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Abstract — This paper deals with the Space Mapping optiminagilgorithms in general and with the Manifold
Mapping technique in particular. The idea of suigodthms is to optimize a model with a minimum rivgn of
calls using a less accurate but faster model.ignaptimization procedure, fine and coarse modgbract at
each iteration in order to adjust themselves ireotd converge to the real optimum. The Manifoldpiag
technigue guarantees mathematically this convergbotrequires gradients of both fine and coarseeaino
Approximated gradients can be used for some cagem®d subject to divergence. True gradients caobbeined
for many numerical model using adjoint techniquessnbolic or automatic differentiation. In this cext, we
have tested several Manifold Mapping variants amdmared their convergence in the case of real ntiggne
device optimization.

Keywords — Space Mapping, Manifold Mapping, Optimizationyi®gate model, Gradients,
Symbolic derivation, Automatic differentiation.

1. Introduction

The space-mapping techniqiig allows computationally expensive simulation @d®ptimization procedures to
be speeded up through the use of approximate mddetse space mapping literature the so-callee &ind
coarse models are conveived as mappings from sigrdspace to the space of model responses. The key
element is the space mapping function. It reparasestthe coarse model domain in such a way tonnizei the
discrepancy between the fine and coarse model mssgoThe composition of the space-mapping funetiwh
the coarse model response defines a surrogateedine model. Instead of solving the fine modallpem
directly, space-mapping solves the surrogate opétitn problem through a sequence of approximatidise
space-mapping function. This in turn defines a saqa of coarse model optimization problems whohgisa
by definition converges to the space-mapping sautfhe computational efficiency of this procedsitems
from the fact that it takes less fine model evabret to converge than it takes to solve the fineleho
optimization problem. The drawback is that the spaapping solution does not necessarily coincidb thie
fine model optimum.

In the manifold-mapping techniq(], the surrogate model is constructed in suctag that in a neighbourhood
of the fine model optimum, the surrogate model oesp closely ressembles its fine fine model copatér This
guarantees that the solutions of the surrogatdiaeanodel optimization problem do coincide. Thasp
mapping function is replaced by the so-called nwdimapping function. The latter is an affine trfnmation
between the tangent manifolds of the fine and eparsdel image spaces. Manifold-mapping is computatiy
as efficient as space-mapping.

Space mapping technigues have been used in elegratic device optimization for several years fi8\12].
Different techniques can be used, but manifold nappvhich is the only one proved to converge ®fthe
model optimum is always using approximated gradiefthe fine model since true gradients are noags
available.

This paper details the manifold mapping technicquet @gues that exact gradients can be available ordess
easily nowadays. The computational cost of theadignts is generally small compared with that effthe
model, and the convergence of the manifold mapg@hgprithm is improved. This property will be rerpd in
the future when optimization specifications becomese and more constrained.
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2. Manifold mapping algorithm

2.1.Mathematical background

Let us consider an optimization problem with desigriablesX in the design spac#[1 X [0 0" and
specificationsy [1[1™ which can be approximated by minimizing a costfional F(X) ([ (e.g. equation 4).

The manifold-mapping functios: ¢(X) > f(X) is a mapping between the coarse magigK ) 0 (1™ and
fine modelf (X) 0 O™ image spaces. This function maps the p@iX; ) to f (X;) and the coarse model

tangent space a(X; ) to the fine model tangent spacefdtx; ) . It allows to define the surrogate model

S(¢(x)) and to write the manifold-mapping solution asdualb:

find x .. 0X suchthat

* . 1
Xinm = argm|n|| ng)) - y" @
zZ0X

The manifold-mapping functioi(X) is approximated by a sequen{fﬁ((X)}kzl yielding a sequence of

iterands{kam} converging tox:nm. The individual iterands are defined by coarse ehogtimization:

k=1

find X\, 0 X suchthat

. . &)
X kmm = af%fXT"nHSK(O(Z)) -y

At each iteration k, the construction & is based on tangent planes of coarse and finelmode
ie,S =J.(%).J;(X) where matrices] (X,) and J; (X,). of sizemxn are ¢(X,) Jacobian, and

pseudo inverse of thd (Xk) Jacobian, respectively. The pseudo inverse camimputed by a simple QR
decomposition or using the singular value decontiposi

If the Jacobians are not availab, can be approximated usif§C and AF of sizemx min(k,n) defined
as follow:

AC = [C(Xk) - C(Xk—l)l C(Xk) - C(Xk—z)"’ ] C(Xk) - C(Xmax(k—n,O))]
AF =[ (%) = F(X), T(x) = F(%2)im o, F(X) = F (Xnpaeeen )]

During the firstn iterations, these matrices are not fully descghihre tangent planes but are enough to define a
search direction untik becomes greater tham.

In order to improve robustness of the approximatiynis defined with a complementary term
S, = AC(%)-AF (%) + (I =U, Uy ,) whereU, . is provided by the singular value decomposition of
AC=U_3_V, ateachk iteration.

Using S, mapping function, an update objectie = c(X,) = S.(f (X )= y) can be introduced leading to
an asymptotically equivalent problem:
find X,,,, (0 X suchthat

e ®
Xignm = ArgMINn|(2) = y, |
41X
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In other words, the mapping is transfer from tharse model to the optimization objectives whichl&to an

easier algorithm implementation. And by construet, = X*f corresponding to the fine model optimum.

kmm

A trust region strategy has to be implemented tfitamh to this algorithm in order to prevent arbily large step
size X, — X,_; . To prevent manifold mapping from taking such steptrust-region stabilization was presented
in [13].

3. Validation on a simple test case

A first test case has been computed in order tavghat algorithm proposed can find good resulte Pproblem
is defined by 3 degrees of freedom and an objedétinetion is a least square functional with 3 congras. A
coarse model has been defined using minor modifieain some formulas in order to approximate the f
model.

The objective function has been plotted accordirgdptimization iterations for several space magpin
strategies:

- OM : Output Mapping, which is a manifold mappingwihe identity matrix for the mapping function S.
The objective update is theyi, =y + (X, ) — f(X,) .

- MM Approx: Manifold mapping using a tangent plarppeoximation folAC and AF .

- MM Approx without SVD: Manifold mapping using a gant plane approximation without correction :
S, =AC(x).AF " (x,).

- MM Approx trust: Trust Region manifold mapping irder to ensure convergence.

- MM Exact: Manifold mapping using true gradients.

- MM Exact Trust: Trust Region manifold mapping irer to ensure convergence.

Fig. 1 shows that MM with true gradient convergé&r@xely fast to a good solution, while OM and MMiwi

approximated gradients converge slower with sortimatons. Trust region leads to slower convergeangsan
the case of MM with approximated gradient the saniation is reached with only one iteration moretHe

case of approximated gradient correction tdrmU KCU I’C in the mapping function, is important.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1,E+00 e OM (S=Id)
B N // \\ ' m zpprox thout SVD
f pprox withou
1,E-01 \@‘ — b —~— MM Approx Trust
i - ,’ »— MM Exact

g “:\\ MM Exact trust
S 102 :\ = \.
=] Y — 3
Y l\‘ \\ e ‘\
® T\ - \
g 1E-03 N N \
4] S - =
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<] \\_‘é \\ N,
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Fig. 1. Optimization algorithms convergence onrapdé test case.



em2011R120078, ELECTRIMACS 2011

4. Manifold mapping on a real test case
4.1.Device description

Functional design goal is to produce MEMS basemstedion to rotation contactless transducer, withdr law.
It can be used for sensors in order to have vargitee position measures.

i
t g
Anchors points e {
e 5 Magnet
i
i
| |
I
Z H
Téi F
< T
Iron plate

Fig. 2. Magnetic MEMS topology

A MEMS magnetic actuator topology has been defioeach these requirements Fig. 2. It is madepsres:

- mobile magnet with x-axis translation degree oéfiem,
- aniron plate with y-axis rotation degree of freedo

4.2.0ptimization specifications

The objective is to find mobile magnet dimensiansiider to obtain a torque as linear as possildeddthis, a
least squares objective functional is defined indmpn 4 and Fig. 3:

2
tx
F(X)= rtx)-r_.—— 4
(X) Z( (%) =T e %axj @)
T
Fmax“
e
tXmax tx=

Fig. 3. Design specification: torque has to bede

3 torque computations, equally distributed alomgsfation position, have been chosen in order tiheldeast
square minimization.

Table I. Design variables and constants

Parameter Values
Magnet width [1;25] mm
Magnet high [1;25] mm
Magnet length [1;30] mm
Iron plate width 600 um
Iron plate high 8 um

Iron plate length 600 um
Magnet Polarization 1T

Gap between magnet and iron 1 mm

4
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4.3.Fine modeling

For the mobile magnet, a Coulombian equivalentgdapproach is used in order to compute magnetit fi
applied on the ferromagnetic plate.

For this last one, a steady-state Method of Mom@vitsM) is applied. It consists in the meshed of
ferromagnetic bodies along the X, Y and Z axesh witiform induced magnetized elementary bldeéfsThis
method does not require to mesh the air and iscpatly efficient for "radiating” systems. The igs with such
an integral method are full matrices and computati@mory limitation.

e N

TR I

FHtt
A
++
++
bttt

++
++

Fig. 4. Surface charge method to compute torquenwahegnetization of each bloc is known.

Fig. 4 shows the magnetization of each block whdepends on the external field £Hproduced by field
sources such as magnets or conductors) as well teedield produced by other blocks dependingheirtown
magnetization.

H=H,,+Q[M (5)

Blocks interaction is defined by the interactiontrixa(Q in equation 5) : Q is a square matrix afes{3m)x(3m)
(m = number of blocks), composed of 3x3 squareioegwhich represent the magnetic excitation crebyea
block to an other.

The ferromagnetic material behavior law is defibgdon linear law, parameterized by the saturatidaction
and initial permeability of the material. The unkmoferromagnetic magnetizations can then be foyndsing
a Newton-Raphson solver with a relaxation methoengure convergence.

When magnetizations are known, each block can e @& a set of parallelepiped magnets (Fig. 4tder to
compute the magnetic field or force and torque &tiqun 6).

i=1 =1y

0, He (P )1ds (6)

where O is the pivot point where the torque is coteg, B are barycenter of each bloc amgthere equivalent
surface charge derived from their magnetization.

Computation time of this model depends on the nurabblocks (see Fig. 5). Computation is fast, adjo
accuracy is reached in less than one minute, butave always to think about increasing model coapart
and optimization time if our objective is systemmslation and design.
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Fig. 5. Fine model computation time and its denxed, depending on the discretizing.

4.4.Coarse modeling
The iron plate is not discretized and global denagigation coefficients in 3D space are computedyéinally
using classical rectangular shapes formulas. Utieassumption that the plate is saturated alomg-tis, the

magnetization along z-axis remains in the lineandio. It is then possible to solve explicitly the 2
magnetizations Mand M, in order to compute torqug, by equation 7.

ry = HO'\/pIate'(_ MX'HO + MZ'HO) (7)

This model is fully analytical and an optimizatiosing its gradients is less than one second

4.5.Modeling comparison

A FEM simulation has been done but can not be densd as a reference (just a good approximatioa}althe
mesh issues for such thin geometries.

: — A A
Automatic mesh
of external ai

N S N N
y Iron plate :
| structured

NSEE

agnet = |
) Structured mesh | :
NANENENANENRS v
Fig. 6. Difficult mesh in 3D FEM software Flux3D™

The fine model was tuned using a variation of tiserétization parameter in order to appreciateatteuracy
convergence (see Fig. 7). This tuning could be tsgaoduce both fine and coarse modelling butsis Wecided
in this work to compare manifold mapping techniguth two different kinds of model, one analyticaicathe
other numerical.
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Fig. 7. Modeling comparison on torque regarding iteofmagnet position for both Fine and Coarse moldets
also with FEM

5. Model derivation

Nowadays, many techniques and tools are availabdeder to compute model Jacobian of analytical ehadd
numerical models. Two kind of derivation technige&sst, the symbolic one which examines computation
model in order to simplify as far as possible thedtives expressions; and the automatic one wikiatore
systematic but less efficient.

5.1.Symbolic derivation

First is the symbolic derivation based on matherahtheorems which tries to express derivatives wiodel for
each kind of modeling methods. For example, if aknown ‘I’ is expressed by numerical integratioq &)
partial derivatives of functiohregarding parametepscan be given by (eq 9).

up(p)
1(p) = jf(p,x).dx )

lo(p)

0l (p) _ ““j“)af(p, X) 4y
ap lo(p) ap

) ©
o

- 20P) (1o p)
o

Other well known applications of such kind of datien are :

- implicit theorem[3]: which allows symbolic derivation of unknwonsmputed using implicit solver such as
Newton-Raphson procedure.

- Adjoint method[5]: which allows performant computing of multiptalls to gradients using a dual code
which depends on the numerical problem solved dlisgstem, ...) .

5.2. Automatic derivation
Defining derivative of each basic mathematical apms can lead to automatic differentiation (AD)I&]6].

Typically, AD can be implemented using either tipe@tor overloading (ADOL-C, CppAD, etc) or the sm
transformation technique (ADIFOR, ADiJaC, etc)ojperator overloading one overloads the operatorshwh

7
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are applied on new variable types, with the routiak performing the actual derivative computatidhe source
transformation approach examines the source cotteeafriginal function and generates new code that
computes the desired derivative together with tigiral function value.

5.3. Software implementation

CADES framework[7] implements symbolic and automatic differentatiechniques. So it is easy for several
kind of models to add Jacobian computation in otdgxerform optimization.

This software will be used in this work in ordemtiioduce Jacobians on both coarse and fine model.

Eg CADES Generator

I
j_
—.
Physical
model
&l Model + Jacobian
Algebraic Equations (Formal calculus,
and/or algorithms Automatic differentiation)

Fig. 8. CADES Generator: an automated tool perfogidiymbolic and automatic differentiation compasiti
and produce software component.

5.4.Model derivation

As defined in the previous section, several tealmsgare available in order to compute gradientstheofine
modeling, derivatives have been computed usingiainpheorem and an adjoint coffg leading to a low cost
compared to the computation of the magnetizatiatordtself. This is also due to the fact that mm+linear
solving procedure is required. For the coarse matiéh is essentially based on analytical equatiargmple
derivation has been done automatically using CABr&®ework. The torque gradient with respect to the
magnet position is plotted in Fig. 9.

! CADES framework : Component Architecture for thesin of Engineering Systems (availablettp://forge-mage.g2elab.grenoble-
inp.fr/project/cadesframewonk

8
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Fig. 9. Fine and coarse torques and their formavaléves, versus the magnet translation.

5.5.Optimization results

100 X —e—0OM (5=1d)
“‘.\ — - —=— MM Approx Trust
o - — —a— Mt Exact Trust
it Y —4— Direct IPopt
—_ .
% N
<10 \\ = N
0 : = =
] & !‘\%%ﬁ = T~
c = N
] \ i S Y
i
= — ; :
E = \
I A 5,
Y/ \ )
\/ \
% X i
0.1 . .
0 2 4 6 8 10 12 ALCULLE 18 20

Fig. 10. Optimization algorithms convergence ondleetromagnetic device optimization.

A direct optimization has been performed using fimedel and its gradients in order to get a refezesudution.
The initial solution is provided by the coarse nlamjgtimal solution. The algorithm used is an ImefPoint
algorithm. A good solution has been found afteit@tations, which means 20 fine model computatamd 20
Jacobian computations which represent a high cost.

Simple output mapping convergence is good andlgwithm is stopped after 8 iterations. But it ntidil to
converge to the fine model optimal solution. Indesdy interaction between variables in this mapjsng
missing.

Regarding Manifold Mapping, both true gradients apdroximated ones need a trust region adaptdtideed
the problem is very sensible and original algorghfailed. Default trust region parameters givefiLl] have
been used.
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MM using true gradients converges with the higlspgted. The consequence is a bouncing effect betause
overcomes the target and has to return slower. déridbe improved by trust region parameters matitio
(default values are used).

MM using approximated gradients failed to convezgen with trust region strategy. The examinatiorSpf
during a convergence process shows Bat= J (X, ).J7 (X, ) , created with Jacobian matrices, aBd

created from approximated gradier8s = AC(x,).AF *(x) + (I —U, U, ) are different, but in the same

level of value and generally with the same elemsigpis. Our approximation is based on the previoeigssbut if
steps are in the same direction, the gradientaaresally well identified. This approximation hasbe
improved in order to have a robust algorithm.

6. Conclusions

In this work, several variants of the manifold miaygptechnique have been compared. Results oniatie#ést
case show that the use of exact gradients allowsrigergence to more accurate solutions than redmhe
gradient approximations. These accurate solutiomsemched three times faster than an interiomitogo
iterating solely on the fine model. The manifoldpping algorithm with exact gradients therefore gpen
interesting perspectives on solving more compleingpation problems in the future.
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