies, perhaps due to the 

characteristic of the sludge waste. Tremier et al. (2005) found ranges between 0.13 and 0.34 

h-1 using sewage sludge and pine bark in a 1:1 wet mass ratio biodegraded under temperatures 
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of 20 to 70 °C. Activated sludge models suggest a typical value of 0.25 h-1 at 20 °C, but they 

pertain to the raw volatile solids contained in municipal wastewaters. Kaiser (1996) 

suggested a μ
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m value of 0.2 h-1 at 40 °C for the biodegradation modelling of vegetable 

substrates during composting. 

Through regression analysis, the maximum growth rate, μm, was found to be 

significantly affected by MC, via a quadratic relationship, and BA particle size (p<0.05) (R² = 

0.63): 

µm = 0.1126 + 0.0006 × χ1 – 0.0018 × χ1² - 0.0018 × χ2 +0.0001χ2²  (6) 

for χ1= (MC - 45), %; χ2= (BA particle size – 25), mm 

 

The nature of the quadratic association between MC and growth rate was such that 

increased moisture levels up to 50 % were associated with larger μm (Figure 4). A reduction 

in μm at levels higher than 50 %, however, resulted in MC reducing the free air space and 

impeding O2 availability. The negative association between BA particle size and μm, on the 

other hand, reflected the ability of the biomass to maximize surface area attachment and 

waste biodegradation. Found previously to affect microbial OUR (Mohajer et al., 2009), 

W/BA ratio and its interactions with the other physical parameters did not have a significant 

impact on μm as a result of the inoculation effect of the sludge and the BA. The sludge/BA 

mixture probably contained a high initial microbial population that rapidly expanded upon 

exposure to aeration, reducing the potential impact that an optimal physical matrix could 

provide on microbial activity. 

 Averaged for all 16 experimental recipes, the estimated rate of hydrolysis, Kh, had a 

mean value of 0.098 h-1 over a range of 0.081 h-1 in mixture 11 (MC of 52 %, W/BA ratio of 

1/6 and BA particle sizes of over 40 mm) to 0.12 h-1 in mixture 8 (MC of 62 %, W/BA ratio 

of 1/4.1 and BA particle sizes of 12-20 mm). These values were slightly higher than those 

suggested by Sole-Mauri et al. (2007), which ranged from 0.007 to 0.04 h-1, depending on the 

substrate, but were less than those reported by Tremier et al. (2005) at 0.1 to 0.2 h-1 

depending on the temperature. The rate of hydrolysis was found to be significantly associated 

to MC and BA particle size (p<0.05) but also influenced by the interaction between W/BA 

ratio and BA particle size (R² = 0.56):  

 

Kh = 0.0986 + 0.0005 × χ1 - 0.0008 × χ2 - 0.0101 × χ2χ3     (7) 
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for χ1 = (MC - 45), %; χ2 = (BA particle size – 25), mm; χ3 = (W/BA ratio -0.167), 

dimensionless. 
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A higher MC and smaller BA particle size value tended to increase Kh. Accordingly, 

the hydrolysis reaction is favoured by an increasing MC and a large specific surface provided 

by smaller BA particle size (Figure 5). The importance of a small BA particle size is 

underlined through the interaction with W/BA. Hence, if the quantity of sludge in the mixture 

is increased, BA particle size has to decrease not to limit the hydrolysis kinetics. 

 

3.4 Influence of physical parameters on the biodegradable organic fraction 

 The model estimated the readily biodegradable organic matter fraction, MB0, and the 

fraction requiring hydrolysis, MH0 (Table 1), available for microorganisms in the studied 

experimental conditions. The MB0 fraction ranged from a low of 475 mmol O2 (kg dry 

matter)-1 in mixture 6 with a relatively large BA particle size of 30-40 mm and a low W/BA 

ratio and MC of 1/7.9 and 30 %, respectively, to a high of 2 085 mmol O2 (kg dry matter)-1 

for mixture 3 with a smaller particle size of 8-12 mm, higher W/BA ratio of 1/6 and an 

optimal MC of 50 %. A minimum MH0 fraction of 7 950 mmol O2 (kg dry matter)-1 was 

reached for mixture 1 with the lowest W/BA ratio of 1/9.2 and an intermediate value of BA 

particle size of 20-30mm. The maximum MH0 concentration of 18 160 mmol O2 (kg dry 

matter)-1 was reached with mixture 5 with a large W/BA ratio of 1/6 and a high of MC of 68 

%.  

The MB0 fraction was mainly influenced by BA particle size, and the interaction 

between MC and W/BA ratio (p<0.05). To a less extent, it was also influenced by individual 

effects of W/BA ratio (p<0.15) and MC (p<0.25) (R² = 0.64): 

  

MB0 = 1182 + 6.99 × χ1 – 24.20 × χ2 + 1861 × χ3 – 275.42 × χ1χ3    (8) 

for χ1 = (MC-45), %; χ2 = (BA particle size – 25), mm; χ3 = (W/BA ratio -0.167), 

dimensionless. 

 

Predictably, less BA with a smaller particle size increased MB0 since the BA is less 

biodegradable than the sludge. Increasing MC probably allows microorganisms to better 

reach the available MB0. MC and W/BA ratio impacted available MB0 through a negative 

interactive effect where an increase in either parameter had a decreasing effect. This negative 

crossed effect of MC and W/BA resulted from physical restrictions on the accessibility of the 
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organic matter and oxygen to the microorganisms. Indeed, with high moisture and a high 

quantity of sludge versus BA, the porosity of the medium can be limited, consequently 

affecting the aeration of the microorganisms. On the other hand, with low moisture and a low 

quantity of sludge versus BA, conditions for microorganisms activity are also limited.  
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 The sum of MB0 and MH0 is equivalent to the total amount of organic matter 

biodegraded over the four weeks of respirometry. The total concentration ranged from a 

minimum of 8 912 mmol O2 (kg dry matter)-1 with mixture 1 with mid level values for both 

MC (42 %) and BA particle size (20-30 mm) and a low W/BA ratio (1/9.2). A maximum 

value of 19 585 mmol O2 (kg dry matter)-1 was obtained with mixture 5 with the highest MC 

(68 %) and mid-level values for both BA particle size (20-30 mm) and W/BA ratio (1/6). The 

biodegradable organic matter in the 16 mixtures comprised about 35 % of the total organic 

matter. As written concerning MB0, the Tremier model was designed to evaluate the quantity 

of organic matter which can be oxidized under experimental conditions rather than the total 

potential biodegradable matter.  

The sum of the MB0 and MH0 fractions were associated with MC, W/BA ratio and the 

interaction between MC and W/BA ratio (p<0.05) (R² = 0.59): 

  

(MB0 + MH0)= 15211 + 114 × χ1 +14208 × χ3 – 1769 × χ1χ3    (9) 

for χ1=(MC-45), %; χ3=(W/BA ratio -0.167), dimensionless. 

 

Increasing MC up to 50 % along with W/BA, increased the sum of MB0 and MH0 as a 

result of a more favourable water content and a higher sludge fraction. The negative 

interaction between the two parameters, however, altered the individual main effect (Figure 

6). Coupled with larger W/BA ratio, MC above 50 % decreased the sum of MB0 and MH0, 

most likely due to lower O2 diffusion as a result of less free-air-space. Thus, these results 

confirm the notion that the impact of MC and W/BA ratio in composting systems are 

interconnected, where the level of one parameter was important to interpret the impact of the 

other. For MC and the W/BA ratio exceeding 50 % and 1/4.1, respectively, Mohajer et al. 

(2009) also found a reduced OUR. The same conditions produced a reduction in the sum of 

MB0 and MH0 also as a result of less O2 availability.  

 

4. Conclusion 
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With compost mixture respirometry data, this study used the microbial Tremier model 

adapted from the activated sludge process to obtain microbial kinetic parameters describing 

maximum microbial growth rate μ
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m, the rate of organic matter hydrolysis Kh and the initial 

fractions of organic matter being readily degradable MB0 and requiring hydrolysis MH0. 

These parameters were estimated for 16 experimental mixtures of sludge and wood residue 

offering various physical parameter combinations of moisture content (MC), waste to bulking 

agent ratio (W/BA ratio) and bulking agent (BA) particle size.  

The model accurately simulated the OUR over time except for brief periods 

corresponding to the initial lag phase and peak. Differences in the estimated μm and Kh were 

shown to be mostly explained by the initial physical characteristics of the experimental 

mixtures and their interaction. The MC had a quadratic relationship with μm and a positive 

linear association with Kh while particle size had a negative linear association with both.  

Bulking agent particle size in the range of 8-12 mm and MC up to 50 % yielded the highest 

μm and Kh. The sum of the readily degradable fraction of organic matter and that requiring 

hydrolysis, MB0 and MH0, respectively, were impacted in an interactive manner by both MC 

and W/BA ratio. Since the Tremier model is based on OUR, the physical parameters were 

found to impact the actual rather than the total potential value of MB0 and MH0 as the results 

based on O2 availability explain. The study reinforces the fact that the physical characteristics 

of the initial compost mixture are optimized through a holistic approach. The interactive 

association between MC and W/BA ratio, in particular, was important in influencing the 

degree of biodegradable matter. 
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List of symbols 482 
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509 
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514 

b is the death coefficient of the microbial mass, h-1

BA is the bulking agent 

COD is the chemical oxygen demand, mg O2 (kg of dry organic matter)-1

DM is the dry matter, % 

f is the fraction of dead biomass contributing to MI, dimensionless 

Kb is the concentration of organic matter required to obtain half of μm, mmol O2 (kg dry 

organic matter)-1

Kmb is the hydrolysis saturation constant for the ratio MHt/Xt , mmol O2 (kg dry organic 

matter) -1

Kh is the hydrolysis rate constant for the fraction MH in h-1

MB0  is the initial mass of readily biodegradable organic matter at time t, mmol O2 (kg dry 

matter)-1

MBt is the mass of readily biodegradable organic matter at time t, mmol O2 (kg dry matter)-1

MI is the fraction of organic matter which is inert in kg (kg of dry matter)-1.  

MH0 is the initial fraction of solid or soluble macromolecules at time t which first requires 

hydrolysis to be reduced to the easily biodegradable matter, kg (kg of dry matter)-1

MHt is the fraction of solid or soluble macromolecules at time t which first requires 

hydrolysis to be reduced to the readily biodegradable matter, kg (kg of dry organic 

matter)-1

OM is the organic matter, % 

OUR is the oxygen uptake rate, mmol O2 (kg of dry organic matter - h)-1

RO2(t) is the O2 consumption rate at time t, mmol O2 (kg of dry organic matter - h)-1

t is time, h-1

TC is the total carbon, % 

TKN is the total Kjeldahl nitrogen, mg N (kg of dry organic matter)-1

W/BA ratio is the waste (agro-food sludge) to bulking agent (wood residues recycled from a 

composting centre) ratio on a dry mass basis, dimensionless 

X is the microbial population, mg biomass (kg dry organic matter)-1

X0 is the initial mass of microbial population at time 0, mg biomass (kg dry organic matter)-1

Xt is the mass of microbial population at time t, mg biomass (kg dry organic matter)-1  

Y is the coefficient of biomass growth yield, mmol O2 (mg biomass)-1  

β0 is the regression intercept, dimensionless 
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β1, β2, β3 are the linear coefficients, dimensionless 515 

516 

517 

518 

519 

μm is the maximum growth rate of the microbial population, h-1

χ1 is the MC in % 

χ2
 is the W/BA ratio, dimensionless 

χ3 is the BA particle size in mm 



 
Table 1 
Description of the experimental sludge and bulking agent 

Wood residues  Sewage 
sludge 8.5 - 12 

(mm) 
12 - 20 
(mm) 

20 – 30 
(mm) 

30 – 40 
(mm) 

>40  
(mm) 

Moisture content (%) 86.8 10.0 10.0 10.0 10.0 10.0 

OM (% DM)(CV %) 83(0.1) 91.0(0.1) 92.1(0.1) 93.9(0.0) 93.1(0.1) 89.3(0.3)

COD (g/kg DM)(CV %) 1,331(0.6) 1,356(0.1) 1 362(0.1) 1,370(0.9) 1,531(0.7) 1,369(0.6)

TC (g/kg DM)(CV %) 484(0.5) 514(0.4) 508(0.9) 510(0.7) 517(3.2) 486(2.9)

TKN (g/kg DM)(CV %) 46.4(1.5) 46.1(0.8) 37.1(1.0) 31.5(0.5) 34.3(0.5) 23.8(0.9)

DM: dry matter basis; CV: coefficient of variation. 
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Table 2 
Experimental compost recipes. 
 
Mixture 

Nominal 
moisture 

content (%) 

Measured 
moisture 

content (%) 

Bulking 
agent 

particle size 
(mm) 

Waste/bulking  
agent ratio 
(dry mass 

basis) 

C:N ratio 

1 45 41.5 20 – 30 1 / 9.2 14.4 

2 60 61.6 12 – 20 1 / 7.9 13.3 

3 45 52.5 8 – 12 1 / 6.0 10.4 

4 45 49.0 20 – 30 1 / 2.8 13.1 

5 70 68.3 20 – 30 1 / 6.0 14.1 

6 30 30.3 30 – 40 1 / 7.9 17.7 

7 30 35.6 12 – 20 1 / 4.1 16.2 

8 60 61.7 12 – 20 1 / 4.1 11.5 

9 60 56.0 30 – 40 1 / 4.1 16.5 

10 45 51.4 20 – 30 1 / 6.0 14.8 

11 45 53.2 > 40 1 / 6.0 21.3 

12 30 31.4 12 – 20 1 / 7.9 19.3 

13 20 28.5 20 – 30 1 / 6.0 15.3 

14 60 61.1 30 – 40 1 / 7.9 17.6 

15 45 51.0 20 – 30 1 / 6.0 15.1 

16 30 33.5 30 – 40 1 / 4.1 17.6 
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Table 3 
Microbial kinetics and substrate biodegradation components. 
 
Mixture 

 
Maximum 

growth rate, 
μm

(h-1) 

 
Hydrolysis 

rate 
constant, Kh

(h-1) 

 
MB0

(mmol O2/ 
kg DM) 

 
MH0

  

(mmol O2/ 
kg DM) 

 

 
Total MB0 + 
MH0 (mmol 
O2/ kg DM) 

1 0.1994 0.1258 959 7953 8912 

2 0.1051 0.1014 1264 15342 16606 

3 0.2006 0.1172 2085 13169 15254 

4 0.1100 0.0873 1763 16300 18063 

5 0.1119 0.1165 1429 18156 19585 

6 0.0685 0.0849 475 10729 11204 

7 0.0961 0.1088 1687 14381 16068 

8 0.0978 0.1209 850 14179 15029 

9 0.0951 0.0945 928 14710 15638 

10 0.1155 0.0975 1186 16753 17939 

11 0.1053 0.0813 971 12769 13740 

12 0.0845 0.0847 1025 12580 13605 

13 0.0805 0.0851 1068 14007 15075 

14 0.0960 0.0987 1090 16699 17789 

15 0.1159 0.0872 1293 15083 16376 

16 0.0851 0.0774 993 14621 15614 

Note: MB0: initial fraction of organic matter being readily degradable; MH0: initial 
fraction of organic matter requiring hydrolysis; DM: dry matter. 
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Figure 1. Schematic diagram of respirometry apparatus (Tremier et al., 2005). 



 

 

Figure 2. Oxygen uptake rate over time for mixture 4 (moisture content of 49 %; waste to bulking agent 
ratio of 1/2.8 dry mass; bulking agent particle size of 20‐30mm) with the largest variation between 
experimental and simulation trials. 

 



 

 

Figure 3. Oxygen uptake rate over time for mixture 9 (moisture content of 56 %; waste to bulking agent 
ratio of 1/4.1 dry mass; bulking agent particle size of 30‐40mm) with the smallest variation between 
experimental and simulation trials. 

 

 

 



 

Figure 4. Simulated effect of compost mixture moisture content and bulking agent particle size on the 
maximum microbial maximum growth, μm. 



 

 

 

Fig. 5. Simulated effect of compost mixture moisture content and bulking agent particle size on the 
hydrolysis constant Kh for the organic matter fraction which is not readily degradable, MH0. 



 

 

 

 

Figure 6. Simulated effect of compost mixture moisture content and waste to bulking agent (W/BA) ratio  
on the fraction of organic matter which is degraded during composting (MB0 + MH0). 
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