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Abstract

The paper deals with the dynamic modeling of mechatronic devices, which usu-
ally need detailed modeling to be described and to take into account the physical
properties of the system. VHDL-AMS! , which is a powerful unified modeling
language for mixed system, allows to describe a large range of physical systems,
for their dynamic simulation. It allows to describe models of physical compo-
nents and then to connect them to obtain the model of a system.. However, this
language cannot support the description of some physical phenomena, such local
ones, defined by numerical methods (e.g.: finite element method, special numer-
ical integrals). When an aspect of a model cannot be described in VHDL-AMS,
the paper proposes to use software components. So, the aim of the paper is to
propose a generic way to extend the computation capability of VHDL-AMS, by
coupling the models described in VHDL-AMS with external ones specified as
software components (where VHDL-AMS fails). The approach has been applied
on several applications, among them the time simulation of an electrical plunger

Keywords: VHDL-AMS, software components, coupling models, complex
multi physics systems

1. Introduction

Mechatronic systems can be defined as complex and heterogeneous systems.
Their models deal with different physical aspects: mechanical, electrical, ther-
mal, and magnetic, etc. It is therefore essential to achieve a successful simula-
tion of theses systems; which is a delicate task facing several problems related to
models and simulation tools: (1) wide choice of models of different natures and
described in different formalisms; and (2) multitude of time simulation tools,
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specific for its domain, which don’t have a direct compatibility between them.
The modelling level of the components of such systems depends on the aim of
the study carried out for them. For example, a electrical generator may be
represented by an ideal source for its study in a large power grid simulation, a
park model for it study in a wind generator simulation, a finite element model
in the analyse of its magnetic behaviour. So, the choice of the abstraction level
is a compromise between computations speed, accuracy, model description eas-
iness, or its availability in a model library. However, there is no tool allowing
a complete simulation of mechatronic system and its components and be able
to meet all the user’s needs. To address these problems, specially for model-
ing electromagnetic devices as a kind of mechatronic system, it is important to
adopt interoperability solutions ensuring compatibility with other models and
with simulation tools. The ITEEE Glossary defines interoperability as: ”‘the
ability of two or more systems or components to exchange information and to
use this information that was exchanged”. Various approaches can be used:

e The first approach focuses on the possibility to link applications at run-
time in order to co-operatively exchange information. This co-simulation
strategy allows a more flexibility modeling and simulation than others
because the models are simulated separately on their own dedicated soft-
ware.

e - The second approach is achieved on the level of the models, which de-
scribes mechanical, electrical, magnetic and other physical processes. It
consists on extracting models developed in a specialized tool for exter-
nally reuse in industrial mechatronic simulators (e.g. Portunus, Simplorer,
Smash, etc) in order to benefit from the expertise behind. This is done
by: (1) describing models with a standardized multi-physics modeling
languages like VHDL-AMS [1], Modelica [www.modelica.org], system-C
[www.systemc.org] and Verilog-AMS [www.designers-guide.org]; or (2) ex-
changing and reuse of existing components models at the source code level
or through a dynamic link library.

The paper focuses on the system modeling level for dynamic simulation,
applied to electromagnetic devices and for interoperability needs in order to de-
velop a unified architecture for the multilevel modeling of theses devices, based
on a standard for model description. The most difficult task of the proposed
approach is to simulate accurately the magnetic component in VHDL-AMS.
However, what to do for modelling aspects that are not explicitly supported by
VHDL-AMS (ex: partial differential equations) or difficult to describe in such a
language (e.g. due to numerous symbolic treatment, like for the force computa-
tion in the application presented in the last section)? To avoid the limits of the
language, the paper proposes for that an approach based on the transfer of mod-
els from dedicated magnetic tools of these components like RelucTool software
[2], developed at G2ELAB, for designing reluctant networks [3]; to a general
mechatronics simulation environment like Smash, thus allowing the simulation
of the component coupled to its electro-mechanical environment. RelucTool



software generates automatically a black box model as a software component
from a graphical description of the reluctant network. This standardized soft-
ware component has been defined in our laboratory and they are named ICAr
(for: Interface for Component Architecture). So, the proposed approach have to
export this specific software components into a VHDL-AMS models, ensuring
then the interoperability between models and offer to designers the possibility
to use VHDL-AMS as a unified description language for many modeling aspects.

In this way, section 2 deals with VHDL-AMS aspects and the software com-
ponent paradigms, focusing on the ICAr standard developed in our lab. Section
3 presents the need of the proposed approach (of exchanging models) for de-
signing an electromagnetic actuator. Then, section 4 discusses the way to carry
out the coupling between VHDL-AMS and ICAr software. In this section, a
generic implementation of this coupling will be presented discussing the data
exchange between the two formalisms. Finally, in section 5, this approach is
applied on the linear actuator. It shows how to mix such formalisms to perform
the dynamic simulation of the actuator.

2. Modeling techniques and tools

2.1. VHDL-AMS Language

The VHDL-AMS, an IEEE standard 1076.1, is an extension of VHDL hard-
ware description language, which is used for the description and simulation
of event- driven systems [1]. VHDL-AMS propose to support the description
and the simulation of analog and mixed signal circuits and systems. It allows
to define and to deal with the modeling of the behavior of multi-physical and
multi-technological systems [4]. Its purpose is to provide formalism for the hi-
erarchical description and simulation of physical systems. Designers can create
and use models that integrate high-level behavioral descriptions, as well as struc-
tural and physical descriptions. A VHDL-AMS model consists of an entity and
one or more architectures [5]. The entity specifies the extern view of the model.
It includes the description of its physical ports and the definition of its generic
parameters. The architecture contains the implementation of the model. It may
be coded using a structural or behavioral description, or both. The structural
description specify the connectivity between the physical components; which
can be carried out with the Architectural Description Language (ADL[6]),and
the behavioral description is made by concurrent statements to describe event-
driven behaviors and simultaneous statements for continuous ones. Fig.l is a
VHDL-AMS description of an electrical resistor.

This language specifies the possibility to describe the behavior of a com-
plex continuous system by formulating its corresponding differential algebraic
equations (DAE). Thanks to its standard well-defined in terms of syntax and
semantics, it ensures portable descriptions among different industrial simulators
(e.g. Portunus, Simplorer, Smash, etc.). Due to their complexity, partial differ-
ential equations (PDE) were left out in VHDL-AMS [7]. This limits the accuracy
of system block modeling which includes local physical effects. Because of the
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Figure 1: VHDL-AMS model of a resistor

importance of PDE in electromagnetism, different approaches filling this lack in
the design flow using VHDL-AMS are proposed. A reduction of FEM models
is presented in [8], which is an export of reduced order modeling (ROM) to
VHDL-AMS with an interface matching the system structure. In paper [7], two
modelling approaches were used: the first consist in using a spatial discretiza-
tion and the second consists in using an equivalent circuit approach. Then, an
extension of VHDL-AMS has been also proposed in order to take into account
this aspects [7], but it is not yet integrated on the standardized language.

2.2. Software components

The ”software component” modeling approach has been extensively stud-
ied to design models on several applications and domains, as electromagnetism,
electronics, microsystems and so on [2] [9] [10] [11] [12]. A software component
standard is defined as an autonomous deployment entity, encapsulating a soft-
ware code and described by its interfaces. A specific pattern has been defined
in our laboratory for the standardization of such software components [9]. They
are named ICAr (for: Interface for Component Architecture). The ICAr com-
ponent is an executable Java code defined by its input/output variables and the
services that it can bring. It is characterized by an evolutionary architecture
and can be seen as a multi-services component. Services are available via dif-
ferent facets that are accessible via the interface ”component” (Fig. 2). Each
facet may represent behavioral model, sensitivity computation, time simulation,
model accuracy. Facets mayalso represent a part of the system to be simulated
(electromagnetical, mechanical, thermal, economical).

The ”component” interface presents the way to instantiate the component,
defines its inputs and outputs, and how to interact with all its features, as shown
in Fig. 3

This paradigm of software component in general and specifically the ICar
component assures sharing, exchanging, capitalizing and reusing models. It can
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public Class[0.."] getOutputTypes( )

Figure 3: ICAr interfaces: component and facet (Java implementation)

also support complex models and their solvers whatever their physical nature
is.

3. The need of an exchange model approach on electromagnetic de-
sign

Fig. 4 show the studied device, which is a dynamic moving core actuator
with a coil bounded to its central leg [13]. The dynamic motion of a core is driven
by a magnetic system, and it is dealing with electric, magnetic and mechanical
modeling. It is very challenging to design such a system accurately because
its operating is based on several physics and complexity levels. Indeed, it is
a multi-domain device including the magnetic circuit, interfacing the electrical
domain and the mechanical loads. The electrical driver circuit controls the
current in the coil, and the mechanical subsystem computes the influence of
damping sources on the displacement of the moving part damping behaviour.
Also, many physical effects in this system can be mathematically formulated
by a coupling between PDE and DAE. In this way, how to design this system
by invoking the multi physical modeling using VHDL-AMS as unified language
modeling?

The objective of this work is to be able to design and simulate this system
with VHDL AMS language to solve interoperability problems. In this electro-
magnetic actuator:
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Figure 4: Simplified moving core actuator description

e the state system modeling of the electrical circuit feeding the coil was
defined by two differential equations; the inductance value is provided by
the magnetic model.

e the state variable of the mechanical part of this system are the core po-
sition z, and its velocity v; the state system is defined by two differential
equations depending on the value of applied residual forces.

e the magnetic part of the actuator which is represented by reluctant net-
works (RNM][3]).

The complete device model can be carried out in several ways, among them:

e a VHDL-AMS modelling of the complete device using the model of paper
[13]; however, the magnetic force calculation is very approximated. This
difficulty is more presented in paper [14] proposing a Modelica description
of reluctance networks.

e an accurate model by finite element for the magnetic part and a VHDL-
AMS modelling for the electrical and mechanical parts; however, the nu-
merical method is computing time consuming [15]

e a reluctance network model for the magnetic part with the magnetic force
obtained from the derivative of the co-energy according to the movement
variable (z in figure 4) [16], and a VHDL-AMS modelling for the electrical
and mechanical parts.

The third is more suitable for system level modeling of the dynamic actuator.
However, how to render easy the modelling of magnetic part, in particular as
said previously VHDL-AMS language don’t support non temporal derivative?
The solution proposed is then to apply the approach based on exchanging model
from a dedicated tool for designing magnetic circuit and coupling the VHDL-
AMS model to the electro-mechanical one on Smash simulator.

ReluctTool is proposed as a dedicated tool for the fast simulation and pre-
sizing of electromechanical actuators [12]. In which, the reluctance network



is described graphically. The magnetic force expression is obtained automati-
cally from the derivative of the co-energy in the reluctances according to the
movement variable [16]. The model is automatically generated in a software
component as an ICAr component.

RNM Model

Reluctool Description

ICar Component
= generated

7y

L =-feh=

Figure 5: The reluctance representation of the magnetic circuit

As a result, for the approach, the behavior model of the magnetic part
of the actuator is a RNM model, implemented in RelucTool tool (Fig. 5). It
generates, then, an ICAr component encapsulating this model. It is the software
component, that it be included into a system simulation of the whole dynamic
actuator on Smash simulator using VHDL-AMS language. How can the coupling
between VHDL-AMS and ICAr software can be achieved?

4. Model interchange using VHDL-AMS language

4.1. Interchange porcess

As it has been indicated, the approach followed for model interchange be-
tween the ReluTool software et SMASH tools consists in transferring the mod-
els using VHDL-AMS for model description. Fig. 6 shows the overall process
that starts by creating the model of the magnetic component using the pro-
prietary languages of ReluTool software. Then this tool exports its models in
VHDL-AMS format, using the language subset described previously. This ar-
chitecture allows the transfer of models from RelucTool to other VHDL-AMS
native simulators. This independent entity can be imported in SMASH as a
VHDL-AMS model via external functions. For that, the VHDL-AMS export
function is added to Reluctool software have to deal with the coupling between
VHDL-AMS models and others described in software components.

4.2. Export an ICAr component in VHDL-AMS

The export functionality consists in defining an interface or overlapping layer
between the VHDL-AMS models and an external code (written in C or encap-
sulated software component), for data exchanges. The final model obtained is
a VHDL-AMS model with external functions, as one single ENTITY of VHDL-
AMS, with its dynamic behaviour represented by ARCHITECTURE. It requires
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Figure 6: Process and Model interchange using VHDL-AMS

as a first step to encapsulate the whole magnetic model as a black box that be-
haves externally as any dynamic system. VHDL-AMS offers this opportunity
to extend his functionalities by including external functions written in another
programming language or and foreign subprograms in its models. That is possi-
ble thanks to its pre-defined attribute called ”Foreign” [1], which allows the user
to transfer additional information to the simulator or other external entities.

The "FOREIGN” attribute is used then to complement architectures, func-
tions or subprograms for VHDL-AMS models. Although this attribute is defined
in the VHDL-AMS its use is not specified, so it depends on its implementation
in simulation software. A foreign subprogram is a program in other formalism
than VHDL-AMS, but call in VHDL-AMS thanks to FOREIGN’ attribute, as
shown in Fig. 7. This call is defined by a string characterizing the external pro-
gram as a specific function. This string value depends on the implementation
of both the ”Foreign” attribute in the time simulator and the external program
implementation.

Definition of the external

Package P is .
function to be called

function F return INTEGER;
attribute FOREIGN of F : function is
« implemeni\ation —dependent informations »;

Implementation of
external program

end package P; “FOREIGN” attribute

Figure 7: Package defining the ’Foreign’ attribute of VHDL-AMS

However, the VHDL-AMS standard does not specify the mechanism for the
implementation the FOREIGN attribute. Consequently, the exact interpreta-
tion of this attribute depends on its implementation in a particular simulator.
At the present time, the only simulator which implements this attribute is Smash
from Dolphin integration [www.dolphin.fr]. This implementation requires only
the integrating of C functions. So, the export functionality of RelucTool relies
basically on the use of native code (C/C++) to perform this coupling [17].

As a result, to import of the external models on various formats into VHDL-



AMS systems or to make it able to communicate with external environements/solvers,
the authors have developped a generic C-communication interface for this cou-
pling. This interface makes able easily (Fig. 8) the VHDL-AMS model to include
C/C++ models or dynamic linked libraries (DLL) and allows exchanging data
between them.

However, ICAr components are developed in Java language, because it is an
independent platform language and so it offers more portability for component.
That is why, to be able to load and manipulate these software components from a
program or a software tool developed primarily in C/C++, Java data-structures
have to be converted into programs compatible with C data-structures. These
conversion routines are based on the Java Native Interface (JNI), i.e. the stan-
dardized C-interface of the Java Virtual Machine (JVM).

So, to import an ICAr component from a C program, this last should be
able to understand the component services via its various facets. For that, the
paper proposes an ”Interface Adapter” to implement this functionality propos-
ing generic services for introspection of theses components (Fig. 8). A C/C++
dll project was built gathering the different C functions for JVM launching,
JNI adaptation routines, ICAr loading, facets and interfaces introspection and
methods calling. Once the adaptation between the ICAr component and the C
code is made, each C function compiled in a library can be after that called in
VHDL-AMS using Foreign attribute defined by C/++ external functions.

VHDL AMS CIC++ Model
model

Entity {

— || Function]

<«

} E;]ata } Interface ' @
excnange Adapter "-

Architecture { ICAr

Function? { Software
Equations Foreign _ . components
Functions ] /
Call of
} functions

Figure 8: Coupling between the AMS and VHDL model component ICar

Finally, a VHDL-AMS -skeleton, corresponding to the architecture of the
ICAr model, is generated automatically by a Java program. This program
introspects the component in order to determine its facets, different inputs and
outputs and generates the corresponding VHDL-AMS block description. This
block defines its inputs/outputs and parameters. It also describes relations
between them, in equation section, defining the model. These relations are
defined through a well defined sequence of C external functions.



5. Example of coupling Strategy on electromagnetic actuator

n order to validate the methodology of ”data coupling” between VHDL-AMS
model and ICAr component, in order to validate the export functionality added
to Reluctool, an electromechanical actuator is designed in VHDL-AMS language
and simulated (Fig.5). As said in section 3, the dynamic motion of a core is
driven by a magnetic system, and the model consists of electric, magnetic and
mechanical modeling. The dynamic model of the device represents a coupling
between the electrical circuit feeding the coil and the mechanical part of the
moving part. Only the linear vertical movement of the moving part is possible,
which is subject to different damping sources due to translational linear spring.

This electromagnetic device is designed and simulated using the approach
previously presented:

o the electrical circuit was described by its two differential equations (ODE)
on VHDL-AMS with the inductance value as an external inputs;

* di

1:_
dt

*_ R di i
L(z) dt L(z).C

e the mechanical part was also described by its two differential equations
(ODE) on VHDL-AMS to compute position z and velocity v, depending
on the value of applied residual forces;

. 0,5iF<0
B v,siF=0

0,siF<0

E,siFZO
m

e - the magnetic circuit of the actuator is developed on RelucTool as RNM
model (Fig. 7), providing an ICar component exported into VHDL-AMS
model. This component compute the magnetic force from the derivative
of the co-energy according to the movement variable (z) [16];

The ICAr component of the RNM model was generated with the Reluctool
tool as a static component (no time differential expressions). Once the com-
ponent is generated, the ”interface adapter” based on the JNI is implemented.
The last program must respect the ”FOREIGN” mechanism as implemented on
SMASH software, as shown in Fig.8. Then, the VHDL-AMS package is pro-
grammed to be able to call the ”foreign subprogram” on VHDL AMS model
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by specifying the name of the called function, its path and its arguments. This
”interface adapter” is an automatic interface which allows to load an ICar com-
ponent, and makes it able to communicate with its exterior environment.

This component is then inserted into the global dynamic actuator with its
environment circuit model described in VHDL-AMS language. The full VHDL-
AMS model is shown in Fig. 9.

Fig. 10 shows the exchange protocol between a VHDL-AMS model and
an ICAr software component in a time simulation process. The protocol is
implemented into SMASH software, considering the actuator as a macro VHDL-
AMS model calling external functions which exchange inputs/outputs through a
software component. So, when the simulator starts, all the modeling objects are
loaded and connected, and initial values are set. During this stage, all foreign
shared libraries are loaded and initialization functions of all foreign architectures
are called.

A first analysis was performed with the moving core actuator system. The
main dynamic behaviour is analysed. Fig. 11 shows simulation results for the
evolution of all state variables of the actuator happening during the simulation:

e the position of the moving core (z) and the speed of the moving core (v).

e the residual forces (Ftot) applied to core and the magnetic force (Fmag)
generated by magnetic component

e the current generated by the RLC circuit (I) and the variable inductance.

The aim of the paper is the coupling of VHDL-AMS and component software
for the dynamic modelling of a electromechanical actuator. So, results are not
discussed. It can be say that they are similar to the result given in [13] where
the force is more approximated, and where a finite element simulation is used
as a reference.

6. Conclusions

The approach proposed in the paper aims to couple models described in
VHDL-AMS models and in ICAr software component, allowing the addition of
functions which are not in VHDL-AMS standard like numerical algorithm used
in electromagnetism. This approach provides also capabilities to import struc-
tural models implemented in ICAr components that describe physical properties
of the system (e.g. finite element models), in order to be integrated into the
global system described in VHDL-AMS. This strategy offers the possibility to
deal with complex

This approach is valid for any time simulator which provides mechanisms
for the coupling of VHDL-AMS models with any C/C++ interfaces (or other
language) thanks to its 'Foreign’ attribute, which is not yet implemented in
all VHDL-AMS compatible simulators, and is often specific to each simulator.
So, some adjustments must be made from a "Foreign’ attribute implementation
to another. Since both ICAr components and VHDIL-AMS have been defined

11



for

purposes of portability and reusability, models developed under different

formalisms must be interconnected to build global system models.It an be also
used for any systems can be designed as an ICar software component such
magnetic microsystem, and others.
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Entity linearactuator is
r1: real:= 13.55e-3;

. Actuator
h1:real .= 14 55e-3;
genenic | “+—— parameters

C real = 100.0e-8; ,
R - real = 5 46063043 [ Electrical Parameters

E :real:=18.0)

port { guantity z  : outreal; States variables
gquantity v outreal;
quantity i outreal

end entity ;

Architecture behav of linearactuatoris
Begin

-- Initial conditions:
hreaki == 0.0; break z == zmin; breaky == 0.0;

F_mag==Actuator_outputs[1];
L_tot==Actuator_outputs[2];

-- computation of residuals forces
F_res==(-1)"1.24%(z+27.5)+59.1 ;
F_tot==F _res-F_mag

-- Electrical and Mechanical Equations
di ==1i'dot;

di'dot == -(R*di+ifC)(L_tot);

Z'dot == dv;

v'dot == acc;

-- computation of velocity and acceleration values
if (F_tot=0.0 ) use
if { Z<zmax) use
acc == F_totimasse;
dv ==v;
else
acc==0.0;
dv ==0.0;
end use;
else
acc==0.0;
dv ==0.0;
END USE;
end;

Figure 9: The VHDL AMS model of the moving core actuator with a component ICar
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controlled by SMASH
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Figure 11: The behaviour of the actuator during simulation
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