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Summary : The higher order correlation coefficients are able to detect any dependence. So, in a
previous paper, we obtained conditions about these coefficients equivalent to the convergence of moments.
We have deduced a central limit theorem with minimal assumptions. However, it was assumed that all
random variables have the same distribution. In this report, we remove this condition. This allows us
to reduce the assumptions necessary for the convergence of moments for martingales and even to replace
this assumption by a weaker hypothesis. On the other hand, we shall prove that these assumptions can
be simplified when the random variables are bounded.

On the other hand, we will compare the different assumptions of asymptotic independence between
them, in particular, strong mixing condition, weak dependence and condition H,,; which we introduced in
a previous paper We understand that it is this condition H,,r which is closest to the minimum conditions
to ensure asymptotic normality. Finally, we see that, if one has a process whose moments converge, mo-
ments converge also for almost all processes which has only the same multilinear correlation coefficients
that the first process.

Résumé : Les coefficients de corrélation d’ordre supérieur sont capables de détecter toute dépendance.
Aussi, dans un article précédent, on a obtenu des conditions sur ces coefficients équivalentes & la conver-
gence des moments. On en a déduit un théoreme de la limite centrale avec des hypotheéses minimales. On
supposait cependant que tous les variables aléatoires aient la méme loi. Dans ce rapport, nous supprimons
cette condition. Cela nous permet de diminuer les hypothéses nécessaires a la convergence des moments
pour les martingales et méme de remplacer cette hypothése par une hypothese plus faible. D’autre part,
nous montrons que l'on peut simplifier ces theoremes lorsque on utilise des variables aleatoires bornees.

D’autre part, nous allons comparer les différentes hypotheéses d’indépendance asymptotique entre elles,
en particulier, la condition fortement mélangeante, la faible dépendance et la condition H,,; que nous avons
introduite dans un précédent article. On verra que c’est cette condition H,,r qui est la plus proche des
conditions minimales permettant d’assurer la normalité asymptotique. Enfin, on verra aussi que si on a
un processus dont les moments convergent, les moments convergent aussi pour presque tous les processus
ayant seulement les mémes coefficients de corrélation multilinéaire que ce premier processus.

KeyWords : Central Limit Theorem, moments, strongly mixing sequence, weak dependence, mar-
tingale, dependence density, higher order correlation coefficients.



Chapter 1

Higher Order Correlation
Coefticients and MCLT

We first introduce the notations which we use throughout this report.

Notations 1.0.1 Let X,, be a sequence of real random variables defined on a probability space
(2, A, P). We suppose E{X} =0 for all s € N* and we set o(n)? = E{(X1 + X2 + ... + X,,)?}
where B{.} is the expectation. We suppose E{|X;|P} < oo for all s € N* and for all p € N.

Hypothesis 1.0.1 We assume that X5 has the law mg for each s € N* . Then, we denote by
{Pj}jeN the family of orthonormal polynomials associated to ms. We suppose that there exists.

Notations 1.0.2 Let Z, be a sequence of real random variables. If Z, converges in distribution
to a random variable Z , one writes Z, LNy If Z,, converges in probability to Z , one writes
Z, 5 7.

If all the moments E{Z1} converges to the real E{Z%}, one writes Z, M 7. Moreover, by
misuse of our notations, one writes Z, M N (0, Ms) if Z has the normal distribution N (0, Mas).

1.1 Higher Order Correlation Coefficients

At first, we recall the definition of polynomial coefficients of correlation pj, j,,....j.s (J1,--er Jn) €
N™.
Notations 1.1.1 For all n € N*, for all (j1,72,j3, .-, Jn) € N", we set pj, i, i, oo, =

E{P} (X1)P2(X2).....P" (X,,)} and aj, j, ... in = E{P} (X1)P2(X3)......... P (X,)} where Pf =

In

05,7 when o, j = ]E{(XS)ijS(XS) }. If ms =m for all s € N*, we set P} = Pj and 05; = 0.

These dependence coefficients have been defined by Lancaster [21]. Each one measures a
particular type of dependence between X, ..... ,Xn. For example, pj, j,......;. = 0if one of the X;’s
is independent of the others. Moreover, if n=2, p;, j, is the polynomial correlation coefficient of
order (j1,72) between X7 and Xo. In particular, oy is the covariance and p;; is the classical
correlation coefficient : p;,; measures the linear dependence.

More generally the aj, j,,...;,’s such that js < 1 measure multilinear dependence. Indeed, if
Js = 0 or 1, there existe t1,...,t, such that oy, j, . ;, = E{Xy X¢,... X }.

Moreover, if {P;}, j € N, is a basis of L?(R,my) for each s, dependence is completely deter-
mined by these coeflicients. For better understanding the part of the pj, j, ... in dependence,
we generalize the definitions of dependence density (cf [22]), i. e. the density with respect to
m®=m @mas® ......... ® My,



Definition 1.1.2 Assume that, for all s, {P;}, j € N, is a basis of L?(R,m). Then, we call
dependence density of (X1, ...., X,,) the formal series:

f@r, o an) =14 > Pisgareeein Pjy (@1) e PR ()
(J15e-sdn)ENT, at least 2 js#0

Indeed, one can generalize the results of [22] by the following way.

Proposition 1.1.1 Let Fx_, and Fx be the distribution functions of X and (X1, ...., X;,). Then,
for all x = (x1,....,x,) € R,

*

Fx(x) = Flw)m®(du)

u<lz

where

3
. . . 1 n
+k,1,,lgloo {kn}lln—lwo [ ....... klhinoQ [ E pjl,jz,“‘.7jn</;oo ledm1>....< Pjndmnﬂ ..... H .

J1<ki, s gn<kn -

In particular, if (X1, ...., X,;) has a density f* with respect to the product measure m® =
m; ®@mg ® ........ ® my, f* € L*(R",m®), D iy <hrojn i Pitdzseees i P} (21).... P} () converges
in L2(R™, m®) to f*. Then, one can identify f and f*.

On the other hand, X1, X5, ....., X,, are independent if f = 1, that is pj;, j,,....;, = 0 for all
(J1,J2y oy Jn) # (0,0, ..., 0).

The use of dependence density allows a better understanding of the contribution of the p;, ;s
in dependence. Moreover, it simplifies the notations. Of course, f can be not a density because
J * is not inevitablty a Stieljes Riemann integral.

The interest of this definition is that the pj, j, .. ;,.’s are indeed dependence coefficients. As a
matter of fact, the p;, j,...;.’s measure polynomial dependence. For example p; 2, p2,1 and p2 2
measure quadratic dependence, p1 3, p3,1, etc, measure cubic dependence. Moreover, Z;‘;l pf’l <1
and Xp = g(X1), g € L*(R,my), if and only if 3 72, p7, = 1.

As a matter of fact, by using the p;, j,....j.’s we can have a complete study of dependence. The
most interesting property of these coefficients is that they can detect the most of the functional
dependence.

The pj, j,.....;. s have many applications and enable a better understanding of certain processes.
For example, it is easy to express the fact that a process is a martingale because it is an orthogonal
projection (cf appendix A.1.2).

Proposition 1.1.2 let F,, be the o-field generated by X1, ..., X,,. Then, (Xi + ...+ X,,, Fp) is a
martingale if and only if E{X,+1|Fn.} =0 for alln e N .

So it is easy to make a connection between the fact that a martingale is an orthogonal projection
and that the pj, j, . j,’s are defined by using orthogonal polynomials P; (cf appendix A.1.2).

.....

Proposition 1.1.3 Assume that (X1 + ... + Xy, Fy) is a martingale. Then, pj, j, ... j..1 =0 for
alln > 1. Conversely, if {P?}, j € N, is a basis of L*>(R,my) for all s € N*, and if pj, j,.....jn.1 =0
for all n € N* and for all (j1,....,Jn), then (X1 + ... + X0, Fy) is a martingale



Now, the Fourier transform of orthogonal polynomials has a property very useful in the study
of the MCLT (cf Theorem 1-2 of [23]).

Theorem 1 For all j € N,
i ‘ Osj i »
/ e P () (dx) = 2t + of 1)
This property is very effective when we want to compute the law of sums of random variables.
For example, suppose that ms = m for all s and E{X?} = 1. Let ¢,,(t) be the characteristic

function of X;. Let f be the dependence density. Then, under certain simple assumptions, the
characteristic function of (X + ..... + X,)/y/n is

/eit(‘”1+""+“)/\/ﬁf(x1,....,xn)m(dﬂcl)....m(dwn)

+ Z pjl’jz,.‘..,jn/eit(wl—k““{_xn)/\/ﬁpjll(‘rl)""PjT:L(xn)m(dxl)“"m(dxn)

J1seeedn

DS N () Cox - e ) P N

V' /ni
4=0 1+t in=a In> Ve

(where ¢’ < q)

Q .
o t?/2 + Z ('Lt)q< o-jl""o-j'npjl.vj? ------ Jn +of |t|q))eft2/2 + of MQ) )
) vnd =g 71t In!

Thanks to this result, a necessary and sufficient condition of convergence of moments was
deduced in th 1-5 of [23] (cf also theorem 2 ).

This is not surprising: orthogonal polynomials have interesting applications in probability.
Thus, we have obtained in [27] the exact distributions of quadratic forms by using the Hermite poly-

itm gy —z2/2
nomials ; and Laguerre polynomials L; which have properties even stronger : e H(JQ(:))ifz dz _

g—f(zt)J This has provided a simple formula to calculate the distributions of quadratic forms of
aussian vectors without assuming the independence and whatever the dimension.



1.2 Central Limit Theorem

1.2.1 Case of random variables with the same distribution

One has proved in [23] the following theorem.

Theorem 2 One assumes that, for all s € N*, mg = m. Then, all the moments M, =
E{W} converges to My € R if and only if, for all ¢ € N, there existe S; € R
such that

q!
Tt > Qi jayeeejn — Oq -
Jitiz+.+in=q; js<2
Moreover, for all ¢ € N, M, is the moment of order q of N(0, M) if and only if, for all g € N,
S, is the moment of order q of N(0,Ss). In this case, My = So + o where o3 = E{X?}.

The interest of this theorem is that the pj, j,,... ;.’s are indeed dependence coefficients. Now,
theorem 2 gives only an equivalence to the convergence of the moments. In other words, we only
turn this convergence into a condition on the dependence coefficients pj, j,.... .. Then, in these
theorems there is no asymptotical independence assumption. Besides, we can easily build up some
sequences { X, } whose the moments converge without that the X, are asymptotically independent.
For example, let us take X,, = e¢,Y when Y has a distribution N(0,1) and e,, = +1 is correctly
chosen : My — M, for all q. Though, in this case, the X,,’s has the most strong dependence, the
linear dependence with a linear correlation coefficient p; ; = £1.

Then, in order to have asymptotical independence condition it is enough to choose assumptions
a little stronger on the pj, j,... ;. ’s. By this method, we can obtain minimal conditions for the
central limit theorem. For example the following theorem holds (cf [23]).

Theorem 3 One assumes that, for all s € N*, m; = m. We suppose that
n 2
n*QE{ [Z (x2- E{Xf,})} } 0.
s=1

We suppose also that, for all g € N*,

\/q"% zn: zn: ..... Z E{Xt1Xt2 """ th}

t1=1ta=t1+1 tq:t(171+1

converges to the moment of order q of N(0,S52) and that

1
7/ md Z pj11j27~--7jn

Jitjet..-+in=q; js<2, only one js=2

is bounded.
Then, (X1 + Xa + .. + X)) /yv/1 22 N(0, My) with My = Sy + o2.

We recall that (X1 + Xz + ... + X,) /i -5 N(0, M) if (X1 + Xo + ... + X)) /v/n 2 N(0, My).

Remark that Sy < 0 is possible because My = 02 + Sz. In this case, the moment of order q of
N(0,S2) is the moment of |S2|Ys where Y, ~ N(0,1).

Note that the p;, ... ;.’sor the o, .. ;. ’s appear well in each of these conditions. Indeed, there
exists (j1, ..., Jn) Where j; <1 such that E{X; Xy,.... X, } = aj,,....;,. Moreover, by proposition

A2.1, n?E{[> | (X2 - IE{XE})]Q} — 0 is equivalent to

—2
n > Pirgzseensin — 0
Jitje+...+jin=4; js=2 or 0

.....



On the other hand, the conditions of Theorem 3 are actually stronger than those of Theorem

2 . Indeed, if n 2E{ [ X", [X2 — E{X2}]]*} — 0 and if (X1 + X5 + ... + X,,)/v/n 2 N(0, My) ,
by lemma 4-1 of [23],

E Pj1,gzsesin — 0

Jitjet.+in=q; js<2, at least 1 js=2

2)-
L}

Remark that the condition n ?E{[>"_, (X2 — IE{X?})}Q} — 0 is checked under weak as-
sumptions. Indeed, by proposition A.2.2, it holds if [E{X2X?} — E{X2}E{X?}| < (|t —s|) where
a(h) — 0 as h — oo.

Now, it seems natural to choose this condition in a CLT. Then the theorem 3 seems a theorem
with minimum conditions of asymptotic independence for the MCLT. We can therefore assume
that this is the case. In fact, we shall see in section 2.3.5 that this condition is maybe too weak
because it does not require asymptotic normality.

1.2.2 Generalization

Theorems 2 and 3 are given under the assumption that the X;’s have the same law m. It is a too
restrictive condition which prevents application of these theorems for martingales, for example.
So we will study the case where the laws of the X;’s are different.

At first, we will need a sequence of normalization ¥(n) which can often be replaced by o(n).

Notations 1.2.1 Let ¥(n) > 0. One supposes that cy/n < ¥(n) where cy > 0. Let M =

E{%} Let h € N. We set B] = maxz{1, |M}|}.

Note that we could impose a weaker hypothesis than cg+/n < ¥(n) : in this case, we get conditions
more complicated in the MCLT.

Now, because we study the case where the laws of the X;’s are different, we have to impose
minimal assumptions in order to avoid, for example that E{X2} — oco. Also we will impose the
following assumptions.

Hypothesis 1.2.1 One supposes that, for all p € N*, for all j > 2
E{ = i (Xe)

U(n)/
where C(j,p) depends only on j and p and where C,,(j,p) = €,(j,p) = 0 as n — oo if j > 3.

p

} < Cn(4,p) <C(,p)

Let 3, = E{X?2}. One assumes that ZZ”I T o2 €R,.

Of course these conditions are checked if the m,.’s have the same law. More generally, the first
condition is checked if, for all p € N* | there exists C1(p) > 0 such that |[E{XP}| < Cy(p).

Remark that condition ”for all p € N*, for all j > 2, E{‘Zt\p(l# ’p } < Cn(4,p) 7 is equivalent

to condition ”for all p € N*, for all j > 2, IE{ [Et 175? ] } < Cn(j,p) 7. It suffices to consider p
even and Holder’s inequality.

Then, with these conditions, one can generalize theorem 3 by the following way.



Theorem 4 We suppose that

\IJ(n)_4IE{ {Zn: (x2- E{Xf})r} 0.

s=1

All the moments Mg = E{W} converges to a real My if and only if, for all

q € N, there existe Sy € R and Sby, € R , r=2,3, such that

>

S1#£S2F....FSq

E{X,, X X5, }
W (n)?

—>Sq

Z E{P;" (Xs) Xy X, } <50,
U (n) !
S17#82F . #8q—1
s E{ X, Xgpennnnn X
Z Vs1 { §14%82 q} SSbg

T(n)i+T
S1FSaF . #8q

where B3 (x) = 2% — yo,w — By with 5, = E{X3, }/E{X2}.

Moreover, My, is the moment of order q of N(0, Ma) if and only if, for all ¢ € N*, S; = v,
the moment of order q of N(0,Ss). In this case My = o2 + Sa.

This theorem is proved in chapter 3.
Remark that if all the laws m;’s are the same, the third condition can be removed.

Now, when the X;’s are bounded, we shall prove a simpler theorem.

Theorem 5 We suppose that there exists F' > 0 such that | Xs| < F for all s € N*. We suppose
that

w(n) B [an (x2 x|} 0.

s=1

All the moments Mg = E{W} converges to a real My if and only if, for all

q € N, there existe S; € R such that

>

S1#£82F ... #5q

E{X,, Xy X5, }
U(n)e

Moreover, M, is the moment of order q of N(0, Ma) if and only if, for all ¢ € N*, S, = v,.

Remark that if | X,, | < F, the hypothesis 1.2.1 holds.



Chapter 2

Applications

2.1 Process with the same first coefficients of correlation

Theorem 4 allows to better understand if an asymptotical independence condition is useful or not.
For example, for fixed n, asymptotic normality depends only on a finite number of correlation
coefficients : that is a countable number of those are useless.

We have a simple application of this result: if a sequence X,, satisfies the MCLT, an infinity
of other sequences which have the same first correlation coefficients will also check MCLT.

Proposition 2.1.1 Assume that, for all s € N*, ms = m. Let {Y,} be a process such that, for all
s € N*, Y, has the same distribution m as Xs. Let pj, j,. .., and pi . be the higher order
correlation coefficients associated to {X,} and {Y,}, respectively.

Assume that, for all s € N*, {P?}jen is a basis of L?(R,my). Assume that, for alln € N*, the
dependence density of the process {Y,} satisfies : for all n,

..... J

fy(xl, ceeny xn)

=1+ > pii P PR () + > O PL(@1) PP ()

(J1seesdn)s Js<2 (J1see3dn ), at least 1 js>2

Then,

X1+ ... + X, M
=

. ¢l
T(n) N(0,Ms) if and only if

Thus we obtain a set of processes which satisfy the MCLT as soon as one of them satisfies it.

For example by using proposition A.2.1, we have the following propeties.
Example 2.1.1 Let X,, be a bounded strictly stationary ¢-mizing process such that o(n)? > c3n.
Then, the MCLT holds (cf [14] and [15]).

Then, Yiteod¥u M N(0,1) for all process {Y,} such that {Y,}, for all n, the distribution of

o(n)
Y, is m and has the dependence density

fy(.]?l, ceeny l‘n)

=1+ > phinPi(@) . P () + > D Py (@) Py ()

(J1s--5dn), Js<1 (41,--2Jn), at least one js>2



when

1
/
o) > Pisgarsin =0
Jitje+...+jn=4% js=2 or 0

2.2 Martingale theory

We have understood in proposition 1.1.3 that, if (X +...4+X,,, F,,) is a martingale, pj, j,.....j.,1 =0

for all n € N*. Then, E{X,, X,,..... X, } = 0 for all s < ... < 54. The condition of theorem 4

Dsidtsadto. £ W — Sy is automatically checked.

It is therefore not surprising that we obtain quite simple CLT for martingale. This result
clearly shows that the pj, j,......;.’s which define all dependence, allow to better understand the
importance of classical assumptions in the CLT and what they really mean.

Now we can also consider inovation processes : Xp+1 = Znt1 — E{Zn+1|Zn, Zn-1,....} where
______ jm,1 =0 for alln .

But in order that the MCLT holds, one can simplify this condition : in theorem 4 it is enough
to assume pj, ..., = 0if jo < 1 in order to obtain E{Xs, Xsperen qu} = 0. Then, one use the
following notation.

Notations 2.2.1 Let Z, be a stochastic process. We denote by P{Zn+1|Zn, Zn-1,....} the or-
thogonal projection of Z,,+1 onto the subspace generated by linear combination of random variables
Ly Lty Zity, 11 <l2 < .. <lp < where p € N*,

Indeed, one can use process much simpler than innovation process in order to apply theorem 4
with pj, .., = 0if jo < 1: one uses Xpi1 = Zypy1 — P{Zn+1|Zn, Zn—1,....}. This condition
is less strong than the martingale assumption. Indeed, one can write E{Z,4+1|Zy, Zn-1,....} =
P{Zws1|Zn, Zn-1,....} + R{Zn+1|Zn, Zn—1,....} where R{Z,+1|Zpn, Zp—1,....} is orthogonal to
P{Zn+11Zn, Zn-1,..--}-

More generally, one can use process much simpler than martingales in order to apply theorem
4. TInstead of assuming E{X,i|F,} = 0, one can suppose P{X,+1|Xn, Xn—1,....} = 0 for all
n € N* ie. Piv,eisin = 0 if js < 1.

Example 2.2.1 Let
Xi =Y CiOupi) fir1 (Vi)
i=0

where Cy,(x) = v/2.cos(4"x), where {©;} is IID with uniform distribution on [0,27], where {¥;}
is a strictly stationary process independent of {©;} and where |fi11(y)| < W with a >0 .

Then, we shall prove in appendiz B that P{X,11|Xn, Xn—1,....} =0 for all n € N*.

Then, in order to apply theorem 4 with E{ X, X, ...... X,,} =0, it is not necessary that X, is
a martingale. So we can state the following theorem.

Theorem 6 Assume that the hypotheses 3.1.2 hold with ¥(n) = n. Assume that P{ X, 11|Xn, Xn—1, cereee-
0 for all n € N*. We suppose that

n

n_QE{ [Z (x2- E{Xf})r} 0.

s=1



All the moments My = E{W} converges to a moment of order q of N(0,03) if

and only if, for all ¢ € N, there existe Sbg € R, such that

D

S1F82F o FEg—1

E{X2 X,,.... X5, ,}
i

< Sb

Theorem 7 Assume that there exists F > 0 such that | Xs| < F for all s. We suppose that
2
Yoy E{fs} — o8, Assume that P{X,41|Xn, Xn_1,....} = 0 for all n € N*. We suppose that

n_QE{ [En: (x2- E{Xf})r} 0.

s=1

Then, all the moments M = E{W} converges to a moment of order q of N(0,03).

Compare these results to classical theorems about martingales (cf [20] pages 58 and 71).

Theorem 8 Let {3,;, Fni, 1 < i < kp,m >1}) be a zero mean square integrable martingale array
with difference X,; and let n? be an a.s. finite random variables. Assume that the o-fields are
nested : Fn i C Fpy1,i for 1 <i <kyp,n > 1.

Assume that

A) max (|Xm|> Zo.

B) E{ max(an-)} is bounded in n.

P
C) Uﬁ,k” = ZXZZ - 772 .

Then,
En,kn = Zan i’ Z )

where the random variable Z has the characteristic function E{exp(—n?t?/2)}.

For example, we can choose k, = n, Frn; = Fi, Zn, = (X1 + ... + X))/, Xni = Xi/v/n
and n? = 0. Then, in [20], we have also the following result about the convergence of moments.

Theorem 9 Letp > 1. Let pu,, be the moment of order p of N(0,1). Assume that (X1+...4+ Xy, Fp)
is a martingale. Assume that the following conditions hold.

1
A) —  max (E{Xﬂfi_ﬁ) Lo.
N i€{2,3,....,n}

B) E{’% iE{Xﬂfi_l} - aé‘p} 0.

n=1

) E{‘iip{f —O’%]’p} —0.

10



Then,
E{‘Xl + o+ X, 2

NG

2p
— H2p0g

Let us compare this theorem and theorem 6. At first, P{X,11|Xn, Xn—_1,....} = 0 holds if
(X1 +...+ X, Fp) is a martingale. It is a condition much weaker than the martingale assumption.
Moreover, by lemma A.2.1 | condition C) with p=2, involves that

n

nB{ [ > (x2 - E{x2} )] j-0.

s=1

Now consider condition A) : (1/n) {Inax , (E{X?|Fi-1}) £ 0. We know that E{X2|Fi_1}
i€{2,3,....,
can be written with the pj, ;. : e.g. E{X3|F1} = E{X3} + 012 > pj2P}(X1). That is the
Pjr,.....jn are implicitly in this theorem. But many are useless for the MCLT. The aim of theorem
4 is to suppress these useless parameters e.g. the p; o such that j > 2.

Moreover, in theorem 7 we do not need of use the maximum as in theorem 9. On the other
hand, we do not need condition B) for all p : E{|1 >""_ E{X?|F,_1} - o3|"} — 0.

Then, clearly theorem 7 obtained by using the the pj,
than theorem 9.

’s gives conditions much simpler

......

Example 2.2.2 Consider the sequences X; = Z;’io Ci(Ot4:) fit1(Viys) defined in example 2.2.1.
One chooses fi11(¥;) = (I_H‘)I'W One supposes W, stricly stationary and bounded.

We know that P{X,+1|Xn, Xn-1,....} =0 for all n € N*.
Then, (X1 + .. + X,)/v/n 2 N(0,E{(X1)?}) if
[E{W:)2(0p)*} — B{(0e)*YE{(¥y)?}| < e(t —1') ,

where 1 > €(t) > 0 and where €(t) is decreasing and converges to 0.
This condition of asymptotic independence about W, is therefore very weak, especially compared
to the strong mizing condition or to the condition of weak dependence.

This shows clearly that the use of the pj, ... ;. ’s simplifies the CLT for martingales and allows
also to better understand why the classical CLT conditions are relatively simple in the case of
martingales.

2.3 Comparison of the conditions of asymptotic indepen-
dence

2.3.1 Classical conditions
We first recall the definition of the strong mixing condition.

Definition 2.3.1 : Assume that {X,}nen i a sequence of random variables. Then, {X,} is
strongly mizing with coefficient a if

sup P(ANB)—- P(A)P(B)|=a(h) -0

AEMY, BEM,,

as h — oo, where for a < b, M® is the o-field generated by Xo, Xos1, -y Xp.
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For example, suppose now that the X;’s have the same law m and that X,, is strong mixing
with coefficient a. Suppose that all the orthonormal polynomials P; exist. We know that we can
express the p;, iy, i,,’s in the form :

Pi1gzsenn. Jn — E{P (th)PJé (th) """ Pje (Xte)Pje+1 (Xte+1 )Pje+2 (Xte+2) """ ij (th)}

where t, € N*, s=1,2,....q, and t; <ty < .... <{,.

On the other hand, |IE{[PJ-1 (Xopy)eeeens Xv,) }’ < E{ X, )*F } ....... ]E{ Xu,) }
which is equal to a constant Cj, . j,. Then by theorem 17-2- 2 of [1], we know that the strong
mixing condition involves

......

|]E{Pj1(th)""ij(th)}_E{le(th) P]e Xt }E{PJ Xte+1)"'ij(th)}| < Kaa(t€+1_t€)17a

e+1
where K, is a constant and a > 0 arbitrarily small.

Of course, this relationship is written with the p;,
tey1 =71+ h as:

2 jn such that js =0if r =t, < s <

1—a
2T I N S 5010,0,-..000,0, .10, s G hgd yeeenen il < Kqa(h) .

On the other hand, Doukhan and Louhichi [18] have introduced the (0, £, ¥) weak-dependence.

Definition 2.3.2 : Let £ = U2, LP where LP = {f : RP =R} . Let ¥: L® L ® (N*)? - Ry
and (0;)ren \, 0.
The sequence { X, }nez is (0, L, V) weakly dependent if
Vr € N, Vu,v € N*, ¥(h, k) € £* ® L7,
Vi <ig < ... Ly <y +17 < g1 <. < Ju,

|Cov(h( Xy, ooy Xi ), K( Xy oo X)) | < 62 (R K u,v).

Clearly, under this assumption of weak dependence, we find the same kind of relationship as
when the strong mixing condition holds :

|]E{Pj1 (Xt,)eenn Py, (th)} —E{le (Xt,).....Pj, (Xtc)}E{PjCH(Xt P, (th)}’ <Cibi, -4

)

e

where C'; depends on e, g-e, ji,j2, ..., Jq-
Now, remark that
IE{(X¢)*(Xe4n)?} — E{(Xe)*}E{(X;50)*} — 0.

In fact, it’s as true for the strong mixing condition as for the weak dependence, That means by
theorem 4, that, if all moments converge, then in addition to one or other of these conditions, it
will be required inter alia that

S1#£S2F ... £Sq

2.3.2 Condition H,,;

Conditions of asymptotic independence H,,; and of asymptotic stationarity H,,s were introduced
in [24] and [25].

12



Notations 2.3.3 We denote by k(n) € N, an increasing sequence such that k(1) =0, k(n) <n
and k(n)/n — 0 as n — oo . We define the sequences u(n) and 7(n) by : u(1)=1, u(n) =
maz{m € N*|2m + x(m) <n} and 7(1) =0, 7(n) = n — 2u(n) if n > 2. Moreover, we simplify
u(n) and 7(n) in u, =u and 7, = 7.

Let o(u)? be the variance of X1 + X + ... + X, . One sets &, = ZatXoteo.... tXu g, =

Xugp1+Xugoton. +Xugr and 3 = Xugrp1+Xugrpoto... +Xutrtu
o(u) u o(u) ’

In [24] , one has proved that n/u — 2 and 7/u — 0 as n — oo. Moreover, one chooses

E{(&)*} — 0.

Notations 2.3.4 : We define conditions H,,s and H,,; by the following way :
Hps :Vpe N, E{(Z,)"} — E{(Z,)?} — 0 as n — oo.

Hyp 2 Y(p,q) € (N*)2, E{(Z,)P(2,)1} — BE{(Z.)P}E{(Z])4} — 0 as n — o0.

In fact, in [25], we define conditions a little less strong because we consider the asymptotic
independence of moments between X, + v, and X!, +v!, where {v, } and {v/,} are two sequences of
random variables such that E{|v,[P} + E{|v |’} — 0 for all p € N. Then, in [25] one has proved
the following result.

Theorem 10 : Assume that E{|§u|k} — 0 asn — oo forallk € N. Assume that H,,s and Hp,g
hold. Then, ¥, 2> N(0,1).

In fact, H,,s and H,,; implies also the convergence in dimension 2.

Corollary 2.3.1 : Assume that E{|¢,|*} — 0 as n — oo for all k € N. Assume that H,,s and
Hyup hold. Then, (S,,%),) 2 Ny(0,1,) = N(0,1) ® N(0,1).

Proof By theorem 10, E{(X,)*} — us, the moments of order k of N(0,1). By H,,s, E{(X/)*} —
pur Then, E{(3,)TYE{(E,)P)} — pgpp. By Himr, B{(Xu)?(%,)7)} — E{(£.)"}E{(X;)")} — 0.
Then, E{(5,)1(S))} — figfty B

Note that the convergence of moments involves the convergence in distribution
Corollary 2.3.2 Assume that E{|¢,|*} — 0 as n — oo for all k € N. Assume that H,,s and
Hyup hold. Then, S, % N(0,1).

Proof By our assumptions, E{(X,)*} — . By Hpus, E{(X))¥} — px. By H,r, for all
(a,b) € R?, E{(aX, + b%!)k} converges to the moments of order k of N(0,a? + b%). One deduces
that 3, % N(0,1).

Example 2.3.1 Let ¢ = Y ;00 b hi(O14;), where |hi(©1)] <1, |b] <1/2 and where ©; is an
1ID sequence independent of another IID sequence ©,. Assume that (; is not strong mizing.

Assume that k;(0y,(;) = i75/2g;(0y).sin(e(i)(;) where E{g;(©1)} = 0 and |e(i)| < 2 for all
i€ N . Assume that Y oo | e ki+1(@1,C1)| < C < .

Let X; = 32 kiv1(Ov i, Cryi). Then Hyyp hold and S, > N(0,1) (cf [25])

13



2.3.3 Condition H,,; and correlation coefficients of higher order

We will compare these results about H,,; with the results about the correlation coefficients of
higher order. We will see that we obtain almost minimal conditions more similar to classical
conditions.

This is not surprising. We introduced the conditions H,,; by trying to find conditions slightly
stronger than those about correlation coefficients of higher order (Partie B-I of [26]) and closer to
the classical conditions : cf Partie B-II of [26].

So we obtain the following theorem.

Theorem 11 Suppose that | X,,| < F where F' > 0. One assumes that there exists cy > 0 such that
o(n) > cyy/n. One supposes that ﬁ Sour E{X?} — o and ﬁ > e, 4r, B{XZ} — 03
One assumes that

EH ?11[(Xt)2—]E{X?}]r}+EH ?;[(XWM?—E{Xzﬁw}]r}HO.

o (un)? o (un)?

One assumes that, for all k € N,
E{

Then, Hy,; and Hp,s hold if and only if for all ¢ € N, for all p € N,

k
Xut1+ Xugo+ e + Xutr, 0
o(un) .

Z Z E{XSIXSZ""XSunnJFTnJFtlXun+7n+t2""Xun"l'Tn"Ftp}

olu p+q
S1#SoF . FSq, Sr<Un  t1FtaFE . FEly, Un+Th<t.<n ( n)

converges to Vv, , where v} is the moment of order p de la la loi N(0,1— 03).

Proof We apply corollaries 3.10.1 and 4.5.1 with ¥(n) = o(n), ny, = Uy, Xm, = X, for
t= 1, ey Unpy, Ym,t = Xun+7n,+t for t = 1, ey Upy -
Indeed, if H,,; and H,,s hold, by corollary 2.3.1, all the moments
(Xl tot Xun)q(Xun"FTnJFl toet Xun-l-m-&-u)p}
g(un)erq

Mz, =E{

converges to fiqft,. Then, all the conditions of corollary 4.5.1 are checked. That proves the neces-
sary condition.

Conversely, let us prove the sufficient condition. Suppose that the conditions of this theo-

rem are checked. By corollaries 3.10.1 and 4.5.1 , M}, — pqpp, M} = E{W} — Ha

M)" = E{(X“'*”l:(;)';;f“**“)p} — pip. Therefore, M7, — MM)" — 0. Then, H,,; and H,,gs
hold. W

If X, is not bounded, one can use corollary 4.4.1 : conditions are more complicated. But this
is hardly important: this theorem 11 suffices to show how H,,; results in terms of correlation
coefficients of higher order. In particular, the main condition about the coefficients of multilinear
correlation implies the following condition (when the sequences are bounded or not).

Corollary 2.3.3 One assumes that there exists cgy > 0 such that o(n) > cgy/n. One supposes

that (1/0(un)?) Y02 B{X2} — o and (1/0(un)?) > 0_1 4, +r BE{XZ} — 0. One assumes that
un 2 2772 un, 2 2 2
. { [ t_let()u )—;E{Xt } } B { t_1[<Xun+Tn;zz>l - E{XWW}]} } o
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One assumes that, for all k € N,
E{

Then, if Hyr and Hy,s hold

k
X1 + Xugo + oo + Xugr, o
) .

o(un

Z Z E{X51X52 ...... XSunn+Tn+t1Xun+Tn+t2 ...... Xun+7n+tp}
g(u)p+q
S1#£S2FE ... F#sq t1FtaF ... #tp
_ |: Z E{XleSQ ...... qu} Z E{Xun+7n+t1Xun+7‘n+t2 ...... Xun+7-’n.+tp}:|
o(u)d o(u)P

S1#£S2FE ... #5q t1F#taF£. ... F#tp

converges to 0

Finally we see that the condition H,,r leads to a condition about the p;,
stronger than that of Theorem 4.

j»'s which is hardly

2.3.4 Comparison of conditions

We will therefore compare the strength of the different conditions of asymptotic independence in
spite of the fact that all are not directly comparable.

At first, it is not necessary that H,,; holds in the case of weak dependence a priori, at least. So
we can not say that the condition H,,s is weaker than the condition of weak dependence (a priori,
at least) and one can not directly compare these two conditions. It will be the same between the
Martingale hypothesis and the assumptions of Theorem 4.

On the other hand, let us remark that if strong mixing condition holds and if the MCLT holds,
it is necessary that H,,; holds.

Now, the pj, ... j.’s determine all dependence. So we must be able to formulate the various
conditions of asymptotic independence as conditions about the p;, . ; ’s. However, it may be
difficult to give an equivalence. So we shall just give some consequences that these conditions of
asymptotic independence lead about the p;, . ;. ’s and the MCLT L

Conditions of theorem 4 It is easy to understand that if the conditions of theorem 4 are
checked, Q conditions about the p;, .. ;. ’s have to be checked in order that the first ¢ moments
converge where Q is approximately equal to 3q.

In this case the conditions which we obtain are conditions being about sums of p;, . ;.’

S.

Conditions of theorem 4 and H,,s Clearly, if we impose moreover that H,,s holds Q’
conditions about the p;, . ;. ’s have to be checked in order that the first g moments converge
where Q' is approximately equal to 6q (cf theorem 12 ).

In this case also the conditions which we obtain are conditions being about sums of p;, .. ;.’s.

Conditions of theoreme 4 and H,,; If we impose moreover that H,,; holds Q” conditions
about the pj, ;. ’s have to be checked in order that the first g moments M, , qd +p <gq,
converge where Q” is approximately equal to ¢2/2 (cf theorem 15 ).

In this case again the conditions which we obtain are conditions being about sums of p;, ... ;. ’s.

LOf course, in this case, one assumes ¥(n) = o(n) and o(n)/v/n > cy.
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Strong mixing condition Now suppose that the X;’s have the same law m and that {X;} is
strong mixing with coefficient a . Therefore, for all h, for all t; < t3 < .... < tp,

’E{ th Jh Xth } ]E{ Xt1) P]e Xte }E{ Jet1 Xte+1)"'Pjh(Xth)}‘ < Kaa(t€+1_te)1_a'

So there is an countable number of relations about the p;, ... ;.’s. Since only the first p;, .. ;.’s
are useful for the MCLT by theorem 2 (j; < 2), so there is a countable number of unnecessary
relationships which are also checked

Remark also that ’E{ X)2(Xein) } IE{ X3) }E{ Xitn) } — 0. This means that the con-
ditions of MCLT for strong mixing processes will be stronger than those of Theorem 4.

Moreover, it is easy to see that if all moments M’ of a strictly stationary strong mixing process
are bounded, H,,; holds. Then the MCLT holds also.

Now, the conditions are relationship between groups of 3 pj;,,.. ;s :

< Kqa(h)™e.

|pi1’i2, ~~~~~~~~ in = Piryiz,..... 1,0,0,....0 £0,0,....,0, %4 h it hg1yeeeeeee in

Furthermore it is the supremum which converges to 0. Then, these relations are stronger than
those of sums of p;, .. j.’s.

Weak dependence Now, we suppose that the sequence { X, },cz is (0, £, ¥) weakly dependent.
Then, for all t; <ty < .... < iy,

|E{Pj1(Xt1) ...... Pjh(Xth)} —E{le(th) ...... P; (Xq, }IE{PJEJrl P Pjh(Xth)}‘

<Cib .

By the same way, |]E{Xt Xt+h } E{Xt }E{Xt+h } — 0.
We obtain the same conclusions as for strong mixing processes. However, it is not sure a priori
that, if all moments M;' converges, Hy, holds.

In the case of weak dependence conditions that we have about the p;, . ;. ’s are always
relations between 3 groups of p;, s,

,,,,,,

Martingale if {X;} is a martingale, pj, j,,.. ;.1 =0, i.e. I['E{P]tl1 (Xty).eoee Pjt::ll (Xe,_)Xi, } =0
for all h, for all t; < t3 < .... < t;. Clearly, in this case also, there is a countable number of

relations useless for the MCLT.

Moreover, these conditions are equalities on some pj, ... . : Pji js,.....in,1 = 0. These relations
are much stronger than the convergence of sums of p;, .. j, -

Processus such that P{X,,+1|X,, Xs—1,....} = 0. In this case, E{thXtQ ...... X, } =0 for all
h, for all t; < ts < .... < tp. It is a weaker condition than the martingale condition, but stronger
than those of theorem 4 and furthermore, there are a countable number of relations necessary for
the convergence of the moment of order q when we consider that the relationship must be true for
all n.

In this case the conditions that we have are still equalities on some pj, ... ;. . But there are
less than for martingales.

Conclusion

All these conditions are not always directly comparable. For example, a martingale does not
necessarily satisfy the MCLT.

But there is a way to get an idea of the strength of each of the hypotheses: by using the
correlation coefficients of higher order.
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For example, one could say that a condition is stronger than another if it requires more relations
about the p;, .. ;. ’s.

Now we can also consider what type of relationship it is. In this case we understand that
the conditions of theorem 4 are conditions which we can consider as a minimum. But we also
understand that the condition H,,; is almost minimal.

In fact we shall even wonder if the true minimum condition is not H,,;.

2.3.5 Condition H,,; and minimal condition

Minimal condition It arises indeed a question: Is that the conditions of theorem 4 are actually
conditions which can be considered as conditions of asymptotic independence? These conditions
which are directly related to the correlation coefficients of higher order are actually stronger than
the conditions of theorem 2 (which give an equivalence to the convergence of moments and which
involve no dependence a priori).

But they have a default: the conditions of theorem 4 does not necessarily mean that asymptotic
distributions are normal unless we impose the .S; are normal moments.

But to impose that the S,’s are normal moments is more like a chance because it does

not change much about the condition of asymptotic independence itself. Indeed, to say that
E{ X o, Xogermn. X} . . E{Xo; Xogornn. X}
D erdat. 4s, — @i~ — Sq where S is arbitrary and D s Esake gey W

v, are two conditions which require the same type of asymptotic independence.

If one wants this condition of asymptotic normality, we wonder if we should not therefore
impose conditions slightly stronger. One wonders if, as a matter of fact, condition H,,; is the
minimum condition for the asymptotic independence in order that MCLT holds with asymptotic
normality.

Study of conditions H,,;y and H,,s At first, note that if the conditions of Theorem 4 are
checked, it is necessary that other aditional condition about the correlation coefficients of higher
order holds in order that H,,s holds. However, if the conditions of Theorem 4 are checked and if

H,,s does not hold, we will have a very strange case where we have ¥, M N(0,1), 3, “ N(0,1)

M
and X!, /A N(0,1).
Intuitively, we feel that it is logical to assume moreover that H,,s holds if we want a minimal
regularity in the asymptotic convergence.

Now, if the conditions of Theorem 4 are checked and if H,,; does not hold, there will be also
conditions on the correlation coefficients of higher order which seems rather strange.

For example suppose that o(n)? = n, that X,, is strictly stationary, and that it is the moment
of order 3 which does not check H,,r, but that conditions of theorem 4 holds. Then,

Z E{XrXth} ~ Z ]E{XrXth} -~ Z E{XrXth} =0

n3/2 ud/2 u3/2
r<s<t<n r<s<t<u uT<r<s<t

where we set z,, ~ y, if , —y, — 0 as n — oo for all real sequences x,, et y,. Therefore,

E{X, X, X; E{X, X, X; E{X, X, X;
s B by { b,y H b,

n3/2 n3/2 n3/2
r<s<t<n r<s<u<u+r<t<n r<u<utr<s<t

Then, under H,,r, by corollary 2.3.3,

E{X,X,X,
T { }

—
372 0, and
r<s<u<u+rT<t<n r<u<utrT<s<t

Z E{X, XX} 0.
n3/2
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On the other hand, under the assumption of theorem 4 ,

Z E{X,X:X:} n Z E{X, XX} 0.

n3/2 n3/2
r<s<u<u+7T<t<n r<u<utr<s<t

Therefore, if H,,; does not hold for the moment of order 3 and if the hypotheses of theorem 4

are checked EIX.X.X EIX.X.X
Z {rst}+ Z {TSt}—>O

n3/2 n3/2
r<s<u<u4t<t<n r<u<utr<s<t

E{X,X. X E{X, XX,
E % 40 and § ! £0.
n3/2 n3/2
r<s<u<u+r<t<n r<u<u4t<s<t

This is a case which seems strange when we admit that there is some asymptotic independence.

Indeed, is what one can speak of asymptotic independence if > w 40

E{X, X, X:}
and Zr§u<u+7’<s<t % 7L) 0?
Thus, if X, is strictly stationary, it will be difficult to find examples where H,,; does not hold
for the moment of order 3 if the assumptions of theorem 4 are checked.
In order to find more easily a such example, we must give up some of our assumptions.

r<s<u<u+trT<t<n

Example 2.3.2 We suppose that Xp,11 = V/n+ 12,11 — \/nZ, , X1 = Z1 where Z,, is IID and
Z1 has the distribution N(0,1).

Study Clearly X, is 2-dependent, and then there exists a simple condition about the p;, .. ;.’s
P E{P[(Xy,) P (X)) = BAPE (X, ) P (X)) YEP T (Xe ) PP (X, )} f there exists
i such that t; 11 —¢; > 2.

Moreover, X1+ X5 = Z1+\fZ2—\[Z1 \[ZQ,X1+X2+X3 \[ZQ—F\[Zg \/§Z2 = \/§Z3.

Therefore, X; + Xo + X3 + .... + X,;, = v/nZ,, and one can choose ¥(n) = og(n) = y/n.

Moreover, (2,,%!) = [(./unZun)/‘/un s NNZp =ty + T0Zu,47,)/\/Un] converge to the
same distribution as [Z,, , (V2Z, — Zu,+r,)] which does not converge to N(0,1) ® N(0,1).

Remark that, in this case, (1/n) > 0, does not converge because

n

ZE{XS+1 = iE{(\/s F 1201 = VsZ)+E{Z} =D [(s+1)+s]+1.

s=1

Conclusion If ) W +# 0 and Zr§u<u+'r<s<t W 4 0, is that

r<s<u<u+rT<t<n
.. E{X, XX E{X, XX
the condition (X X Xy E{X,X:X¢}

r<s<u<utr<t<n — p3/F i + Zr§u<u+7<s<t YL — 0 is sufficient to say
that there is asymptotic independence? If it is not the case, we must choose conditions a little

stronger. Precisely, a condition a little stronger is the condition H,,;.

On the other hand, intuitively, the condition (., X)) M N5(0, I) is a condition which appears
minimum as a condition of asymptotic independence.

Yet in terms of correlation coefficients of higher order for the MCLT, the condition H,,; is not
minimal : it is only almost minimal. But we understood that, if we impose only assumptions of
theorem 4, there will be quite strange conditions. Moreover, there is no asymptotic normality.
That shows indeed that the condition H,,; is very close to conditions of asymptotic independence
which can be required for convergence to the normal law.

Conclude by saying that the convergence of (3,,,%!,) to N (0, I1) is a requirement nearly asymp-
totic independence which can perhaps be considered as minimal for the asymptotic normality.
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Chapter 3

MCLT in dimension 1

In this chapter, we prove theorems 4 and 5 .

Then, we will study the case where the laws of X;’s are possibly different. Unfortunately, in
this case, we can not apply the same technique as in [23]. It is then easier to prove theorems
without using the correlation coefficients of higher order p;,, .. ;, and orthogonal polynomials.
Unfortunately the proof is much longer.

Then, we shall prove several MCLT before deducting the MCLT with the correlation coefficients
of higher order.

On the other hand, in order to prove Theorem 11, the easiest way is to prove a MCLT in
dimensions 2 for sequences with double array X,, s, Ys, ;. Then, it is easier to prove these results
under larger assumptions which we will introduce now.

3.1 Notations and assumptions

Notations 3.1.1 Let x,, and y, be two real sequences. We set x, ~ yYn if T —yn — 0 asn — oo.
In particular, x, ~ x if t, — x as n — 0.

Let Z,, and T,, be two sequences of random variables defined on (2, A, P). We set Z,, ~ T, if
Zn and T, have asymptotically the same distribution.

By misuse of our notations, we set also S, ~ N(0,0?) if S, has asymptotically the distribution
N(0,02).

In chapter 4, we shall generalize by natural way these notations to double triangular array of
random variables (X, s, Y s)-

Notations 3.1.2 Let X,,, 5, s =1,2,....,ny, m=1,2,.. be a triangular array of random variables
defined on a probability space (0, A, P).
We suppose E{X, s} = 0 and |E{(X,, s)?}| < oo for all p € N.

Hypothesis 3.1.1 Let ¥(n) > 0. We suppose that \Jegn < U(n) where cg > 0. We set
By = max{1,|M;"|}.

Hypothesis 3.1.2 We suppose that, for all p € N*, for all j > 2

E ?;ll (Xm,t)j
U (1 )7

p

} < Ch,, (4,p) <C3,p) ,

where C(j,p) depends only on j and p and where C,,,, (4,p) = €m(4,p) — 0 as m — oo if j > 3.

Hypothesis 3.1.3 Let 8, s = E{X?, ,}. One assumes that Y™ \Pi’l’“t)z — 02 €R,.
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: X1+ Xm 2+ Xm s+t Xmn)? st Xm,s Xm ¢
Indeed, if ]E{( Shs '2;;(" ’)3’2+ +Xm.n) } converges and % converges also, then,

(1/%(nm)?) >, E(X7, } converges also. Now, in all the MCLT of this report, we impose that

S e Xom o Xon o

T (rm)? converges.

3.2 General lemma

3.2.1 Lemma about sets
At first, we need the following notations.

Notations 3.2.1 Let k and r be two integers such that 1 <r < k. We set

t1# by # e F b trgy oo b
={(ti,tas oot trsts e ty) € {12, cni }¥ | ts £ty if s <8 <71},
th#F b2 F# e F 1, brgr, o bk
={(titoy s trety tog 1, s t) € {1, 2, cn Y |t £ty if s < <r—1} .

In particular, ¢, to, ....., tx = {1,2, ...,nm}k. Moreover, if r=2,t1 # to # ...  tr—1,trg1, ooy bl =
tl,tg,b;, ..... ,tk and if I‘:]., tl 7£ t2 75 7é tr,tr+17 ...,tk = tl,tg, ..... ,tk.

Lemma 3.2.1 Letr > 3. Then,

{t1 Lty tr,l,tm...7tk}

= {tl 7& ta 7& 7é t7‘7t7"+1a 7tk}
U{t1 —ty E by F o F e, b, tk}
Ut #ta =t # o A bttt

U{tl N tr,trﬂ,..,tk} .

For example, the following lemma holds.

Lemma 3.2.2 We simplify X, in X;. Let k€ N, k>3 and h > k. For all s € {1,2,....,k}, we
denote by RL, t =1,2,...,n,, s=1,....k, a sequence of polynomials of degree js. Let v > 3. Then,
for all k < h,

]E{ St ttasto ittty B (X )RS (X1 ) R (X)) }
(n)h

tr
_ E{ Zt1¢t2#~-~-#tmtr+1 ----- tk Ril (th )R? (Xt2) .... Rkk (th) }
B T(n)h
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ty ty
+1E{ St tta sttt rtrsnsontn BT (Kt )R (X IR (Xep ) Ry (X )R (Ko )- Ry (X ) }

U(n)h
> RN (X1, [RE? (X )RE? (X)) Ry (X, ORI (Xeyyy ) RyS (X))
E{ byt by 15t 1yt 201 (At ) [Rg” (K )Ry (Rt )] Ry (R )Ry (Bt ) By tk}
" W(n)
Y
+E{ Ztlyétz;é...;ét,.,l,tT,Jrl,..,tk Ril (th)R? (Xt2)“~[R:~i_11 (Xtr—1)R";r_1 (Xtr—l)]Rif:—ll (Xtr+1 )'“Rf{k (th) }
U(n)h '

Example Suppose r=3. Then,

e { S it tanite X1 Xty Xy, }

B { DONIND. 9. . CH. Xy, }

\E Zh;ﬁtz,m,...,tk thXt22Xt4 ......... Xy,
Vnh '

If r=2, the following lemma hold.

Lemma 3.2.3 We suppose r=2. Then,

{ti,t0, .t} = {t1 A ta,ts, .t} U { 61 =to, b5, .t}

Lemma 3.2.4 The following equalities holds.

. { Sttty B (K0 ) R (Xa)oo Y (X, ) }

& Yoty ptastarnts B (X )RS (Xo ) By (X4
U(n)"

S tet, R (X R (X )IRE (X, ) Ry (X,
+]E{ b o } |
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3.2.2 Number of coefficients of moments

We simplify n,, in n. Because

]E{ (X + oo+ Xon, )4 } B q! E{X,J,il ----- X }
U (nm)e -2 ! ’

one wants to study the sets {j1 + ..... + jn,, = q,Js < 1} in order to know the sums

Z E{Xﬁl ..... Xg:,’ﬁm }
U (nm)2 .

Jite it ing, =¢,s <1

when q=2, n=6. We have
{.71+ ~~~~~ +jn:(I7jS§1}

={(1,1,0,0,0,0),(1,0,1,0,0,0),.....,(1,0,0,0,0,1) }
u{(o,1,1,0,0,0),(0,1,0,1,0,0),.....,(0,1,0,0,0,1)}
u{(0,0,1,1,0,0),(0,0,1,0,1,0),(0,0,1,0,0,1) }
u{(0,0,0,1,1,0),(0,0,0,1,0,1)}
u{(0,0,0,0,1,1)} .

Its cardinal is (n — 1) + (n —2) + (n — 3) + ...... +241= w = C2. Indeed, there is C? ways
to select two terms among n.

Now, we choose q=3, n=8. We have

={(1,1,1,0,0,0,0,0),(1,1,0,1,0,0,0,0), ....., (1,1,0,0,0,0,0,1)} : n — 2 events

u{(1,0,1,1,0,0,0,0),(1,0,1,0,1,0,0,0),.....,(1,0,1,0,0,0,0,1)} : n— 3 events

w{(1,0,0,1,1,0,0,0),(1,0,0,1,0,1,0,0),.....(1,0,0,1,0,0,0,1)} : n —4 events

U{(0,1,1,1,0,0,0,0), (0,1,1,0,1,0,0,0), ..., (0,1,1,0,0,0,0,1)} : n — 3 events
u{(0,1,0,1,1,0,0,0),(0,1,0,1,0,1,0,,0),.....,(0,1,0,1,0,0,0,1)} : n — 4 events
U{(0,1,0,0,1,1,0,0), (0,1,0,0,1,0,1,0), .....(0,1,0,0,1,0,0, 1)} : n—5
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u{(0,1,0,0,0,0,1,1)} : n—3—(n—3—1) events.

The number of possible combinations is

Card
:(n—2)2(n—1)+(n—3)2(n—2)+ ...... +(n—(n—2))(712—(n—2)—|—1)+(n—(n—1))(712—(71—1)4—1)
_(n=2)(n—-2) (n—3)(n-3) (n—(m-2))Jn—(n-2)) (n—(n—-1)(r—(n-1))
= 9 + 5 +...... + B + 5
(n—2)  (n-3) (n—(n-2)) (n—(n—-1))
T ey et 5 + 5 .

Now, Z?:l 2 = (2n+1)6(n+1)n. Donc Zn72 2 (2(n=2)+1)((n=2)+1)(n—2) _ (2n—3)(n6—1)(n—2).

i=1 "1 5
Therefore,
Cara = 1/ [ 2= D=2 | (=2 1)
= (1/2)[(27L — 3)(716— 1)(n—-2) N 3(n—2)(n — 1)}
— (1yp[Z=2 D= D =2))
_nn=Hn=-2) _ n! B
- 6 _3!(n—3)!_03'

This is normal : it is C3 ways to select three terms among n.

Finally card({ji + ..... + jn = q,js < 1}) = C4. Moreover, for all random variables X1, ...., X,

{x{ .. X0

Jit et = q,Js < 1}

= {Xsl....XSq | (51,82, .,8¢) €{1,2,....,n}?, 1 <51 <s9< .. <84 < n} .

Lemma 3.2.5 Let p € N*. We simplify X, s in X5, ny, in n. Then,

o Jn XP o XZ
2 e L EE IO ey
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Proof One can suppose p=1. When p > 1, it is enough to set X; = Y.
Then,

{x{ .. X0

Therefore,

{E{(XT o XV | 1+ e H G = 4,55 <1} = {B{(Xs, o X))} | 1< 51 <82 <o < 5g <}

Now, let P, the set of permutations of q terms. Then,
{(sp(1)s --8p(q)) € {1, ... n}? | $1 < 82 < .. < Sq, P E Pqg}

= {(s1,.:8q) €{1,.on}? | s1# 52 # . £ 54)-

Moreover, if p € Py, then, E{(Xs, .- Xs, )} = E{(Xs, ... Xs,) }-
Therefore, because there is q! permutations which belongs to P,

I RPN

Second study We study the sets {j1 + ..... +jn =q,js <2, one js = 2}. At first, choose q=4.

We have
{]1"" ~~~~~ +]n:q7]s§2a unj5:2}

={(2,1,1,0,0,0, ....,0),(2,1,0,1,0,0, ....,0), ....., (2,1,0,0, ....,0,0,1)}
u{(2,0,1,1,0,0, ....,0),(2,0,1,0,1,0, ....,0), ....., (2,0,1,0, ....,0,0,1)}
u{(2,0,0,....,0,1,1,0),(2,0,0,....,0,1,0,1)}
u{(2,0,0,0,....,0,1,1)}

u{(1,2,1,0,0,0, ....,0),(1,2,0,1,0,0, ....,0), ....., (1,2,0,0, ....,0,0,1)}
U{(0,2,1,1,0,0, ....,0),(0,2,1,0,1,0, ....,0), ....., (0,2,1,0, ....,0,0,1)}
u{(0,2,0,....,0,1,1,0), (0,2,0,....,0,1,0,1)}
u{(0,2,0,0,....,0,1,1)}

u{(1,1,2,0,0,0, ....,0),(1,0,2,1,0,0, ....,0), ....., (1,0, 2,0, ....,0,0,1)}
u{(0,1,2,1,0,0, ....,0),(0,1,2,0,1,0,0, ....,0), ....., (0,1,2,0,0, ....,0,0,1)}
0{(0,0,2,1,1,0,0,....,0), (0,0,2,1,0,1,0, ....,0), ....., (0,0,2,1,0, ....,0,0,1)
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u{(0,0,2,0, ....,0,1,1,0), (0,0,2,0, ....,0,1,0,1)}
u{(0,0,2,0,0,....,0,1,1)}

u{(1,1,0,0,...0,2,0),(1,0,1,0,....0,2,0), ...., (1,0,0, ..., 1,2,0), (1,0,0, ....,0,2,1)}
U{(0,1,1,0,....0,2,0), (0,1,0,1,0, ....0,2,0), ...., (0, 1,0, ...., 1,2,0), (0, 1,0, ....,0,2,1)}

u{(0,0,0,....,0,1,1,2,0), (0,0,0,...,1,0,2,1)}
v{(0,0,0,0,....,0,1,2,1)}

u{(1,1,0,0,...0,2), (1,0,1,0,...0,2), ...., (1,0,0, ..., 1,2)}
u{(0,1,1,0,...0,2),(0,1,0,1,0,....0,2), ...., (0, 1,0, ..., 1,2)}

u{(0,0,0,....,0,1,1,0,2),(0,0,0,....,1,0,1,2)}
u{(0,0,0,0,....,0,1,1,2)} .

Therefore, 4 ,
{XP X i+ e+ i =aq,Js <2, one js =2}

= {XSIXSZX?L1 | (s1,82,u1) €{1,2,....;n}? | 81 < s9, 8; £uy fori=1,2}.

Then, it is clear that to know {j; + ..... +in = q,Js <2, 7K js =1, "h” js = 2}, it is
the same thing as to know all the k-tuple S = (s1,....,s;) € {1,2,....,n}* and all the h-tuple
Us = (u1,.o,up) € {{1,2,.....,n}\S}" in the n-k remaining elements. It is clear that the order
within the h-tuples and k-tuples has no interest. Therefore, we have to consider the s; < .... < s,
and the u; < ... < up.

Now, the following lemma holds.

Lemma 3.2.6 Let S* = {S = (51, ....,81) € {1,2,.....,n}F[s; < 52 < ... < s1.}
and U% = {Us = (u1, ooy up) € {{1,2, .., n}\S}* | us < ug < ... <up}. Then,

(14 e Fin=q,5s <2, 7K jo =1, "h" js =2}
= Uses* Uugeus {(J1, s dn) | Js; = 1if 8i €S, ju, =2if ui € Us, ji=0if not} .
Lemma 3.2.7 Let
S={S = (s1,.,5) €{1,2,.....n}tF|s; # 59 # ... # s}
and Ug = {Us = (uy, -y up) € {{1,2, ., n\S | u1 # ug # ... # up}.
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Then, we have

Ui+t in=¢74s <2, "k jo=1, "h" js =2}
= Uses Uusers {1, s dn) | s, = 1if 8: €S, ju, =2if wi € Us, ji=0if not}
= Uses Uugets {(J1s - dn) | Js; = 1if 86 €S, ju, =2 if ui € Us, ji=0if not} .
Lemma 3.2.8 We simplify X, s in Xs. Then,

> A

Proof We have the following equalities
{X{1 ..... XIn | gy + ... +in=¢ Js=0,1,2, 7k jo =1, "h” j, =2}
= { Xy X, X2 X2 | (81582, ey Sy UL, oy up) € {1, 2, ey} BY

where

B ={(81,82, ey Sky U1, ooy ) | 81 < 82 < ... < Sg, U < Ug < ... < up, S #uj} .

Let Py be the set of the permutations of k elements. Then,
{(81,82, ceeey Sy U, ...,uh) S {1, ...,n}k+h | S1 7é S92 / 7& Sk 75 (751 7& U / 75 uh}.

= {(Sp(1)7 ..... Sp(k)s Up/ (1) ++ee up/(h)) | S1 < ...l < S, U < .enen < up, S # Uj, P E Pk, p' S Ph}
Then, if p € Py, p’ € P, we have
2 2 _ 2 2
E{Xsp(1>~---Xsp<k)Xup,(1> ..... Xup,(h)} =E{X,, ... X, X ... X}
Then, because there are q! permutations belonging to Py,

> ()

1 S
= Wk 2 E{ ()

s1#s2 [ FspFurFEu2 /. Fup

One can generalize easily this lemma

Lemma 3.2.9 Let p € N*. Then,

> )
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3.3 First equivalence to bounded moments

3.3.1 Lemma of recurence

In all these lemma, we shall use the following notations.

Notations 3.3.1 For all s € {1,2,...,k}, for all m € N*, we denote by R™, t = 1,2,...,n

mo

a sequence of polynomials of degree js. We set ko = card{js = 0}, k1 = card{js = 1}, ko =
card{js = 2}, and ks = card{js > 2}. Let ki = card{j, =t} and h = 2k{ + >, tk;.

Then, we have the following lemma.

Lemma 3.3.1 We assume kg = 0. Let Hy > k. Then,

k m,ts
|E{ Zthtz,...,tk (HS:I RS - (XT'L’tS)) }‘

T ()P

Jo=1 nm)

Js#1

Proof Of course, h > k. Then, we can write

H, l ”mRm (X )
) e

\I}(nm)h

|IE { S trtmntn (TTy BRI (X0)) }|

{11 =

Js

Jjs=1 Js#1

Zt 1 t( mt)

]

Then, by using hypothesis 3.1.2, we have the following corollary.

<11

by Holder’s inequality. W

(nm)

Js#1

Lemma 3.3.2 For all s € {1,2,....k}, we suppose that R™!(x) = x’:, t = 1,2,...,np,

assume kg = 0. Then,

’]E{ Ztl,t2,...,tk (ngl RV (Xm,ts)) }

IIE

Js=1

U (10,)0

H Cnm ]sle ‘|

Js>1

Then, by using lemma 3.2.2 and 3.2.4 , we deduce :

Lemma 3.3.3 For all s € {1,2,...,k}, we suppose that R™'(x) = 2%, t = 1,2,....,np,

assume kg = 0. Then, for all r,

k mot.
]E{ Ztl#tﬂé“..;étr,trJrl,...,tk (Hs:1 R ot (Xm,ts)) }

\I’(nm)h

where K1 > 0 and where e(n) — 0 if there exists s such that js > 3.
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U=

”m Rmt(Xm7t)‘| }
?;n R?L7t(Xm,t) ?:m RT’ (Xm,t)
AU () [ 1 (565

i
bl

n"m (X

()

il

t)

<e(n)K; Max l { ‘ Z” )

We

Hl}]%
We

Hy Y £
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Proof By lemma 3.3.2 , the lemma holds for r=1.
In order to prove the lemma if » > 1, one uses lemma 3.2.2 and 3.2.4. Then, by lemma 3.3.2,

k Mt
E Ztlyétﬁé....;étr,trﬂ,...,tk <Hs:1 Ry (Xm,ts))
U (ny,)"

is increased by sums of products of terms themselves bounded by some C,,  (j,p)’s and by terms

nm C 1/(: "
of the form E{‘M } where ¢ < Hj.
cy1l/c
bo<

‘Il(nm)
cy1l/e nm dy1/d
t= (XM,t)
booeE{|Ee) <

d nm
b2 1 Then, E{|ZiiCn

NOW, let ¢ S d = Hl- Suppose E{’M S

W (1m)
E{‘ Zl;nl(xm,t)

d~1/d
Tt } by Holder Inequality.

d .
b <1 Then, E{’%

WU (ngy,)

It is enough to prove the lemma. W

Suppose now E{ ’

Lemma 3.3.4 We suppose that R™(z) = 27 for t = 1,2,....,n,, where j; > 0. We assume
ks >0 orky>2 sz;g,:O

We define H* by H* = h — 2. Then, we define H by H = H* if H* is even and H = H* + 1
if not. Then, there exists K3 > 0 and K4 > 0 which do not depend on m, such that

‘]E{ Ztl,tz ..... th (Hﬁ:l Ry»t (Xm,ts)) }

T < clnm) K3 By

where e(n) < K4 and e(ny,) — 0 as m — oo if kg > 0.

Proof Indeed, H is even. Moreover, by our assumptions, k < h—2. Then, H > k > k1. Then,
one can choose H; = H in lemma 3.3.2. Then, k1/H < 1. Moreover,

" Nom H
() )
HE{(%)H} <1, E{(%)H}ﬁ .

1

)
Then, B{ | Zi 2

n
11 Xt

H~ &L
o) } "< B, Then, it is enough to apply lemma 3.3.2. B

Lemma 3.3.5 Under the assumptions of lemma 3.5.4 , there exists K5 > 0 and K} > 0 which do
not depend on m, such that, for allT € N, 1 <r <k,

k Mt
E Ztl#t2¢....7&tr,tr+1,.4.,tk (Hs=1 Ry (Xm,ts)
‘I’(nm)h

<eé'(nm,)K5.By"

where €' (ny,) < K and € (ny,) — 0 as m — oo if kg > 0.

Proof Indeed by lemma 3.3.4 , this result holds for r=1. Now suppose that lemma 3.3.5 holds for

all 7 <7 —1. Then, it is enough to apply lemma 3.2.2, 3.2.4 and 3.3.4 and to use |B,™| < |B; T |.
|
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3.3.2 First proposition about bounded moments

By using the previous lemma, we can prove the following proposition.

Proposition 3.3.1 All the moments Mj™ = E{ (X’"’ﬁx"&;?:”')jx’"'"’”)q} are bounded by a real

By > 0 if and only if, for all ¢ € N, there exists Sbé € Ry and Sbg € Ry such that

Z E{ X5, X 55 Xy}
W (nm)?

S1#£S2F ... £Sqg

Z ]E{X,Qn’lem,s2 ...... Xonysg_1 )

2
TCmY < 8B

S1F#82F ... FESq_1

Proof of the sufficiency condition of prop 3.3.1 We prove the theorem by recurrence on q.
If q=0,1 and 2, it is obvious.

So, we suppose that it holds for all ¢ < q¢—1.

Let S7, be the substitution of {(jl,jg, s Jn) € N”|j1+....+jn = q} defined by S; (j1, j2---, jn) =
{u1,ug, ..., up } where ug > ug > .... > up,.

We suppose n > ¢ because n,, — o0o. Then, ug41 = ugq42 = .... = up = 0 and we define S, by
Sq(r, ga-es gn) = {ur, g, ooy ug}. Let Py = {Sy(j1, Jos s dn) [J1 4 J2 + oo 4+ jn = ¢}

Then, by lemma 3.2.9 ,

M = IE{ (Xma+Xmo+ .o+ X, )? }
U(n,,)q

- Z ¢ IE{ X1 Xt }
= ——— i
Gt ing, =4 J1+eIng, \Ij(nm)

¥ 5 q! E{Xﬁ,l....Xﬁnm }

T U(n, )4
. . ’ . 1o Jng,
OuPs (trsnm )i S5 (1o )=0g 717 (nm)

D T ey

| q
O urmt) Py oh s, Ul ! U (1)
Xu Xl
— E N, E ]E{ m,s1 ’ q} ,
_ Os U (ny,)?
Og=(u1,...,uq)EPq S1F£....#84

where Né)q € R and No, € R.

Let {u1,ua,...,ur} where uy > 3 or us > 2. By Lemma 3.3.5

" Dotttk pty Kot Xty
U (ny,)?

is bounded.
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By our assumption,

5 E{ X, X spevee-Xms, }
\Ij(nm)q

S17£82F ... #Sq

D

S17#82F . FSq—1

E{X2 , XonsyerrrXoms, 1}
U (1, )4

< Sb7 .

Therefore
Xu ....qunqg
N, E{—’“l 2%e }
Z Oq Z T ()

Og=(u1,...,uq): u1+....4ug=q S$17....F#8q
is bounded. W

Proof of the necessity condition of propostion 3.3.1 Now we suppose that all the moments
are bounded. Then, by lemma 3.3.3, for all Op, = (uq,....,up),

Xum X
e X () Sl

is bounded
In particular

\Ij(nm)h

> E{ Xm.os Xomsgoove- Xomsp } ’
S1#£S2F ... F5p

>

S1#S2F . FSh—1

are bounded. W

3.4 Second equivalence to bounded moments

3.4.1 Lemma

Lemma 3.4.1 Let h = 2k}, + Zf:_ll tk;. We assume R} = B = E{X7 ;} for all s €
{1,2,...,k}, and, for s > 2, R™!(x) = a’s where j, > 1 . Then, there exists Ko > 0 and
H; € N, Hy, < h — 2 such that

k=1 pm.t,
E Z“’tzv'--vtkfl(nszl i (X’”’ts)) o [ 21 Pt | o i
U (ny)" S\ U(ng)? ) THE T

Proof Let H = card{js|js > 1}. Then, H < h—2. If H = h—2, the result is obvious. Indeed,

Dt tartis (le;ll R (mets)) i Bt =, o Xt
L T s (e 1 S I

s5=2

If H<h—2,weset H = H if H is even and H, = H + 1 if H is odd. Then we can write
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k=1 pm
|IE { Strtmitns (] B (X)) }|

U ()1
?;nl ern’g (Xm.t) ?21 R%’Z (Xm.t)
i ()| [ ()
Ztl m,t

Hy\ 1/H» Hs 1/Ho
Js=1 } ‘| }]

?"’i s
—\ U(nn,)?
By hypothesis 3.1.2, if j; > 1, IE{ (%ﬁw

o Ha~ ky/H
Moreover, E{(Z‘P(ni) ) 2} ’ < BZ{; [ |

_ Z?;nl 6m,s
\Ij(nm)z

{ an Rm, ( mt)
js>1

nm Js

) } is bounded.

20 B

Tz 0

Lemma 3.4.2 Pour tout j > 2,

Proof By hypothesis 3.1.2 and by Holder Inequality,

21 P 2 BAXG 3 B{(Xn) ¥}

T T 7 7
Y DI/ C. TR S Wy § W1 C.R) ik LR WP
—E{ U (npn)? b =E{| e | }em@in—oasn—oc.m

Lemma 3.4.3 Let Q, ui,v1 € N where @ > 0. If uy >0 and vy >0,

} < CM(%MQQ)U%Z%)Q/Q e

(nm)4u1

{‘qu m51 m51 q

nm 2u1 o1

u l)
oy B Xt |9

\Ij(n )2u1+v1

Ifu; =0 and vy > 1 or if uy > 0 and v; = 0, E{‘

S, B, Xoko, |9
v=1E 1 o To L
’ U(nm)?1tv1

Proof We suppose u; > 0 and v; > 0. We have the following relations

} is bounded. If u; = 0 and

} is bounded if all the moments M are bounded.

PATEY 2,
Vel S o) (S T
2uy
S(;m)mz {’(Zq,)iis;m)fh}

1

< (S gie) (S )

< Ch (201,20) 1/4(2 \I,B?#iul )Q/2

{‘Zslﬁmsl s

2u1+v

)
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by hypothesis 3.1.2. Now, C,,, (2v1,2Q) is bounded because v; > 0 and, moreover, converges to 0
2uq
if v; > 1. Moreover, by lemma 3.4.2, Y. —2mi 0 if u; > 1.

51 W(nm, )t
2u

Therefore, C,,,, (201, 262)1/4(2Sl %)Qﬂ converges always to 0 if u; > 0 and v; > 0.

Moreover, if u; = 0 and vy > 0 or if u; > 0 and v; = 0, the lemma is obvious. H

Lemma 3.4.4 Let 0 < ¢” < ¢ and h = 2;1(2% +vs)+ (¢ —q”). One assumes that all the
moments M, are bounded. Then, for all P € N*,

v Ug Vo Uq” Vg”
E{( Z ' Sle s1 m’SQXm’Sz.... ™, s g Xm,sq,, va’sq,,_*_1 ...... Xm’sq, )P}
W (ny,)h

S15.0008g7

is bounded and converges to 0 if u; > 1 and vy > 1.

Proof Suppose P=1. We have

v Vo
’ 2 E{ mlem s1 m82Xm s ﬁm Sq” msq Xm,sq"+1 """ Xm,sq/ }‘
U (nm)h

S1,0e0uSq/

Zgl m,s X;w)z S qun Buqv ” qu»” ” Esqn mesq“ qu, Xm,sq/
= [B{(Smamn) o (S )( To e G T}
Zs m,s1<>m,s Z ﬁm s m s qu,, Xm,sq» '—q”
= ‘E{ (W) ........ ( \Il(nm)%jq S a )( :.Ij(nm) +1)‘1 q }‘

U q71+1}

ke
Zsr m, S m Sy
|: H E{’ 2uT+vT
w1 vy
’ Zsl m 51Xm S1

n 2u1 +v1

1
" +1 } E{‘ qu"+1 Xm,sq”+1

(@' =q")(q"+1) } 7o

2(q'—

q”Jrl}iqnlJrl E{’ Z m sq m sqv

‘M m ,7 ( 77+1)| 2(q” + )E{ ...... \Il(nm)Quq +1)q’

41 } q”1+1
It is enough to apply lemma 3.4.3 in order to conclude.
In order to prove the lemma when P > 1, it is enough to use the same technique. B

Lemma 3.4.5 Forall s € {1,2,....k — 1}, we assume R™'(z) = x for s > 2 and RT’t = Bt for
t=1,2,3,....,ny. We set H=k-2 if k is even and H=k-1, if not.
Then, for all r,

k=1 pm.t.
‘]E{ Ztl#tZ?én..?étr,trﬁ»l,.u,tk—l (Hs:l R * (Xm,ts)> }

< K:B%m |
U (n)* =

where K5 is a constants K5 > 0.

Proof By hypothesis 3.1.3, (%) is bounded. Then, by lemma 3.4.1 this lemma is
proved if r=1.
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Now, we prove this lemma by recurence on r. For example, for r=2, and for

= Ztl,tg,tgru,tk,l 6m,thm,t2 ......... X"m,tk,1
\I/(nm)k

_E Ztlyétg,tg,m,,..,tk,l 5m,t1Xm,thm,t3Xm,t4 --------- Xmmc_l
B W (n,)*

1 E Ztl,tg,tz;,m,tk_l Bmﬂlem,tl Xm7t3Xm,t4 """"" Xm7tk—l
(i )k ’

where

E Zt17t3,t47m,tk71 ﬁnl,thm,thm,,thm,m ......... Xm,tk,l
U(nm)*

2) [ Zt Pt Xms | Ly Xmota S X
= \Il(nm)3/2 \I/(nm) .............. W
_ E{ <Zt1 ﬁm,thm,t1> (Zt Xm,t>k3}|
()2 ()
k—2~ 1/(k—-2)

1
W (ny,)3/2 (nm)
k—2N 1/(k—2)
Ztl ﬂm,thm,tl } n
S R B,

<E
= { \I/(nm)3/2
k=24 1/(k—2)
} — 0 by lemma 3.4.3.

k—Q}(k—S)/(k—2)

S0, Bty Xty

where E{ Tln)o7

Or, in order to prove the recurrence for r=2; by lemma 3.4.1 , one proves the result for sums

of the type
5 Dty et ﬁm,thfmtz ......... Xty s =
W (nm,)* .

3.4.2 Second proposition about bounded moments

Now, one can prove the following proposition.

Proposition 3.4.1 All the moments Mj™ = IE{ (X"”'l+X"\‘I,’?;;j'q+x"””")q} are bounded by a real

By > 0 if and only if, for all ¢ € N, there existe Sby € R , r=1,2, such that

Z E{ X5, Xm 50 Xm,s,
W (nm)1

S1#£S2F ... £Sq

E{[(Xm,51) = Brmosi) Xomosg oo Xomysy 1 }
Z \Il(nm)q

S1F82F . FSqg—1
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Proof of the sufficiency condition of proposition 3.4.1 We prove the result by recurrence
on . When q=0, 1 and 2, it is obvious.

One supposes that all the moment of order q’ are bounded if ¢" < g— 1. Then, by lemma 3.4.5,
and by recurence assumption,

Z E{ Bm,s1 Xim g Xm,sq,l}
U (n,,)?
is bounded. Therefore
E{ Xm D, S D S
W (n,, )4

S17#82F e #5q-1

is also bounded. Therefore, it is enough to refer tot the proof of the recurrence in proposition
3.3.1 which proves that M is bounded. That proves the recurence.

Proof of the necessity condition of proposition 3.4.1 Now we suppose that all the moments
are bounded. Then, by proposition 3.3.1 ,

Z B{ Xom,s; Xin,sooeeee-Ximys, }
U (12, )9

S17S2F.... . #Sq

E{X7 o XmyspoXinysy 1 }
U (15, )9

S1F82F . FSq—1

are bounded

Moreover, by lemma 3.4.5,

> E{ Brmoos Xy Xomay 1 }
S1F£S2F .. #84

is bounded.
Therefore,

S17#8aF .. FSq_1
is bounded. B

3.5 Third equivalence to bounded moments

We now give the condition expressed in terms of p;, . ’s.

Lemma 3.5.1 Let Py (z) = 2% — .6, @ — Bm.s, where yms, = E{X s E{XS o} We
suppose that Z:;‘l \;E’n)g is bounded. Then, for all h € N*, E{( ?;”1 M) } s bounded.

U (n)h+1

Proof For all h € N*,

nm 2 nm 2h
(25 Y = E{ (S g (2 )

s=1
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Mm 2

< (Z \172:{;2)0(%’ 1)

s=1

which is bounded by our assumptions. H

Then, we have the following proposition.

2
Proposition 3.5.1 We suppose that Z:’:"l % is bounded. Then, all the moments Mj™ =

E (X““"1+X""$EZ)';+XW”’”)q} are bounded by a real By > 0 if and only if, for all ¢ € N, there

existe Sby € R, r=1,2,3, such that

E{ X0, Xomsy e KXo, } )
s ) ,Sq < Shb
Z \I/(n)q - ) q
S1F82F.....£8q
> E{Py"" (X 1) X sy eeee- Xomssy 1 } < g
¥ (n)a .
S1FSaF ... FSqg_1
5 Yo, EA Xm0 X Ximsg | gy
T (n)atl ="
S1F#£82F . #8584

These conditions are indeed conditions about the p;, . ;.’s. Indeed, we know that Py* is an
orthogonal polynomial with degree 2 associated to X, ;. Therefore, there exists (j1, ..., jn) with
Js <2 and only one j; = 2 such that E{Py""" (X, 6,) Xim,sp-o-Ximysy 1 } = Qi

Proof of the sufficiency of proposition 3.5.1 By our assumption,

Z E{ ’Ym,leWhSle,Sz """ Xmasq—l}
¥(n)e

is bounded. Therefore,

Z E{ [X2 o, = Brmsi ) XmyspeoXomsy 1
W(n)a

is bounded. Then, all the conditions of proposition 3.4.1 are checked. Then the sufficient condition
is proved.

Proof of the necessity of proposition 3.5.1 Now we suppose that all the moments are
bounded. Then, by proposition 3.4.1 ,

3 E{ Xm0, Xomosg v Xoms }

h
S1#£82F ... FE5h \I/(’I’L)
Z ]E{[Xgn,sl - /Bm,sl]Xm732 ...... XWL,Sh,,l}
h
S1#£82F . FSh—1 \I/(n)
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are bounded

Moreover,

‘ Z E{ Y51 X, 51 Xim,speeene D G ‘
U(n)e

51,82,...4,8¢q—1

_ ’E{(ZW)(Z)\;TH)> ........ ( 71 X;j(’j;)l)}\
-5 22505)

£
() () )

which is bounded by lemma 3.5.1.
Then, by lemma 3.2.2 and 3.2.4 , we shall understand, by using the same technique with the
lemma 3.5.1 and by using lemma 3.3.2 that it is true also for

Z E{ '}/m,lem,lem,sQ ------ Xm,sq}
U (n)

That proves necessary condition. H

3.6 Fourth equivalence to bounded moments

In this section, we suppose that there exists F' > 0 such that | X, ;| < F.

3.6.1 Lemma

Lemma 3.6.1 Let j; > 2 and js > 1 for s=2,3,.....k. We define H* by H* = k — 1. Then, we
define H by H = H* if H* is even and H = H* + 1 if not. Then, there exists K¢ > 0 such that

|]E{ Ztl,tQ,...,tk (Hf:l(Xm,ts)js> }

< K¢By" . W

Proof We have

Zt17t2a"~7tk (HI;:I(Xm,ts)js)
: T (n )"
U (1, )91 sEHZ ( U (1, )7s > ‘}

<zf

anh ?gi(Xm,t)js
T J1/2 E H U(ny,)ds
Cy (’I’L»m) §>2 m
< Fi E H (Xt )7e
B CJ\I/1 s>2 \Il(nm)]s
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J1
< F. E
oy

(therefore for the same reasons as previously, there exists K5 > 0 such that )

o (X, )7
”{ 11 ( W) )‘}
§>2, jo=1

k1
(then, because k1 < H* < H where H is even)

H
’ﬂ-,,LX
< KR | &t=rmet < K¢B"" .1
waf () | s

Z?ﬂ(xm,t)js Z?gl(Xm’t)js

522, jo>2 §>2, jo=1

Z?;nl Xm,t
' (nm)

=

Lemma 3.6.2 Let k € N*, k > 2. We define H* by H* = k — 1. Then, we define H by H = H*
if H* is even and H = H* + 1 if not. There exists K7 > 0 such that

’E{ Ztgétﬂé....;étr,trﬂ ..... th (XrQn,thm,thm,ts-~-~Xm,tk) }

\I/(nm)k+1 = K7'Bzm ’

Proof By lemma 3.6.1, this result holds for r=1. Now suppose that it holds for all ' < r — 1.
Then, it is enough to apply lemma 3.2.2, 3.3.4, 3.2.4 and 3.6.1.

3.6.2 Fourth proposition about bounded moments

Remark that if | X,, ;| < F', the hypothesis 3.1.2 holds.

Proposition 3.6.1 One supposes that there exists F' > 0 such that | X, | < F.
All the moments Mjm = IE{(X"L’lJrX""’er”"+X""’”m)q} are bounded by a real By > 0 if and

W(n)d
only if, for all g € N, there existe Sb; € R such that

2.

S1#£82F e #Sq

E{ Xn,51 Ximys5 v Xmsy |
U(n)4

Proof of the sufficiency condition of proposition 3.6.1 We prove this proposition by
recurence. It holds for q=0,1,2. Suppose that it holds for all ¢' < ¢ — 1. Then, by lemma 3.6.2,

>

S1#£S2F ... #5q

E{ X2, Xmspeeee-Ximssy 1 }
W(n)a

is bounded.
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By proof of the sufficient condition of proposition 3.3.1,
Xur Xl
o= s R
Mg = Z No, Z E{ (0, ) } ’

Og=(u1,...,uq)EPq S17....7#8q

where No_ € R.

Let {u1,ua,...,ur} where u; > 3 or us > 2. By lemma 3.3.3

E [Ztﬁétz;&“..;&tk X:llq,h X'::katk‘|

W (nm )1

is bounded.
By our assumption,

> E{ X mor Xmoag o Xom s, }
U (nm,)?

S1F£82F . #Sq

Then, Mg is bounded. The sufficient condition is proved.

Proof of the necessity condition of proposition 3.6.1 Now we suppose that all the mo-
ments are bounded. Then, it is enough to use proposition 3.3.1. W

3.7 First Theorem of Convergence

3.7.1 Lemma

We shall need the following lemma.

Lemma 3.7.1 We suppose that all the moments M} are bounded. We suppose that R (z) =
QY (x) = 2% — By and that R™ is a polynomial of degree js. If jo = 0, one assume that
(1/¥(nm)?) Sy R (X ) is bounded. If jo > 1, one assume that R™(z) = x9=. Moreover
let h=Y"_, j" where j, = j if jo > 1 and j§ = 2 if j, = 0.

We assume WIE{[ Y ;n’t(met)}Q} — 0. Then, for all T, 1 <r <k,

k
T D [S_Hl R (Xma,)] |

t1FAtaF . Ftr ot 1,5ty

converges to 0.

Proof By the Schwartz inequality and by the Holder Inequality

k
e DN LA

k | m 2
= WE{ s:l_[1 [tz_l Ry (Xm,ts)} }
o ko nm
<= (8 ) el 11 (85 k)
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(gRTvt(th ) }HE{[Zt =1 y t)]( mtg)}Q(k_l)}ﬁ

By assumption and by hypothesis 3.1.2 , the term on right-hand side is bounded. Moreover,

E{ (nz R{’L’t(Xm,t))Q} 0.
t=1

We deduce the lemma if r=1.
When r > 1, we prove the result by recurrence by using the lemma 3.2.2, 3.2.4 and 3.4.3. &

Lemma 3.7.2 We assume \I,( Tt E{[>/m le’t(X7n7t)}2} — 0. We suppose that all moments
M " are bounded. Then,

2
..... Xm,Sngysc-Fl""Xm’Sq—c B Z E{6m751~-~-ﬂm,seXm,se+1-~-~Xm,sqfe }

U (n,,)? U (n,,)?

Proof For example,

2.

S1F....F#S8q—2

X2 X2 X Xoms,
m,Si1 m,S2 9 19q
{ U (1, )4 }

VX2 o Xnsg e Ximssy o }

( mel — Bm,s,
= > W (ny)7

S17....FSq—2

4 Z E{ﬂm,lem 52X7n 53----Xm,sq,2 }

q
S1F....FSq—2 \Ij(nm)

Z E ( m ,81 ﬁm S1 )Xm 52Xm S3 ---~Xm,sq,2 }

S1F....FSq—2 \Ij(nm)
ﬁmsl( ﬁmsz) m33-~-~Xm,sq,2
* Z U (1, )9 }
51#--“?&3(1 2
ﬁm,slﬁm,SQXm,SS-~-~Xm,sq,2
+ X B W (rym) b
S17....FSqg—2

Then for example by lemma 3.7.1

Brmyor (X2 oy = Brmosy) Xomoss oo Ximo sy o
3 E{ T }—>o.l

S17....FSq_2
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Lemma 3.7.3 Let ¢ € N and e € N such that 1 < e < qg—e. We suppose that all the moments
M are bounded. We suppose that, for all ¢ < q —1,

>

S1#ES2FE . FEsy

E{X .51 Xm, 55w Xm7sq,}
(1)

*>Sq/.

We set Sy = 1. Then,

ﬂm,slﬂm,SQ ----- ﬁm,seXm,se+1----Xm,sq_e 2
E E — 05°5¢-2¢ -

5175““75&1*& \Ij(nm)q

Proof We set
{817 c. # Se, Set1 F oooe F Sqc}
= {(51752, s Sey Set1s - Sqg—e) € {1,2, ..., }97 € | sp A spifr<r <eoretl<r<r < qfe}.

Then, we study at first

E{ ﬁm,sl ﬁm,sz -~-~ﬁm,seXm7se+1 ""X’I’I’L7Sqfe }

q
17 ESeSap 1P ESqe ¥ (nm)

_ Z Z (ﬁm,sl ﬁvmszmﬂm,se )E{ Xm,se+1 ~~~~Xm,sq_e }
U (1, )2e U (1, )972€ )
S1F....FSe Sep1F - FSq—e

It is easy to understand that

Z A(ﬁm,slﬁm,”nnﬁm,se ) N 0'86 )

2e
S1F....F#Se \Ij(nm)
Indeed,
Z L(ﬁm,slﬁm,sz--“ﬁm,se) — (Zsl ﬁm,sl) (Zse 677118@) N 026
S s W (ngm )2 U(ngm)? /0 U (ny,)? 0
2
and, for example, by lemma 3.4.2, % — 0. Then it is enough to use lemma 3.2.2 and 3.2.4.
Therefore,
Bm,s ﬁm,s -~-~ﬁ1ﬂ,se)(m,se ---~)(7n,sq,,i e
Z E — U (n,,)? - } = 03" Sge -

S17. . FSe,Set1F FSg—c

. . Bunsey voe-Bou Xomoo g1 oo Xom oo
Now, in order to obtain 37  , . ]E{ me e el e
..... e

T a—e }, we shall have to add

or to subtract sums such that there exists i, j satisfying s; = s.y;. For example, we shall have to
subtract terms of the form

Z E{Bm752""6m7se [ﬁmvse+1Xm7se+1]mese+2""Xm»sqfe} .

v q
S2 e ESerSep1 P FourSge (11m)

One will prove that this sum converges to 0 by recurence. With this aim, we study first

Z ]E{ 6171,52 ""ﬁm75eﬁm,8e+1Xm78e+1Xm7Se+2 ""mesqfe }
U (ny,)4

82 ...ySes8ed1y0ey8g—e
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which can be written as

S Bnsa (D B VS S S S
Sa7) - Ga5) X ‘E{ - q,(),fm)q e}

Doy Prmey Bonoosy Xomoow sy Xomoas oo Xom o )
s2 -2 »Se+1 sSe+1 sSe42 »Sg—e
Now, =5z -55* is bounded and D ety B e — 0 is bounded

by lemma 3.4.4.

It is general for all the steps of recurrence: thanks to lemma 3.2.2 and 3.2.4, one can always
write the terms

Z E{ ﬁm,sz -...ﬁmﬂse [ﬁmxse+1Xm)Se+1]Xm7se+2 ""mesqfe }
\\/) q

SoF .. FSp,Sef1F . FSq—c <nm>

as a sum of products. Or by using lemma 3.4.4, we always find in these products, terms which are

bounded by products of bounded expectations (cf lemma 3.3.1 and hypothesis 3.1.2) in the form
uo xv o 2w .
IE{ (%) }, u,v,w € N : among these terms there is at least one term of the form

B’NL s m,s .
Zse+1 W which converges to 0. That proves the recurence, and then, that

E{6m’52""ﬁm’sﬁ5mgse+legSe+legse+2”"mesqfe } N O .

q
S0 FSerSe g1 o Sq e ¥ (nm)

We deduce that

Z ]E{ /Bm,sl ﬁm752 ""ﬁmyseXmgse+leySe+2 '”'me'sqfe }

q
S1Feennn #Sq—e \I/(’I’Lm)
converges to the same limit as
Z E{ ﬁm,slﬁm,SQ~-~-6m,seXm,se+1Xm,se+2~-~-Xm,sq,5 }
q )
517'&"“7&55,Se+17$~~~7£~u5q75 \I/(nm)
ie. as
(S (ool 3, M) ot
\I/(nm)z ....... \Il(nm)2 \I/(nm)q72e 0 “q—2e -
S€+17£“~-7ésq—e

3.7.2 First theorem of convergence.

Theorem 12 One assumes that

IE{ l 02, [ )~ B{(Xn )] ] 2 } 0.

\I’(nm>2

All the moments Mjm = IE{ (Xm71+X$(’fL+')';Z'+Xm'")q }converges to a real My if and only if, for

all ¢ € N, there exists Sq € R and Sbg eRy -

5 E{ X o1 Xom,szeXims b g
q

q
S1#S2F ... ;ésq q](nm)
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S1F#SaF . FESq—1

Proof of sufficient Condition of theorem 12 By proposition 3.3.1, all the moments are
bounded.
Thanks to lemma 3.7.3 and 3.7.2, we deduce that, for all q and all e,

2 2 2
DGR, CANNIND, GNP, CIIPRIND, G, 2
E E — 05°Sg—2¢ -
W(nm)?
Sl;é”--;ésq—e

XU Xk . .
By lemma 3.3.5 ZSH&_W#% E{W} — 0 if there exist t such that u; > 3. Therefore

u Uk
XML X,

Dsrdh it E{T”q,l(ni)h} converges for all (ug, ..., ug).
Therefore, because

(X + oo+ Xmn)9) g! X0 X
]E{ Y(nm )9 }7 2 i E{ Y(nm )9 ’

all the moments converge B

Proof of Necessary Condition of theorem 12 We suppose that all the moments converge.
Then, the second relation is a consequence of proposition 3.3.1 .

Then, we prove the first relation by recurrence. If g= 1 or 2, it is obvious. Then, we suppose
that it holds for all ¢’ < g — 1.

We deduce from lemma 3.7.3 and 3.7.2 that, for all e > 1,

2 2 2
X2, X2 X2 Xosei o Xims, . o
E E — 0g Sq,QE .

S1#....#£Sq—c \Il(nm)q
- ug
By lemma 3.3.5, %, IE{ %} — 0 if there exist t such that u; > 3. Therefore
u Uk
Dsidt Ak E{%} converges for all (uq, ..., ux) such that there exists u; > 2.
Therefore, because
]E{ (Xm71 4+ ...+ Xmm,)q } _ Z q' E{ Xgr;,l """ X%;L-,Tﬁm }
P(nm)? g1l I, ! P(nm )9 ’

then, Zsl7é<...7é8q E{W} converges. ll

3.8 Convergence to the normal distribution

One can specify theorem 12 in the case of convergence to the normal distribution.
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Proposition 3.8.1 One assumes that

E{ (X )? —E{(Xmm]r } 0.

The moments of order q, Mj™converges to the moment of order q of N(0,0% + S3) where
So € R, if and only if, for all ¢ € N*,

5 E{ X, Xm sy Xmsy} |
q

817#82F.....#8q \I/(nm)q

where Sq = v, the moment of order q of N(0,S2) for ¢ > 1 and if there exists Sbﬁ > 0 such that,
for all g € N*,

E{(Xm,sl)gm}sz,;... g | s
S1FSaF e FSq—1 (nm)
3.8.1 Proof
We know that
]E{ (Kmg + ot Xm,nm)q} - q! ]E{Xii,l ..... X, }
\Ij(nm)q . Jile..... Jn,, ! \Il(nm)q '

Now, because, by theorem 12 , all the moments converges, then, by lemma 3.3.5, if there exists
s such that js > 3,

! X X
Z : q: : ]E{ m,1 sMm } N 0 )
In ! \I/(nm)q

|
Jiteee.. +jn=q, at least one js>3 JLzeeee m’

Then, it is enough to study the sums where j; < 2.

Then, we have the following lemma

Lemma 3.8.1 We set So = 1. Let ¢° = |q/2], the integer part of q/2. Then,

E{ (X +\I;.(;Zi)j(m,nm)q}

F o, —+ q7' Ué Sq—Qq”

Q'od S, qlod Sy i!aé Sq—4
29 ¢"1 (g —2¢")!

TT0 (@) 21 (g-2) 222 (g 4)!

Proof We have

E{ (Xm71 4+ ...+ Xm,nm)q } o Z q' ]E{ Xgr;l ..... X»Z;;:ﬂm }
U (1) PR R T U (1)
q' X’fé,l """ Xﬂr;"amwt
- Z J1leeenns Jn,,! { U (1, )9 }
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q' B X7]7:71 ..... Xf,?ﬁm
* Z il Jn,, ! { U(nm,)? }
it eeeA g, =a, §s<2, two j.=2 m m
n Z q! E{ vai,l ..... qu,?:ﬂ’m }
jl! ....... ] ! \I/(TL )q
Gt ing, =4, §5<2, @7 =2 ftm m
QJ Z {Xﬁ,l ..... qu,?:ﬁm }
q
Lt ti=a, 1 W nm)
+g’ Z E{ Xﬁ,l ..... erﬁl,’ﬁm }
2 U (1, )4

Jn
X' }

9

2q
q! og Sq—2q”

glog Sy qlof Sg—2 q! 05 Sg-4 4
20 ¢’ (¢ —2¢")!’

NTE@+§f(q—2)!+?§(q—4)!+ ............. +

by lemma 3.7.2, 3.7.3 and 3.2.9. W

Proof of sufficient condition If q is odd, g-2e is odd and S4_3. = 0. Then, by lemma 3.8.1

Mg — 0.
Now, we study the case where q is even. Then, by lemma 3.8.1 and because v, = ng(qzq'f)!,
o Gt S P
U(n,,)2%e
27(]'078 S2q 27(]'073 qu_z 27(]'0'73 SQ{I_4 4 4 Lq'(rfg[l&
1 0! (29)! 2 1! (2¢—2)! 22 21 (2¢—4)! T 29 ¢! 0!
2109 S1(20)! 2q'08  SI'(2q—2)!  2qlof  SI(2q— 4)! 2! 021 5377(2q — 29)!

T10 (29)129¢1 T 2 11 (2¢ —2)124- (g — 1)1 22 21 (2q — 4)129-2(q — 2)! 20 ¢! 0120=4(q — q)!
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29008 8¢ 2¢'of  SIT! 2ot ST 2 og? 8379

TWQT(]' 737?]71((]_1)! 272572(172((1_2)!4- ................ 9a ?72(17%(]_(])!
2SSy | aisy? | sy
20 Loig! T (g 1)1 T a(g 2y T 4101
2q" | 5 4
a2 (05 + S2)

which is the moment of order 2q of N(0,03 + S;). B

Proof of necessary condition We suppose that the moments M converge to M, which is
the moment of order q of N(0, Mz). Then, we prove by recurence that S; is the moment of order
q of N(0,S3). Indeed, it is true if q=1. If q=2,

E{ (Xom .1 —&-\I/.-(.?.l;:)-;(m,nm)z } — ;E{Wfij)z } n ;E{X&;f;’;t } — 03+ S2=M, .

Then, we suppose that Sg is the moment of order g’ of N(0,52) if ¢ < 2¢ — 2. By lemma
3.8.1, if q is even,

My = MECH) _ (B o)) g f ot o+ Ko 0
207 Toqgl 244! U (n,y, )2
~ @18 S2q @13 S2g—2 @151 Sg—4 + + @quﬁ
1 0! (29)! 2 11 (2¢—2)! 22 21 (2¢—4)! 7 2¢ ¢! 0!

2! o) Sy | 2¢03  S3Y . 2! ob S92 N . 2! og? 819
1 0! (29)! 2 11201 (g—1)! 22 2020-2(g—2)! T 29 ¢! 29-9(q — q)!
—1 —2 2
~ So 27(]‘{ 0354 o5 Se n JOqSS]
o Tl =1 T A2y 4101
Therefore
-1 —2 2
(SQ +0,2)q _ SQGQqq! ||: U%Sg 0-6183 + + UOqSS:|
o 2q) g1y T ag oy T 4101
Therefore,
—1 —2 2
(52 +0_2)q _ Squqq! |[0855 U%‘Sg U(%Sg + + quSg:| _ Sq
0 2q) o Mg — 1) " 2lg_2) T 4101 5 -

Therefore, S?;j?)q! =S4 and Sy, = S4 53222;{”.

If q is odd, this result is easier to prove because Sgq+1 =0 and Moz = 0. W
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3.9 Second theorem of convergence
In this section, we assume that that Y. % is bounded.

Nm ’Wn,anL,s

Moreover, we suppose that IE{ ( > I )2} — 0. For example, it is an hypothesis which

holds as soon as Vs is bounded, as E{ X2 .} is bounded and as [E{ Xy, s Xm,¢ }| < a(s—t) where
a(h) — 0 when h — o0

3.9.1 Lemma
Lemma 3.9.1 We suppose that E{( > Wlﬁnx)”z”f} is bounded. Then

[<—nm pm, 12
E o1 P t(Xm,t) =0
(nm)? '

if and only if

\I/(nm)Q

[<—nm ~m,t 12
]E{ t=1 %2 (Xm,t) } 0.

Proof We know that Py (z) = 2 — Yps,& — Bm,s; Where v, = E{X? | }/E{X2 , }.

Then,
E{

= { [ZZZLl (Xsl,s - me,sXm,s - ﬁm,s)- [ ?:ml (X?n,t - 'Ym,tXm,t - ﬁm,t)‘| }

I 2
t;nl P2M7t(Xm,t)
U (nm)?

U (nm)? U (nm)?

+

. 2
2521 P)/m,sXm,s
U(1n,,)2 '

Z:;nl ’Ym,sXm,s‘| ;ZL:L (szt - ﬂnL,t)

\Ii(nm)z \Il(nM)Q

Nm m,t 2
o1 @2 (Xim,t) _9
U (nm)?

:E{

By our assumption

2

ani Tm s Xm,s

S= ) 3 0 .
U (nm)? -

d

Therefore, by Schwartz inequality,

S [ v X | [0 (X2 = ) ]
\Ij(nm)Z \I/(nm)2
SE{

S s X | | [ [EEA R~ )]
\Il(nm)Q \Il(nm)2
(X2 - Be) )
] )

where

g

oy (X = Bma) | | 262 (X0 — Bmat)
U (nm,)? U(n,)?
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oy X2
\I’(nm)2

Enm ﬂm t
U (nm)?

_ E t=1 m,t 2E
{ W (m)? ] } {
MNm, 2
—F t=1 X72n,t
U (nm)?
<C(2,2)+2C(2,1)
which is bounded by hypothesis 3.1.3.

d

an ﬁm t
oo
an 6mt E ?;nl Xr2n,t + Z?:ml 5m,t ’

U(n,,)? V(1 )2

\I’(n'rn)Q
nm ﬁmt + an ﬁm t
\I’(nm)2 \I’(nm)Q

Therefore

an1 Ym,sXm,s ?!1 (X72n,t — Bm.t) ’ ~0
U (1, )2 U (1y,)2 '

2
n;,, Q;nﬁt(Xm,t)
E{ ‘ 1\I/(ﬂm)2 ‘| } —0

We deduce that

is equivalent to

3.9.2 Statement and proof of the theorem
This second theorem is expressed in terms of p;, . ;, .

Theorem 13 We assume that that > .7 \;E” yz i bounded and that ]E{(ZZ;"l quf(n)g‘ ) } — 0.
One assumes that
]E{

~ 2
?:1 P2 7t(Xm,t) =0.
\Il(nm)2

All the moments Mj™ =E (Xm'1+X"‘I'I)§;;')'q+X7"“”"L)q } converge to a real My if and only if, for

all g € N, there exists Sy € R and Sby € R, r=2,3, such that

5 E{ X, Xmsg oo Xomis )

S,
U(n)? q
s1sadn sy (n)
Z ]E{P;nﬁsl(Xmﬁl)XnL’SQ ...... mesq_l} < Sb2 ’
U(n)e q
S1F82F .. FESq_1
m le Xg, Xoyurern X
Z T, { 1 2 q} < Sb3
\Ij(n)q—H q
S1F#S2F ... #84
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Proof of the sufficiency condition of theorem 13 By lemma 3.9.1,

r ~ 92

mm PN (X )

E t=1"2 m, 0 .
{ ¥ (i)’ B

is equivalent to

B N m,t(X )_ 2
E t=1%2 Omt 0.
{ ¥ ()’ B

By proposition 3.5.1 , all the moments are bounded. Then, by proposition 3.3.1

S1#82F o FSqg—1
Then, by theorem 12, all the moments converge.

Proof of the necessity condition of theorem 13 Now we suppose that all the moments
converge. Then, by proposition 3.5.1 ,

E{sznhsl <Xm781\I)JXm(;82 ...... Xm,sq,l} S Sbg ,
S1F£S2F .. #Sq—1 (TL)
m,s E Xs Xs ...... Xs
PO {\1,(1 bt i < SB .
S1F82F .. #8q n

Moreover, by theorem 12,

5 YD RN G Xm,sq}_)s .
.

U(n)d
S1#£S2F ... FSq (n)

By using proposition 3.8.1, it is easy to deduce the following theorem.

Corollary 3.9.1 One assumes that

g

All the moments of order g Mg™ converge to My, the moment of order q of N(0,02 + S),
Se € R, if and only if, for all ¢ € N,

?:a(ﬁwxm,t))] 2 } o
(nm)? .

5 E{ Xms1 Koo oo Kimosg}

q
S1F£82F ... ;ésq \I/(nm)

where Sq = vy the moment of order q of N(0,.52),

Z ]E{PQWL’SI (Xm,SI\I)JXm(;SQ ...... Xm7sq71} < Sbg ’
s1#£saFE . ESg 1 (n)
L E{ X X, ooninn X
Z A {qul )qé-il o) < Sbg .
S17F82F e #8q n
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3.10 Third theorem of Convergence

Theorem 14 One supposes that there exists F' > 0 such that | X,, | < F. One assumes that

Nom m, 2
]E{ t=1 Q2 t(Xm,t)‘| } =0.

\Il(n7n)2
All the moments Mjm™ = E (Xm'lJrX”&;?;;‘)jX’"’"m)q} converges to a real My if and only if,

for all ¢ € N, there existe S; € R such that

5 E{ Xs1 Xom,og oo Ko}

q
S1F£82F .. #8q \Il(n)

Proof of the sufficient condition of theorem 14 By proposition 3.6.1, all the moments M
are bounded. By proposition 3.3.1,

E{X2 . XimsoooXomsy 1 }
¥ (n)9

S1#82F o FSg—1

is bounded. By theorem 12, all the moments Mg converges.

Proof of the Necessary condition of theorem 14 By theorem 12,

5 E{ Xm0, Xomom oo Xomos, }
W(n)4

S1F#SoF ... FSq

By using proposition 3.8.1, it is easy to deduce the following theorem.

Corollary 3.10.1 We suppose that there exists F' > 0 such that | X, +| < F.

One assumes that )
m it
E{ i Q5 (Xm,»} }HO.

U (nym,)?
All the moments Mgm = E{ (X’”'1+X";‘I;§:7;L”)'q+xm”"‘)q} converge to the moment of order q of

N(0,02 + S2), S2 € R, if and only if, for all q € N*,

B{ Xns1 Ximysg oo Xms, }
Z \Il(n )q -
S1F#S2F ... F£Sq m

where S; = vy, the moment of order q of N(0,Ss).
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Chapter 4

MCLT in dimension 2

4.1 Notations and assumptions

We use again notation introduced in the previous chapter. Moreover, they are completed by the
following way.

Notations 4.1.1 Let (X5, Yms) € R%, s = 1,2,....,n, m=1,2,.. be a triangular array of
random vectors defined on a probability space (Q, A, P) such that n,, — oco.

One supposes that E{X,, s} = E{Y s} = 0 and |E{(X,,.s)P}| < 00 and |E{(Y,,.s)P}] < oo for
all p e N.

Hypothesis 4.1.1 One keeps the notations of hypothesis 3.1.2. Then, we suppose that, for all

peN* forallj>2
. {‘ 23 (X!

U (nm)?
g

Hypothesis 4.1.2 One supposes that there exists of and o7 such that (1/¥(n)?) > E{X2 .} —
o2 and (1/¥(n)?) D s E{Y,?hs} — 02, We set ﬂ;n’s = E{Yn%’s}.

P

} < Cy,.(4,p) <C (4, p) -

- |P

\Ij(nm)j

} < Cn, (J,p) <C(,p) -

In the case of random vectors, higher order correllation coefficients are defined by the same
way.

Notations 4.1.2 For all n,n’ € N*, for all (41,72, .., jn) € N, for all (i1,i2,...,in/) € N™' | we
set

Pi1,d2sdnyitsin,.nyins

= E{Pjnf&(Xm,l)P'mg(Xm,2)""PJT’n(Xm,n)P/mJ(Ym,l)P'Zn’z(YmQ)" lem/(ym,n’)} )

J2 11 (2 T

where {P;T”’t}, Jj €N, is the family of orthonormal polynomials associated to Y, ;.

4.2 First theorem of Convergence

4.2.1 lemmas about sets

One generalizes easily the lemmas to the case with two dimensions by using natural notations.
Then, the following lemma holds.
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Lemma 4.2.1 Letr > 3. Then, for allk < h and all 7' <71 —1,

{tl 7é t2 7é 7& tr—htm ...,tk, S1 # So 75 7& STI,ST/+1,...,8]€/}

= {tl 75 tQ 75 75 tr,tr+1, ...,tk, S1 75 S9 7& 7£ Spry Spr41, ...,Sk/}
U{tl =t, FtygF# ...# tr—1,tr41, - bk, S1 % 89 75 v FE Spry Sprg, ...,Sk/}

U{tl 75 to = tr 7é 7é t7-_1,t7»+1, ..,tk, S1 75 S$9 7é 7& Spry Spr41, ...,Sk/}

U{tl 7é to 7é 7é t.,-_l = tr7tr+1, ..,tk, S1 7'5 59 7é 75 Spry Spr41, ...,Sk/} .

It is enough to sum under the sign E and to use the proof of lemma 3.2.9 in order to obtain

the following propositions.
Lemma 4.2.2 We simplify X, in Xy and Yy, ¢ in Y;. Let p,q € N*. Then,

E XXy Y
{ W (n)k+2h+a+2b }

Jiteetin=a, §s<2, "k jo=1, "B jo=2 i1H..tin=p, i.<2, "a” i,=1, b i,=2
2 2 2 2
Koy Xy X2, X2 Vi Y3 Y2 ow}

1
Z Z E{ U (n)k+2h+a+2b

~ hlklal!
hlklalbl S1F . FESpFULFE o FUup t1F . FlgFWLFE . Fwp

Lemma 4.2.3 Let p,q € N*. Then,

D 2

i1+...+in=p, "as” is=t, t=0,1,..,0

E XL XYY
{ U(n)rta }

Ji+...+in=gq, "h" js=t, t=0,1,..,r

- Z Z E{ W(n)pta

hl!...hr!all...ao! . t R ; e
slyé,...#sht, si#sy  elF...Fel, , eiFel

Lemma 4.2.4 Let h =71y +....4+r and h' = r] +.... + 1}, We suppose that all the moments Mg'm
are bounded. We suppose that there exists ds > 3 or d, > 3. Then,

d; dy
X XS Yol Y
z : z : E{ m,uy m,ug U1 sV 0.
ﬂk/

\I](n)h-‘rh'
UTAULFE oo F U U 1 5o U VIFV2FE e Vs Vs 1y

.....

Proof This lemma holds if r=r’=1. For example, if d; > 3, by Holder Inequality

d d
> 5 . { Xl X Vil Yo }|
Vgt

\Ij(n)h-‘rh’
UL AULFE o FEUp U 150, Uk V1 FV2FE e FEV AT
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Xy (L Xy [ Vi Yool
o (G i) i) (B

Y(n)h /o HOLEARIOLES U(n) %
’ d,
<E{‘z X [FT¥ }T E{‘zsx;ﬁzs k+k’}kik/E{‘zSYn‘?s Bk }7 E{‘zsms k+k’}k:k/
= U e U(n)k T(n)h W(n) %

s xd1\ 2k+2K S, Xd’“ 2k4-2k’ > Yd/l 2k42k’ S, Yo dir \ 2kt2k 2’”1%'
< |E s 7,3 E s e ) b
<={(Gow)  eGa) G G )
Es X';dng,s)2k+2k/} {(Zs X7C££5>2k+2k/} {(Zs Yi%s)2k+2k/} {(Zs Y’i;:é )2k+2k/} €
= [E{< o v AT W gy
where €(n) — 0 and e = m Moreover, by our assumption and by hypothesis 3.1.2, all the

other terms are bounded. Then, the lemma is proved when r=r'=1. For r > 1 or ' > 1, it is
enough to apply lemma 3.2.3 or 4.2.1 for example.

Lemma 4.2.5 We suppose that all the moments Mg are bounded. We suppose RT’t(x) =

2o (x) = 22 = By and R (resp S™) is a polynomial of degree j5 > 0 (resp, is >0). If jo =0
(resp is = 0), one assume that (1/%(n,,)%) Y77 RTH(Xome) (resp (1/\Il(nm) ) L ST (Xomt)
) is bounded. If js > 1 (respis > 1) , one assume that Rmt( ) = x5 (resp Smt( ) = a').
Moreover let h = 2321 Ji where ji = js if js > 1 and j. =2 if js =0 and b/ = le 1 1y where
i =iy ifis>1 and i, = 2 if is = 0.

We assume WE{( o ;”’t(Xm,t))Q} — 0. Then, forallr, v, 1<r <k, 1< <k,

k K m,o
E{ Ztl#fa#..u#twﬂ,tr#»l7~..7tk Zoﬁéoz#...#orf,or/+1,~--,0k/ [HS=1 R;n’ts (Xm’t‘*)} [H*"'/zl SS/ (Ym’os’):| }

U (ny )
converges to 0.

Proof By the Schwartz inequality and the Holder Inequality,

k K’
W- el Y [TIEr )] [TL 80 o] V

t1 taye by 01,02...,05  s=1 s'=1
k Nm K’ N
<ot 1155 [T (5 s 0]
xf g ()
k Nom 2 k' Nom 2
{11 (2 7 0na) T (3 50 0o ]}
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Nt 21 PRIV (X g, )\ 260K 1)y 5
< B g (2w o) TR (== )™ )

L= (S 7y

By our assumption and by hypothesis 3.1.2 , the term on right-hand side is bounded. Moreover,

() o

We deduce the lemma if r=1 and r’=1.

When r > 1 or v’ > 1, we prove the result by recurrence by using the lemma 3.2.2, 3.2.4 , 4.2.1
and 3.4.3. &

Lemma 4.2.6 Let 0 < ¢ < ¢, 0<p” <p' . Let h = 2;1(2115 +vs)+ (¢ —¢") and let
h = 157:1(205 +ds) + ( —p”). One assumes that MJ'm is bounded pour tout q,p. Let
d d o ody
S;L_‘ — Z ﬂm t1Ym1t1ﬂfrit2Ym2,t2 ””5707[;7tp“ Ym[:tp» Ym,tp==+1 ...... Xm7tp, .
b1yt €H
Then,

u v V2 Ug Vg» n
X B X B X Ko e X S
Z E \\)J h+h' 0
(nm)

817....8(1/

ifup > 1 and v1 > 1.

Proof By lemma 3.4.4 E{(S;;’"/\I!(nm)h/)P} is bounded for all P. Then, we have

U v U MNm
’ j : IE{ ml,leml,sl m,Sa m52 ﬁm« Sq” msq Xm,squrl ------ Xm,sq/S'H
\I/(nm)thh’

S1,000uSg/

D ot Xosy E Bmsq msq qu“+1Xmasq“+1 qu/Xm,Sq/ S
=l (St ) (Sitammaren) (S ) (Ko ) (s )
Zsl xll,legzl,sl Esq ﬂm s> msq Esq” le7sq,, Nd—q Nm
= [{ (S (S ) (Z ) (g

s, Pm, S ;)nrsr ” 11”12 qu,. 1Xm,sq«v 1 5 M,
< [T i) ol P e e

= U 0w
e ()T

(¢'=q")(a"+2) } 7

1
fl”“}m

|Mn |(q+) HE Zs, 7n5r m‘srq—"_Q
q")(q"+2) 2u7 +v,

It is enough to apply lemma 3.4.3 in order to conclude. B
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Lemma 4.2.7 Let 3, . = E{Y? }. We suppose that all the moments My'w are bounded. We
assume that WE{( Y 727”( m.t ) } — 0. Then,

Z Z E{X,%m ....... XZ%S Xin,seqr - Xm,sq_ EY,% Ly Yn% Ume,le ..... Ym,vq_ }
q+q’
S17F . FSg—e VIF - FVgr g \I/(nm)
B Z Z E{ Brmsiee-Bm,se Xm,sepr - Xm,sq_c 1/n.,vl ..... ;nyvam,le ..... Ym,uq_f }
q+q’
S1F. . FSq—e VIF .. FVgr g \I/(’I’Lm)
converges to 0
Proof For example,
Z Z ]E{X,?n le’rzn S2Xm,53~...Xm,Sq 2Y7721 le,r% ,U2Ym Vg e Ym’vq,72 }
U(n,, )t

S17F FSq—2 VIFV2F . FV

2 2
( m ,S1 Bm sl) m S2)(m s3- Xm,sq 2Ym 1 Yy U2me3 ..... 3/.,«,“1,(1,72 }

= > > E{ U (1 )a+4’

17 FSqg_2 vl;ﬁvg;é.m;évq/_2

2
ﬁm,sl m SQXm s3° X’m,Sq 2Ym vlym v

Ay > o W)

S1F.FSq_2 v17ﬁv27§4.4.7ﬁvq/72

Ymvg o Ymo, }

2 2
/Bm,sl) m ngm $3 vasq 2Ym ,U1 Ym ,VQ Ym sV eeeee meﬂq/_g }

_ E{ m s1
- q+q’
S1F....#Sq—2 v175v273 FVG o Y (nm)
+ Z R B’m S1 (Xm ;82 BW;SZ)XWYSB“"XW;Sq 2Y712'L ;U1 Y’IEL ’L)QYm:US """ levq/72
\Ij(nm)quq
S17...FSqg—2 vl#vz# SFEVG g
4 Z E ﬂmﬁsl/gm732Xm733 Xm »Sq— 2( m,vy /’:ﬂ,vl)YTEL,UQYm7U3 """ Ymﬂiq/,z
\If(nm)quq
S1F....#8q—2 vl#vz# FVG o
Xm 3Sq— Z/Bm vl( m,vo ﬁm vg)Ym CE R Ym,vq,_2 }

{ /Bm,sl /Bm,QXm,sg
T (nm )aTd’

+ > E
S1F....FESq— 21)1751)275 FV g
e Xm,sg 26 mszm Vg mevun}

:Bm,s Bm,s Xm,s
> D R
S1F. . Fsqg_2 VIFVIF . FVg (nm)
Then for example by lemma 4.2.5
E ﬁmyslﬁmQXmaSS'“'Xm Sq— 2Bm 'ul( m,va m v2) m ’U2Ym CEREEEN Ym,’uq/_2 }
Y(n m)q+q

S17F . FSq_2 vlyévgyé..”#vq/fz

converges to 0. l

Lemma 4.2.8 We suppose that all the moments M"m are bounded. One assumes that, for all

P, q,
E{ X0 s, Xm o0 Xmsg Ym,ty Yty eeees Yint,
— Sqp -

Z Z 7 \I/(nm)p+q

S1F.FEsq i F . Flp

o6



We set So o = 1. Then,

/ /
Z Z IE{ ﬂmm ..... ﬂm,seX,,L7se+l....Xm7sq_e vy e mwam’le ..... mevpff
U(n,, )a+p
S17...FSq—e VIF ... FVp—f ( m)
2e 2€S

converges to o§°07°Sq—2e,p—2f

Proof At first, we study
S1F o FSesSet 17 FSqoe VIFe AV Uf 417 FVr g

/ /
E{ﬁm’sl ..... @n,seXm,se“~-~-Xm,sq,e A m,vam,vf+1 ..... Ym,uq,,f }
qj(nm)q-i-q’

DD DD DR

817 FSe Seq 17 . FSq—e V1F ... FVf Vf 17 . F 0y

/

(ﬁm,sl -~-~ﬁm,se ) (ﬁm;vl ""ﬁ;n,vf )E{ Xm,se+1~-~-Xm,sq,5Ym,vf+1 ..... Ymﬂ’q/_f }
U (nm)2e W (1y,)% U (1, )1~ 26W (11, )9 =27 .

It is easy to understand that

S (P sy

2
S1F....#Se \I](nm) ‘
/ /
Z L L 2f
( T ()2 ) DA
V1FE..FUf (’I’Lm)
Indeed,
> (ﬁm,sﬁm,sz-~-ﬂm,8e) _ (me ﬁmva) (M) g2
o \Ij(nm>26 \IJ(nm)Q ....... \Il(n"l)Q 0 s
and, for example, by lemma 3.4.2,
2
s, P 0.
W (nm)*
Therefore,
S1F. FSe,Set1F - FESqme VIF . FVF VL 1F . FVy g
E{ ﬁm,sl ..... ﬂm,sEXm,se+1 ....)(771,5417C ;n,vl ;n,vf Ym’v_f+1 ..... Ym,ﬂq/,f }
U (ny, )+

o7



2
converges to 02¢07! Sy_se g —af -

Now, in order to obtain

’ /

By - Bmse X1 oo Xmosy By oo Yooy (oo Ymow s
W(n,,)at+d ’

we shall have to add or to subtract sums such that there exists i, j satisfying s; = s.4; or i’,j’ such

that v;; = vgyy . For example, , we shall have to subtract the sum

2 2.

SoF ... FSe,Set1F - FSq—e 'U1#....¢'Uf,Uf+1;£....#1)q/7f

/ /
E{ﬂm,sz---ﬂm,seﬂm,sﬂﬂXm,sﬁHXm,se+2---~Xm,sq_g vy m,Ume7Uf+1 ..... meq/,f }
\I/(nm)fﬁ-q/ ’

One will prove that this sum converges to 0 by recurence. With this aim, we study first

7’ ’
E 6771,52 ~---ﬁm,seﬁm,se+1 Xm,s€+1X7n.se+2 ““vasq—eﬁ’!n,’ul ""/B’HL,'Uf Kn,vf+1 ----- Yvwn,vq/_f
U(n,y,)at+d

which can be written as
e f /
T (o) T ot (™)
1=2 j=1
X

( Z m,se+2~-~-Xm7sq,e)( Z g ,vq/,f)} '
W (n,)a—et \p(nm)q/_f

Se42y:+:38g—e ViyeesVgl_ f

Now, % is bounded and

(5 M) - s{( ) Y
5[ gl )

m,seqq Xm,s .
is bounded by our assumption. At last, E{ 2oy ‘I’,(;“)S —etd } — 0 by lemma 3.4.3. It is enough

to apply Holder Inequality to conclude.
It is general for all the steps of recurrence : thanks to lemma 3.2.2 and 3.2.4, one can always
write the terms

2 2

S1F e FSr Srq1 oo Sqe VIFE e BV Ut g 5eees Vgl f

/ /
E{ 6m,sz ""/677L,356m736+1Xm,se+1Xm,Se+2 -~--Xm,sq,eﬂm7yl ""ﬂm,yf YTYL,'Uf+1 """ Y’H»,'Uqlif }
\I/(nm)q-i-q/

as a sum of products. Or by using proof of lemma 4.2.6, we always find in these products, terms
which are bounded by products of bounded expectations (cf lemma 3.3.1 and hypothesis 3.1.2) for

2o BinsXim.s

2w
W) }, u,v,w € N : among these terms there is at least one

example, in the form IE{ (

term of the form Zsl W which converges to 0. That proves the recurence, and then, that

a8



> D

S2F ... FSe,Set1F FESqme VIFE . FVF VL1 F F Vg g

/ /
E{ﬁm’SZ ..... Brnsse Brmseis Xomoseor Ximsora oo Ximsg o Binsoy By Yoy o oooe qu_f}
\p(nm)q-i-q’

converges to 0.

One can reason by the same way about other terms, for example terms such

>

837 FSerSet 17 FESq—e VIF FVfVfL1F 0 FV Iy

/ !
E{ﬁm,SS ~~~~~ Bm,seBm.scy1 Xm sei1Bm,seqn Xmosepo Xmseqg-Xmosq_ B g e m,Umevvf+1 """ Ymv /,f}

\If(nm)q+q’

or

82/ FSe Sef1F-FSq—e 1)27&4.4.#'%:,vf+17é....7é'uq/_f

E BM,SZ """ 6myseﬁmyse+1mese+1mese+2""mesqfela;n,g"“lgin,vfﬁ;m,vf_uYm7”f+1ymyvf+2 """ Ymﬂ) _f
U (1 )a+4 '

We deduce that

/ /
Z Z ]E{ﬁm,sl ----- ﬁnb,seXm,seJrl-~-~X'm,sq,e m,vy m,UfY;n,Uerl ----- Y;n,vq/,f}

q+q’
S17...FSqg—e VIF... 7V ¢ \Il(nm)

converges to the same limit as

> D

S2F .. FSe Set1F FESqme VIF FVF VL 1F FVy g

/ /
E{ﬁm& ..... ﬁm,seXm,seH----Xm,sq,e vy m,Ume7'Uf+1 ..... Ym,vq/_f}
qj(nm)q+q’ ’

. 2
i.e. converges to 02¢07 Sy 90 g—of. M

Lemma 4.2.9 We suppose that all the moments M,ffk converge. Then, for all e, for all f, for all
p, for all q,

/ /

> > E{ﬂmm ..... Brmse Xomoser - Xmsq— B o B Yoy s - Yonso,
U(n,, )at+p

S17...FSq—e VIF ... FVp—f ( m)

CONVETQES.
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Proof We study at first

/ /
> S E{ﬂmm ..... Brnse Ximsess Xy B s oo-Bi s Yooy 1o Ymﬂ,q_f}

g (nm>q+q’

S1yeeeeySq—e VlyeeryVgl _p

m,s  \° 57'7175 m.s ) 472¢ s \ P2
- (Cae) (e H{(Sae) (Zee) )

S

2
which converges to 00 Ulqu,Qe’q/,Qf.

Now, in order to obtain

/ /
Z Z E B, sy oo ﬂn«hSﬂXm_,seH....Xm,sq_e . m,ume,le ..... mevpff}
\I/(nm)q+p ’

S1F . FSq_e V1F . FVp_f

we shall have to add or to subtract sums such that there exists i, j satisfying s; = se4; or i’,j’ such
that vy = vy
For example, we shall have to subtract terms of the form

Z Z E ﬁm,sl """ ﬁmase m s +2Xm Se+3""Xmasq—eﬁ’:n,’U1 m SUF Ym P S I Ym,vqlff
U (ny)atd’

S1y---38es8et2seesSqg—e VlssVUgl _ ¢

which, by using the same technique as in lemma 4.2.7, converges to the same limit as

/

Z Z E Brm,sy e ﬁm,Seﬂnuse+sz7Se+3----Xmﬁsqfe m,vl""ﬁ'/rn,vaman'+1 ----- Ym,vq/,f
\If(nm)quq’ ’

S1y---38es8et2seesSq—e VlssVUgl _ ¢

Then, we prove the result by using a recurence on e.

Now, we shall have also to substract the sum

Z Z IE{ Brm,sg e Bm,e[ﬂmyse+levse+l]Xmase+2""mesq—eﬂ;n,l"“ﬂ;n,UmeaU‘f+l """ Ym,vq/_f }
S250058q—e Visee Vgl _f \P(nm)q+q
which is written as
15[ (Esi Bm,si) 1 (Z B, SJ>
s U ()2 joi U (nm)?
]E{ (251 ﬁm,56+1 Xm,sc+1 ) ( Z Xm,se+2----Xm,sq,e ) ( Z Ym,vf+1 ----- Ym,’uq/ff ) }
U(ny,)3 sern g U (1 )a—e—1 o T U(nm)? —f

% is bounded and

(X S -={(Za) T ST

Se425-0038q—e

Now,

m,seqq Xm,s
is bounded by our assumption. At last, ]E{ 2o 0 \I’,(j;i)g et } — 0 by lemma 3.4.3.
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More generally, we shall have to substract tems of the form

2. by

S14cysSerSetd+1s35g—e VlyeoyUgl _

c d / /
E{ﬂsl-m""ﬂm,se[ m,se+1Xm,se+1]Xm,Se+d+1"'X7n7$q—e vyttt m,vamWerl""Ym,Uquf }
U (1, )99

which converges to 0 by the same reasoning, but by applying lemma 3.4.4 .

We shall have also to substract tems of the form

2 X

82;e038g—e VlyeensUgl _ ¢

/ /

2
E{ 2 o Bmss e Brmse Xmseir Ximosora o Xmsa o Binos By Yimswg  oooe levq,_f}
\Ij(nm)quq’

2
., 5,

which converges to 0 because by lemma 3.4.2, T 0.
We shall deduce that
Z Z E{ﬁm’sl ..... Binyse Xm,seis - Xm,g—eBm,, - gqnym,UfH ..... Yoo, }
U(ny, )1ty

S1F e FESgme VIF . FVy g

converges. Hl

4.2.2 Statement and proof of first theorem
Theorem 15 Let Q5" (z) = 22 — B e, Q5" (y) = y*> — B, where B, , = E{Y2 ,}. One assumes

that
Nm m,t X ) 2 2
(B oo f-

Xm X7n T4 1 Y;n Y;n.nr P y
All the moments M;‘;;L = E{( Shstis ’\1,’(';1) ()p+q'1+ Yo } converges to a real My, if,

forall g € N, for all p € N, there exists Sy, € R and S’bg such that

?;nl I2m’t (Ym,t)
U(nm)?

Z Z E{X .51 Xm 55w KXinysg Ym,t1 Ym g eeenes Y, } g
U (n,, )Ptd P
S1FSoF ... FESq t1FtaF. . Fty
E{( X s, ) Xin.speeeeer m.s._
Z {( ,,(1)\1’ ,92q »Sq 1} <Sb(21,
S17#82F .. FSg—1 (Tlm)
> E{(Yonts) Yot oYty 3| o
U (n)P P
tiFto APy
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Proof of sufficient condition of theorem 15 By proposition 3.3.1, all the moments of
marginal distributions are bounded. By using Holder inequality, we deduce that all the moments
are bounded.

By lemma 4.2.8 and 4.2.7 we deduce that

2 2 2 2
. { X2 X2 X XKooy YooY Yoy iy oo Yo }

\\/J q+p
S17...FSq—e VIF ... FVp—f (nm)

converges to J%eU%eSq,QE’p,Qf.
By lemma 4.2.4, if there exists 4 > 3 or %, > 3,

X77;117u1 ""X'r%,ukyﬁévl anllf'/uk/
Z Z E \I/(nm)h+h’ — 0.

UL FEULFE . FE U V1 FV2FE . FV s

Therefore

3 Y E D CA TP, A LIS (A
\Ij(n7rz)h+h/
UL FEULF ... FUE VI FV2FE . F Vs

converges for all (41, ..., Ug, V1, ..., V).
Then, because

E{(Xm"l+""+Xm’"m)q(ym,1+.-..+Ym’nm)1’}

\I/(nm)P+‘1
B 3 5 g! P { XD X Y LY }
B G1leeeeGing, ! i1l ! U (n,,)at? ’

Jit..... FIngm =q i1+ +ing, =P

all the moments converge.

Proof of necessary condition of theorem 15 We suppose that all the moments converge.
Then, the second and thirth relations are a consequence of proposition 3.3.1 .
By lemma 4.2.9 and 4.2.7 , we deduce that, for all e, for all {,

2 2 2 2
Z Z IE{ Xm,sl....X,,%seXm,SeJrl....Xmsqerm’U1 ..... Y,,WYMM+1 ..... me%ff }
\p(nm)q+p

S1F ... FESq—e VIF ... FVp_f

converges.

By lemma 4.2.4, if there exists s > 3 or %, > 3,

2 v g Dt X Yot Vbt |
U (1, )PTa ’

UL AU FE o KU VI FV2FE e F Vs

Therefore,

Z Z E D CETHIND, CLID AN X
\I'(nm)P+q

ulyﬁuz# .... ;ﬁuk ’U175’U27£...‘7£’Uk/

converges for all (uq, ..., ug, v1, ..., vpr) if there exists uy > 2 or vy > 2.

Because

IE{ (Xma+ oo ¥+ X, ) I Y1 + e + Y0, )P }
U (n,, )pPte

62



)

_ Z Z q! q! E{ g X%;”;{m YTfllJ ..... szy;;{‘m }
jl' jnm' ’il' ) ! \I/(nm)quq/

Jit..... Fingm =@ i1F .. T, =q LT

> 5 E{ X om0, Xomosm oo Xomsy Youts Yooty cvvee Yomt, }

p+q
S17#S2F ... FSq LiFtaF. . Ftp W (nm)

converges. Hl

4.3 Convergence to the normal distribution
In case of convergence to the normal distribution, one specifies theorem 15 by the following way.
Proposition 4.3.1 One assume o3 = 0?. One assumes that

Nom, m7tX 2 2
]E{l =1 Q" (Xmt) }HO,E{ }Ho.

U(nm)?
All the moments M7, converges to a real My, = pigp,, where pg is the moment of order q of
N(0,1) , if and only if , for allq € N, for allp € N |

?21 12m7t(ym,t)
U (nm)?

5 5 B{ X, Xz oee Xomoy Yomts Yoot evvee Yoot }

|\ p+q
S1#802F . FSq LiFta R Fly ()

where v, is the moment of order q of N(0,v2) with 1 = 0 + va, and, if there exists Sbg eR

Z E{(Xm.s1)° Xim speee Xomsg 1} < S
U (nm ) !
S1#£S2F ... FSq—1
2
E{(Von)YontaooYoty 13| o
\Ij(nm)p P
ti1FtaF. . Ftg_1

4.3.1 Proof of proposition 4.3.1

In this proof we simplify X,,; in X; and Y, + in ¥; and n,, in n. Of course, we use theorem 15.
At first, under necessary or sufficient assumption, we have the following lemma.

Lemma 4.3.1 Let ¢” = |q/2], p” = |p/2]. Then,

]E{ (Xi4..+ X, ) Y1+ ...+ Ynm)f’}
U (n,,)at?

2

0,0 0 2¢” 0
@'t 0901 Sop ') 9507 Sy-2,p g'p! op” o7 Sg2g7p

2020 010! glp! = 2120 110! (¢ —2)lp! T + 20720 ¢”10! (g —2¢")'p!
q'pl oo} Syp o q'plodo? S, 0, 2 g'p! 070 Sy ap 2

+ — F o +

202 01! ¢l(p—2)! 212 111! (¢ —2)!(p —2)! 20°2 1! (¢ —2¢")(p —2)!

63



2"
q'p! oot Syp-a q'p! oot Sy_2p-4 N n qlp! op? ot Sy—2g" p—a
2022 012! gl(p—4)! 2122 112! (¢ —2)/(p—4)! T 2022 @120 (q—2¢")!(p —4)!
+ q'p! ‘78‘7%1)” Sq.p—2p” q'p! J(Q)Ufp” Sq—2,p—2p” +
2097 07T l(p — 2571 3195 1T (g = 2)l(p = 2yl
20" _2p”
glp! oy or® Sq—2q" p—2p”

Proof In order to prove necessary or sufficient condition, by theorem 15

Z Z E{X,, Xopoooonn X, Y1, Yipoo Yy ) g
U (n)rty P

S1F#S2F ... F#sq tiFtaFE..... F#tp

By lemma 4.2.4, if there exists s such that j; > 3 or i; > 3, for example,

3 5 | q!. | p!_ E{X{I ..... XinYir.. Yn

v Vgl in, ! W(n)atp
Jit..... +Jnm =4, at least one js>3 i1+..... +in,, =P N Inm 1 Tm ( )
Then, it is enough to study the sums where j; < 2 and i; < 2.

Then,

E{ 1 oL }

N 5 5 | q!' | p!_ 'E{X{I ..... Xy an}
. In,, "

\If(n)q+p

+4 Z Z '1 q' 17 p' ‘ E{Xfl ..... X%nylzl ..... Y’én}

\Ij(n)qﬂi

q! p! XXy Y
D> O n Rt }

Lol il ! W (n)at+p
Jibeeeeinet, @7 je=2 i1beeetinep, i <171 Jn: 1 (n)

+ T 3 . q! - p! | .E{Xfl ..... Xy an}

4 Z Z q' p' ]E{Xfl ..... X%"Ylil ..... Yé" }
i gl ;| +
P e AT PPN e SENIPSN NS Jnl i1l ip! U(n)atr
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! J jin Y '
+ Z Z — q: - ' p! E{X o sz Yfl ..... YZ"}
A @ Gam2 it by 1 iy Jleeeens n! il i) U (n)ate
| J jn Y% in
n Z Z : q: p' E{X L X’?L Yfl ..... Y,é
. — £— TR CB SO Jn! drle in! U(n)atr
it tin=q, js<lit4....4in=p, 2 i;=2 n
N 3 > _ A L {X“ ..... Xy an}
Jit.... +in=q, 1 js=21i1+..... Tinmp, 2 ip=2 NARTITIED jn' 21! ....... ZTI' \Ij(n)tﬁ-l)
N > 3 q! P g { XL XY Y,;‘n}
) i -
P s AR sy PP s LSO Jn! i1l in! U(n)atr
N > > _d P g {Xfl ..... XInyit.... Y,';‘n}
Jitetin=q, js<li1+.....+ip=p, p” 1=2 ]1! """" ]"! (LR in' \I](n)ﬁp
N 3 3 q! P! {X{1 ..... Xy Yin
, £ L G i) U (n)ate
Jite... +in=¢q, 1 js=21d14..... +in=p, P’ 1+=2 n
3 3 q! P g {le ..... Xiny/r.... Y,;in}
iAo in=a, @ js=2i14eecdin=p, P it= ]1' ....... ]n' Zl! ....... ’Ln' \Il(n)Q+p
_ q'p' Z Z E X{l ..... XTjL"Ylil ..... Y;"
2020 - ) { \I/(n)q+P }
JiteeFIin=4q, js<lit+.....+ip=p, 1+<1
Ip! J jn Yt
+ qlpo Z Z E{ Xll ..... X% Yfl ..... Yri
2120 e iy U (n)rtp
Jit..... +in=q, 1 js=21i1+..... +in=p, ;<1



L ! 3 3 gl Xit XYt Yin
24" 20 . R b o - . \Il(n)q+p }
Jitetin=q, ¢ js=2i1+.....+in=p, 1+ <1

glp! X{t XYY
L ! Z Z E{ 1 FAD S o }
202 +
Jitetin=q, js<lirt+....tin=p, 1 ;=2 \Il(n)q :
q'p! X{ XYY
DS > E{Fege
Jidetin=q, 1 js=2i14.cc..din=p, 1 ;=2
g'p! XL XYY
Tors Z Z ]E{ \If(nn)qlﬂ' ’ }
JiteFin=q, ¢ js=2u1+.....+in=p, 1 1;=2
qlp! X{ XYY
N Z Z ]E{ 1 A i }
2022
Jitetin=q, js<lirt.....+in=p, 2 i,=2 ‘Ij(n)q+p
qlp! X{ XYY
o 2 D T
it et in=q, 1 je=2i1+.....in=p, 2 ;=2
g'p! XXy Y
D> P
Jite... +in=q, ¢" js=2i1+..... +in=p, 2 14=2
glp! XL XYY
DS O [ el
Jitetin=q, js<lir+.....+in=p, p” i1=2
g'p! X{ L XYY
+7212p,, Z Z E{ . \Ij(n )q}s-p - }
Jitetin=q, 1 js=2d1+.....+i,=p, p” i;=2 "
q'p! X{ L XYY
D O O
Jitetin=q, ¢ js=2i1+.....+in=p, p” i+=2
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- q'p! 0809 Sqp q'p! 08‘7? Sq—2,p + + q'p! o’ U? Sq—2¢" p
2020 010! glp! =~ 2120 110! (g —2)lp! T 20720 @101 (q —2¢”)!p!
20"
q'p! ‘78‘7% Sqp—2 q'p! ‘7(2)‘7% Sq—2,p—2 q'p! qu of Sq—2q"p—2

2020 gllp—2)! T 212 1! (g =2)l(p—2)1 T Yo I (g=20)(p—2)]

0,4 2 4 297 4
q'p! 0go1  Sgp-4 q'p! ogor  Sq—2p-4 q'p! 0y" oy Sq-2¢p—4

2022 02 ql(p — &) | 2122 1121 (q—2)l(p —4)1 T2 ® el (g=2g)(p— 1)

2p” o
L obo " Sypor | 0P 060y Siepny
20207 01p”! ql(p—2p™)! " 21207 1Ip”1 (g —2)l(p — 2p”)!
oo o
q'p! oyt orf Sy—2q" p—2p”

207207 ¢"lp”l (g —2¢")(p—2p”)!
by lemma 4.2.3, 4.2.8, 4.2.9 and 4.2.7. R

Proof of sufficient condition If q or p is odd, Sp_2c q—25 = l/q_QGZ/(;72f = 0. Therefore, by
lemma 4.3.1, if p or q is odd, M, , = 0.

Now, suppose that q and p are even : in order to simplify, we study the moment of order
(2q,2p). By lemma 4.3.1,

]E{ (X4 .+ )\I(;?y)j)q;]}:;:_ Y }}

2¢12p! 000y vay vop
2020 010! (2q)! (2p)!

2¢12p! 020 Vag—2 V2p
2120 110! (2 — 2)! (2p)!

2q12p! ojo? Vog—4 Vap
2220 210! (29 —4)! (2p)!

22! 0300 vag24 V3
2920 ¢l0! (29 —2q)! (2p)!

2¢'2p! 090% Vg  Vap—2
202 011! (2¢)! (2p — 2)!

2q!2p! 0’30% V2q—2 Vop—2
212 111! (2¢ —2)! (2p — 2)!
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4_2
2q12p! op07  vaq-a Vop—2

222 21! (2¢—4)! (2p—2)!

2q12p! 03903 vag_og  Vop2
202 gl (29 —29)! (2p—2)!

2¢2p! oot vay  vop_4
2022 012! (2¢9)! (2p — 4)!

2q'2p! ofol vog_2  vop-4
2122 112! (2¢ —2)! (2p — 4)!

4 4
2q'2p' 0001 V2q—4 Vop—4

9% 211 (29— 4) (2p— )

2q!2p! qua‘f V2g—2q Vop—4
2022 121 (2¢—2q)! (2p—4)!

2q2p! 090 7? V2g  V2p—2p
2022 0lp! (2¢)! (2p — 2p)!

2912pl 0307 vaq2  Vapo2p
2120 1lpl (2¢ —2)! (2p — 2p)!

4 _2p
2¢12p! ooy V2q—4 Vap—2p

2220 2lp! (2¢ —4)! (2p - 2p)!

2q!2p! agqaf” V2g—2q Vop—2p
2020 glpl (2¢ —2q)! (2p — 2p)!

2¢'2p! oot vi Vh
™ 79090 010! 24! 20p!

-1
2¢12p! oo vy vy

2120 110! 20-1(qg — 1)! 27p!
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2¢'2p! ojo? vd vh

2220 210 24-2(g — 2)! 2¢p!

2¢'2p! 0290 vg 4 vy

2420 ¢lo!  29-4(q — q)! 2Pp!

2¢'2p! ofo? v bt
202 0I1 24(g)l 2¢—1(p — 1)
29'2p! 0202 WIT! bt

T M 2 (g = 1) 2 T (p— 1)
+2q!2p! ogo? Vg_z p—1
222 211 20-2(q—2)l 2—1(p_1)!

292 ¢!l 2979(q—q)! 2~ (p—1)!

2¢'2p! oot v Vb2
2022 0121 24(q)! 272(p — 2)!
+2q!2p' oot vit Vo2
9192 1121 24-1(q — 1)1 20-2(p — 2)!
2¢'2p! odoi VSiQ 2

902 211 202(q —2)l 22(p 2)!

+2q!2p! oylot vi™? V2_2
2022 ¢l2! 29-9(q — q)! 2P—2(p —2)!
29'2p! 00 v 7
202p O!p! 24(q)! 2r=P(p — p)!
29'2p! 020 VI vy

+ 2120 1lp! 24=1(q— 1)1 2P=P(p — p)!
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2¢'2p! ogoi? v 7

2220 2lpl  24-2(q — 2)! 2P—P(p — p)!

2¢12p! o3lotP g4

2020 qlp! 2079(q —q)! 277 (p —p)!

L T Y e R N L
2r2a¢ L 0IO! ¢! p! = 110! (¢—1)!p! 2000 (¢g—2)! p! T q'0!  (¢—q)! p!
ofot v§ v +U§0f vt ! +030% Y N

ol () (p—1)! 11! (g—D!'(p—1)! 211! (g—2)! (p—1)! 7"
odlo? viTT kTt
.......................................... T oy
ofot i A0 odol T AT ofol AT AT
02! (@) (p—2) 1120 (¢g—D!'(p—2)! 212! (¢g—2)! (p—2)! 7
qua‘f vy ? y§72
........................................ o T
e T S L S A s A
opl (@) (p—p)! 1! (q—D'p—p)! 2! (¢=2)! (p—p)! T
odlo? WITT TP
gt (¢—q)! (p—p)!
N2q!2p! {1/7507?(07013 13 pa-1 ié Vg—2 qu Vg—q>
2r22 Lp! 0!\ 0! ¢! Wg=1) " 2! (g=2) 7 ¢ (g—q)!
P S O B e A
(p—Drat\ot g 1 (g-1)! 2! (¢g-2)} T ¢ (¢—9)
P S 17 7 S L R L
(p—2)20\0 ¢! " 1l (g—1)! " 2! (¢—2) a (-9
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p—p 2p 0,9 2 q—1 4 q—2 2q q—q
V. o] (@Vl oy U oy Vg o Vg )}

(p—p) p!

0 TG T G T T )

2¢!2p! {Vg a? g2 B2 g N N P a%p] (03 +12)*
2r2¢ Lpl O (p—1) 1 (p—2)20 T (p—p)! p q

2qi2p! (03 +12)" (07 + )"
™ Top2a q! p!

which is the moment of order (2q,2p) of N (0,02 + v2) ® N(0,07 + ). B

Now we want to prove necessary condition. Then, we need the following lemma.

Lemma 4.3.2 We suppose that

Hqllp
_ q'p! 0008 Sqp . q'p! ddod vi_ovp N a'p! 02T o) vy_agvy
2020 010! glp! = 2120 110! (¢ —2)lp! T 2020 @101 (q—2¢")'p!
Wil olod vys | aplAd v R
202 01! gl(p—2)! 212 11! (g—2)(p—2)! T 20°2 ¢! (¢ —2¢")(p —2)!
q'p! 008 vevp_4 q'p! 0303 vy_avp_4 n n q'p! ogq oa Sq—2q” p—a
2022 012! gl(p—4)! 2122 112! (¢ —2)!{(p—4)! T 20°22 @121 (q—2¢")!(p —4)!
n q'p! 08037’” VgVp—2p” q'p! O'%O'gp” Vg—2Vp—2p” L
20207 Qlp”! gl(p—2p7)! 21207 1lp”! (¢—2)/(p—2p”)! T
q'p! qu ng Vg—2q" Vp—2p”

2027 q"lp"l (g —2¢")(p—2p")

Then, Sq.p = Vqlp.

Proof We know that 1 = My = 03 + 5. If ¢=2h and p=2k, one can write

24"
q'p! 080 Sy, qlp! 0308 ve—21p N N qlp! o3 0l vg_ag vy
2020 010! ¢lp! 2120 110! (¢ —2)lp! T 2020 ¢”10! (g —2q")!p!

q'p! 0008 vevp—o q'pl 0308 Vy_avp_o q'p! qu o Vg—2q" Vp—2

202 011! ¢l(p—2)! " 212 111! (¢ —2)!(p — 2)! Ho + 2°2 ¢! (q¢—2¢")(p—2)!

Inl 5952P" , Inl 5252P" \
q'p! ogoy VgVp—2p q'p! ojoy Vg—2Vp—2p

2021)” 0'p77| q'(p _ 2p77)| 212p” 1'p,,' (q _ 2)'(19 — 2p”)' + ...............

L 2gn 2
a@p- 99 99 Vq—2¢"Vp—2p

207207 ¢"pl (g —2¢7)!(p—2p”)!




2" o h—g® &
q'p! op" og Vy YV

20720 7101 2h—4"(h — ¢7)12F k!

Ip! 6009 S Ip! o208 Lk
4'P: 909 Pgp | 4P 5% 2 b, +

h
_ Yy
© 2020 QI0! glp! T 2120 110! 2h—1(h — 1)I12F!

q'p! ogog vhub=t q'p! 030 vy tub Tt N
202 0111 2hA12k=1(k — 1)1 ' 212 1111 2°h=1(h — 1)I2k=1(k — 1)1 =
q'p! ogqﬂag 1/3 @ k 1
.................... 27s ¢l T (h )!Qk T
L 4! odor” vhuy " qlp! ooyt vy g N
2095 Olp"1 2RRI2F—P" (k — p7)l | 21207 11p71 2h-L(h — 1)12k—F" (k —pr)l
q'p! qu” ng Z/;L_q” Vg_p”
.............. 2w Pl BT (b= )27 (k= )]
_ q'p! 0808 Sq.p q'p! 0800 h= 11/2 n . q'p! ng 081/3 ¢ l/éc
2020 010 glp! 2Rk TI0N(h — D)lk1 | 209 G 10I(h — ¢ )]
L 2! ogodrhvy ! L ! ofoduy vy N L 4w ool oy k!
2hoFk OILIAI(k — 1)]  2h2F TITI(h — D)I(k — 1)1 toRok T — g )k — 1))
q'p! agcrgp VhUEP N q'p!  odoi? 7ol N N q'p! 0(2)’1 o'gpﬁyg Ve
202k Olp” Wl (k — p”)! 202K 11(h — 1)!p (k pr) T 202k @ 1p"I(h — ¢ )(k p”)!
B g q'p! (o + Vg)h(dg + )k
= Hally = Shpiokgr — 2R 12k
_ ! oboivbvy  qipl odotvy'vh B T A
2hok Okl | 2R2F TI0N(h — 1)lkI 209 G 101(h — ¢ )1k
+¢]'p' agogrhvy ! n qg'p!  ododuh vyt n N g'p! ot ol k!
2h2k OILIAI(k — 1)]  2h2% TITI(h — D)I(k — 1)1 | = 2h2k " I(h — ¢")(k — 1)!
Lot obog” iyt il odog vyt apl 0" oy vy vy

202k Olp” Wl (k — p)! - 2h2k 11(h — 1)!p” (kK — p”)! 2h2k @l (h — ¢ )(k )

1otk
We deduce that S, , = 5202 .

If q (or p) is odd, it is easier to prove because g =0 = vy_g.. KL
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Proof of necessary condition We want to prove by recurence that S, , = v4v, for all (q,p).
It is easy to understand that the result is true if ¢ = 0 or p = 0 : it is the result in dimension 1 .
By definition, it is true also if p = q = 1.

At first, we will see by recurrence that it is true if p = 1 or q = 1. For example, if p=1, it is
thus true for q=1. Then, we suppose that it holds for all ¢’ < ¢q. Let Q=q+2. Let Q” = |Q/2].
Then, by lemma 4.3.1,

(X1 4 + X))V + o + V)
0=B{* T }

N QN olo) So1  Qplodo? vo_ors Q! O'(QJQ”(T? VQ—20" V1
2020 glo! Q! 2120 110! (Q — 2)!1! 2Q720 @0l (@ —2Q7)1!

oLt oo So.1 B
© 2020 plo!l Q1!
Then, the results holds if p=1 or q=1.

Then, we suppose that the result holds for all (q’,p’) such that ¢ < ¢ and p’ < p = q. Let
Q=q+2 and Q"=q”+1. Then, p-2p” = 0 or 1. Therefore, Sg p—2,» = VQVp—2p». Let P= p-2p” +2.
Then, by lemma 4.3.1,

g (X1 4 o + X))V 4 .o + Y, )P 2071
HQHp-2(7-1) = { U (1) QP20 +2 }

N QP! ado? S p—2pi2 QP! 0309 SQ—2.p—2p7+2 N
2020 0l0! Q](p _ 2p77 i 2)‘ 2190 110! (Q — 2)'(]7 — 2[)” T 2)' ..............
QP! USQ/J? SQ—207 p—2p"+2

29720 Q7101 (Q —2Q7)(p —2p” + 2)!
QP! ojoi  Sqp—2p QP! oja? Sg—2,p—2p”
2021 011! Q!(p—2p”)! 2121 111! (Q —2)!(p — 2p”)!

Q!P! O'(Q)Q” o3 S0—20" p—2p”
2721 Q711! (Q —2Q7)(p —2p”)!

N QP! ado? S p—2pi2 QP! 5o VQ—2Vp—2p 12 N
20920 0l0! Q](p _ 2p77 + 2)' 2190 110! (Q — 2)'(p — 2p,, T 2)' ..............
Q!P! O'gQ”O'? VQ_2Q)7VP_2p;7+2

20720 Q7101 (Q —2Q7)(p —2p” + 2)!
Q!P! 0§o? VQVp—op QP! oto? VQ—2Vp—2p”
2021 011! Q!(p—2p”)! 2121 111! (Q — 2)!(p — 2p”)!

QP! USQ”O'% VQ—2Q" Vp—2p”
2T QL (@20 (p— 2!

By lemma 4.3.2, we deduce that Sq ,—2p" 2 = VQUp—2p” 12.
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We proceed by the same way for Sg ,—2p7 44 1 SQ p—2p”+4 = VQVp—2p”+4, and so on by recur-
rence untill Sg , = voup = Sqt2,¢ = Vgt+2vy. Therefore, Sqyo = Vgyovyy for all p’ <p=gq.

We proceed by the same way for Sy 512 by reversing p and q and we prove that Sy 12 = Vg Vpt2
for all ¢’ < gq.

It remains to apply a last time lemma 4.3.1, and 4.3.2 in order to prove that S;i2442 =
Vgt+2Vp42. Indeed, let P=p+-2. Then,

E

(X1 4 + X,)°Y1 + . + V)P
{ U (n,,)@+P }

_QIPlajo? Sq.p  QIPloga} vgsvp QP! o296V g agrvp
™ 2020 0ol QIPT T 2120 110! (Q — 2)!P! 20720 Q710! (Q —2Q”)!P!

Q!P! o§o? vQUp—2 Q!P! oto? VQ—2Vp—2

202 01! QP —2)! 212 11! (Q—2)!(P—2)!+ ...............
QP! O'(QJQ”O'% VQ—20°VP—2
............................. 203 O (0 207)(P 9

QP! 080‘11 vQ—aVp—a QP! 030‘11 VQ—2Vp—4 n
2022 012! Q'(P—4)' 2122 119! (Q—Z)'(P—4)' ..................

L QP! 296t 5o s

.............................. 209 Gl (G20 (P 1)

QP! 030" voup_op» QP! 02027 g sup_ops

2027 0T QUP 2P 212P 1P (G - 2P 2]

QP! o9 wg agrvp_ap
2Q72F" T QMIP"I (Q — 2Q7)(P —2P7)

This result proves the recurence, and then, the necessary condition. B

4.4 Second theorem of convergence

Now we have a MCLT with conditions about the p;, s.

.....

Theorem 16 Let Py™*(y) = y* — 7, .Y — Bm,s where %/n,s = E{Y;? }/E{Y2 ,}. We assume

that > l;’;;z and >0, \;(2)52 are bounded. We assume that E{( > ™ 'Y"ZI,T) } — 0 and

E{ (2 Tons Yoo ) } — 0. One assumes that
2
} —0.

W(n)
Nm, Fﬂn,t(X t) 2
t=1"2 m, E
(g, )? 1 } -0 {

g

X1t X ) Vi1t Yo ng, )P ;
All the moments Mjw = Xmatet ’\I/(’;l) (),,M'H_ +Yomng) converges to a real Mg, if,
’ m 7

for all g € N, for all p € N, there exists Sy, € R and Sb;, € R, r=2,3,4,5, such that

?;nl pzlm’t(ym,t)
\Il(nm)Q

B{ X .51 X s ovvve Xom s Yota Yoot oo Yot }
Z Z — Sqp
\Ij(nm)p+q ’
S1F#S2F ... #Sq t1F#toF. ... ;étp
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E{Pé’n,éﬂ (Xm,s\i)Xm722 ...... Xm7sq71} < Sb?} ’
s1#£SaF . F5q1 (1m)
H/m,s
E{PQ 1(Ym’$)ym’z2 ...... Ym,sq,l} < Sb;l ,
S1#£S2F . FSq-1 (nm)

m sy A Xy X evenn X,
Z Ym,s1 { 1 q} SSbg
\I}(nm)q+1 q
S1F£82F ... #5
S Vons B Yowoe Yo} s
U (11, )1+ “
S17£S2FE ... .. #sq

Proof of sufficient Condition of theorem 16 The conditions of theorem are checked if p=0
or q=0. Therefore, all the conditions of theorem 13 are checked for the sequences X,, ;: and Yy, ;.
Therefore

E{( X5, )" Xin.sgeeeeer Xons
Z {( 5 1) L, S2 q—l} S Sb2 ,
U (nm ) !
S1F82F .. FESq_1
2
D T AT AN | By
U (nm)? P
t1FAtaF . Flp—1

Then, it is enough to apply theorem 15 in order to prove the sufficient condition. H

Proof of necessary condition of theorem 16 We suppose that all the moments converge.
Therefore, the first condition is checked by theorem 15. Then, the moments of marginal distribu-
tions converge. Then, for the four other conditions, it is enough to use theorem 13 for sequences
Xm,t and Ym,t- |

Corollary 4.4.1 One assumes that o = o?. We assume that S ‘;(";Lsz and >0 zj’”z are

bounded. We assume that E{( > %&/T)gl) } = 0 and E{(X0m Af’g(n)z) } — 0. One
assumes that
]E{

n,” Pmt(X ) 2 2
2 m,t
E — 0.

All the moments Mjw = E{(Xm‘l+""+X”L$%)T:()§T41+'"'+Ym’"m)p} converges to pigfty if and

only if , for all ¢ € N, for all p € N, there exists Sby, € R, r=2,3,4,5, such that

B Vi)
\I/(nm)Q

Z Z E{X31X32 ...... quYtlYt2 ...... Ytp}
— Vglp
\Ij(nm)p+q
S1F#S2F ... #Sq t1F#taF. ... ;ﬁtp
B{ Py (Xom.s1) Xm.syoor X
Z { 2 ( 71) ;82 7q—l} SSbZ
(1) e
S1F#£82F ... #8q-1

(0]



H/m,s
Z E{PQ I(Ym’\;)ymzz ...... Ym,sq,l} < Sbg |
S17£S2F . FSq—1 (")
Z Vm,le{Xlesz ...... qu} < Sb3 .
U (1,411 q
S1F£82F ... #s
> T B Yoo Yo} | g
U(ny,)rt! q
S1F£82F .. #s

Proof of sufficient Condition of Corollary 4.4.1 If the conditions of corollary are checked,
all the moments converge by theorem 16 .

Therefore, all the conditions of theorem 15 are checked for the sequences X,,; and Y, ;.
Therefore

E{(X,51 )2 Xim,sg oo Xim,s,
y el leeTned <o
S1#£S2F . FESq1 (nm)
3 E{(Ym,tl)?n,tz.;...Ym’tm} s
tiFtaF. .. Ftp_1 (nm)

Then, it is enough to use proposition 4.3.1 in order to prove the sufficient condition. H

Proof of necessary condition of Corollary 4.4.1 We suppose that all the moments converge
to the moments of N (0, I3). Then, by proposition 4.3.1, the first condition is checked. By theorem
16, the other conditions are also checked. B

4.5 Third theorem of convergence

Now we suppose that X,,; and Y}, , are bounded. Remak that, in this case, hypothesis 4.1.1
holds.

Theorem 17 We suppose that there exists F' > 0 such that | Xp, 1| < F and |V | < F.

One assumes that
Nm m,t X 2 2
S U f-

]E{
Xom 14t X Uy 14 tY, » )
All the moments M'm = E Kt t m’&ﬁ"(';l) ()p’ll;” RCELS } converges to a real My, if,

for all g € N, for all p € N, there exists Sqp € R :

?;nl /2m’t (Ym,t)
W (nm)?

5 5 B{ X 51 KXoz oo Xomoy Yomts Yoot evvee Yoot }

\\/J p+q ’
s1752F e FSg L FtaFE oty (i)
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Proof of sufficient Condition of theorem 17 The conditions of theorem are checked when
p=0 or q=0. Therefore, all the conditions of proposition 3.6.1 are checked by sequences X, ; and
Yin+. Then, all the moments are bounded. Then, by proposition, 3.3.1

R L s N |
W (nm ) /
S17£82F ... FS8q—1
2
Z E{(Ym7t1) Ym7t2 """ }/:’nytp—l} < Sb2 .
U (1, )P p
b1t E

Then, it is enough to apply theorem 15 in order to prove the sufficient condition. B

Proof of necessary condition of theorem 17 We suppose that all the moments converge.
Then, the condition is proved by theorem 15. B

Corollary 4.5.1 One assumes o5 = o3. We suppose that there exists F > 0 such that | X, +| < F

and |V t| < F.
Nm m,t X 2 2
] oo f-o

One assumes that
All the moments Mgn = IE{(Xm’1+""+Xm’"m)Q(Ym’1+"“+y’"’"m)p} converges to pqpty if and

. { £ Q5™ (Yint)
W(ny,)Pte
only if , for all q € N, for allp € N,

U (nm)?

5 5 E{ X, Xopoorn Xy, Vi, Vipoo Vi }

s p+q
S1#£89F ... Esq tiFtat. ... £ty (11m)

Proof of sufficient Condition of Corollary 4.5.1 If the conditions of the corollary are
checked, all the moments converge by theorem 17 .

Therefore, all the conditions of theorem 15 are checked by the sequences X,,; and Y, ;.
Therefore,

E{(Xm,sl)2§m,32.;...xmsqﬂ} s
S1#£S2F . FESq1 (nm)
E{(Ym,tl)zm,tz.;...Ym’tm} s
tiFtaF. .. Ftp_1 (nm)

Then, it is enough to apply proposition 4.3.1 in order to prove sufficient condition. H

Proof of necessary condition of Corollary 4.5.1 We suppose that all the moments converge.
Therefore, by proposition 4.3.1 , the condition is proved. B
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Appendix A

Some demonstrations

A.1 Correlation coefficients of higher ordrer

A.1.1 First proposition
Now we prove proposition 1.1.1, that is that

— [ twm®(au
u>x
—FX1($1) ..... FX
+kiiinoo[kn£rgm[ ....... k}igloo[l > ph,h)_mﬂn/ Pdm). (_mPﬁLdmn)} ...... 1]
J1<k1,....in<kn

We need the following lemma.

Lemma A.1.1 Let Mx be the probability of (X1, Xz, ....., Xp). Let f € L*(R", Mx). Let g° €
L4(n—1)(R,ms) for s=1,2,...,n. For s=1,2,....,n, let gi be a sequence of L4(n_1)(R,ms) such that
g; — g% in L*(R,m,). Then,

lim [k lim [ ....... lim (f(xl,xg,...,xn)gil(xl)giz(xg) ..... g,?n(xn)MX(dxl,....,da:n))]...H

kp—o0 Lky_1—00 k1—o0

:/<f(x1,x2,...,xn)gl(xl)gQ(xg) ..... 9" (xn)Mx (dzy, ..., dxy,) .

Proof By Holder’s Inequality,

< [/f(xl,...,xn)4MX(dx1 ..... dmn)} [/(g,%z(xg) ..... an(ﬂﬁn))‘lMX(d%Q ..... dan)}
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2

converges to 0 as k1 — oo.
By the same method applied for kg, s=2,3,....,n, one proves the result. For example,

Then, for € > 0, one chooses k3 such that

| [ f(@1, 22, 23)[95° (23) — g(3)]g (w2)g" (21) Mx (dzrds.....dxy)| < /3.
After, for this k3, one chooses ko such that

| [ (@1, 22, 23) 93 (23)[97, (x2) — g% (x2)]g" (21) Mx (dx1das.....dx,)| < €/3.
After, for these k3 and ko one chooses k1 such that

| [ (@1, 22, 23)952 (22)g5° (23)[91* (21) — g (21)|Mx (dz1des.....d2y)| < /3. W

Proof of proposition 1.1.1 Let By, s=1,2,....n, be n Borel sets of R. Assume that B, =
[—00,@s]. Then, 1p, = 3772, i P} with 43 = [ Pidms.
Then, one proves proposition 1.1.1 by using lemma A.1.1 with f=1 and g; = 15, (z,). B

A.1.2 Second and third propositions
Now, we prove proposition 1.1.2 : (X1 + ... + X, Fy,) is a martingale if and only if E{X41|Fn}
=0 foralln>1.

Proof of proposition 1.1.2 By definition, (X; + ... + X,,, F,,) is a martingale if, for all n,
E{X1+.+Xp+ X1 Fnt=X1+...+Xpn. Then, Xq+..+ X, =E{X1+..+ X,, + X, 1| Frn} =
E{X) + ...+ Xp|Fn} + E{Xpnt1|Fn} = X1 + ... + X, + E{X,,41|Fn}. Then, E{X,,11|F,} =0.
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Reciprocally, if E{X,1|Fn} = 0, BE{X1 + ... + X), + Xpo1|Fn} = E{X1 + ... + X,,|F0} +
E{X,|F}=E{Xi+ .+ X, | F}=X1+..+ X,,. I

Now, we prove proposition 1.1.3, i.e. :

If (X1 + ... + X, Fn) is a martingale, pj, j,....5n1 = 0 for all n > 1. Conversely, if {P7}
is a basis of L*(R,ms) and if pj, jo...jn1 = 0 for all n € N* and for all (ji,....,jn), then
(X1 4+ ...+ X,,, F) is a martingale.

Proof of proposition 1.1.3 If (X; +...+ X,,, F,,) is a martingale, for all n, E{X,,11|F,} = 0.
Then, X,,,1 is orthogonal to the space L? generated by Xi,.....,X,,. In particular X,,,; is orthog-
onal to the function P} (X1)......PJ" (Xy,). Then, pj, j, .. j,1 =0 for all n € N*.

Reciprocally, assume that, for all s, { P7} is a basis of L*(R,my), and that pj, j,
all (j1,....,Jn) and for all n € N*.

Then one uses lemma A.1.1 with f(z1,....,%n, Tnt1) = Tny1 - One uses the same notations as
in the proof of proposition 1.1.1 : Let By, s=1,2,...,n, be n Borel sets of R. Then, 15, = E;io v; P}
with 7§ = fB Psdmg. One sets g, = 1, and g7 = Z?;O Vi P}

By by lemma A.1.1, for all Borel sets By,... ,B s

in,l = 0 for

......

Therefore E{X,,41|F,} =0. &

A.2 Equivalences

In this section, we suppose that m; = m and X,, : = X;. Then, we have the following proposition.
Proposition A.2.1 We suppose that M3 converge with ¥(n)? = n. Then,
n~? Z P ogaseerin — 0
Jrtdettin=4; js=2 or 0

if and only if

n

n_QE{ [Z (x2- E{Xf})r} 0.

s=1

Proof We know that

—{ S XN ey

st
. n X Xt X Xy
Therefore, if M3 converges, >-_, E{ &%} converges. Therefore, ZS#E{ agtl — 0.

Moreover

E{Z ]E{X2})}

s#t

{ X (X E{XQ} } {Z":X ]E{X2})}

s,t s=1
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(3 22) (o M)y -y R 5 MR

1 s=1 s=1

%

n n

_ Lgf(yo Xy(yo XEEQW)) (XD BB

Now, by Schwartz Inequality,

R[5 (3

< LE(($ (3 KB

' e 2 - E{X2}][X? - E{X?}
< hs{(p R
M

E{X2X?} - E{X2}E{X?
Zt:{ b - { JE{XT)

><

< %[E{Xl} E{Xx2} } 0.

Now, let v = E{X?}/E{X2} and 02 = E{(X? — vX; — E{X2})*}. Then,

n

n=2 > Pir i _EHZ ) e P2 Xt)}

Jit+jet...+jn=4; js=2 or O s=1t=s+1
(X2 X, - E{X2}) (X2 — X — E{X}}) }

B ]E{ Z Z ) : ba%ng

s=1t=s+1

L5 (=% - BN -0, E(xE)

202 n2
2 s#£t

- La{y (3 BOENOR B} X0 BUED) 2o > )

s#t s#t

_ %E{ zt: (X2 - E{Xf}igXE - E{X?}) Lo %i%E{ 3 (X7 —EQ{X%}f}

S E T (2
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L[ (0 —E(x2)) 1E{<X%—E{X%}>2}

"~ 202 n? 203 n
v X, (X2 —E{X?})\ , 2 XX,
-SE{ Y ; fomE( Y =t .
o n 20 n
2 s#t 2 s#t

Proposition A.2.2 We assume that ms = m for all s. We suppose that |E{X2X?}-E{X?}E{X}?}| <
a(|t — s|), where a(h) — 0 as h — oo. Then,

n

n’2E{ [Z (x2- E{Xf})r} 0.

s=1

Proof Let € > 0. There exists k > 0 such that if |n| > k, [E{X2X2, ,} —E{X2}E{X2 ,}| <e.
We know that

S (2 - r(xey)] S (2 - B[S (7 - B0))

o(E ]y o ! |
| S (BX2XP) - E{X2)E(XD))

2 Mjojen (BAXIXP} - E{XTIE{X?}) N Dot Dji—s)on (B{AXIX?} — E{XZ}E{X7})

< Zgzl Z|t—s|§k (E{stXr?} + E{Xlz}z) + Zgzl Z\t—sbk €

= 77,2

< P D jt—s|<k (E{X7} +E{X?}?) iy

n2

n2

L TiRb+ UELX) +BXE)

n2

L 2R NEX TE(RD?)

n
Then, it is enough to choose n such that (1/n)[2k + 1] (E{X{} + E{X?}?) < €. Then, in this case,

n

n’2E{{Z — B{X2}) } } <2 .1

s=1

Lemma A.2.1 We assume that (1/n) > "_ E{X2} — 02 asn — co. Then,

n~2E{ [Zn: (x2 - E{Xﬁ})F} 0

s=1

if and only if

n—21E{{§n: XQ—JO}} } ~0

s=1
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Proof We have

n*2E{ [2:; (x2- E{Xf})r}
=B {[ 30 (2 - +0f B2}
e [i (X2 —2) + 2 (o8 - E(x2))])
~ R [ﬁ; (- a3)]” +2[i1 (2~ o3)] [z: (08~ E(X2)] + [2: (o3 - E(x2))])
- nw2e{[ 3 ()| 2 3 (o2 | 3 () o 3 (o2

Now,

and therefore,
n=2 [Z (0f — ]E{XSQ})]2 —0.

s=1

With these relations, we deduce the lemma. W
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Appendix B

Study of example 2.2.1

We recall that we suppose

Xi = Z Ci(Ot4i) fiv1 (Vi)

=0

where C,,(x) = v/2.cos(4"x) where ©; is IID with uniform distribution on [0, 27], where {¥;} is a
strictly stationary process, independent from {©;} and where |f;1+1(y)| < W with a >0 .

B.1 Study of trigonometric functions

We recall fol[ﬂcos(%mx)]?da: = 2f01 cos(2mnx)?dr = 2f01 %‘M"m)daz =1 and cos(a + b) +
cos(a — b) = 2cos(a)cos(b).

Lemma B.1.1 We suppose iy < iy < .... < ip. Then, 4"t +4% 4 ... + 4% < (4/3)4"%.

Proof We have 41 + 4% 4 . 4+ 4% < 4 4 40p—1 4 402 4
<41 447144724 ) =4%[1/(1 - 1/4)] = (4/3)4%». B

Lemma B.1.2 We suppose i1 < iz < .... < ip. Let a, be_a sequence such that as = 1 or 2 and
where one as =2 at more. Then, a14™ + axd® + ... + apd’» < (7/3)4%.

Proof We have a14™ + agd® + ... + apdis < 4% 4% | + 2% 4%

< 2% 4% 4=t 442 4 < 2% 4% 4 (4/3)4 1
<42+ (4/3)471) <4#[2+1/3]. A

Lemma B.1.3 We suppose i1 < ig < .... < i, . Then, cos(4"'z).....cos(4'rx) = Zle Ascos(sx)
where B < 4%»+1,

Proof It is true for p=1.
If it is true for p, cos(4"1z)cos(472x).....cos(4irx) = S0 | A cos(sx) where B < 4t
Therefore,

s=1
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4Tl _q 4tptl_q

=(1/2) Y Ascos([4r +slz) +(1/2) > Ascos([4'7t — slx)
s=1

s=1

where 4%+1 — s > 0 and 4%+1 + 5 < 4ip+1 4 ATl < 2w dipt1 < glpr1 Tl W

We deduce the following propositions.

Lemma B.1.4 Let i <ip < .... <ip, 15 € N. Then,
fj;ro cos(41x)cos(42x)......cos(4'rx)dx = 0.

Lemma B.1.5 Let iy, > i5, > .... > is,. Then, ]E{Cis1 (©1)Ci,, (O4)....... Ci,, (©)} =0.

B.2 Some properties
Proposition B.2.1 Let t| <ty < ...... <tp. Then, E{X, X;,...... Xi,}=0.

Proof We have

= E{ [ > Cil(et1+i1)fi1+1(‘1/t1+i1):| [ D Ciy(Orytin) figt1(Wiypig) | oo [ Zo Cip (Ot tiy ) fi+1(Vey+i,) }
i1=0 in=0 ipm

ZE{ ST D G (O i) Fin 1 (Wi 14y)Ciy Oty yin) Fin 41 (P i) oo Cz'p(@tp+ip)fz'p+1(‘1’tp+ip)}

i1=0i5=0 ip=0
o0 oo oo

=30 > > E{Cil (Ot14i1)Cig (Otypig)eeenen Cz'p(9tp+¢p)}1E{fz‘1+1(‘I’t1+i1) ~~~~~~ fip+1(‘1’tp+ip)} :
i1=042=0 ip=0

If there exists s such that t;+1is # t,+14, when r # s, ©;_4,_ is independent of the other ©; 4, .
Therefore, in this case, this C;_ (0,1, ) is independent of other ones and because E{C;_ (O, 4i.)} =
0, E{C;, (04, 4i,)Ciy (Otytiy)em.-. Ci, (©4,4i,)} = 0.

Then, we study the E{C;, (O, 1i, )Ci., (O, 4is,)-mmom- Ci., (9t5q+isq)} where ts, + i5, =
tsy +isy = . = tg, +is,. Indeed, E{Ci, (0, 1i,)Cis(Opytiy)-envn. C;,(©4,44,)} is thus a prod-

uct of terms of the form E{C;, (O, 1i. )Ci., (O, 4is,)-mmmm- Cisq((—)tqurisq)} where t5, + is, =
tay + sy = core = ts, + b,

Suppose that ts, < t,, < ... < ts, and ts +i5, = ts, + 45, = ... = ts, + 45, Then,
is, > sy > .... > is . Therefore, by lemma B.1.5,

E{Ci,, (©1.,+i.,)Ci., (Ot iy )OOt 4i,, )} =0 . W

Then, one will use the relation cos(a)cos(b) = [cos(a+b)-+cos(a-b)]/2 in order to prove the
following proposition.

Proposition B.2.2 Let t; #ts if s > 2 and ta < t3 < ...... <tp. Then, IE{XElXt2 ...... Xi,} =

=D > E{Cil(@t1+i1)0i2(@tz+iz) ------- Cz’p(et,,+ip)}E{fi1+1(‘1’t1+i1) ------ fip+1(‘1’t,,+z’p)}
i1=01i5—=0 ip=0
Therefore,
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= Z Z ....... Z E{Ci,(Ot,4i,)Ci, (01, 44,)Ciy Oty 4ig) - Ci (O 13, ) }

i1=0i5=0 ip=0

E{ firt1(Wey4ir) fiar1 (W pig) fist1 (Wegpis ) oo fip i1 (W gi, ) } -

If there exists s > 3 such that ts +is # t, + i, when r # s, C;_(©4, 44, ) is independent of other
Cir((_:)tr"rir) with }E{C’Zg (ets"ris)} =0. Therefore, if

]E{C'Ll (®t1+i1)0i2 (®t1+i2)ci3 (®t3+i3) """" Cip(gtp+ip)} 7£ 0 )

E{Ci, (0t,4i,)Cis (01, 1i5) Ciy (Oy iy )evrvvvreraveinans C;, (©,4:,)} is thus a product of terms of the
form ]E{Cisl (@t51+i51 )C“? (@t82+is2) ....... C; (@tsq +isg )} where tsl +i$1 = t52 +i52 = ... = tsq‘f'isq .

Then, we have to study the products E{C;, (O, +i,,)Ci., (Or., +i., )ereees Ci., (O, +i., )} where

lsq

toy sy = toy sy = e = s, +is,.

In order that these terms are not zero, there is a priori only two possible cases

1) There exists h and a sequence s; such that t1 + i1 = t1 + i = ts, +is5 = ... = ts, + is,-

2) There exists h and k and two sequences s; and s”; such that t;+i; = bt Fisy = oo = tgy +igr
and ty + iy = tgr, +igr, = . =t + g,

Indeed, by the proof of previous proposition B.2.1, there is no other solutions, which can give a
priori a nonzero expectation : if one find a sequence s”; # 1 such that ty, +ig, = .... =t +is,,

we shall have, for example, ts», < .... < te, and, therefore, ¢5, > .... > ig»,. We shall deduce, by
lemma B.1.5, E{Ci3 (@ts,,SJris,,S) ....... C; (@ts,,kﬂ»s,,k)} = 0. Therefore,

P

E{Ch (@tﬁ-il)ciz (@t1+i2)0i3 (@ts-‘ris) """" Cip (625

:E{cil(@tml)ciz(@tmz)c (O1 41, ) Ciy (O, +i.;L)}E{Cis,,s(6,55,,3_,_1-3,,3) ....... Cis"k(efs"wis"k)}

i/
°3

Therefore there are only two cases where we can find a priori a non-zero expectation

1) t1 +iy =ty + iy = tg, +isy; = ... = ts, + i, with p > 3 because we are interested in
]E{thlth ...... ti} = 0 with p Z 2.

2)t1+in =ty tig = ... = ty +ig and t +ia = te, +isry = oo =g, + g,

At first, suppose t; + i) =t +ig = tg, +isy = ... = ts, + is,- Then, iy = i3. Then,
Ci, (©4,4i,)Ci (Ot 4i,) = Ci; (O4,44,)Ci, (O, 44,) = Cos(2% 4" Oy, 14,) + 1. Suppose, for example
toy, <ts, <..<ts,. Because tg, + 15, = .... =g, +1s,, then, i, > i5, > ... > i,

If t1 +41 = ts; +is, = T and t; > ts,, i1 < is;. Therefore, by lemma B.1.2 , C;,(Or)
is orthogonal to Cos(2 x 4“@T)C’i54 (@T)Cis5 (Or1)....... Ci., (©r1), and, therefore, orthogonal to
C’il((“)T)C'iz(@j“)c’i54 (@T)Cz (@T) ....... Cish (@T) = [008(2*41'191“)4-1]01@ (G)T)Cz (@T) ..................

Cish (@T) Therefore, ]E{C“ <@T>Ci2 (@T)C'lé3 (GT)CiS4 (@T) ....... Cish (@T)} =0
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Suppose always ts, <ts, < ... <ts,. Ift;+i =T and t; < ts,, i1 > i5,. Thus, by lemmas
B.1.1 and B.1.3, Cos(2 ¥ 4" Or) is orthogonal to C;, (07)C;,, (©7)Ci,_ (Or)....... Ci,, (Or).

Therefore, E{Oil(@T)Ciz(@T)Cisg(@T) ....... Ci., (@T)} —0

Suppose now that there exists h and k and two sequences s, and s”; such that

t1 +11 = tsé + 25/3 = ...= ts/h + is'h and ¢ + iy = tsvs + ’is7’3 = ...= ts”k + is’7k.
For example, study ]E{Ci1 (G)tl_H-l)C’isé (@ts,3 ‘H-*é) ....... Cis/h (@tszﬂ's% )} where t1 41 = tg,+is; =
. = lg + iy . Because, {; F by F oo F ts, 5 11 F ley F oo # is,. For example, i; > is, >
...... > is,. Then, par lemmas B.1.1 and B.1.3, v/2cos(4"07) = C;, (4 O7) is orthogonal to

Ci, (Bt 44y, )iy (Ot i )- Therefore,IE{C’il(thHl)CiSS(@tsaﬂ-sg) ....... Cish(@t%%hy)}:
0. m

B.3 Calculation of E{X?X? ,} — E{X?}E{X} ,}

We suppose

B fir1 (W) fror (Wernsr)®} = B{fir1 (W) YE{ fri1 (Wepnsr) |

1 1
<
= A +4)+2 (14 r)i+2a

where 1 > €(t) > 0 is decreasing and converges to 0 as t — co.

e(t+h+r—(t+i)),

We shall prove that [E{X?X?, ,} — E{X7?}E{X?, ,}| < a(h) where a(h) — 0 as h — oc.

B.3.1 Elementary equalities
Because Xy = 377 Ci(Or4i) fiv1(Veti),

ZZO (©114)C(Or15) fir1 (Yeyi) fi41(Pers)

1=0 j5=0
and o)
E{X2} = ZE{C @t_H) }E{f1+1 \Ift+z Z 1 +'L 1+2a <0
1=0 =0
Moreover,
Xin = ZZC (Ot4141)Cs (Otsnrs) fr1 (Vetntr) for1 (Peqnts) -
r=0 s=0
Therefore,
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XPXPn =

8
Mg

>3

j=0r

Mg

Ci(0t4+1)Cj(Ot4+5)Cr(Ot4n+r)Cs (Ot hs) fit1 (Peti) fi+1 (Yot i) fr1 (Pephr) fot1 (Pegns) -

s
Il

=
I
o

s=0

B.3.2 Study of E{X}X},}
We have

B{X? X7}

ST T E{Ci(044:)C5(0145)Cr(Otynir)Ca(Otgnta) VEL{ Fit1 (Ve i) Fit1 (o) Frgr (Togngr) For1 (ogngs)}
r=0s=0

MS
gk

Il
<)

i=0j

=3 E{Ci(O141)C;(O145)Cr(Ot1ntr)Cs (Orints) YELfit1 (Vo) fit1 (Vo j) 1t (Wepntr) for1 (Vignys)}

i=j r=s

D> E{Ci(014:)Ci(O145)Cr(Or s nir) Cs (Otgnts) YE{fit 1 (Teti) 41 (Ve ) it (Vignir) for1 (Pegngs)}
i=7 r#s

+D D E{Ci(0:+:)C;(O+5)Cr(Otintr)Cs(Orpnts) YEL fit 1t (Weti) fi+1 (Vo) frr1 (Vig ) for1 (Pepnps)}
iF#j =5

+D D E{Ci(014+:)C;(O1+5)Cr(Otintr)Cs (Orgnts) YELfit 1 (Wits) Fi1 (Vi) i1t (Wugnr) For1 (Wepnps)}
i£j r#s

= Z Z E{Ci(©¢+i)Cj(©t45)Cr(Ot+h4r)Cs(Otants) YE{fit1 (¥eti) [i+1( Vet i) fra1 (Vi ngr) fort (Pitnts)}

i:j rT=Ss

+D D E{Ci(01+:)C;(O+5)Cr(Otintr)Cs(Orpnts) L fit 1t (Weti) fi41 (Vo) fr1 (Yagnr) for1t (Pepnps)}
i#£j r#s

Z 3 E{Ci(044)? Cr (Ot )P ELFi41 (Wi )2 Frp1 (Wyp gy
—0r=0

+ > > E{C;(©44i)Cj(Ot4+)Cr (Ot 4 htr)Cs (Ot phy ) YELFit1 (Y i) fip1 (Vg i) frp1 (Peqpnpr) fst1(Pepnts)}
i£j,r#si=h+r,j=h+s

+ > > E{Ci(O44i)Cj(Ot4)Cr(Otpntr)Cs (Ot ht ) IE 141 (Pep i) Fj41 (Yot ) Frp1 (Vi npr) Fst1 (Vi ng )b
i#j,r#si=h4s,j=h+r

(Therefore, if h > 1)

I
=
—~
Q2
S
ic

)2 Cr(Ohgr) YEL fis 1t (Wegs)® fran (Ve ngr)}

= Y B{CiO1:)*Cr(Ovinir) B fira (Vi) fry1 (Trsnsr)’}
i,i=h+r

+ Y E{Ci(O144) YE{Cr(Orynir) YEL fit1 (W) Frin (Vigngr)} -
i,riFh+r
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B.3.3 Study of E{X2,X?} — E{X2,}E{X?}

We recall
E{X?YE{X?, )
=YD B{CHOu) Y fir1 (Vi10)*YB{C (Ornt ) YE{ fi1 (Pirngy)*}
i=0 j=0
=3 EB{ i1 (T YE{ o (Perngr)?}
i=0 r=0
Therefore,

E{X?,, X7} - E{X?,}E{X?}

= > {E{Ci(9t+i)QCT(9t+h+r)2}E{fi+1(‘Ift+i)2fr+1(‘11t+h+r)2}*E{fi+1(‘1’t+i)2}E{fr+1(‘I/t+h+r)2}}

i,i=h+r

+ Y [E{fiﬂ(‘I’t+i)2fr+1(‘1’t+h+r)2}—E{fi+1(‘I’t+z‘)2}E{fr+1(‘I’t+h+r)2}]

i,r9Fh+r

=> [E{erh (Ot 4h1r)Cr(Otsnr) YB frtrt1 (Werngr) fra1 (Pognar)?}

r

—E{ fatrt1 (\I’t+h+r>2}E{fr+1(‘I/t+h+r)2}}

+ Y B (W) foir (Wapnrr)*} = B{fot (Wera) S fria (Wainir) Y] -
i,ri#h+r

Let Kt = Z’(;it W Then,

‘ > []E{fi+1(‘1’t+i)2fr+1(‘I’t+h+r)2}—E{fz'ﬂ(‘I’t+i)2}E{fr+1(‘I’t+h+r)2}]‘

i, 7,iFh+r
oo (oo} 1
ZZ 1+z I+2a (1 4 r)l+2a e(h+r—1i)
1=0 r=
<fi i)l +2a 1+:)1+2a e(h+r—i)+ i i(1+;)1+2a(1+:)1+2a6(h+7‘i).
=0 r= 0 7;=}'L/2+1"':0

Now, if i < h/2, h+r—1i>h/2 and e(h + 1 —1i) < e(h/2). Moreover, €(r) < 1. Therefore,

‘ Z []E{fiJrl(‘I’t+i)2fr+1(‘1’t+h+r)2}—E{fi-u(\I’t+z‘)2}E{fr+1(\I’t+h+r)2}]‘

i,riFh—+r
h/2 oo oo o 1
<22 /2 + 3, >

- 1+2a 1+2a 1+2a 1+2a
10T0 1—|—z (1+ ) zh/2+“:0 1—1—2 (I+47r)
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< (Ko)*e(h/2) + Kpy2 Ko

whichi converges to 0 if h — oo.

Moreover,

Z [E{Cthr(@tJthrr)QCr(@t+h+r)2}E{fh+r+l (\I’t+h+r>2fr+1 (\I/t+h+r)2}

T

“B{ 1 (enr)YE T (W)

<> [4E{fh+r+1(‘Ift+h+r)2fr+1(‘1’t+h+r)2} + E{fh+r+1(‘I’t+h+r)2}E{fr+1(‘1’t+h+r)2}}

T

< Z {4 1 1 n 1 1 }
=2 (I4+h+7r)+2 (147r)H20 " (14 h4 )2 (14 7)l+20

1 1 1
< -
= (1 + h)i+2e ZT: [4 (1+r)i+2e T (1 +r>1+2a]

< 5Ky
= (1+ h)l+2e

which converges to 0 if h — oo.

We deduce

5K

E{X7?XP 0} — E{XPYE{X? )} < (K0)%e(h/2) + Knj2 Ko + e

B.4 Conclusion

At first, because {6,} is IID and {¥,} is strictly stationary, X; = Y770 Ci(O444) fir1(Viss) is
also strictly stationary. Then, (1/n) > "_ E{X?} = E{X?}.

Then, [E{X2X?} — E{X2}E{X?}| < a(|t — s|) where a(h) — 0 as h — oo. Then, by proposi-
tion, A.2.2 , n*2E{ [z;;l (x2- E{XE})} 2} 5 0. Then, the first condition of proposition 3.8.1
holds.

Moreover, clearly, E{X;} = 0 and E{|X[P} < oo for all p € N.

Moreover, by proposition, B.2.1 E{ X, X4, ...... X, } = 0. Therefore P{X,11|Xpn, Xp_1,....} =
0. Then, the second condition of proposition 3.8.1 holds with vy = 0.

At last, by proposition B.2.2, E{Xfl D, C ti} = 0. Then, the third condition of corollary
3.8.1 holds. One can also remark that X; is bounded and apply corollary 3.10.1.

We deduce that

X1+ Xo o+ o X
]E{ 1 Aot e "}%N(O,E{Xf}).
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