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We consider Taylor–Couette–Poiseuille flow developing between an outer, fixed, impermeable cylinder and
a concentric, inner, rotating, permeable cylinder with radial suction, see figure 1. This system is useful for

Figure 1: Sketch, not to scale, of the annular geometry and laminar base flow.

dynamic filtration because the shear due to the rotating cylinder and, in the case of supercritical flow, the
Taylor vortices, wash contaminants away from the permeable cylinder and prevent fouling. The fluid mechanics
of this system are not fully understood due to the coupling between the axial pressure drop, which drives the
axial Poiseuille flow, and the transmembrane pressure difference which drives the suction. In addition to the
filtration flux, this coupling induces axial variations of the velocity field. These variations eventually modify
the nature of the subcritical flow which can evolve from suction to injection (cross flow reversal) or consume
the whole axial flow (axial flow exhaustion). Moreover, owing to the axial and radial flows and their variations
along the axial direction, the stability of this flow strongly departs from that of Taylor–Couette flow.

1 Analytical approach

Because filtrating devices utilize membranes with small permeability and suction, we propose an asymptotic
solution to the subcritical flow assuming a slow axial variation of the velocity and pressure fields [1]. The trans-
membrane suction is coupled with the pressure through Darcy’s law. The obtained analytical approximation
correctly captures the axial variations of the velocity field, e.g. the two aforementioned possible behaviors. This
laminar flow is then used as a base state to study the appearance of centrifugal instabilities in the form of Taylor
vortices developing in the most common configuration, i. e. when the mean axial flow decreases downstream due
to filtration but do not reverse. According to the theory of nonlinear global modes in slowly varying open flows
[2], the unstable state is expected to form a front at the axial location where the flow undergoes a transition
from local convective unstability to local absolute instability. This front acts as a wavemaker and selects the
frequency of the vortices.

2 Numerical approach

These analytical results for the subcritical and supercritical flows are then compared with dedicated spectral
direct numerical simulations implementing Darcy’s law on the inner cylinder. These numerical simulations
require some special care to correctly handle the axial and transmembrane flows, together with solving the
pressure field, in order to avoid numerical noises prone to trigger uncontroled extrinsic instabilities.

3 Results

As seen in figure 2, global synchronized modes governed by local absolute instabilities are retrieved in numerical
simulations. These numerical results, concerning for instance the features of these instabilities such as the
location of the front or the frequency, are in good agreement with the analytical prediction based on previous
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Figure 2: Temporal evolution of the axial velocity as a function of the axial coordinate, the rotating Reynolds
number is set to 120, the axial Reynolds number varies from 4.32 (inlet) to 3.24 (outlet). (−−): Boundary
between the locally convectively and absolutely unstable regions

results pertaining to the convective/absolute stability analysis of the Taylor–Couette–Poiseuille without radial
flow and the axial evolution of the stationnary part of the total flow.
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