

SGCE isoform characterization and expression in human brain: implications for Myoclonus-Dystonia pathogenesis?

Katja Ritz, Barbera van Schaik, Marja Jakobs, Antoine van Kampen, Eleonora Aronica, Marina Tijssen, Frank Baas

▶ To cite this version:

Katja Ritz, Barbera van Schaik, Marja Jakobs, Antoine van Kampen, Eleonora Aronica, et al.. SGCE isoform characterization and expression in human brain: implications for Myoclonus-Dystonia pathogenesis?. European Journal of Human Genetics, 2010, 10.1038/ejhg.2010.206. hal-00600445

HAL Id: hal-00600445 https://hal.science/hal-00600445

Submitted on 15 Jun2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SGCE isoform characterization and expression in human brain: implications for Myoclonus-Dystonia pathogenesis?

Katja Ritz^{1,4}, Barbera DC van Schaik², Marja E Jakobs¹, Antoine H van Kampen^{2,5}, Eleonora Aronica³, Marina A Tijssen⁴, Frank Baas¹

¹Department of Genome Analysis, ²Bioinformatics Laboratory, ³Department of (Neuro)Pathology, ⁴Department of Neurology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands, ⁵Biosystems Data Analysis, Swammerdam Institute for Lice Science, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands

Address for correspondence

Frank Baas, PhD, MD Department of Genome Analysis Academic Medical Center Meibergdreef 9 1105AZ Amsterdam The Netherlands Phone +31-205663846 Fax +31-205669312 Email: f.baas@amc.uva.nl

1 Abstract

2	Myoclonus-Dystonia (M-D) is a neurological movement disorder with involuntary jerky
3	and dystonic movements as major symptoms. About 50% of M-D patients have a
4	mutation in epsilon-sarcoglycan (SGCE), a maternally imprinted gene that is widely
5	expressed. Since little is known about SGCE function one can only speculate about the
6	pathomechanisms of the exclusively neurological phenotype in M-D. We characterized
7	different SGCE isoforms in the human brain using ultra deep sequencing. We show that a
8	major brain-specific isoform is differentially expressed in the human brain with a notably
9	high expression in the cerebellum, namely in the Purkinje cells and neurons of the dentate
10	nucleus. Its expression was low in the globus pallidus and moderate to low in caudate
11	nucleus, putamen and substantia nigra. Our data is compatible with a model in which
12	dysfunction of the cerebellum is involved in the pathogenesis of M-D.
13	
14	
15	Keywords: Myoclonus-Dystonia, SGCE, deep sequencing, alternative splicing,

16 imprinting, cerebellum

17 Introduction

18	Myoclonus-Dystonia (M-D) is a movement disorder characterized by myoclonic
19	jerks and dystonic features, usually affecting the upper part of the body. Little is known
20	about the pathological basis of M-D symptoms. Electrophysiological studies in man
21	suggest that myoclonic symptoms are of subcortical origin. ¹⁻³ In general, dystonia is
22	thought to arise from dysfunction of the basal ganglia. ⁴ About 50% of M-D patients that
23	were classified as definite M-D carry a mutation in the widely expressed ϵ -sarcoglycan
24	(SGCE). ⁵⁻⁷ The genetic cause in the remaining patients is still unclear. A second locus has
25	been reported in one large M-D family (DYT15, 18p11), but no gene has been identified
26	yet. ^{8;9} SGCE is part of the sarcoglycan family that consists of N-glycosylated
27	transmembrane proteins. Six different sarcoglycans have been identified so far (α -, β -, γ -,
28	δ-, ε-, ζ-) but little is known about the function of particular sarcoglycan members and their
29	function in different tissues. ¹⁰ In muscle, sarcoglycans form a heterotetrameric complex
30	that is constituent of the dystrophin-associated protein complex. This complex mediates the
31	structural stability of the plasma membrane and interactions between the extracellular
32	matrix and the cytoskeleton. ¹¹ Mutations in other sarcoglycans, α -, β -, γ - and δ -
33	sarcoglycan, lead to different forms of limb-girdle muscular dystrophy, characterized by
34	progressive muscle weakness. ¹⁰ Little is known about composition and function of the
35	dystrophin-associated protein complex in brain. SGCE is highly homologous to α -
36	sarcoglycan, ¹² but no muscle or myocardial muscle abnormalities have been identified in
37	M-D patients. ¹³
38	Understanding the exclusively neurological phenotype of the disease is still a major

39 challenge. *SGCE* is an imprinted gene^{14;15} meaning that a loss of function mutation in the

40 expressed allele will be dominant. All reported mutations behave as null alleles, since they
41 result in premature stop codons and are predicted to lead to nonsense-mediated decay.
42 There is also evidence that *SGCE* missense mutations lead to loss of function.¹⁶ SGCE is
43 widely expressed which suggests either redundancy for this protein in non-brain tissue or a
44 brain-specific function for SGCE.

45 There are four known alternatively spliced exons in the SGCE gene (exon 2, 8, 10 and 11b, Fig. 1A) with exon 11b as a brain-specific exon.¹⁷ Recently, a new brain-specific 46 alternatively spliced exon (exon 11c, an elongated exon 11b) has been identified in mice.¹⁸ 47 48 Transcripts containing either exon 11b or 11c encode proteins with a different C-terminal 49 sequence containing a PDZ-binding motif. This motif is a protein-interaction domain and 50 thus may contribute to a unique SGCE function in brain. The ubiquitous SGCE protein and 51 the brain-specific protein (exon 11b) are localized in different synaptosomal membrane fractions: post- and pre-synaptic membrane, respectively.¹⁷ It has been speculated that both 52 53 isoforms play different roles at neuronal synapses.

54 The aim of our study was to characterize the quantitative and qualitative expression 55 pattern of *SGCE* isoforms in human brain in order to identify brain regions associated with 56 M-D.

57

58 Methods

59 Sample collection and preparation

60 Human tissue was obtained from six control subjects without neurological

61 symptoms (Table 1). In addition, two blood samples were obtained from control subjects.

62 SGCE mutations were excluded by direct sequencing of the coding region. Human tissues

63	were obtained from the Department of neuropathology of the Academic Medical Center
64	(University of Amsterdam, The Netherlands) and informed consent was obtained for
65	research purposes in all control subjects. Mouse (cerebral cortex), rat (cerebral cortex) and
66	zebrafish (100 embryos, 24 hours after fertilization) tissue was obtained from wild type
67	animals (approved by local committee). DNA extractions from frozen brain tissues and
68	whole-blood samples were performed using standard procedures. Twenty to 40 sections
69	(depending on tissue size, $20\mu m$) were cut per sample and dissolved in TRIzol Reagent
70	(Invitrogen, Breda, The Netherlands) for subsequent RNA isolation, or in SE buffer
71	(750mM NaCl pH 8, 250mM EDTA, 1% SDS) containing Proteinase K for DNA isolation.
72	Total RNA was isolated with QIAcube instrument (Qiagen, Venlo, The Netherlands) using
73	RNeasy Mini protocol or using the PAXgene system (Qiagen) for blood samples.
74	
75	Methylation-sensitive high resolution melting assay
75 76	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied
75 76 77	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied a methylation-sensitive high resolution melting (MS-HRM) assay. The region amplified
75 76 77 78	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied a methylation-sensitive high resolution melting (MS-HRM) assay. The region amplified (nucleotide position -1148 to -773 relative to the start ATG) contains 25 CpG sites and has
75 76 77 78 79	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied a methylation-sensitive high resolution melting (MS-HRM) assay. The region amplified (nucleotide position -1148 to -773 relative to the start ATG) contains 25 CpG sites and has been shown to be differentially methylated. ¹⁴ 1µg of genomic DNA was chemically
75 76 77 78 79 80	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied a methylation-sensitive high resolution melting (MS-HRM) assay. The region amplified (nucleotide position -1148 to -773 relative to the start ATG) contains 25 CpG sites and has been shown to be differentially methylated. ¹⁴ 1µg of genomic DNA was chemically modified with sodium bisulfite using the EZ Methylation kit (Zymo Research, Orange, CA,
 75 76 77 78 79 80 81 	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied a methylation-sensitive high resolution melting (MS-HRM) assay. The region amplified (nucleotide position -1148 to -773 relative to the start ATG) contains 25 CpG sites and has been shown to be differentially methylated. ¹⁴ 1μg of genomic DNA was chemically modified with sodium bisulfite using the EZ Methylation kit (Zymo Research, Orange, CA, USA) and amplified in the presence of ResoLight HRM dye (Roche Diagnostics, Almere,
 75 76 77 78 79 80 81 82 	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied a methylation-sensitive high resolution melting (MS-HRM) assay. The region amplified (nucleotide position -1148 to -773 relative to the start ATG) contains 25 CpG sites and has been shown to be differentially methylated. ¹⁴ 1µg of genomic DNA was chemically modified with sodium bisulfite using the EZ Methylation kit (Zymo Research, Orange, CA, USA) and amplified in the presence of ResoLight HRM dye (Roche Diagnostics, Almere, The Netherlands). Both, methylated and unmethylated, strands were amplified. ¹⁴ MS-HRM
 75 76 77 78 79 80 81 82 83 	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied a methylation-sensitive high resolution melting (MS-HRM) assay. The region amplified (nucleotide position -1148 to -773 relative to the start ATG) contains 25 CpG sites and has been shown to be differentially methylated. ¹⁴ 1µg of genomic DNA was chemically modified with sodium bisulfite using the EZ Methylation kit (Zymo Research, Orange, CA, USA) and amplified in the presence of ResoLight HRM dye (Roche Diagnostics, Almere, The Netherlands). Both, methylated and unmethylated, strands were amplified. ¹⁴ MS-HRM analysis was performed with the LightCycler 480 (Roche Diagnostics) and analyzed with
 75 76 77 78 79 80 81 82 83 84 	Methylation-sensitive high resolution melting assay To determine the degree of methylation in the promotor region of <i>SGCE</i> we applied a methylation-sensitive high resolution melting (MS-HRM) assay. The region amplified (nucleotide position -1148 to -773 relative to the start ATG) contains 25 CpG sites and has been shown to be differentially methylated. ¹⁴ 1µg of genomic DNA was chemically modified with sodium bisulfite using the EZ Methylation kit (Zymo Research, Orange, CA, USA) and amplified in the presence of ResoLight HRM dye (Roche Diagnostics, Almere, The Netherlands). Both, methylated and unmethylated, strands were amplified. ¹⁴ MS-HRM analysis was performed with the LightCycler 480 (Roche Diagnostics) and analyzed with

86	methylated). Different brain regions of five control subjects (Subject 1, 2, 4, 5, 6), muscle
87	tissue of two control subjects (Subject 2, 3) and blood of 12 definite M-D SGCE non-
88	mutation carriers ⁷ were tested. A subset of PCR amplified samples was cloned (pGEM-T
89	Easy vector, Promega, Leiden, The Netherlands) and sequenced to verify results of the
90	methylation assay (ABI big dye v3.1 chemistry, ABI 3730 sequencer, Applied Biosystems,
91	Foster City, CA, USA).
92	
93	Ultra deep amplicon sequencing
94	cDNA was synthesized from 1µg of total RNA with oligodT ₁₂ -VN primers and 1µl
95	cDNA was subjected to a 10µl PCR reaction. PCR reactions were performed using fusion
96	primers consisting of a 19 bp fixed sequence (Roche/454 GS FLX, A or B sequence at the
97	5'end) and a target-specific sequence (3'end). We added a 5 nucleotide multiplex
98	identifier-tag to allow for multiplexing of samples (primer sequences and PCR conditions
99	are available on request). Amplicons were processed and ultra deep sequenced using the
100	454 GS FLX system (Roche Diagnostics) according to manufacturer's instructions.
101	
102	Data analysis
103	In order to identify all alternatively spliced events, sequences were first grouped by
104	a multiplex identifier-tag. Secondly, we used the BLAT algorithm (BLAST-like alignment
105	tool) to compare each sequence with all other sequences to identify similar exon
106	combinations per sample. Sequences were grouped when they encompassed at least 210 nt,
107	had a percent identity of at least 98%, a score above 105 and a query coverage above 98%.
108	The resulting groups were mapped to the respective chromosome (BLAT algorithm, hg18

109	build) and analyzed in the UCSC genome browser and using CodonCode Aligner software
110	3.0.1 (Dedham, MA, USA).

112 Real-time quantitative PCR

113 1	ul cDNA	was amplif	fied in tri	olicates usin	g the Light	Cvcler480	Roche
					0 0		

114 Diagnostics) in a final volume of 10µl containing SYBR Green I Master mix (Roche

115 Diagnostics). Intron spanning primers were designed to target either all SGCE isoforms or

116 the brain-specific isoform containing exon 11b. All quantitative PCR (qPCR) results were

117 normalized against the housekeeping genes GAPDH and eEF-1 alpha. Data was analyzed

- 118 using LinRegPCR analysis program.¹⁹
- 119

120 In situ hybridization

121 In situ hybridization (ISH) was performed as previously described.²⁰ Two 5'-fluorescein-

122 labeled 19mer antisense oligonucleotides containing locked nucleic acid and 2'-O-methyl

123 (20ME) RNA moieties (Ribotask ApS, Odense, Denmark) were designed: one targeting

124 the brain-specific alternatively spliced exon 11b (5'-AacGaaAauCucCugTagT-3', locked

125 nucleic acid residues are given in capital letters, 2'-O-methyl-RNA in lower case) and one

126 detecting all isoforms targeting the constitutive SGCE exon 3 (5'-

127 TagGacTccAucAcuAuaT-3'). Brain tissue was treated with Proteinase K (200µg/ml,

128 Roche Diagnostics) at 50°C for 10 minutes. Probe annealing was performed at 53°C for 1.5

129 hours. Peroxidase activity was visualized using NovaRED (Vectorlabs, Burlingame, CA)

130 and counterstained with hematoxylin. In an adult control subject we tested different human

131 brain regions (cerebellum, mesencephalon, caudate nucleus, putamen, globus pallidus,

132	cerebral cortex and hippocampus). Skeletal muscle, heart, kidney and liver sections were
133	used to confirm specificity of the brain-specific probe. As a control for specific binding,
134	brain material of a SGCE mutation carrier (c.835_839del, p.Lys280SerfsX16, 50 h post
135	mortem) was analyzed. This tissue was obtained from the NICHD Brain and Tissue Bank
136	(Baltimore, MD, USA).
137	
138	Results
139	SGCE imprinting and M-D
140	SGCE is widely expressed and there is thus far no explanation for the brain-specific
141	phenotype of SGCE mutation carriers. One explanation could be that brain regions which
142	are not affected are rescued by expression of the maternally imprinted allele. Therefore, we
143	analyzed the SGCE imprinting throughout the human brain with a MS-HRM assay. We
144	observed that the imprinting pattern was maintained in all brain regions and tissues tested
145	(Supplementary Fig. 2). Results of the MS-HRM assay were confirmed by cloning and
146	direct sequencing of a subset of samples. Only minor variations in the number of
147	methylated/unmethylated CpGs were detected by cloning but not by the MS-HRM assay.
148	
149	SGCE mRNA expression by ultra deep amplicon sequencing
150	Different SGCE isoforms have been reported so far, but little is known about their
151	distribution and expression levels throughout the brain. To qualitatively and quantitatively
152	characterize alternatively spliced SGCE exons, we performed a systematic analysis of
153	SGCE cDNA by ultra deep amplicon sequencing. This technique provides a powerful and
154	accurate tool to investigate relative mRNA expression levels and detects rare and unknown

splice events. To cover all exon-exon boundaries, four overlapping *SGCE* amplicons were
made (exon 1 to 5, exon 4 to 6, exon 5 to 9, exon 7 to 12) and sequenced with a 454 GS
FLX sequencer. Ultra deep sequencing was achieved by aiming for 10 000 sequence reads
per amplicon (average (± SD): 11 107 (±4 273) reads, Supplementary Table 1). *SGCE mRNA isoforms*To get an overview of all alternative splicing events and their tissue specificity, we

162 analyzed alternative splicing events of the entire SGCE gene in one control subject (Subject 163 1) in the primary somatosensory cortex (SM1), heart and blood. Twenty-three different 164 splicing events of the SGCE gene were detected, but only four of them occurred at 165 frequencies above 1%: exon 1c and the known alternatively spliced exons 2, 8 and 11b 166 (Fig. 1B, Table 2). In-frame exon 1c was expressed in brain (5.7%), but also in non-brain 167 tissue (2% - 2.3%). The in-frame exon 2 showed an overall high inclusion level in all 168 tissues tested, whereas exon 8 was highly represented in muscle and blood and low in 169 brain. Exon 11b was mainly expressed in brain (34%); it was not expressed in blood and at 170 very low levels in muscle (0.05%). These four major variants result in a partially altered 171 protein coding region and are extended into the last exon. Therefore, we expect these to be 172 translated and stable. Of the low frequency variants only one, exon 4a, retains a long open 173 reading frame. All other mRNA isoforms, except all 11b variants, are expected to result in nonsense mediated decay.²¹ Splice site predictions and positions of known and novel exons 174 175 are listed in Table 2. Most of the new low frequent variants lead to a frameshift (17/19) 176 resulting in a premature stop codon and were conserved among primate lineage only (Table 177 2, Supplementary Table 2). All known constitutive SGCE exons were present to 100%

178	except for exon 11: Skipping of this exon was observed in all tissues and species tested,
179	leading to a premature stop after amino acid 409, albeit at low frequency (brain: 0.8%,
180	muscle: 1.4%, blood: 0.3%). The recently identified brain-specific exon 11c was expressed
181	at very low levels in brain but also non-brain tissue ($\leq 0.7\%$, Table 2). Also, in mouse and
182	rat brain it was expressed at very low levels (< 2.1%), it was not expressed in zebrafish.
183	In order, to exclude that these low frequency variants were experimental artifacts,
184	we sequenced a synthetic SGCE RNA using the same procedure. Analysis of 12 000 reads
185	gave only sequence reads identical to the input RNA (data not shown).
186	
187	Brain region-specific SGCE expression
188	SGCE exon 11b was the most abundant and a highly conserved brain-specific splice
189	variant. Therefore, we analyzed exon 11b expression in more detail and tested nine
190	different human brain regions of two control subjects and three different organisms (mouse
191	and rat brain, zebrafish) by ultra deep amplicon sequencing.
192	Exon 11b showed differential expression among the different brain regions in both
193	control subjects. Levels were highest in SM1 and motor cortex (M1), low in the globus
194	pallidus, intermediate in caudate nucleus and substantia nigra, and interindividual variation
195	was found in the cerebellum and putamen (Table 3). In mouse and rat brain, we observed a
196	higher rate of exon 11b inclusion compared to human brain (SM1: 50% in mouse, 73% in
197	rat vs. 35% in human). In whole zebrafish RNA, exon 11b was present in 20% of
198	transcripts.
199	

200 SGCE mRNA expression by qPCR

201	Ultra deep amplicon sequencing revealed that exon 11b is the major brain-specific
202	alternatively spliced SGCE exon and that it is differentially expressed in the human brain.
203	Similar trends in expression levels of exon 11b among the different brain regions were
204	identified, but we also observed interindividual variability for some regions. To further
205	characterize the expression pattern of SGCE transcripts we tested the same brain regions of
206	more control subjects by qPCR (Fig. 2). We found similar trends of exon 11b expression in
207	five control subjects: Expression in the cerebellum was significantly higher compared to
208	globus pallidus (Fig.2, p<0.001, Friedman test, Dunn's multiple comparison test) and
209	substantia nigra (p<0.05). Also SM1 and pallidum were significantly different (p<0.05).
210	The total SGCE expression level (all isoforms together) was determined in all five control
211	subjects for the various brain regions. Their means did not differ significantly in the
212	different brain regions (p=0.5), suggesting that high exon 11b expression is indeed due to
213	differential isoform expression and not only due to differences in total SGCE expression
214	levels. Overall, SGCE and SGCE exon 11b expression levels varied among individuals.
215	Normalization with reference genes GAPDH or eEF-1 showed comparable results.
216	Furthermore, the 454 sequencing and qPCR results are in support of each other
217	(Supplementary Fig. 1).
218	

219 Localization of SGCE mRNA isoforms in human brain

In order, to study *SGCE* mRNA localization of the major brain-specific and the
ubiquitously expressed transcripts we performed isoform-specific ISH in human brain (Fig.
3). *SGCE* exon 11b and total *SGCE* expression was most prominent in neurons in all
regions tested: high signal in the cerebral cortex, cerebellum (Purkinje cells, dentate

224	nucleus), hippocampus (pyramidal neurons of all CA regions) and moderate signal in the
225	mesencephalon (substantia nigra) and basal ganglia. There was only a faint signal in glial
226	cells and no staining in the white matter. The exon 11b probe did not detect a signal in
227	skeletal muscle, heart, kidney and liver, in contrast to the SGCE probe targeting all
228	isoforms. Probe specificity was confirmed with brain tissue of a SGCE null mutation
229	carrier (c.835_839del, p.Lys280SerfsX16) showing no staining for both probes, whereas it
230	stained for control genes (CD68, TSEN54).
231	In view of the localized expression of SGCE in the cerebellum, we tested whether
232	the interindividual variation of SGCE exon 11b expression in the cerebellum is due to
233	variation in Purkinje cell number in the tissue examined. qPCR analysis of Purkinje cell
234	marker Calbindin-D28k showed no correlation with SGCE expression (data not shown).
235	
236	Mutation analysis of novel SGCE exons
237	We performed mutation analysis in our cohort of definite M-D patients where no
238	mutation was identified ⁷ and sequenced novel alternatively spliced <i>SGCE</i> exons. This
239	included all new in-frame exons (1c, 4a) and frameshift exon 11b with all extended
240	versions (exon 11d, 11c, 11f). Also, frameshift exons 3b and 3d were sequenced since their
241	combination was observed in a transcript, and maintains the reading frame. No mutations
242	were identified in the 12 patients analyzed.
243	

Discussion

Mutations in *SGCE* lead to M-D, but how mutations in this ubiquitously expressed gene result only in neurological impairments is unknown. In this study, we propose a link between the cerebellum and the M-D phenotype.

248 M-D is an autosomal-dominant disease with a reduced penetrance due to maternal 249 imprinting. Monoallelic paternal SGCE expression has been shown in human blood leukocytes and in human and mice brain.^{15;18} Several genes are known to show tissue-250 specific imprinting²² and brain cell-type or region-specific imprinting.²³ The latter has not 251 252 vet been investigated for SGCE, but is important to address, since only regions in which the 253 imprint is maintained can be involved in the M-D pathogenesis. In this study, we show that 254 the SGCE imprinting pattern is retained in different human brain regions and different human tissues (muscle, blood) similar to what has been shown in mice.¹⁸ Thus, the brain-255 256 specific M-D phenotype cannot be explained by a brain region-specific or tissue-specific 257 imprinting. Since not all M-D patients have mutations in SGCE, silencing of SGCE 258 expression due to imprinting defects could also be a possible disease mechanism. We tested 259 our cohort of patients in which no mutation was identified and found a normal imprint in 260 blood. Imprinting defects in the brain cannot be excluded, however.

More likely explanations for the brain-specific symptoms in M-D are the presence of a brain-specific SGCE isoform with a brain-specific function or a brain-specific function for ubiquitous SGCE. Our analysis of *SGCE* expression in human brain using ultra deep amplicon sequencing shows the presence of 23 alternatively spliced exons, of which 19 at very low frequencies (Table 2). Five of the 23 events retained an open reading frame and are expected to be translated (exon 1c, 2, 4a, 8, and 10). Exon 1c and 4a have not been identified thus far. The majority of the new splice variants have splice sites implying

268 involvement of the splicing machinery. However, most of the new isoforms lead to a 269 frameshift and a premature stop codon which makes them likely a target for nonsense 270 mediated decay. Despite the overall low frequency of all new exons, we cannot exclude 271 that they contribute to the physiological function of SGCE. 272 Of the four major alternatively spliced exons (exon 1c, 2, 8, 11b), exon 11b was of 273 most interest with respect to the disease: It has a brain-specific expression pattern, was highly conserved and expressed at high levels. Exon 8 expression was low in brain (7.2%) 274 275 compared to heart and muscle (96%), but its expression in brain appears to be variable. We 276 further analyzed expression of SGCE exon 11b throughout the human brain. We identified 277 differential expression of exon 11b in human brain areas, whereas total SGCE expression 278 levels did not differ. Quantitative PCR analysis confirmed this observation and revealed 279 trends: A consistently high expression in the cerebellum, moderate to high expression in 280 SM1, moderate expression in substantia nigra and putamen and consistently low levels in 281 globus pallidus. We observed a high interindividual variability of exon 11b expression in 282 the cerebellum. Interindividual differences in expression of isoforms could account for this 283 observation^{24;25}.

We show that exon 11b is the major brain-specific alternatively spliced *SGCE* exon and that it is differentially expressed in five control subjects. Its expression pattern is compatible with a role for the brain-specific SGCE isoform in the cerebellum and a link to M-D. This hypothesis is supported by recent literature: (1) there is a shift from dysfunction of the basal ganglia towards involvement of the cerebellum in dystonia pathogenesis;²⁶ (2) several animal models linked dystonia to abnormal cerebellar signaling and cerebellar defects, and cerebellar lesions leading to dystonia have been observed in patients;^{26;27} (3)

fMRI analysis of genetically confirmed M-D patients suggests involvement of thalamus
 and cerebellum (dentate nucleus)²⁸ and involvement of different cortical areas and
 cerebellum.²⁹

294 A role of the cerebellum in M-D is in contrast with striatal changes on dopamine 295 levels in SGCE deficient mice and a reduced striatal D2 receptor binding in M-D patients.^{30;31} Moderate expression levels of the major brain-specific SGCE isoform in the 296 297 striatum and lowest expression levels in the globus pallidus were found in all control 298 subjects. We propose that observed striatal changes may be secondary due to abnormal 299 cerebellar signaling. This is supported by an anatomical link between the cerebellum and the basal ganglia, namely projections from the dentate nucleus to the striatum,³² and by 300 301 cerebellar lesions or stimulations that have been shown to alter striatal dopamine signaling.³³⁻³⁵ Our isoform-specific ISH showed that the major brain-specific SGCE 302 303 transcript is highly expressed in Purkinje cells and neurons of the dentate nucleus in the 304 cerebellum. No signals were detected in the cerebellar granule cell layer in the cerebellum as it has been shown in mouse brain.¹⁷ Interestingly, alcohol consumption alleviates the 305 symptoms in M-D and the cerebellum reacts very sensitively to alcohol.³⁶ Also, symptoms 306 307 of patients with essential tremor, a common neurological movement disorder with suggested involvement of the cerebellum,³⁷⁻³⁹ are known to respond to alcohol as seen in 308 309 M-D. 310 We propose that the loss of function of the brain-specific SGCE isoform underlies

the exclusively neurological M-D phenotype. We hypothesize that the general function of the abundant SGCE isoform is redundant or not essential since no non-neurological

- 313 symptoms have been reported. The brain-specific protein may have a unique function and
- 314 cannot be replaced.

315 Fundings

- This study was supported by Nederlandse Organisatie voor Wetenschappelijk
- 317 Onderzoek (NWO) VIDI (project 0160.056.333) and by the Prinses Beatrix Fund.

318

319 Acknowledgements

- 320 We thank Edward J Bradley for assistance with 454 sequencing and Dr Kees Fluiter
- 321 for help with ISHs. We thank Dr. Anneloor ten Asbroek for helpful discussion and critical
- 322 reading of the manuscript. Tissue from the M-D mutation carrier was obtained from the
- 323 Brain and Tissue Bank for Developmental Disorders at the University of Maryland under

324 contracts N01-HD-4-3368 and N01-HD-4-3383.

325

326 **Conflict of interest.** The authors declare no conflict of interest.

327 Supplementary information is available at EJHG's website.

328

330

329 **Reference List**

- Klein C: Myoclonus and myoclonus-dystonias. *In Pulst SM, ed Genetics of Movement Disorders* 2003; San Diego, USA: Academic Press/Elsevier Science. 449-469.
- Nardocci N, Zorzi G, Barzaghi C *et al*: Myoclonus-dystonia syndrome: clinical
 presentation, disease course, and genetic features in 11 families. *Mov Disord* 2008;
 23: 28-34.
- 336 3 Marelli C, Canafoglia L, Zibordi F *et al*: A Neurophysiological Study of Myoclonus
 in Patients with DYT11 Myoclonus-Dystonia Syndrome. *Mov Disord* 2008; 23:
 2041-2048.
- Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, Standaert DG: The
 pathophysiological basis of dystonias. *Nat Rev Neurosci* 2008; 9: 222-234.

341 342	5	Zimprich A, Grabowski M, Asmus F <i>et al</i> : Mutations in the gene encoding epsilon- sarcoglycan cause myoclonus-dystonia syndrome. <i>Nat Genet</i> 2001; 29: 66-69.
343 344	6	Grunewald A, Djarmati A, Lohmann-Hedrich K <i>et al</i> : Myoclonus-dystonia: significance of large SGCE deletions. <i>Hum Mutat</i> 2008; 29: 331-332.
345 346	7	Ritz K, Gerrits MCF, Foncke EMJ <i>et al</i> : Myoclonus-dystonia: clinical and genetic evaluation of a large cohort. <i>J Neurol Neurosurg Psychiatr</i> 2009; 80: 653-658.
347 348	8	Grimes DA, Han F, Lang AE, George-Hyssop P, Racacho L, Bulman DE: A novel locus for inherited myoclonus-dystonia on 18p11. <i>Neurology</i> 2002; 59: 1183-1186.
349 350	9	Han F, Racacho L, Lang AE, Bulman DE, Grimes DA: Refinement of the DYT15 locus in myoclonus dystonia. <i>Mov Disord</i> 2007; 22: 888-892.
351 352	10	Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M: Molecular and cell biology of the sarcoglycan complex. <i>Muscle & Nerve</i> 2005; 32: 563-576.
353 354	11	Waite A, Tinsley CL, Locke M, Blake DJ: The neurobiology of the dystrophin- associated glycoprotein complex. <i>Ann Med</i> 2009; 41: 344-359.
355 356 357	12	McNally EM, Ly CT, Kunkel LM: Human epsilon-sarcoglycan is highly related to alpha-sarcoglycan (adhalin), the limb girdle muscular dystrophy 2D gene. <i>FEBS Lett</i> 1998; 422: 27-32.
358 359 360	13	Hjermind LE, Vissing J, Asmus F <i>et al</i> : No muscle involvement in myoclonus- dystonia caused by epsilon-sarcoglycan gene mutations. <i>Eur J Neurol</i> 2008; 15 : 525- 529.
361 362 363	14	Muller B, Hedrich K, Kock N <i>et al</i> : Evidence that paternal expression of the epsilon-Sarcoglycan gene accounts for reduced penetrance in myoclonus-dystonia. <i>Am J Hum Genet</i> 2002; 71: 1303-1311.
364 365 366	15	Grabowski M, Zimprich A, Lorenz-Depiereux B <i>et al</i> : The epsilon-sarcoglycan gene (SGCE), mutated in myoclonus-dystonia syndrome, is maternally imprinted. <i>Eur J Hum Genet</i> 2003; 11 : 138-144.
367 368 369	16	Esapa CT, Waite A, Locke M <i>et al</i> : SGCE missense mutations that cause myoclonus- dystonia syndrome impair epsilon-sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA. <i>Hum Mol Genet</i> 2007; 16 : 327-342.
370 371	17	Nishiyama A, Endo T, Takeda S, Imamura M: Identification and characterization of epsilon-sarcoglycans in the central nervous system. <i>Mol Brain Res</i> 2004; 125: 1-12.
372 373 374	18	Yokoi F, Dang MT, Mitsui S, Li Y: Exclusive paternal expression and novel alternatively spliced variants of epsilon-sarcoglycan mRNA in mouse brain. <i>FEBS Lett</i> 2005; 579: 4822-4828.

- Ruijter JM, Ramakers C, Hoogaars WM *et al*: Amplification efficiency: linking
 baseline and bias in the analysis of quantitative PCR data. *Nucleic Acids Res* 2009; **37**: e45.
- Budde BS, Namavar Y, Barth PG *et al*: tRNA splicing endonuclease mutations cause
 pontocerebellar hypoplasia. *Nat Genet* 2008; **40**: 1113-1118.
- Maquat LE: Nonsense-mediated mRNA decay: splicing, translation and mRNP
 dynamics. *Nat Rev Mol Cell Biol* 2004; 5: 89-99.
- Albrecht U, Sutcliffe JS, Cattanach BM *et al*: Imprinted expression of the murine
 Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. *Nat Genet* 1997; **17:** 75-78.
- Yamasaki K, Joh K, Ohta T *et al*: Neurons but not glial cells show reciprocal
 imprinting of sense and antisense transcripts of Ube3a. *Hum Mol Genet* 2003; 12:
 837-847.
- Wang ET, Sandberg R, Luo SJ *et al*: Alternative isoform regulation in human tissue transcriptomes. *Nature* 2008; **456**: 470-476.
- Kwan T, Benovoy D, Dias C *et al*: Genome-wide analysis of transcript isoform variation in humans. *Nat Genet* 2008; **40**: 225-231.
- Jinnah HA, Hess EJ: A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum? *Neurology* 2006; 67: 1740-1741.
- Pizoli CE, Jinnah HA, Billingsley ML, Hess EJ: Abnormal cerebellar signaling
 induces dystonia in mice. *J Neurosci* 2002; 22: 7825-7833.
- 396 28 Nitschke MF, Erdmann C, Trillenberg P *et al*: Functional MRI reveals activation of a
 397 subcortical network in a 5-year-old girl with genetically confirmed myoclonus398 dystonia. *Neuropediatrics* 2006; **37:** 79-82.
- Beukers RJ, Foncke EM, van der Meer JN *et al*: Disorganized sensorimotor
 integration in mutation-positive myoclonus-dystonia: a functional magnetic resonance
 imaging study. *Arch Neurol* 2010; **67:** 469-474.
- 402 30 Yokoi F, Dang MT, Li J, Li Y: Myoclonus, motor deficits, alterations in emotional
 403 responses and monoamine metabolism in epsilon-sarcoglycan deficient mice. J
 404 Biochem 2006; 140: 141-146.
- 405 31 Beukers RJ, Booij J, Weisscher N, Zijlstra F, van Amelsvoort TA, Tijssen MA:
 406 Reduced striatal D2 receptor binding in myoclonus-dystonia. *Eur J Nucl Med Mol*407 *Imaging* 2009; **36:** 269-274.
- 408 32 Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL: The cerebellum communicates
 409 with the basal ganglia. *Nat Neurosci* 2005; 8: 1491-1493.

410	33	Nieoullon A, Cheramy A, Glowinski J: Release of dopamine in both caudate nuclei
411		and both substantia nigrae in response to unilateral stimulation of cerebellar nuclei in
412		the cat. Brain Res 1978; 148: 143-152.

- 413 34 Tranchant C, Maquet J, Eber AM, Dietemann JL, Franck P, Warter JM: Cerebellar
 414 cavernous angioma, cervical dystonia and crossed cortical diaschisis. *Rev Neurol*415 1991; 147: 599-602.
- 416 35 Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA: The basal ganglia and
 417 cerebellum interact in the expression of dystonic movement. *Brain* 2008; **131**: 2499418 2509.
- 419 36 Volkow ND, Mullani N, Gould L *et al*: Effects of acute alcohol intoxication on cerebral blood flow measured with PET. *Psychiatry Res* 1988; 24: 201-209.
- 421 37 Dupuis MJ, Delwaide PJ, Boucquey D, Gonsette RE: Homolateral disappearance of
 422 essential tremor after cerebellar stroke. *Mov Disord* 1989; 4: 183-187.
- 423 38 Louis ED, Vonsattel JP, Honig LS *et al*: Essential tremor associated with pathologic
 424 changes in the cerebellum. *Arch Neurol* 2006; 63: 1189-1193.
- 425 39 Louis ED: Essential tremor: evolving clinicopathological concepts in an era of
 426 intensive post-mortem enquiry. *Lancet Neurol* 2010; **9:** 613-622.

428 429	Titles and legends to figures Figure 1: Overview of novel alternatively spliced exons identified by 454 ultra deep
430	sequencing. A) SGCE gene including all known exons. Constitutive exons are depicted in
431	black, alternatively spliced exons in grey. B) SGCE gene including novel alternatively
432	spliced exons (in white). Asterisks represent novel in-frame exons. In-frame exons were
433	observed with a higher frequency (range: 0.3-5.7%) than frameshift exons (range: 0.01-
434	3%). Relative position of the exons and sizes of exons are correct, but exon sizes are not
435	represented in the same scale as the introns.
436	
437	Figure 2: SGCE expression levels (qPCR). Displayed are expression levels for total
438	SGCE (panel A) and SGCE exon 11b (panel B) transcripts of the five tested control
439	subjects normalized to GAPDH. Y-axis shows SGCE or SGCE11b/GAPDH *100.
440	Abbreviations: Hi: Hippocampus, Cb: Cerebellum, NC: Caudate Nucleus, Pu: Putamen,
441	GP: Globus Pallidus, SN: Substantia Nigra, Th: Thalamus, M1: Primary Motor Cortex,
442	SM1: Primary Somatosensory Cortex.
443	
444	Figure 3: Localization of total SGCE transcripts and those containing exon 11b.
445	Depicted are ISH results for total SGCE and brain-specific SGCE in different human brain
446	regions and human skeletal muscle. SGCE showed neuronal staining in all brain regions
447	tested as well as staining in muscle. Brain-specific SGCE transcripts containing exon 11b
448	showed the same expression pattern in brain but were not expressed in skeletal muscle. No
449	SGCE mRNA was detected in the motor cortex of an M-D patient carrying a SGCE
450	nonsense mutation. Inserts in each panel show high magnification of neurons. Scale bar

451 represents 100µm.

9169_1_figure_74196_lxkyjv.tif 945×515 pixels

(SGCE mutation carrier)

Tables 1-3

Table 1: Sample material

Subject	Gender	Age (years)	Post- mortem (h)	Brain tissue	Other	Assay
1	male	77	7	Cb GP Hi M1 NC Pu SM1 SN Th	He MP	454 qPCR
2	male	76	8	Cb GP Hi M1 NC Pu SM1 SN Th	na	454 qPCR
3	female	76	5	na	He MP	454
4	male	74	5	Cb GP Hi M1 NC Pu SM1 SN Th	na	qPCR
5	female	88	12	Cb GP Hi M1 NC Pu SM1 SN Th	na	qPCR
6	female	45	24	Cb GP Hi M1 NC Pu SM1 SN Th	na	qPCR

Abbreviations: Cb: Cerebellum, GP: Globus Pallidus, Hi: Hippocampus, M1: Primary Motor Cortex, NC: Caudate Nucleus, Pu: Putamen, SM1: Primary Somatosensory Cortex, SN: Substantia Nigra, Th: Thalamus, He: Heart, MP: M.Psoas, na: not available

Table 2: Known and new alternatively spliced *SGCE* exons revealed by screening the entire *SGCE* gene in one control subject with ultra deep sequencing. Additional information of alternatively spliced *SGCE* exons include: occurrence of respective exons in brain (SM1), heart and blood of control subject 1 in percent, splice sites according to www.fruitfly.org, NNSPLICE 0.9 version (minimum score for 3'/ 5'splice site 0.5): splice donor (D)/acceptor (A), frameshift (FS) or in-frame (IF) exons, isoform subject to nonsense mediated decay (NMD), exon size in bp, nucleotide position according to NG_008893.1. Constitutive exons (100% expression) are not shown. *: Exons that were sequenced in definite M-D patients where no mutation could be identified.

Alternatively	Fyon	Brain	Heart	Blood	Spli	ce site	ES/IE	NIMD	Exon	NG_008893.1		
spliced exons	Exon	(%)	(%)	(%)	D	Α	F 5/1F	NMD	size (Bp)	Start	End	
known	2*	98.20	94.80	78.50	+	+	IF	-	123	31369	31491	
	8*	7.20	96.00	96.00	+	+	IF	-	27	61487	61513	
	10*	0.03	0.03	1.25	-	+	IF	-	75	63206	63280	
	11b*	33.92	0.05	-	-	-	FS	-	35	73398	73432	
new	1a	0.66	0.31	1.08	+	+	FS	+	62	16543	16604	
	1b	0.03	0.11	-	+	+	FS	+	68	20246	20313	
	1c*	5.70	1.96	2.25	+	-	IF	-	108	21762	21869	
	3a	-	0.03	-	+	-	FS	+ 102		36163	36264	
	3b*	0.43	0.02	-	+	+	+ FS	+	31	36961	36991	
	3c	0.05	-	-	+	+	FS	+	130	37052	37181	
	3d*	-	0.17	-	+	-	FS	+	35	37655	37689	
	4a*	0.80	0.94	1.66	+	+	IF	-	81	38584	38664	
	4b	0.14	0.37).37		+	FS	+	110	38584	38693	
	4 c	0.07	0.12	-	+	+	FS	+	147	39215	39361	
	4d	-	0.01	-	+	+	FS	+	94	39504	39597	
	5a	-	-	0.06	-	+	FS	+	176	45589	45764	
	8a	0.08	0.11	0.51	+	-	FS	+	74	61810	61883	
	10a	0.01	-	-	-	+	FS	+	76	66703	66778	
	10b	0.02	-	-	+	+	FS	+	115	66664	66778	
	11a	0.04	-	-	+	-	FS	-	68	73177	73244	
	11d*	0.03	-	0.12	-	-	FS	-	107	73326	73432	
	11c*	0.70	0.28	0.41	-	-	FS	-	72	73361	73432	
	11f*	0.33	-	-	-	-	FS	-	51	73382	73432	

Table 3: Expression levels of alternatively spliced *SGCE* exon 11b in human brain regions of two control subjects (454 sequencing).

Expression levels of exon 11b are given as percentage of all analyzed sequence reads obtained by 454 sequencing. Abbreviations: HS: Homo sapiens, RN: Rattus norvegicus, MM: Mus musculus, Hi: Hippocampus, Cb: Cerebellum, NC: Caudate Nucleus, Pu: Putamen, GP: Globus Pallidus, SN: Substantia Nigra, Th: Thalamus, M1: Primary Motor Cortex, SM1: Primary Somatosensory Cortex.

		Exon 11b											
	Region	Subject 1 (%)	Subject 2 (%)										
	Hi	20.84	16.59										
	Cb	37.31	20.99										
	NC	16.89	12.48										
	Pu	33.29	11.63										
HS	GP	0.68	4.09										
	SN	5.98	12.60										
	Th	26.22	16.71										
	M1	21.58	25.51										
	SM1	33.92	36.79										
RN	Brain	73.2	25										
MM	Brain	49.80											
ZF	Embryo	20.38											

Supplementary Fig. 1

Supplementary Fig. 2

SGCE imprinting pattern by MS-HRM assay.

A) Samples with different degrees of methylation of the *SGCE* promotor region were included as standards in each experiment : 100% methylated and unmethylated controls and 50%, 25%, 12.5% and 6.25% methylated samples. B) Example of melting curves of different brain regions and blood samples all showing a normal imprinting pattern with 50% methylation.

Supplementary Tables 1-2

Supplementary Table 1: Number of total sequence reads analyzed with 454 sequencing. The numbers of sequence reads analyzed are given as average (range) of all sequenced samples (brain regions/tissues) or as absolute numbers in case there were one or two regions sequenced only.

	# Samples	Number of reads analyzed
H.sapiens Subject 1 (Brain, Muscle)	10	15 106 (12 643-17 916)
H.sapiens Subject 2 (Brain)	9	7 084 (4 535-11 677)
H.sapiens Subject 3 (Muscle)	1	6 409
H.sapiens Blood	2	12 423, 13 786
R.norvegicus Brain	1	10 435
M.musculus Brain	1	8 213
D.rerio Embryos	1	14 382

Exon	1a	1b	1c	2	3a	3b	3c	3d	4a	4b	4c	4d	5a	8	8a	10	10a	10b	11	11a	11d	11c	11f	11b
P.troglodytes	100	100	100	100	100	100	99	100	100	100	99	98	99	100	100	94	97	98	100	98	98	100	100	100
P.pygmaeus	94	97	100	100	98	100	99	100	97	97	97	95	99	100	98	-	97	98	100	97	97	98	100	100
M.mulatta	97	93	100	99	97	100	96	94	95	95	95	96	97	100	100	-	96	96	100	98	98	100	100	100
B.taurus	80	71	96	93	72	-	86	-	89	89	49	-	-	100	93	-	70	54	100	93	92	97	98	100
R.norvegicus	-	-	-	86	-	-	-	-	-	-	-	-	-	96	77	-	42	-	95	89	93	94	98	100
M.musculus	-	-	91	88	75	-	-	-	-	-	-	-	16	92	68	-	47	-	90	91	93	92	96	100
G.gallus	-	-	82	85	-	-	-	-	-	-	25	-	-	100	60	-	-	-	88	-	67	81	88	91
D.rerio	-	-	-	63	-	-	-	-	-	-	-	-	-	96	-	-	-	-	68	-	-	-	-	63

Supplementary Table 2: Conservation of alternatively spliced *SGCE* exons. Conservation was investigated using the "blast assembled genomes" feature and the BLASTn algorithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Numbers indicate the percentage of identical nucleotides relative to the size of the exon in humans.

Optional figure 1:

Localization of brain-specific SGCE in small and large striatal neurons.

Higher magnifications of ISHs for detection of SGCE exon 11b transcripts as an example to illustrate neuronal staining in the putamen. Scale bar represents 50µm.