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TRANSITION CHARACTERISTICS OF A SWIRLING ANNULAR FLOW

Arturo Héctor GONZÁLEZ ARAYA1

1 Lehrstuhl für Fluidenergiemaschinen, Ruhr Universität, Bochum, Germany

1 Introduction and scope of the work:

The subject of this paper is transition of a swirling annular flow induced by the Tollmien-Schlichting mecha-
nism which is characterised by waves propagating with a certain speed in the shear flow. One of the outstanding
characteristics of this flow is the helical shape of its streamlines. Flows with such streamlines are very difficult
to successfully simulate with CFD, as the Reynolds stress tensor has a strong anisotropy [1]. The object of
this work is to try to gain insight into the physical features both in qualitative and quantitative terms through
studying the bifurcation characteristics of this flow on the verge of transition. The focus of our attention is
on the shape of the Reynolds stress tensor, for which the relevant properties of the bifurcating solution of the
nonlinear equation of motion for disturbances to the basic flow are examined. A set of (nonlinear) differential
equations governing the dynamics of disturbances in a swirling flow is derived for the flow in the annular gap
between concentric circular cylinders. The analysis is undertaken for the swirling flow when an axial pressure
gradient (parameterized by Re, Reynolds number), a rotation of the outer cylinder (parameterized by Sa, ro-
tation number) and the axial translation of the inner cylinder (parameterized by Tw, translation number) act
simultaneously to maintain the swirling flow.

2 Outline of the method of Stewartson and Stuart to gain an un-
derstanding of the influence of flow parameters in this problem

The starting point of our work is a linear stability analysis for the flow described above. To this end it is
necessary to derive the nonlinear equations of motion for the flow in which the pressure is eliminated as an
unknown. The system of equations derived is referred to as the extended Orr-Sommerfeld and Squire
equations which together with the continuity equation lead to the following equation system which is written
in matrix notation Dv = N :

D =

 DOSr DOSϕ DOSx

DSqr DSqϕ DSqx

DCor DCoϕ DCox.

 ,v =

 vr
vϕ
vx

 ,N =

 NOS

NSq

NCo

 (1)

Here DOS , DSq, DCo, v and N represent the operator in the classical Orr-Sommerfeld equation, Squire
equation, continuity equation, velocity disturbance and nonlinear terms in the radial, azimuthal, and streamwise
directions respectively.
When the velocity disturbance is considered small the nonlinear terms can be neglected and the equation system
above becomes the classical eigenvalue problem with which it is possible to determine the neutral stability surface
of the flow.

Figure 1: Neutral surfaces for a swirling annular flow.



EUROMECH Colloquium 525, 21–23 June 2011, Écully, France
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The diagrams above demonstrate the stabilizing effect of both the rotation of the outer cylinder from
Sa = 0.01 to Sa = 0.3 and the axial translation of inner cylinder from Tw = 0.001 to Tw = 0.05.
The figures of projections of these neutrally stable curves were evaluated numerically through MATLAB-
programs.
Following the steps developed by Stewartson and Stuart for a weakly nonlinear theory, elementary waves cen-
tered around the neutral stability curve which were determined in the linear stability theory are used as part of
a wave packet which for large times is described as superposition of several elementary waves moving with the
group velocity and whose amplitude varies slowly. The slow variation of the amplitude is designated here as B.
The wave packet has the following form:

v = AN (y) exp[iΘN ]exp[ωNit] + c.c.. (2)

ΘN (r, ϕ, x) = (λNxx+ nNϕϕ+ ωN t) (3)

Here the frecuency ωN is permitted to be complex, the wavenumber λNx is real whereas nϕ may assume only
real integer values. The subscript N denotes values on the surface of neutral stability and i the imaginary part.
The above form of the wave involves the identification of a small amplitude parameter εA with the temporal
growth rate ωNi of the wave packet.
When the departure of the parameters of the flow (Re, Sa and Tw) is small relative to those of the neutral
stability surface, the growth rate ωNi can be approximated by its Taylor expansion through the flow parameters
[2].

εA = ωNi = dRe|Re−ReN |+ dSa |Sa − SaN |+ dTw |Tw − TwN | (4)

With the help of this parameter it is possible to define new scales in the problem solving the nonlinear problem
with the method of multiple scales. An asymptotic expansion is introduced for the velocity perturbation v as
well as the extension of the partial derivatives of the equations in the new scales [3].

v ' ε
1
2

Av1 + εAv2 + ε
3
2

Av3 + o(ε
3
2

A) (5)

By substitution of (5) in (1) yields a new system of equations which is sorted according to the order of the
approximations. In the compact matrix-operator notation these may be written as follows:

O(ε
1
2

A) : Dv1 = (RHS)1 = 0.

O(εA) : Dv2 = (RHS)2

O(ε
3
2

A) : Dv3 = (RHS)3 (6)

The solution for v1 is sought in a product form as follows:

v1r = Br(New scales)ANr(y) exp[iΘN ] + c.c

v1ϕ = Bϕ(New scales)ANϕ(y) exp[iΘN ] + c.c

v1x = Bx(New scales)ANx(y) exp[iΘN ] + c.c (7)

Formulating the solvability condition for the equations to the orders O(εA) and O(ε
3
2

A) in (6) , which involves
determining the solution of adjoint problem of original eigenvalue problem, one of the three equations necessary
for the evolution equation of the amplitude B can be obtained.
The remaining equations for B can be obtained through the continuity equation and determining the direction
of flow of kinetic energy in the fluctuation motion, matching the ratio of the partial derivatives of the kinetic
energy to new scales with the ratio of the partial derivatives of ωNi to the wave numbers of the problem.
Besides it is expected that the form of the Reynolds stress tensor in the wall-normal direction is given by
components of the tensor product of (ANr; ANϕ; ANx), with itself.
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