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A full second order model for multiscale texture analysis
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Abstract We presented a second order image decomposition model to per-
form denoising and texture extraction. We look for the decomposition f =
u + v + w where u is a first order term, v a second order term and w the
remainder term (0 order). For highly textured images the model gives a two-
scale texture decomposition: u can be viewed as a “macro-texture” (larger
scale) which oscillations are not too large and w is the “micro-texture” (very
oscillating) that contains the noise. We perform mathematical analysis of the
model and give numerical examples.

Keywords Second order total variation · Image reconstruction · Denoising ·
Texture analysis · Variational method

1 Introduction

The most famous model is the Rudin-Osher-Fatemi denoising model (see [1,
16]). This model involves a regularization term that preserves discontinuities,
what a classical H1 -Tychonov regularization method does not. The observed
image to recover is split in two parts ud = u + v where u represents the
oscillating component (noise or texture) and v is the smooth part. So we look
for the solution as u+ v with v ∈ BV (Ω) and u ∈ L2(Ω), where BV (Ω) is the
functions of bounded variation space defined on an open set Ω ([2,3,13]). The
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regularization term involves only the so-called cartoon component v, while the
remainder term u := ud − v represents the noise to be minimized.

A lot of people have investigated such decomposition models based on
variational formulation , considering that an image can be decomposed into
many components, each component describing a particular property of the
image ([4,5,17–19,22] and references therein for example).

In [9] we have presented a (partial) second order model where the (first
order) classical total variation term has been replaced by a second order to-
tal variation term (with the appropriate functional framework), that we have
called ROF2. The use of such a model allows to get rid of the “staircasing
effect” that appears with the ROF model in denoising processes.

However, we have noticed that while the staircasing effect disappeared, the
resulting image was slightly blurred (the blur effect was not as important as
if we had used a classical low-pass filter however). To remove this undesirable
effect due to the partial ROF2, we decide to use a full second order model.
More precisely, we assume that the image can be split in three components:
a smooth (continuous) part v, a “cartoon” (piecewise constant) part u and
an oscillating part w that should involve noise and/or fine textures. Such
decompositions have already been investigated by Aujol and al. [4,5,7] . These
authors use the Meyer space of oscillating functions [15] instead of the BV 2(Ω)
space. We present these spaces in the sequel. However, the model we propose
here is different: the oscillating part of the image is not penalized but a priori
included in the remainder term w = ud − u − v, while v is the smooth part
(in BV 2(Ω)) and u belongs to BV (Ω) : we hope that u is piecewise constant
so that its jump set gives the image contours. For highly textured images as
the one of example (a) in figure 1, we shall see that the model gives a two-
scale texture decomposition: u can be viewed as a “macro-texture” (larger
scale) which oscillations are not too large and w is the “micro-texture” (very
oscillating) that contains the noise as well.

Therefore, we look for components u, v and w that belong to different
spaces : u belongs to BV (Ω) (and if possible not to W 1,1(Ω)), v ∈ BV 2(Ω)
and w ∈ L2(Ω). This last component w = ud − u− v lies in the same space as
the observed image ud.

The paper is organized as follows. We present the model and briefly gives
main properties of the spaces of functions of first and second order bounded
variation. We give existence, partial uniqueness results and optimality con-
ditions. Section 3 is devoted to the discretization and numerical process. We
present some results in the last section.

2 The mixed second order model

2.1 Spaces BV (Ω) and BV 2(Ω)

Let Ω be an open bounded subset of Rn, n ≥ 2 (practically n = 2) smooth
enough (with the cone property and Lipschitz for example). Following [2,3,
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6] and [9,11], we recall the definitions and main properties of the spaces of
functions of first and second order bounded variation. The space BV (Ω) is
the classical space of functions of bounded variation defined by

BV (Ω) = {u ∈ L1(Ω) | Φ1(u) < +∞},

where

Φ1(u) := sup

{∫

Ω

u(x) div ξ(x) dx | ξ ∈ C1
c (Ω), ‖ξ‖∞ ≤ 1

}

. (1)

The space of functions with bounded hessian, denoted BV 2(Ω), is the space
of W 1,1(Ω) functions such that Φ2(u) < +∞, where

W 1,1(Ω) = { u ∈ L1(Ω) | ∇u ∈ L1(Ω) } .

Here∇u stands for the first order derivative of u (in the sense of distributions))
and

Φ2(u) := sup

{∫

Ω

〈∇u, div(ξ)〉
Rn | ξ ∈ C2

c (Ω,Rn×n), ‖ξ‖∞ ≤ 1

}

< ∞,

where

div(ξ) = (div(ξ1), div(ξ2), . . . , div(ξn)), (2)

with

∀i, ξi = (ξ1i , ξ
2
i , . . . , ξ

n
i ) ∈ R

n and div(ξi) =

n
∑

k=1

∂ξki
∂xk

.

We give thereafter important properties of these spaces which proofs can be
found in [2,3,11,20] for example.

Theorem 1 (Banach properties) – The space BV (Ω), endowed with the
norm ‖u‖BV (Ω) = ‖u‖L1 +Φ1(u), is a Banach space. The derivative in the
sense of distributions of every u ∈ BV (Ω) is a bounded Radon measure,
denoted Du, and Φ1(u) =

∫

Ω
|Du| is the total variation of u.

– The space BV 2(Ω) endowed with the following norm

‖f‖BV 2(Ω) := ‖f‖W 1,1(Ω) + Φ2(f) = ‖f‖L1 + ‖∇f‖L1 + Φ2(f), (3)

where Φ2 is given by (2) is a Banach space.

Theorem 2 (Structural properties of the derivative ) Let Ω be an open
subset of Rn with Lipschitz boundary.

– For every u ∈ BV (Ω), the Radon measure Du can be decomposed into
Du = ∇u dx +Dsu, where ∇u dx is the absolutely continuous part of Du
with respect of the Lebesgue measure and Dsu is the singular part.
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– A function u belongs to BV 2(Ω) if and only if u ∈ W 1,1(Ω) and
∂u

∂xi

∈ BV (Ω)

for i ∈ {1, . . . , n}. In particular

Φ2(u) ≤

n
∑

i=1

Φ1

(

∂u

∂xi

)

≤ n Φ2(u).

We get lower semi-continuity results for the semi-norms Φ1 and Φ2:

Theorem 3 (Semi-continuity) – The mapping u 7→ Φ1(u) is lower semi-
continuous (denoted in short lsc) from BV (Ω) to R

+ for the L1(Ω) topol-
ogy.

– The operator Φ2 is lower semi-continuous from BV 2(Ω) endowed with the
strong topology of W 1,1(Ω) to R.

Finally we have embedding results as well:

Theorem 4 (Embedding results) Assume n ≥ 2. Then

– BV (Ω) ⊂ L2(Ω) with continuous embedding, if n = 2,
– BV (Ω) ⊂ Lp(Ω) with compact embedding, for every p ∈ [1, 2), if n = 2,

– BV 2(Ω) →֒ W 1,q(Ω) with q ≤
n

n− 1
, with continuous embedding. More-

over the embedding is compact if q < n
n−1 .

In particular

BV 2(Ω) →֒ Lq(Ω), ∀q ∈ [1,∞[, if n = 2.

In the sequel, we set n = 2 and Ω is a bounded, open, Lipschitz subset of R2, so
that BV 2(Ω) ⊂ H1(Ω) with continuous embedding and BV 2(Ω) ⊂ W 1,1(Ω)
with compact embedding.

2.2 The variational model

In [9], we have studied the following restoration variational model

inf{
1

2
‖ud − v‖

2
L2(Ω) + µΦ2(v) + δ‖v‖W 1,1(Ω) | v ∈ BV 2(Ω) }.

which only involves a second order term. We have shown that we can get rid
of the staircasing effect while restoring noisy data. However, contours where
not preserved as well as wanted and the resulting image was a bit blurred.
To overcome this difficulty, we now consider a full second order model and
we focus on texture extraction. More precisely, we assume that the image we
want to recover from the data ud can be decomposed as ud = w+ u+ v where
u, v and w are functions that characterize different parts of ud. In the sequel
ud ∈ L2(Ω).

Components belong to different functional spaces: v is the (smooth) second
order part and belongs to BV 2(Ω), u is BV (Ω) component and w ∈ L2(Ω) is
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the remainder term. In other words we expect v to be the smooth “colored”
part of the image, u to be a BV (Ω)\BV 2(Ω) function which derivative is a
measure supported by the contours and w := ud − u − v ∈ L2 is the noise
and/or small textures.

We consider the following cost functional defined on BV (Ω)×BV 2(Ω) :

Fλ,µ,δ(u, v) =
1

2
‖ud − u− v‖2L2(Ω) + λΦ1(u) + µΦ2(v) +

δ1
2
‖v‖2L2(Ω + δ2Φ1(v),

where λ, µ, δi > 0. We are looking for a solution to the optimization problem

inf{ Fλ,µ,δ(u, v) | (u, v) ∈ BV (Ω)×BV 2(Ω) } (Pλ,µ,δ)

Let us comment the different terms of the cost functional Fλ,µ,δ:

– the first term ‖ud − u− v‖
2
L2(Ω) is the fitting data term,

– Φ1(u) is a standard total variation term widely used in image restoration
(introduced in [16]),

– Φ2(v) penalizes the second order total variation of component v,

–
δ1
2
‖v‖2L2(Ω + δ2Φ1(v) is a penalization term which is necessary to get a

priori estimates on minimizing sequences and obtain existence results.
It is a theoretical tool and δi > 0, i = 1, 2 can be chosen as small as
wanted. We could replace this penalization term by ‖v‖2

H1 or ‖v‖W 1,1(Ω).
We chose an intermediate penalization term between these two possibili-
ties. The W 1,1(Ω) norm would have involved the L1-norm of v which is non
differentiable. As we already deal with the L1 norm of ∇v (namely Φ1(v) in
our case) which is non differentiable as well, this would have added numer-
ical technical difficulties. On the other hand the use of H1-norm leads to
the Laplacian operator on the dual of H1(Ω) which is not easy to handle.
Moreover, as we shall see in the sequel, we may set δ2 = 0 once the prob-
lem is discretized. In addition, we have noticed a null effect of δ1 when
performing numerical tests, so that we finally choose δ1 = δ2 = 0
The δ-part is not useful (and not justified) from the modelling point of
view. It is only necessary to prove existence and uniqueness of solutions.

We first give an existence and uniqueness result for problem (Pλ,µ,δ).

Theorem 5 Assume that λ > 0, µ > 0 and δi > 0, i = 1, 2. Problem (Pλ,µ,δ)
has at a unique solution (u, v).

Proof.- We first prove existence. Let (un, vn) ∈ BV (Ω) × BV 2(Ω) be a
minimizing sequence, i.e.

lim
n→+∞

Fλ,µ,δ(un, vn) = inf{ Fλ,µ,δ(u, v) | (u, v) ∈ BV (Ω)×BV 2(Ω) } < +∞.

The sequence (vn)n∈N is bounded in BV 2(Ω): indeed

– it is bounded in L2 (with the δ1-term) and in L1 since Ω is bounded
– Φ1(vn) is bounded thanks to the δ2-term, and
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– Φ2(vn) is bounded as well.

As (vn)n∈N is L1(Ω)-bounded and (un+ vn)n∈N is L2(Ω)-bounded, this yields
that (un)n∈N is L1(Ω)-bounded. As (Φ1(un))n∈N is bounded then (un)n∈N is
bounded in BV (Ω).

With the compactness result of Theorem 4, we infer that (vn)n∈N strongly
converges (up to a subsequence) in W 1,1(Ω) to v∗ ∈ BV 2(Ω) and Theorem 3
gives the following:

Φ2(v
∗) ≤ lim inf

n→+∞
Φ2(vn).

Similarly, the compactness embedding of BV (Ω) in L1(Ω) (Proposition 2)
gives the existence of a subsequence still denoted (un)n∈N and u∗ ∈ BV (Ω)
such that un strongly converges in L1(Ω) to u∗, and

Φ1(u
∗) ≤ lim inf

n→+∞
Φ1(un).

Finally

Fλ,µ,δ(u
∗, v∗) ≤ lim inf

n→+∞
Fλ,µ,δ(un, vn) = min

(u,v)∈BV (Ω)×BV 2(Ω)
Fλ,µ,δ(u, v).

The pair (u∗, v∗) is a solution to (Pλ,µ,δ).
Uniqueness is straightforward with the strict convexity of Fλ,µ,δ due to the
δ1-term and the data fitting term.

�

Remark 1 We can get rid of the δ-penalization term. Indeed, we may use
Poincaré- Wirtinger inequalities to get the appropriate a priori estimates and
deduce existence of solutions (see [8]). However, this impose to change the
functional framework and introduce additional constraints. For example, we
require that the BV component u has 0 mean value and/or that the BV 2 com-
ponent v vanishes on the boundary. Moreover, we do not have strict convexity
any longer so that uniqueness of solutions is not ensured any more.. This will
be precisely investigated in a future work.

It is easy to see that (u∗, v∗) is a solution to (Pλ,µ,δ) if and only if

u∗ = argmin{
1

2
‖ud − v∗ − u‖2 + λΦ1(u) , u ∈ BV(Ω)} , (4)

v∗ = argmin{
1

2
‖ud − u∗ − v‖2 +

δ1
2
‖v‖2L2 + δ2Φ1(v) + µΦ2(v), v ∈ BV2(Ω)}.

and we may derive optimality conditions in a standard way :

Theorem 1 (u∗, v∗) is a solution to (Pλ,µ,δ) if and only if

ud − u∗ − v∗ ∈ λ∂Φ1(u
∗), (5a)

ud − u∗ − (1 + δ1)v
∗ ∈ µ∂Φ2(v

∗) + δ2∂Φ1(v
∗). (5b)

Here ∂Φ(w) denotes the subdifferential of Φ at w (see [3,12] for example).
The proof is straightforward since Φ1 and Φ2 are convex and continuous and
variables u and v can be decoupled.
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3 The discretized problem

This section is devoted to numerical analysis of the previous model. We first
(briefly) present the (standard) discretization process.

3.1 Discretization process

We assume that the image is rectangular with size N × M . We note X :=
R

N×M ≃ R
NM endowed with the usual inner product and the associated

Euclidean norm

〈u, v〉X :=
∑

1≤i≤N

∑

1≤j≤M

ui,jvi,j , ‖u‖X :=

√

∑

1≤i≤N

∑

1≤j≤M

u2
i,j . (6)

We set Y = X × X . It is classical to define the discrete total variation
with finite difference schemes as following (see for example [6]): the discrete
gradient of the numerical image u ∈ X is ∇u ∈ Y computed for example by
the forward scheme:

(∇u)i,j =
(

(∇u)1i,j , (∇u)2i,j

)

, (7)

where

(∇u)
1
i,j =

{

ui+1,j − ui,j if i < N
0 if i = N,

and (∇u)
2
i,j =

{

ui,j+1 − ui,j if j < M
0 if j = M.

The (discrete) total variation corresponding to Φ1(u) is given by

J1(u) =
1

NM

∑

1≤i≤N

∑

1≤j≤M

∥

∥

∥(∇u)i,j

∥

∥

∥

R2

, (8)

where
∥

∥

∥(∇u)i,j

∥

∥

∥

R2

=
∥

∥

(

∇u1
i,j ,∇u2

i,j

)∥

∥

R2
=

√

(

∇u1
i,j

)2
+
(

∇u2
i,j

)2
.

The discrete divergence operator div is the opposite of the adjoint operator of
the gradient operator ∇:

∀(p, u) ∈ Y ×X, 〈−div p, u〉X = 〈p,∇u〉Y .

To define a discrete version of the second order total variation Φ2 we have
to introduce the discrete Hessian operator. For any v ∈ X , the Hessian matrix
of v, denoted Hv is identified to a X4 vector:

(Hv)i,j =
(

(Hv)11i,j , (Hv)12i,j , (Hv)21i,j , (Hv)22i,j
)

.

We refer to [9] for detailed expressions of these quantities. The discrete second
order total variation corresponding to Φ2(v) is defined as

J2(v) =
1

NM

∑

1≤i≤N

∑

1≤j≤M

‖(Hv)i,j‖R4 , (9)
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with

‖(Hv)i,j‖R4 =
√

(Hv11i,j)
2 + (Hv12i,j)

2 + (Hv21i,j)
2 + (Hv22i,j)

2 .

The discretized problem stands

inf
(u,v)∈X×X

1

2
‖ud − u− v‖

2
X + λJ1(u) + µJ2(v) +

δ1
2
‖v‖

2
X + δ2J1(v). (Pλ,µ,δ)

Theorem 6 Assume λ ≥ 0, µ ≥ 0, δ2 ≥ 0 and δ1 > 0. Problem Pλ,µ,δ has a
unique solution.

Proof.- The proof is obvious since the cost functional is strictly convex and
coercive because of the data-fitting term and the δ1-term.

�

In the sequel we set λ > 0, µ > 0, δ := δ1 > 0 and δ2 = 0.

3.2 Numerical realization and algorithm

Let (u∗, v∗) be the unique solution to

inf
(u,v)∈X×X

1

2
‖ud − u− v‖2X + λJ1(u) + µJ2(v) +

δ

2
‖v‖2X .

Using the subdifferential properties and decoupling u∗ and v∗ gives the fol-
lowing necessary and sufficient optimality conditions :

Proposition 1 (u∗, v∗) is a solution to (Pλ,µ,δ) if and only if

ud − u∗ − v∗ ∈ λ∂J1(u
∗), (10a)

ud − u∗ − (1 + δ)v∗ ∈ µ∂J2(v
∗). (10b)

We can perform an explicit computation to get the following result :

Theorem 2 (u∗, v∗) is a solution to (Pλ,µ,δ) if and only if

u∗ = ud − v∗ −ΠλK1
(ud − v∗) , (11a)

v∗ =
1

1 + δ
(ud − u∗ −ΠµK2

(ud − u∗)) . (11b)

where K1 and K2 are the following convex closed subsets :

K1 = {div p | p ∈ X2, ‖pi,j‖R2 ≤ 1 ∀i = 1, . . . , N, j = 1, . . . ,M} (12a)

K2 = {H∗p | p ∈ X4, ‖pi,j‖R4 ≤ 1, ∀i = 1, . . . , N, j = 1, . . . ,M}. (12b)

and ΠKi
denotes the orthogonal projection on Ki.
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Proof.- Following [9,10], relations (10) are equivalent to

u∗ ∈ ∂J∗
1

(

ud − u∗ − v∗

λ

)

= ∂ιK1

(

ud − u∗ − v∗

λ

)

, (13a)

v∗ ∈ ∂J∗
2

(

ud − u∗ − (1 + δ)v∗

µ

)

= ∂ιK2

(

ud − u∗ − (1 + δ)v∗

µ

)

, (13b)

where J∗ is the Fenchel-Legendre transform of J , and ιK is the indicatrix
function of K :

ιK(x) =

{

0 if x ∈ K
+∞ else.

Let ΠK be the orthogonal projection on a closed convex set K. Recall that

λ ∈ ∂ιK(u) ⇐⇒ λ = c

(

u+
λ

c
−ΠK

(

u+
λ

c

))

⇐⇒ u = ΠK

(

u+
λ

c

)

,

for every c > 0. Then relation (13a) with c = λ is equivalent to

ud − v∗ − u∗ = λΠK1

(

ud − v∗

λ

)

= ΠλK1
(ud − v∗) ,

since ΠK

(u

c

)

=
1

c
ΠcK (u). Similarly (13b) with c =

µ

1 + δ
is equivalent to

ud − u∗ − (1 + δ)v∗

µ
= ΠK2

(

ud − u∗

µ

)

=
1

µ
ΠµK2

(ud − u∗) .

�

We may write relations (11) as a fixed point equation (u, v) = G(u, v), where

G : X2 → X2

(u, v) 7→





ud − v −ΠλK1
(ud − v)

1

1 + δ
(ud − u−ΠµK2

(ud − u))



 .
(14)

Let us introduce Gα defined by

Gα(u, v) =

(

u
v

)

+ α

(

G(u, v)−

(

u
v

))

.

We get

Gα(u, v) =





(1− α)u + α(ud − v −ΠλK1
(ud − v))

(1− α)v +
α

1 + δ
(ud − u−ΠµK2

(ud − u))



 . (15)

This leads to the following fixed-point algorithm :
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Algorithm A0

1. Initialization step. Choose u0 and v0 (for example u0 = 0 and v0 = ud) and
0 < α < 1/2.
2. Iteration. Define the sequences ((un, vn))n as







un+1 = un + α (ud − vn −ΠλK1
(ud − vn)− un)

vn+1 = vn +
α

1 + δ
(ud − un −ΠµK2

(ud − un)− (1 + δ)vn) .

3. Stopping test.

Theorem 7 For every α ∈ (0, 1/2), the sequence (un, vn) converges to the
(unique) fixed point of de G.

Proof.- It is sufficient to prove that Gα = (G1
α, G

2
α) is a strict contraction.

Let be α > 0. For every (u1, v1), (u2, v2) ∈ X2, we have

∥

∥G1
α(u1, v1)−G1

α(u2, v2)
∥

∥

X
+
∥

∥G2
α(u1, v1)−G2

α(u2, v2)
∥

∥

X

≤ |1− α|‖u1 − u2‖X + 2α‖v1 − v2‖X + |1− α|‖v1 − v2‖X +
2α

1 + δ
‖u1 − u2‖X

≤ max

(

|1− α|, 2α,
2α

1 + δ

)

(‖u1 − u2‖X + ‖v1 − v2‖X) .

If α ∈ (0 1/2), then max
(

|1− α|, 2α, 2α
1+δ

)

< 1, and Gα is a contraction.

Therefore, the sequence (un+1, vn+1) = Gα(un, vn) converges to Gα fixed
point. Moreover G and Gα have the same fixed points.

�

For the numerical realization a (standard) relaxed version of the algorithm is
used.

Algorithm A

1. Initialization step. Choose u0 and v0 (for example u0 = 0 and v0 = ud) and
0 < α < 1/2.
2. Iteration. Define the sequences ((un, vn))n as







un+1 = un + α (ud − un − vn −ΠλK1
(ud − vn))

vn+1 = vn +
α

1 + δ
(ud − un+1 − (1 + δ)vn −ΠµK2

(ud − un+1)) .

3. Stopping test.

We can prove similarly that for α ∈ (0, 1/2), the sequence given byA converges
to G fixed point.
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4 Numerical results

We have tested the model and performed numerical experimentation on images
of Figure 1. Image (a) is a picture of an old wall that can be considered as
pure texture. Image (b) involves both sharp contours and small details. The
third image (c) is a micro-tomographic image of tuffeau (stone) : the image
is one slice extracted from a 3D tomographic image of a tuffeau sample. The
image is 20485× 20485 pixels, pixel size is 0.28 µm with resin, silica (opal
sphere), air bubble in the resin (caused by the impregnation process), silica
(quartz crystal), calcite and phyllosilicate. The segmentation of such an image
is a hard challenge [14].

We have computed the total variation J1 and the second order total vari-
ation J2 that we report in Table 1.

We have also computed and the G-norm1 for every image. Recall (see [15])
that the G-space is the dual space of BV (the closure of the Schwartz class in
BV (Ω)) :

G := { f | ∃ϕ = (ϕ1, ϕ2) ∈ (L∞(R2))2 f = div ϕ }

and the ‖ · ‖G norm is defined as

‖f‖G := inf{‖
√

ϕ2
1 + ϕ2

2‖∞ | f = div ϕ } .

Though the G-norm cannot measure image oscillations (non oscillating images
may have a small G-norm ) it may be an indicator on oscillations amplitude .
The more the function is oscillating, the smaller its G-norm is.

Image ud J1(ud) J2(ud) ‖ud‖G ‖ud‖L2 ‖ud‖G/‖ud‖L2

Wall (a) 23.27 43.07 7.62 0.5277 14.4408

Butterfly (b) 10.27 11.14 12.11 0.5463 22.1659

Tuffeau (c) 27.62 43.79 2.76 0.4978 5.555

Table 1 Total variation J1, second order total variation J2 and G-norm for tests images -
the last column is the “normalized” G-norm: we have divided by the L2-norm.

1 We are very grateful to Pierre Weiss who provided the codes to compute the G-norm
efficiently.
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(a) Wall

(b) Butterfly (c) Tuffeau

Fig. 1 Examples

The projections in step 2. have been computed using a Nesterov-type algo-
rithm inspired by [21] which has been adapted for the projection on K2. The
stopping criterion is based on the difference between two consecutive iterates
that should be less than 10−3 coupled with a maximal number of iterations
(here 175). We give thereafter the values of the G-norm for the components
u, v , w := ud − u− w and different pairs (λ, µ) :
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Image λ µ ‖u‖G ‖v‖G ‖w‖G J1(u) J2(v) ‖w‖L2 ū · 107

2 6 0.376 8.769 0.333 16.80 1.293 3.276 2.46
5 10 0.510 8.905 0.316 11.24 1.230 6.994 3.39

(a) 10 20 0.630 8.803 0.324 6.218 1.383 11.13 -0.17
50 100 1.476 7.905 0.452 0.160 1.632 19.88 6.87

2 6 0.262 12.11 0.225 4.018 2.402 1.996 -0.43
5 10 0.316 12.00 0.272 2.519 2.461 3.683 0.56
5 50 0.903 11.437 0.418 6.415 0.626 3.391 5.27

(b) 10 5 0.245 11.90 0.206 0.004 5.05 3.882 -1.78
10 20 0.423 11.78 0.314 1.908 2.231 5.792 4.03
50 50 0.825 11.59 0.284 0.043 2.712 11.18 -7.88
50 100 1.196 11.37 0.363 0.386 2.038 13.63 -2.54

2 6 0.277 3.089 0.258 20.20 3.68 3.3485 12.69
10 20 0.460 4.365 0.299 12.61 1.199 10.98 -10.88

(c) 20 50 0.906 6.220 0.281 8.012 0.875 16.58 -43.36
50 100 1.082 5.232 0.345 1.730 1.502 25.90 -4.07

Table 2 G-norm and total variation of components for different parameters λ, µ - ū is the
mean value of u - We recall that ‖ud‖G = 7.62 for image (a) (wall), ‖ud‖G = 12.11 for
image (b) (butterfly) and ‖ud‖G = 2.76 for image (c) (tuffeau)

We note that the G-norm of the BV 2 component v (few oscillations) and
the L2 component w (many oscillations) are independent on the choice of λ
and µ. This is not the case for the BV component u. Moreover, though the
amplitude of the BV component may be quite large (for example, if λ = 2
and µ = 6 we get maxu ≃ 139 and minu ≃ −86 for image (b)) we note (at
least numerically) that the mean value of the BV component is always null.
The same holds for the remainder term (though it is less significant since it is
much smaller). This confirms that the BV 2 component involves all the image
dynamic information as contrast, luminance and so on.
We present thereafter some results2 for different values of λ and µ. All numer-
ical tests have been performed with δ = 0 since we noticed this parameter has
no influence on the results. We use MATLAB c© software. We do not report on
CPU time since our numerical codes have not been optimized.
In what follows images have been contrasted or equalized to be more “read-
able”.

2 Many others examples can be found at http://web.me.com/maitine.bergounioux/

PagePro/Publications.html
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4.1 Sensitivity with respect to λ

(a) λ = 5 (ρ = 10) (b) λ = 10 (ρ = 5)

(c) λ = 20 (ρ = 2.5) (d) λ = 50 (ρ = 1)

Fig. 2 BV 2 component - v - µ = 50 - ρ :=
λ

µ

We can see that the ratio ρ :=
λ

µ
is significant : indeed if µ >> λ the second-

order term is more weighted than the first order one and the BV 2 component
has a small second derivative. This means that there are less and less details
as the ratio ρ grows and the resulting image is more and more blurred.
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(a) λ = 5 (b) λ = 10

(c) λ = 20 (d) λ = 50

Fig. 3 BV component - u - µ = 50

The ratio ρ is less significant for the BV component u which is sensible
to the λ parameter. One sees that the larger λ is, the more u is piecewise
constant. This is consistent with the fact that the optimal value for Φ1(u)
should be smaller as λ grows.

Moreover, if λ is large enough then u = 0 (Fig. 3 (d)). Indeed we have
noticed that the optimal solution (u∗, v∗) satisfies (4). This means that u∗ is
the solution to the classical Rudin-Osher-Fatemi problem

u∗ = argmin{
1

2
‖f − u‖2 + λΦ1(u) , u ∈ BV(Ω)}

with f := ud − v∗. With a result by Meyer ([15], Lemma 3, p.42) we conclude
that u∗ = 0 if λ > ‖ud − v∗‖G.
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(a) λ = 5 (b) λ = 10

(c) λ = 20 (d) λ = 50

Fig. 4 L2 component - w = ud − u− v- µ = 50 - images after histogram equalization
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4.2 Sensitivity with respect to µ

(a) µ = 5 (b) µ = 10

(c) µ = 20 (d) µ = 50

Fig. 5 BV 2 component - v - λ = 10

(a) µ = 5 (b) µ = 10

(c) µ = 20 (d) µ = 50

Fig. 6 BV component - u - λ = 10 -
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(a) µ = 5 (b) µ = 10

(c) µ = 20 (d) µ = 50

Fig. 7 L2 component - w = ud−u−v- λ = 10 - Histogram equalization has been performed

The same comments hold : the ratio ρ is the significant quantity with respect
to the behaviour of the BV 2 component.
If µ << λ then the BV component u is constant (this is consistent with the
fact that λ is large enough). Once again, if µ grows (while λ is fixed) the BV
component is “less” piecewise constant. The effect of µ on the remainder term
w seems more significant than the effect of λ.

4.3 Decomposition with 3 components

We present the 3 components altogether on image (a) for some values of λ
and µ.This image may be considered as pure texture. We clearly see that the
BV 2 component involves the image dynamic, the BV component u extracts
a macro-texture and the remainder term w a micro-structure. The scaling

between u and w is tuned via parameters λ and µ (the ratio ρ :=
λ

µ
has no

influence).
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(a) Original ud (b) BV 2-component v

(c) BV -component u (d) L2 -component :w = ud −u− v

Fig. 8 Wall for λ = 1 and µ = 1 - ρ = 1

(a) Original ud (b) BV 2-component v

(c) BV -component u (d) L2 -component :w = ud −u− v

Fig. 9 Wall for λ = 2 and µ = 6 - ρ = 0.33
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(a) Original ud (b) BV 2-component v

(c) BV -component u (d) L2 -component :w = ud −u− v

Fig. 10 Wall for λ = 5 and µ = 10 - ρ = 0.5

(a) Original ud (b) BV 2-component v

(c) BV -component u (d) L2 -component :w = ud −u− v

Fig. 11 Wall for λ = 50 and µ = 100 - ρ = 0.5
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4.4 Denoising and texture extraction

We end with image (c). It is quite difficult to perform segmentation of such
an image. Indeed, the image is noisy and there are texture areas (due to the
micritic calcite part). The denoising process should preserve the texture which
involves physical information. As we want to recover the vacuum area we
have to perform a contour segmentation and if possible regions classification
to recover the different physical components of the stone. The decomposition
model we propose, can be used as a pre-processing treatment to separate the
noise and fine texture component w from the “macro-texture” component u
and perform a classical segmentation method on u.

(a) BV -component : u (b) L2 -component : w = ud − u− v

(c) BV 2-component : v (d) Component : u+ v

Fig. 12 Denoising and texture extraction : λ = 10, µ = 20
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(a) Original (noisy) image ud (b) Component :u+ v (denoised image)

Fig. 13 Original and denoised image

5 Conclusion

This model seems promising to perform two-scale texture analysis. Indeed, the
choice parameters λ and µ determines the scale of the “macro-texture”. Once
this part has been isolated, it possible to perform segmentation or statistical
analysis.

There are many open questions that will be addressed in future works :
existence an uniqueness results without penalization terms have to be investi-
gated together with a sharp analysis of the continuous model. The comparison
with existing models should be extensively performed as well: one can find
many comparison tests in [20].

A last we have to improve the numerical process (both discretization and
algorithm) to perform 3D tests in the future.
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