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SECONDARY INSTABILITY OF STRATIFIED EKMAN LAYER ROLL VORTICES

Nadia Mkhinini1, Thomas Dubos1, Philippe Drobinski1
1Laboratoire de MÉtÉorologie Dynamoique / IPSL, École Polytechnique, Palaiseau

We study the transition to turbulence of the Ekman �ow in a linear density strati�cation, an exact solution
of the Boussinesq equations occurring near boundaries in rotating �uids. The control parameters are the

Richardson number Ri = δ2N2

G2 , the Reynolds number Re = Gδ
ν and the Prandtl number Pr = ν

κ where

δ =
√
2ν/f is the Ekman length, ν is the kinematic viscosity, f is the Coriolis parameter, G is the geostrophic

velocity far from the lower boundary and κ is the thermal di�usivity. We consider Re = 500 and Re = 1000. In
order to assess separately the e�ect the di�usion of momentum and heat, we consider two values of the Prandtl
number : Pr = 1 and Pr = 4.

1 Nonlinear primary instability

The Ekman �ow is subject to linear instability for Ri < Ric(Re, Pr) where Ric depends very little on Pr
(Brown, 1972). This instability develops into traveling Kelvin-Helmholtz roll vortices which we compute as a
function of strati�cation as in Dubos et al. (2008). Fig. 1 presents the amplitude of the equilibrated vortices as
measured by their kinetic, potential and total energy. While for Pr = 1 the roll amplitude vanishes at Ri = Ric
this is not the case at Pr = 4. So far only supercritical bifurcations had been identi�ed in the Ekman layer
stability diagram (Haeusser and Leibovich, 2003; Dubos et al., 2008). The subcritical bifurcation observed at
Pr = 4 allows us to compute equilibrated vortices at Ri > Ric.

2 Linear secondary instability

Fig. 2 presents the growth rate σ2 of in�ntesimal three-dimensional perturbations to the travelling rolls as a
function of their horizontal wavenumber ky. For Ri = 0 we recover at ky > 1 the unstable modes identi�ed by
Dubos et al. (2008). New, less unstable modes branches are obtained for 0 < ky < 1. However as Ri increases
the modes for ky > 1 become less unstable, become dominated by the unstable modes for ky < 1 and eventually
disappear. For Pr = 1 the overall maximum growth rate decreases as Ri increases, but not for Pr = 4. This
must be related to the fact that the roll vortices weaken as Ri approaches Ric if Pr = 1, but not if Pr = 4.

3 Conclusion

We have studied the in�uence of an ambient linear strati�cation on the secondary instability of the Ekman �ow.
This in�uence depends markedly on the Prandtl number. Our results reveal that the bifurcation at Ri = Ric is
subcritical Pr = 4. In this regime, �nite amplitude vortices exist beyond Ri = Ric and the growth rate of the
secondary instability increases as the ambient strati�cation increases, instead of decreasing as occurs for Pr = 1
and as intuition suggests. A complementary study of the nonlinear development of the secondary instabilty is
under way.
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Figure 1: Energy of roll vortices as a function of ambient strati�cation. Arrows point to Ri = Ric
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Figure 2: Growth rate σ2 of secondary instability of Ekman roll vortices as a function of wave vector ky (right
: zoom)


