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ABSTRACT

In this paper, we propose a new, scalable apprfmadhe task of
object based image search or object recognitiospBethe very
large literature existing on the scalability issulesCBIR in the
sense of retrieval approaches, the scalability afdim and
scalability of features remain an issue. In ourkwee tackle the
problem of scalability and structural organizatafrfeatures. The
proposed features are nested local graphs buit gpts of SURF
feature points with Delaunay triangulation. A Bdgvisual-
Words (BoVW) framework is applied on these graphising
birth to a Bag-of-Graph-Words representation. Thsted nature
of the descriptors consists in scaling from tribalaunay graphs
- isolated feature points - by increasing the nundfeodes layer
by layer up to graphs with maximal number of nodes. each
layer of graphs its proper visual dictionary is IbuiThe
experiments conducted on the SIVAL data set revieal the
graph features at different layers exhibit completas/
performances on the same content. The nested approize
combination of all existing layers, yields sign#itt improvement
of the object recognition performance comparedingls level
approaches.

Categoriesand Subject Descriptors

1.4.7, 1.4.8 Image Processing and Computer Vision]: Scene
Analysis —Object recognitionFeature Measurement Feature
representation.

General Terms
Algorithms, Measurement, Design, Experimentation.

Keywords
Nested features, Bag-of-Visual-Words, Graph Woidslaunay
triangulation, Context Dependent Kernel.

1. INTRODUCTION

Visual object retrieval in images and videos is @fieghe most
active field of research in the community. One imaot aspect of
the most popular techniques addressing this taskhe use of
local features, SIFT (Scale Invariant Feature Thans) of Lowe
[1] or SURF (Speed-Up Robust Features) of Bélykey points
for instance. SIFT and SURF key points are robust a
discriminative local features. SIFT points are deteé on local
minima/maxima of a Difference of Gaussians (DoG)age
computed at different scales. The SIFT key poirtufie is a
orientation histogram in a close spatial neighbochof the key
point. SURF is based on sums of approximated Haarelet
responses and use integral images in order to age&ey points
extraction.

In the trending approach of Bag-of-Visual-Wof@§ the features
are quantized in visual dictionaries by clusterarg images are
depicted as a distribution of the visual words witthem. The
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Bag-of-Visual-Words approach is an adaptation oé tlext
retrieval approach Bag-of-Words (BoW) to imagese BoVW
operates on local key points when BoW operates ordsy the
semantic power of a word is much higher than oog&local key
point. A visual word is also much more ambiguouantta text
word. Moreover, the BoVW approach discard all spati
information about the relations between key poittaving a
similar neighborhood of key points in two imagedigates
stronger similarity of content than sparse isol&tey points.

To overcome this limitation of the BoVW, some apgmioes have
been presented in the past few years. The spatiednpd
matching proposed irf4] and used in[5] and [6] for its
application to object or scene recognition enatdesompare area
generated from arbitrary splitting instead of thieole image. In
[7] an approach called “Visual Phrases” is usedyiaup visual
words according to their proximity in image plariéhe visual
phrases are represented by a histogram containéndistribution
of the visual words in the phrase. In these wotke, common
idea is to build local signature according to augisdictionaries
from an arbitrary splitting for the spatial pyramithtching or on
a set built by a proximity criterion for visual @lses. Our
approach is introducing the local topological imfation within
the visual features.

In this paper we propose a spatial embedding dufea with

local Delaunay graphs. The motivation for buildisigch graphs
comes from the invariance of Delaunay triangulatidth regard

to affine transformations of image plane: rotatitanslation and
scale. Hence, with invariant key point featureshsas SURF the
global invariance of graphs is maintained. We putigese graph
features into a Bag-of-Visual-Words framework, Hirf visual

dictionaries by clustering graphs. Then the estdithe-art visual
signatures are used for object retrieval. Incrensiie number of
nodes in graphs yields a layered approach whetelager induce
a stronger spatial embedding within graph featués.call this

approach “nested” .lt combines visual signatureslbgraphs

from trivial graphs which are isolated SURF poitdghe largest
graphs we work with.

The paper is organized as follows, in section 2digeuss the
process of building these graphs and introducer thested
construction. In section 3, we introduce the didsirty metric

used to compare graphs and built visual dictiosanieclustering.
The latter are presented in section 4. Experimeitts these new
features are presented in section 5. Conclusiodsparspectives
are given in section 6.

2. GRAPH FEATURE CONSTRUCTION

Let us consider a graple=(X,E) with X a set of nodes
corresponding to some feature poirtg-; x, in image plane and
E={eq} k=1.k =1k, Where a.=(Xx,X), a set of edges connecting
these points. We call such a graph a “graph featwse will
build these features upon sets of neighboring feapoints in



image plane. Hece we propose a spatial embedding of I

features with graphs. To build such grapwo questions have to

be addressed : i) the choice of feature points X and ii) the
design of connectivity as edges

To define the feature points setsipon whict graphs will be built
we are looking for a seff feature points that we call the “see.
Around themother feature points will be selected to build ¢
graph feature. One could consider @#itectedSURF points as
seeds, however that would lead teteong overlapping of grap
and would induce highedundancy in the set of graph featL
created. Therefore, the selected sdwtlee toform a set of SURF
points which are more likely to be detectewarious instances of
the same object. This selectican be done using a criterion
the “size” of the key point or othe octave in which it has be
detected. This would mean givingriority to SURF point:
detected in higher scale or lower scale which has real
significant impact on their repeatabiliffhe best criterion for thi
task is the response of the SURF key p, which is the
approximated determinant of the HessieSURF points are
detected where local maxima of the approximateHessian
determinant are reachdd]. SURF points with higher respon

are then more likely to be more repeatatHence, the seeds

consideredor building the graphs will be the SURF pointsiw
highest responses. Considering a fixagimbe of seedNseeqs, We
can define the set of seets

S:{Sl""’SNSeeds}

Given S, our aim is to add partial structural informatiohthe
object while keeping the discriminative power of R key
points. We will therefore define graphs over the seeds taed
neighboring SURF points. Finding the spatial nearest SUR
neighbors of each seedgives the set of neighboP;:

R :{ pl""’pk}

Hence the set of nodes for each graph upon a ssetlip built.
For the edgeswe use the Delaunay triangulation which
invariant with regard to affine transformations iafage plane
preserving angles: translan, rotation and zoorr Furthermore,
regading the future extensions of this work to vidde thoice o
Delaunay triangulation is also profitable for itsog properties il
tracking of structuref8]. The set dall vertices used for buildin
the graphG; is X%, the union of the seed and its neighbort:

X6t = {xfi, o, X } =P, U{s;}

A Delaunay triangulation is computed on the poinfsX®,
building triangles according to the Delaunay caistr An edge
6=(x® x) is defined between two vertices of the grG; if an
edge of a triangle connects these two veri

(@) SURF Features (b)3-nearest neighbor graphs

(-nearest neighbor graphs

(c) 6-nearest neighbor graphs

Figure 1. SURF and graph features on a cropped image of the
object ajaxorange from SIVAL database.

Introducing a layered approach, where each layels more
structural information we can define graphs of &asing siz¢
while moving fromone layer to the upper one. To avoid a l¢
number of layers, the number of nodes added atlegeh shoulc
induce a significant changef structural informationTo built
Delaunay triangulatiorgt least two points have to be added to
seed at the secondyker. Adding one more na may yield three
triangles instead of just onegsulting ir a more complete local
pattern. Therefore, the number nodes added from one layer to
the upper one is fixed to thr We define four layers, the bottom
one cordining only one SURF point, the seed, anc top one
containing a graph built upon the seed its 9 nearest neighbors,
see examples in Figure @ne layer will always conta the points
of all the lower layers, hence we « this approach “nested” and
illustrate it in Figure 2.
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Figure 2: The nested approach. Bottom to top: SURF seed
depicted as the white node, 3 neighbors graph where
neighbours are in black, 6 neighbors graph and 9 neighbors
graph.

3. GRAPH COMPARISON

In order to integrate these new graph featuresBag-of-Visual-
Wordsframework a dissimilarity measure and a clustenreghod
have to be defined. In thisectior, we define the dissimilarity
measure.

When defining such a measur, the (dis)similarity of node
features onlyor only topologycould be considered. However, it
should be much more interesting ake into account both SURF



descriptors — node features- and graph topologyadhieve this
we will investigate the use of the Context Depemdéarnel
(CDK) presented inf9]. The definition of the CDK relies on two

This dissimilarity measure will be applied sepdsaten each
layer. However, for the bottom layer, since therag topology to

matrices:D which contains the distances between node features take into account for isolated points we will useectly the

andT which contains the topology of the graphs beinggared.

Considering two graph& andB with respective number of nodes
m andn, let us denot€ the union of the two graphs:

C=A0B
with x¢=x"OAforiOfl.m|=1,
xiC =xi_mBDB foriD[m+1..m+n]=IB

The feature correspondence square m&irof size(m+n)x(m-+n)
contains the “entrywise” J-norm (i.e., the sum of the square
values of vector coefficients) of the differencevibeen SURF
features:

D= (dij )ij

C

whered, = H)gc - X,

2

The topology square matrik of size (m+n)x(m+n) defines the
connectivity between two vertices® and x°. In this work we
define a crisp connectivity as we Jgtto one if an edge connects

the vertices;© andx;© and 0 otherwise. Hence, only sub matrices

where both lines and columns lip or Iz are not entirely null.
More precisely, we can define sub matricégy and Tgg
corresponding to the topology of each gré@pandB respectively,
while sub matricesT,g and Tga are entirely null, vertices of
graphsA andB are not connected.

T= (T.J )ij
1if Oe(x,x,°)

whereT; = _
0 otherwise

The CDK denotedK is computed by an iterative process
consisting of the propagation of the similaritythe description
space according to the topology matrix.

exp(-2)
K©) = B M _ G(K ™)
' -1
) R T
B

_ D a_ @t
G(K) = — + =TT
(K) =exp( ﬁ+ﬁ )

Where exp represents the coefficient-wise expoakndéind
[IM[:=2;;|Mj;| represents the L1 matrix norm. Similarly to the
definition of sub matrices in topology matixwe can define sub
matrices in the kernel matrix. The sub matriX,s" represents
the strength of the inter-graph links between gsaplandB once
the topology has been taken into account. We careftre define
the dissimilarity measure that will be used forstéring:

S(AB)=X, | K,"“ O[og]

p(AB) =s(A, A) +5(B,B) - 25(A B) 0[0]]

“entrywise” L-norm of the difference between SURF features as
an approximation. This approximation is valid if eensider high
enough values fg#, see Appendix for details.

4. VISUAL DICTIONNARIES

The state-of-the-art approach for computing thealiglictionary
of a set of features is the use of the K-meandaiing algorithm
with a large number of clusters, often several samds. The
code-word is either the center of a cluster or a-parametric
representation like a K-Nearest Neighbors (K-NN)ting
approach.

Both of these approaches are not suitable for thehgfeatures as
using the K-means clustering algorithm impliesately moving
the cluster centers with interpolation whereas niiefj a mean
graph is a difficult task; and a fast K-NN needs indexing
structure which is not available in our graph featspace since it
is not a vector space. Therefore, we present infoHewing
section the selected method which is a two pastoaggative
hierarchical clustering. The model of a clusterciosen as its
median instead of the mean.

4.1 Clustering method

In order to quantize a very large database, ithmmteresting to
use a two pass clustering approach as proposddOin as it
enables gain in terms of computational cost. Hbxefirst pass of
the agglomerative hierarchical clustering will henron all the
features extracted from training images of one abjBhe second
pass is fulfilled on clusters generated by thet frass on all
objects of the database. To represent a cluster,usee the
following definition of the median:

m
median = argmin . Hvi —GH
GOvi=1

With V — a cluster antl, — members of a cluste§ the candidate
median and|| || is a distance or dissimilarity measure in our
case.

For the first pass, the dissimilarities betweentladl features, of
the same layer, extracted on all the images of lajecb are
computed. For the second pass, only the dissitidarbetween
all the medians of all object clusters are computeach layer
being processed independently, we obtain a visietibdary per
layers of graphs with 1, 3,. Nyaxnodes.

4.2 Visual signatures

The usual representation of an image in a BoVW gy is to
compute a histogram of all the visual words of thetionary
within the image. We use this representation witlrejection, a
feature is always assigned to the closest worHardictionary.

Once the visual signatures of images have been wmapone
can define the distance between two images as i$tande
between their visual signatures. In preliminary exkpents we
have compared results when using Hamming distdfeeljdean
distance and L distance for this task. The, ldistance giving
better results, final results are presented usiirsgmheasure only.



5. EXPERIMENTS

The SIVAL (Spatially Independent, Variable Areaddrighting)
data set [11] includes 25 objects, each of themdpiesent in 60
images taken in 10 various environment and diffepaises. This
data set is quite challenging as the objects gpectbel in various
lighting conditions and poses, see a snippet ofdhi set in
Figure 3. It has also been chosen as the fututlei®fvorks is the
recognition of objects of the daily living that mappear in
different places of a house, like a hover that t@ymoved in all
the rooms in one’s house.

Figure3: The SIVAL data s&t.

We separate learning and testing images by a rarseétention of
half of the images for each object. We only take account the
content of a bounding box of each object as theddithis paper
is only object recognition and not yet localizatiddURF key
points are extracted within the bounding box, thenbers of

seeds for the graphs building process is fixed0®. Ihe second
layer corresponds to graphs built upon the seedks thair 3
nearest neighbors, the third layer with the 6 retareighbors and
the fourth and last layer with the 9 nearest neighbFor the
CDK, a is set to 0.0001f to 0.1 (ensuringl is a proper kernel)
and the number of iterations is fixed to 2, H. S4Bbhas shown
that the convergence of the CDK is fast. The fi@ss clustering
compute 500 clusters for each object. The finatiahary size
varies in the range 50-5000. Each layer will yiétd own
dictionary.

The performance is evaluated by the Mean Averageision
(MAP) measure. For each test images, all imagekerearning
set are ranked from the closest (in terms pflistance between
visual signatures) to the furthest. The averagecigim is
evaluated for each test image of an object, andMA® is the
mean of these values for all the images of an objdbe test set.

5.1 SURF vs Graphs

First of all, it is interesting to analyze if theagh words approach
where each layer is taken into consideration séglgrabtains

similar performances compared to the classical Boafyjgroach

using only SURF features. This is depicted in Fégdr Here we

can observe a really similar behavior between iedlaSURF

features (dotted lines) compared to a single lajegraph words

(dashed lines) even if the approach using 9 neaveigthbor

graphs seems to slightly outperform the others. déerease in
performance on the right side of the curve cannfyguted to the

two pass agglomerative clustering. Indeed as wectzl 500

clusters for each object in the first pass, th@seégass has only
12500 points to build 5000 clusters in our expentakset-up.

This will conduct to an over segmentation of thetidnary where

similar features are not grouped in the same asisTée decrease
on the left side is due to a too small dictionaizesvhere not

enough words are discriminative between objects.

This similar average performance hides however somigy
important differences in the performance of eaciuiee on some
specific objects. To illustrate this we select fobjects categories
where graphs features and SURF give different pedaces in
Figure 5 and Figure 6. For the objects “apple” @putitecan”, the
isolated SURF features outperform the graph apprasee Figure
5, whereas for the “wd40can” and “feltflowerrug” jetts the
graphs features perform better, see Figure 6. Thiequal
discriminative power of each layer leads naturtdiyhe use of the
combination of the different layers in a singlewgksignature.
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Figure4: Average MAP on thewhole SIVAL data set. | solated
SURF features are the dotted curves, single layer Graphs



Words are drawn as dashed curves and the nested approach
in solid curves.

5.2 Thenested approach

The combination of graphs and SURF features is dpnehe
concatenation of the signatures of each layer.tlitee curves in
solid lines in Figure 4 correspond to the nestepr@gch using
only the two bottom layers (SURF + 3 nearest nedghlgraphs)
in red, the three bottom layers (SURF + 3 nearesghiors
graphs + 6 nearest neighbors) in green and allalyers in blue.
The improvement in the average MAP is really sigaifit, and
each addition of layer improves the results.

The detailed results presented in Figure 5 andr&i§uwhere the
nested approach results are the solid curves, sthav the

combination of the visual signatures computed oohekayer

separately performs better or at least as welhas thest isolated
feature.

local key points. The nested approach of using grgw
neighborhoods in several layers enables to captiuee most
discriminative visual information for different tgp of objects.
Using growing spatial neighborhood clearly improties results
while each layer taken separately yields similauits.

The future of this work is the application of thesttnod to the
recognition of daily living objects in videos. Tlaproach could
be enhanced by refining some steps of the graptsroetion and
comparison. For instance, the selection of seedsldce

performed by an adaptive method and the topologjrixnae

defined with a soft connectivity. In order to bdi@ént when

processing a large amount of images, i.e. in videograph
embedding procedure could be applied to use anximge
structure that would speed up the recognition mece

7. ACKNOWLEDGMENTS

This work is partly supported by a grant from theRA (Agence
Nationale de la Recherche) with reference ANR-ORRL0165-
02, within the IMMED project.

8. APPENDIX

Y B =+ = Let A andB be two SURF points. The application of the same
0T - T e Saple f;lissimila_rity measure as the one u_sed for the graml_nnot be
TR X ! oyl iterate since no topology can be defined for atated point. The
Ty, i hd SR dissimilarity measure can only be estimated&h
2 . S| spritecan
. St Let us denoted the “entrywise” L-norm of the difference
o1 between SURF features AfandB. If the parameteg of the CDK
. is set to be high enough with regards to the valfed, the
S & & & & & & dissimilarity 0 defined in sectioi® can be approximated loly
& & £ & & &

Figure 5. Detailed MAP for a selection of objects where
isolated SURF features (dotted curves) outperforms graphs
(dashed curves). The nested approach is depicted as solid
curves. For better readability only performances of graphs
built with 9 nearest neighbors and corresponding SURF

featuresare presented.
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Figure 6: Detailed MAP for a selection of objects where
graphs (dashed curves) outperforms isolated SURF features
(dotted curves). The nested approach is depicted as solid
curves. For better readability only performances of graphs
built with 9 nearest neighbors and corresponding SURF

featuresare presented here.

6. CONCLUSION AND PERSPECTIVES

In this paper, we have presented new graph featwrisupon
SURF points as nodes and expressing spatial netati@tween

exp(-2)
K(0)=—'8 where D=(0 d]
exp(B)H @0
Bl
—d
LetE=exp(%)= —1_d e'B
e'g 1
o _ E _ E
K\ = =
|Ely -d
o1+e Py
0(A B) =s(A A) + (B, B) — 25(A, B)
-d -d
_ 2—2e'8 _1—e'8
= SRR

sire By 1+e B
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