Sylvain Schmitz
email: schmitz@lsv.ens-cachan.fr

A Note on Sequential Rule-Based POS Tagging

Keywords: Brill Tagger, Sequential Transducer, POS Tagging

Brill's part-of-speech tagger is defined through a cascade of leftmost rewrite rules. We revisit the compilation of such rules into a single sequential transducer given by Roche and Schabes (Comput. Ling. 1995) and provide a direct construction of the minimal sequential transducer for each individual rule.

Introduction

Part-of-speech (POS) tagging consists in assigning the appropriate POS tag to a word in the context of its sentence. The program that performs this task, the POS tagger, can be learned from an annotated corpus in case of supervised learning, typically using hidden Markov model-based or rule-based techniques. The most famous rule-based POS tagging technique is due to [START_REF] Brill | A simple rule-based part of speech tagger[END_REF]. He introduced a three-parts technique comprising:

1. a lexical tagger, which associates a unique POS tag to each word from an annotated training corpus. This lexical tagger simply associates to each known word its most probable tag according to the training corpus annotation, i.e. a unigram maximum likelihood estimation;

2. an unknown word tagger, which attempts to tag unknown words based on suffix or capitalization features. It works like the contextual tagger, using the presence of a capital letter and bounded sized suffixes in its rules: for instance in English, a -able suffix usually denotes an adjective;

3. a contextual tagger, on which we focus in this paper. It consists of a cascade of string rewrite rules, called contextual rules, which correct tag assignments based on some surrounding contexts.

In this note, we revisit the proof that contextual rules can be translated into sequential transducers1 proposed by [START_REF] Roche | Deterministic part-of-speech tagging with finite-state transducers[END_REF]: whereas Roche and Schabes give a separate proof of sequentiality and exercise it to show that their constructed non-sequential transducer can be determinized (at the expense of a worst-case exponential blow-up), we give a direct translation of a contextual rule into the minimal normalized sequential transducer, by adapting [START_REF] Simon | String matching algorithms and automata[END_REF]'s string matching automaton to the transducer case. Our resulting sequential transducers are of linear size (before their composition). A similar construction can be found in [START_REF] Mihov | Efficient dictionary-based text rewriting using subsequential transducers[END_REF], but no claim of minimality is made there.

Contextual Rules

Example

We start with an example by [START_REF] Roche | Deterministic part-of-speech tagging with finite-state transducers[END_REF]: Let us suppose the following sentences were tagged by the lexical tagger (using the Penn Treebank tagset):

There are mistakes in the first two sentences: killed should be tagged as a past tense form "VBD", and shot as a past participle form "VBN".

The contextual tagger learns contextual rules over some tagset Σ of form uav → ubv (or a → b / u v using phonological rule notations [START_REF] Kaplan | Regular models of phonological rule systems[END_REF]), meaning that the tag a rewrites to b in the context of u v, where the context is of length |uv| bounded by some fixed k + 1; in practice, k = 2 or k = 3 [START_REF] Brill | A simple rule-based part of speech tagger[END_REF] and [START_REF] Roche | Deterministic part-of-speech tagging with finite-state transducers[END_REF] As stated before, our goal is to compile the entire sequence of contextual rules learned from a corpus into a single sequential function.

Cascade of Contextual Rules

Let us first formalize the semantics we will employ in this note for Brill's contextual rules. 2 Let C = r 1 r 2 • • • r n be a finite sequence of string rewrite rules in Σ * × Σ * with Σ a POS tagset of fixed size. In practice the rules constructed in Brill's contextual tagger are length-preserving and 1-change-bounded, i.e. they modify a single letter, but this is not a useful consideration for our transducer construction. Each rule

r i = u i → v i defines a leftmost rewrite relation ri = ⇒ lm defined by w ri = ⇒ lm w iff ∃x, y ∈ Σ * , w = xu i y ∧ w = xv i y ∧ ∀z, z ∈ Σ * , w = zu i z ∨ x ≤ pref z where x ≤ pref z denotes that x is a prefix of z. Note that the domain of ri = ⇒ lm is Σ * • u i • Σ * . The behavior of a single rule is then the relation r i included in Σ * × Σ * defined by r i def = ri = ⇒ lm ∪ Id Σ * \(Σ * •ui•Σ *) , i.e. it applies ri = ⇒ lm on Σ * •u i •Σ * and the identity on its complement Σ * \(Σ * •u i •Σ *).
The behavior of C is then the composition

C def = r 1 r 2 • • • r n .
Note that this behavior does not employ the transitive closure of the rewriting rules.

A naive implementation of C would try to match each u i at every position of the input string w in Σ * , resulting in an overall complexity of O(|w| Each r i is a rational function, being the union of two rational functions over disjoint domains. Let |r i | be the length |u i v i | ≤ k. Roche and Schabes (1995, Section 8.2) provide a construction of an exponential-sized transducer T ri for each r i , and compute their composition

• i |u i |).
T C of size |T C | = O(n i=1 2 |ri|).
As they show that each r i is actually a sequential function, their composition C is also sequential, and T C can be determinized to yield a sequential transducer T of size doubly exponential in n i=1 |r i | ≤ nk (see Roche and Schabes, 1995, Section 9.3). By contrast, our construction directly yields linear-sized minimal sequential transducers for each r i , resulting in a final sequential transducer of size O(

n i=1 |r i |) = O(2 n log k).

Sequential Transducer of a Rule

Intuitively, the sequential transducer for r i is related to the string matching automaton [START_REF] Simon | String matching algorithms and automata[END_REF][START_REF] Crochemore | Automata for matching patterns[END_REF] for u i , i.e. the automaton for the language Σ * u i . This insight yields a direct construction of the minimal sequential transducer of a contextual rule, with at most |u i | + 1 states. Let us recall a few definitions:

Preliminaries

Overlaps, Borders (see e.g. Crochemore and Hancart, 1997, Section 6.2). The overlap ov(u, v) of two words u and v is the longest suffix of u which is simultaneously a prefix of v.

u v ov(u, v)
A word u is a border of a word v if it is both a prefix and a suffix of v, i.e. if there exist

v 1 , v 2 in Σ * such that v = uv 1 = v 2 u. For v = ε, the longest border of v different from v itself is denoted bord(v). v v 2 v 1 v bord(v) Fact 3.1. For all u, v in Σ * and a in Σ, ov(ua, v) = ov(u, v) • a if ov(u, v) • a ≤ pref v bord(ov(u, v) • a) otherwise.
Sequential Transducers (see e.g. Sakarovitch, 2009, Section V.1.2). Formally, a sequential transducer from Σ to ∆ is a tuple T = Q, Σ, ∆, q 0 , δ, η, ι, ρ where δ : Q × Σ → Q is a partial transition function, η : Q × Σ → ∆ * a partial transition output function with the same domain as δ, i.e. dom(δ) = dom(η), ι ∈ ∆ * is an initial output, and ρ : Q → ∆ * is a partial final output function. T defines a partial sequential function T : Σ * → ∆ * with

T (w) def = ι • η(q 0 , w) • ρ(δ(q 0 , w))
for all w in Σ * for which δ(q 0 , w) and ρ(δ(q 0 , w)) are defined, where η(q, ε) = ε and η(q, wa) = η(q, w) • η(δ(q, w), a) for all w in Σ * and a in Σ.

Let us note T (q) for the sequential transducer with q for initial state. We write u∧v for the longest common prefix of strings u and v; the longest common prefix of all the outputs from state q can be written formally as v∈Σ * T (q) (v). A sequential transducer is normalized if this value is ε for all q ∈ Q such that dom(T (q)) = ∅, i.e. if the transducer outputs symbols as soon as possible; any sequential transducer can be normalized.

The translation of a sequential function f by a word w in Σ * is the sequential function w

-1 f with dom(w -1 f) def = w -1 dom(f) w -1 f (u) def = v∈Σ * f (wv) -1 • f (wu)
for all u in dom(w -1 f). As in the finite automata case where minimal automata are isomorphic with residual automata, the minimal sequential transducer for a sequential function f is defined as the translation transducer Q, Σ, ∆, q 0 , δ, η, ι, ρ , where

• Q def = {w -1 f | w ∈ Σ * } (which is finite), • q 0 def = ε -1 f , • ι def = v∈Σ * f (v) if dom(f) = ∅ and ι = ε otherwise, • δ(w -1 f, a) def = (wa) -1 f , • η(w -1 f, a) def = v∈Σ * (w -1 f)(av) if dom((wa) -1 f) = ∅ and η(w -1 f, a) = ε otherwise, and • ρ(w -1 f) def = (w -1 f)(ε) if ε ∈ dom(w -1 f),
and is otherwise undefined.

Main Construction

Here is the definition of our transducer for a contextual rule: Definition 3.2 (Transducer of a Contextual Rule). The sequential transducer T r associated with a contextual rule r = u → v with u = ε is defined as T r def = pref(u), Σ, Σ, ε, δ, η, ε, ρ with the set of prefixes of u as state set, ε as initial state and initial output, and for all a in Σ and w in pref(u),

δ(w, a) def =      wa if wa ≤ pref u w if w = u bord(wa) otherwise ρ(w) def =      ε if w ≤ pref (u ∧ v) (u ∧ v) -1 w if (u ∧ v) < pref w < pref u ε otherwise, i.e. if w = u η(w, a) def =                    a if wa ≤ pref (u ∧ v) ε if (u∧v) < pref wa < pref u (u ∧ v) -1 v if wa = u a if w = u ρ(w)a • ρ(bord(wa)) -1
otherwise.

For instance, the sequential transducer for the rule ababb → abbbb is shown in Figure 1 (one can check that ababb ∧ abbbb = ab, bord(b) = ε, bord(aa) = a, bord(abb) = ε, bord(abaa) = a, and bord(ababa) = aba). The intuition behind the definition of η(w, a) is to decompose the rewriting according to u → v into four phases:

1. while in the common prefix u ∧ v of u and v, implement the identity function (states ε, a, and ab in Figure 1), 2. as soon as we start reading a symbol of u that does not match that of v (upon reading a in state ab in Figure 1), we stop outputting symbols and wait for the whole of u to be read, 3. if u has been read, we output the remaining rewritten string (u ∧ v) -1 • v we had been saving (upon reading b in state abab in Figure 1), 4. after having read the first occurrence of u in full, we merely implement the identity again (state ababb in Figure 1).

5. If on the other hand we realize that u cannot be read after all in some state w upon reading some a (e.g. transition on a in state aba in Figure 1), we need to flush the missing output (u ∧ v) -1 • w = ρ(w), minus the saved output if the state we reach is itself in phase 2.

It remains to show that this sequential transducer is indeed the minimal normalized sequential transducer for r .

Proposition 3.3 (Correctness). Let r = u → v with u = ε. Then T r = r . Proof. Let us first consider the case of input words in Σ * \(Σ * • u • Σ *): Claim 3.3.1. For all w in Σ * \(Σ * • u • Σ *), δ(ε, w) = ov(w, u) η(ε, w) = w • ρ(ov(w, u)) -1 .
Proof of the claim. By induction on w: since u = ε, the base case is w = ε with

δ(ε, ε) = ε = ov(ε, u) η(ε, ε) = ε = ε • ε -1 = ε • ρ(ε) -1 .
For the induction step, we consider wa in Σ * \(Σ * • u • Σ *) for some w in Σ * and a in Σ: we need to do a case analysis for this last equation:

δ(ε, wa) = δ(δ(ε,
Case w a ≤ pref u Then η(w , a) = ρ(w) • a • ρ(border(w a)) -1 , which yields η(ε, wa) = w • ρ(w) -1 • ρ(w) • a • ρ(δ(ε, wa)) -1 (by Fact 3.1) = wa • ρ(δ(ε, wa)) -1 .
Case w a < pref u Then δ(ε, wa) = w a, and we need to further distinguish between several cases:

w a ≤ pref (u ∧ v) then ρ(w) = ε,
•w a = a, η(ε, wa) = w = wa • a -1 = wa • ρ(w a) -1 , (u ∧ v) < pref w then ρ(w) = (u ∧ v) -1 • w , η(w , a) = ε, and ρ(w a) = (u ∧ v) -1 • w a, thus η(ε, wa) = w • ((u ∧ v) -1 • w) -1 = wa • a -1 • ((u ∧ v) -1 • w) -1 = wa • ρ(w a) -1 .
The claim yields that T r coincides with r on words in

Σ * \(Σ * • u • Σ *), i.e. is the identity over Σ * \(Σ * • u • Σ *). Then, since u = ε, a word in Σ * • u • Σ * can be written as waw with w in Σ * \(Σ * • u • Σ *), a in Σ with wa in Σ * • u, and w in Σ * . Let u = u a; the claim implies that δ(ε, w) = u η(ε, w) = w • ρ(u) -1 .
Thus, by definition of T r , δ(ε, wa) = u a = u and thus

η(ε, wa) = η(ε, w) • η(u , a) = w • ρ(u) -1 • (u ∧ v) -1 • v ; if (u ∧ v) < pref u η(ε, wa) = w • ((u ∧ v) -1 • u) -1 • (u ∧ v) -1 • v = w • u -1 • v = wa • u -1 • v ; otherwise i.e. if u = (u ∧ v): η(ε, wa) = w • u -1 • v = wa • u -1 • v .
Thus in all cases T r (wa) = r (wa), and since T r starting in state u (i.e. T r(u)) implements the identity over Σ * , we have more generally T r = r .

Lemma 3.4 (Normality). Let r = u → v. Then T r is normalized. Proof. Let w ∈ Prefix(u) be a state of T r ; let us show that T r(w) (Σ *) = ε. If (u ∧ v) < pref w < pref u let u = w -1 u ∈ Σ +
, and consider the two outputs

T r(w) (u) = η(w, u)ρ(u) = (u ∧ v) -1 v T r(w) (ε) = ρ(w) = (u ∧ v) -1 w .
Since (u∧v) < pref u we can write u as (u∧v)au u , and either v = (u∧v)bv or v = u∧v, for some a = b in Σ and u , v in Σ * ; this yields w = (u∧v)au and thus T r(w) (u) ∧ T r(w) (ε) = ε.

otherwise ρ(w) = ε, which yields the lemma.

Proposition 3.5 (Minimality). Let r = u → v with u = ε and u = v. Then T r is the minimal sequential transducer for r .

Proof. Let w < pref w be two different states in Prefix(u); we proceed to prove that w -1 T r = w -1 T r , hence that no two states of T r can be merged. By Lemma 3.4 it suffices to prove that T r(w) = T r(w) , thus to exhibit some x ∈ Σ * such that T r(w) (x) = T r(w) (x). We perform a case analysis:

if w ≤ pref (u ∧ v) then w < pref (u ∧ v) thus T r(w) (x) = x for all x ∈ w -1 • Σ * • u • Σ * ; consider T r(w) (w -1 u) = w -1 u = w -1 v = T r(w) (w -1 u) ;
if w ≤ pref (u ∧ v) and w = u then T r(w) (x) = x for all x and we consider T r(w) (w -1 u) = w -1 v = w -1 v = T r(w) (w -1 u) ;

otherwise that is if w ≤ pref (u∧v) and (u∧v) < pref w < pref u, or (u∧v) < pref w < pref w ≤ pref u, we have ρ(w) = ρ(w) thus T r(w) (ε) = T r(w) (ε) .

Conclusion

The results of the previous section yield (the cases u = ε and u = v are trivial):

Theorem 4.1. Given a contextual rule r = u → v, one can construct directly the minimal normalized sequential transducer T r of size O(|r|) for r .

The remaining question is whether we can obtain better upper bounds on the size of the sequential transducer T C for a cascade C = r 1 • • • r n than O(2 n log k). It turns out that there are cascades of length n for which no sequential transducer with a subexponential (in n) number of states can exist, thus our construction is close to optimal.

 One often faces the problem of tagging a set of sentences {w 1 , . . . , w m }, which yields O((i |u i |) • (j |w j |)). As shown in Roche and Schabes' experiments, compiling C into a single sequential transducer T results in practice in huge savings, with overall complexities in O(|w|+|T |) and O(|T |+ j |w j |) respectively.

Figure 1 :

 1 Figure 1: The sequential transducer constructed for ababb → abbbb.

 w), a) (by def.) = δ(ov(w, u), a) (by ind. hyp.)where by definition of δ, we have δ(ov(w, u), a) = ov(w, u)• a if ov(w, u) • a ≤ pref u and δ(ov(w, u), a) = bord(ov(w, u) • a) otherwise (the case ov(w, u) = u is impossible since w in Σ * \(Σ * • u • Σ *)). In all cases:δ(ε, wa) = ov(wa, u) (by Fact 3.1) η(ε, wa) = η(ε, w) • η(δ(ε, w), a) (by def.) = w • ρ(δ(ε, w)) -1 • η(δ(ε, w), a) (by ind. hyp.) = w • ρ(w) -1 • η(w , a) ;(by setting w = δ(ε, w))

 η(w , a) = a, and ρ(w a) = ε, thus η(ε, wa) = wa = wa • ε -1 = wa • ρ(w a) -1 , w = (u ∧ v) then ρ(w) = ε, η(w , a) = ε, and ρ(w a) = (u∧v) -1

Historically, what we call here "sequential" used to be called "subsequential"[START_REF] Schützenberger | Sur une variante des fonctions séquentielles[END_REF], but we follow the more recent practice initiated by[START_REF] Sakarovitch | Elements of Automata Theory[END_REF].

This is not exactly the semantics assumed by either Brill nor Roche and Schabes, who used iterated-application semantics, resp. contextual and non contextual, instead of the singleapplication semantics we use here. This has little practical consequence.

* Chapman/NNP killed/VBN John/NNP Lennon/NNP * John/NNP Lennon/NNP was/VBD shot/VBD by/IN Chapman/NNP He/PRP witnessed/VBD Lennon/NNP killed/VBN by/IN Chapman/NNP