
HAL Id: hal-00600260
https://hal.science/hal-00600260v2

Submitted on 21 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Note on Sequential Rule-Based POS Tagging
Sylvain Schmitz

To cite this version:
Sylvain Schmitz. A Note on Sequential Rule-Based POS Tagging. FSMNLP, 2011, Blois, France.
pp.83–87. �hal-00600260v2�

https://hal.science/hal-00600260v2
https://hal.archives-ouvertes.fr

A Note on Sequential Rule-Based POS Tagging

Sylvain Schmitz

LSV, ENS Cachan & CNRS, Cachan, France
schmitz@lsv.ens-cachan.fr

Abstract

Brill’s part-of-speech tagger is defined through a cascade of leftmost
rewrite rules. We revisit the compilation of such rules into a single se-
quential transducer given by Roche and Schabes (Comput. Ling. 1995)
and provide a direct construction of the minimal sequential transducer for
each individual rule.

Keywords. Brill Tagger; Sequential Transducer; POS Tagging

1 Introduction

Part-of-speech (POS) tagging consists in assigning the appropriate POS tag to
a word in the context of its sentence. The program that performs this task,
the POS tagger, can be learned from an annotated corpus in case of supervised
learning, typically using hidden Markov model-based or rule-based techniques.
The most famous rule-based POS tagging technique is due to Brill (1992). He
introduced a three-parts technique comprising:

1. a lexical tagger, which associates a unique POS tag to each word from
an annotated training corpus. This lexical tagger simply associates to
each known word its most probable tag according to the training corpus
annotation, i.e. a unigram maximum likelihood estimation;

2. an unknown word tagger, which attempts to tag unknown words based on
suffix or capitalization features. It works like the contextual tagger, using
the presence of a capital letter and bounded sized suffixes in its rules: for
instance in English, a -able suffix usually denotes an adjective;

3. a contextual tagger, on which we focus in this paper. It consists of a
cascade of string rewrite rules, called contextual rules, which correct tag
assignments based on some surrounding contexts.

In this note, we revisit the proof that contextual rules can be translated
into sequential transducers1 proposed by Roche and Schabes (1995): whereas
Roche and Schabes give a separate proof of sequentiality and exercise it to show
that their constructed non-sequential transducer can be determinized (at the

1Historically, what we call here “sequential” used to be called “subsequen-
tial” (Schützenberger, 1977), but we follow the more recent practice initiated by Sakarovitch
(2009).

1

mailto:sylvain.schmitz@lsv.ens-cachan.fr

expense of a worst-case exponential blow-up), we give a direct translation of a
contextual rule into the minimal normalized sequential transducer, by adapt-
ing Simon (1994)’s string matching automaton to the transducer case. Our
resulting sequential transducers are of linear size (before their composition). A
similar construction can be found in (Mihov and Schultz, 2007), but no claim
of minimality is made there.

2 Contextual Rules

2.1 Example

We start with an example by Roche and Schabes (1995): Let us suppose the
following sentences were tagged by the lexical tagger (using the Penn Treebank
tagset):

∗Chapman/NNP killed/VBN John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN by/IN Chapman/NNP

There are mistakes in the first two sentences: killed should be tagged as a past
tense form “VBD”, and shot as a past participle form “VBN”.

The contextual tagger learns contextual rules over some tagset Σ of form
uav → ubv (or a→ b/u v using phonological rule notations (Kaplan and Kay,
1994)), meaning that the tag a rewrites to b in the context of u v, where the
context is of length |uv| bounded by some fixed k+1; in practice, k = 2 or k = 3
(Brill (1992) and Roche and Schabes (1995) use slightly different templates than
the one parametrized by k we present here). For instance, a first contextual rule
could be

nnp vbn→ nnp vbd

resulting in a new tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN Chapman/NNP
∗He/PRP witnessed/VBD Lennon/NNP killed/VBD by/IN Chapman/NNP

A second contextual rule could be

vbd in→ vbn in

resulting in the correct tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
John/NNP Lennon/NNP was/VBD shot/VBN by/IN Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN by/IN Chapman/NNP

As stated before, our goal is to compile the entire sequence of contextual rules
learned from a corpus into a single sequential function.

2.2 Cascade of Contextual Rules

Let us first formalize the semantics we will employ in this note for Brill’s con-
textual rules.2 Let C = r1r2 · · · rn be a finite sequence of string rewrite rules in

2This is not exactly the semantics assumed by either Brill nor Roche and Schabes, who
used iterated-application semantics, resp. contextual and non contextual, instead of the single-
application semantics we use here. This has little practical consequence.

2

Σ∗ × Σ∗ with Σ a POS tagset of fixed size. In practice the rules constructed in
Brill’s contextual tagger are length-preserving and 1-change-bounded, i.e. they
modify a single letter, but this is not a useful consideration for our transducer
construction. Each rule ri = ui → vi defines a leftmost rewrite relation

ri=⇒
lm

defined by

w
ri=⇒
lm

w′ iff ∃x, y ∈ Σ∗, w = xuiy ∧ w′ = xviy

∧ ∀z, z′ ∈ Σ∗, w 6= zuiz
′ ∨ x ≤pref z

where x ≤pref z denotes that x is a prefix of z. Note that the domain of
ri=⇒
lm

is

Σ∗ · ui · Σ∗. The behavior of a single rule is then the relation JriK included in
Σ∗ × Σ∗ defined by

JriK
def
=

ri=⇒
lm
∪ IdΣ∗\(Σ∗·ui·Σ∗) ,

i.e. it applies
ri=⇒
lm

on Σ∗·ui·Σ∗ and the identity on its complement Σ∗\(Σ∗·ui·Σ∗).
The behavior of C is then the composition

JCK def
= Jr1K # Jr2K # · · · # JrnK .

Note that this behavior does not employ the transitive closure of the rewriting
rules.

A naive implementation of C would try to match each ui at every position of
the input string w in Σ∗, resulting in an overall complexity of O(|w| ·

∑
i |ui|).

One often faces the problem of tagging a set of sentences {w1, . . . , wm}, which
yields O((

∑
i |ui|) · (

∑
j |wj |)). As shown in Roche and Schabes’ experiments,

compiling C into a single sequential transducer T results in practice in huge sav-
ings, with overall complexities in O(|w|+ |T |) and O(|T |+

∑
j |wj |) respectively.

Each JriK is a rational function, being the union of two rational functions over
disjoint domains. Let |ri| be the length |uivi| ≤ k. Roche and Schabes (1995,
Section 8.2) provide a construction of an exponential-sized transducer Tri for
each JriK, and compute their composition TC of size |TC | = O(

∏n
i=1 2|ri|). As

they show that each JriK is actually a sequential function, their composition JCK
is also sequential, and TC can be determinized to yield a sequential transducer
T of size doubly exponential in

∑n
i=1 |ri| ≤ nk (see Roche and Schabes, 1995,

Section 9.3). By contrast, our construction directly yields linear-sized minimal
sequential transducers for each JriK, resulting in a final sequential transducer of
size O(

∏n
i=1 |ri|) = O(2n log k).

3 Sequential Transducer of a Rule

Intuitively, the sequential transducer for JriK is related to the string matching
automaton (Simon, 1994; Crochemore and Hancart, 1997) for ui, i.e. the au-
tomaton for the language Σ∗ui. This insight yields a direct construction of the
minimal sequential transducer of a contextual rule, with at most |ui|+ 1 states.
Let us recall a few definitions:

3

3.1 Preliminaries

Overlaps, Borders (see e.g. Crochemore and Hancart, 1997, Section 6.2).
The overlap ov(u, v) of two words u and v is the longest suffix of u which is
simultaneously a prefix of v.

u

v

ov(u, v)

A word u is a border of a word v if it is both a prefix and a suffix of v, i.e. if
there exist v1, v2 in Σ∗ such that v = uv1 = v2u. For v 6= ε, the longest border
of v different from v itself is denoted bord(v).

v
v2

v1
v

bord(v)

Fact 3.1. For all u, v in Σ∗ and a in Σ,

ov(ua, v) =

{
ov(u, v) · a if ov(u, v) · a ≤pref v

bord(ov(u, v) · a) otherwise.

Sequential Transducers (see e.g. Sakarovitch, 2009, Section V.1.2). For-
mally, a sequential transducer from Σ to ∆ is a tuple T = 〈Q,Σ,∆, q0, δ, η, ι, ρ〉
where δ : Q× Σ→ Q is a partial transition function, η : Q× Σ→ ∆∗ a partial
transition output function with the same domain as δ, i.e. dom(δ) = dom(η),
ι ∈ ∆∗ is an initial output, and ρ : Q → ∆∗ is a partial final output function.
T defines a partial sequential function JT K : Σ∗ → ∆∗ with

JT K(w)
def
= ι · η(q0, w) · ρ(δ(q0, w))

for all w in Σ∗ for which δ(q0, w) and ρ(δ(q0, w)) are defined, where η(q, ε) = ε
and η(q, wa) = η(q, w) · η(δ(q, w), a) for all w in Σ∗ and a in Σ.

Let us note T(q) for the sequential transducer with q for initial state. We
write u∧v for the longest common prefix of strings u and v; the longest common
prefix of all the outputs from state q can be written formally as

∧
v∈Σ∗JT(q)K(v).

A sequential transducer is normalized if this value is ε for all q ∈ Q such that
dom(JT(q)K) 6= ∅, i.e. if the transducer outputs symbols as soon as possible; any
sequential transducer can be normalized.

The translation of a sequential function f by a word w in Σ∗ is the sequential
function w−1f with

dom(w−1f)
def
= w−1dom(f) w−1f(u)

def
=

(∧
v∈Σ∗

f(wv)

)−1

· f(wu)

for all u in dom(w−1f). As in the finite automata case where minimal automata
are isomorphic with residual automata, the minimal sequential transducer for a
sequential function f is defined as the translation transducer 〈Q,Σ,∆, q0, δ, η, ι, ρ〉,
where

4

• Q def
= {w−1f | w ∈ Σ∗} (which is finite),

• q0
def
= ε−1f ,

• ι def
=
∧

v∈Σ∗ f(v) if dom(f) 6= ∅ and ι = ε otherwise,

• δ(w−1f, a)
def
= (wa)−1f ,

• η(w−1f, a)
def
=
∧

v∈Σ∗(w
−1f)(av) if dom((wa)−1f) 6= ∅ and η(w−1f, a) = ε

otherwise, and

• ρ(w−1f)
def
= (w−1f)(ε) if ε ∈ dom(w−1f), and is otherwise undefined.

3.2 Main Construction

Here is the definition of our transducer for a contextual rule:

Definition 3.2 (Transducer of a Contextual Rule). The sequential transducer
Tr associated with a contextual rule r = u → v with u 6= ε is defined as

Tr
def
= 〈pref(u),Σ,Σ, ε, δ, η, ε, ρ〉 with the set of prefixes of u as state set, ε as

initial state and initial output, and for all a in Σ and w in pref(u),

δ(w, a)
def
=


wa if wa ≤pref u

w if w = u

bord(wa) otherwise

ρ(w)
def
=


ε if w ≤pref (u ∧ v)

(u ∧ v)−1w if (u ∧ v) <pref w <pref u

ε otherwise, i.e. if w = u

η(w, a)
def
=



a if wa ≤pref (u ∧ v)

ε if (u∧v)<pref wa<pref u

(u ∧ v)−1v if wa = u

a if w = u

ρ(w)a · ρ(bord(wa))−1

otherwise.

For instance, the sequential transducer for the rule ababb → abbbb is shown
in Figure 1 (one can check that ababb ∧ abbbb = ab, bord(b) = ε, bord(aa) = a,
bord(abb) = ε, bord(abaa) = a, and bord(ababa) = aba). The intuition behind
the definition of η(w, a) is to decompose the rewriting according to u→ v into
four phases:

1. while in the common prefix u ∧ v of u and v, implement the identity
function (states ε, a, and ab in Figure 1),

2. as soon as we start reading a symbol of u that does not match that of v
(upon reading a in state ab in Figure 1), we stop outputting symbols and
wait for the whole of u to be read,

3. if u has been read, we output the remaining rewritten string (u ∧ v)−1 · v
we had been saving (upon reading b in state abab in Figure 1),

5

εε

ε

a

ε

ab

ε

aba

a

abab

ab

ababb

ε

b:b

a:a

a:a

b:b

b:b

a:ε

a:aa

b:ε b:bbb

a:ab

a:a, b:b

Figure 1: The sequential transducer constructed for ababb→ abbbb.

4. after having read the first occurrence of u in full, we merely implement
the identity again (state ababb in Figure 1).

5. If on the other hand we realize that u cannot be read after all in some
state w upon reading some a (e.g. transition on a in state aba in Figure 1),
we need to flush the missing output (u∧ v)−1 ·w = ρ(w), minus the saved
output if the state we reach is itself in phase 2.

It remains to show that this sequential transducer is indeed the minimal nor-
malized sequential transducer for JrK.

Proposition 3.3 (Correctness). Let r = u→ v with u 6= ε. Then JTrK = JrK.

Proof. Let us first consider the case of input words in Σ∗\(Σ∗ · u · Σ∗):
Claim 3.3.1. For all w in Σ∗\(Σ∗ · u · Σ∗),

δ(ε, w) = ov(w, u) η(ε, w) = w · ρ(ov(w, u))−1 .

Proof of the claim. By induction on w: since u 6= ε, the base case is w = ε with

δ(ε, ε) = ε = ov(ε, u) η(ε, ε) = ε = ε · ε−1 = ε · ρ(ε)−1 .

For the induction step, we consider wa in Σ∗\(Σ∗ ·u ·Σ∗) for some w in Σ∗ and
a in Σ:

δ(ε, wa) = δ(δ(ε, w), a) (by def.)

= δ(ov(w, u), a) (by ind. hyp.)

where by definition of δ, we have δ(ov(w, u), a) = ov(w, u) ·a if ov(w, u) ·a ≤pref

u and δ(ov(w, u), a) = bord(ov(w, u) · a) otherwise (the case ov(w, u) = u is
impossible since w in Σ∗\(Σ∗ · u · Σ∗)). In all cases:

δ(ε, wa) = ov(wa, u) (by Fact 3.1)

η(ε, wa) = η(ε, w) · η(δ(ε, w), a) (by def.)

= w · ρ(δ(ε, w))−1 · η(δ(ε, w), a) (by ind. hyp.)

= w · ρ(w′)−1 · η(w′, a) ; (by setting w′ = δ(ε, w))

we need to do a case analysis for this last equation:

Case w′a 6≤pref u Then η(w′, a) = ρ(w′) · a · ρ(border(w′a))−1, which yields

η(ε, wa) = w · ρ(w′)−1 · ρ(w′) · a · ρ(δ(ε, wa))−1 (by Fact 3.1)

= wa · ρ(δ(ε, wa))−1 .

6

Case w′a <pref u Then δ(ε, wa) = w′a, and we need to further distinguish
between several cases:

w′a ≤pref (u ∧ v) then ρ(w′) = ε, η(w′, a) = a, and ρ(w′a) = ε, thus

η(ε, wa) = wa = wa · ε−1 = wa · ρ(w′a)−1 ,

w′ = (u ∧ v) then ρ(w′) = ε, η(w′, a) = ε, and ρ(w′a) = (u∧v)−1 ·w′a =
a,

η(ε, wa) = w = wa · a−1 = wa · ρ(w′a)−1 ,

(u ∧ v) <pref w′ then ρ(w′) = (u∧ v)−1 ·w′, η(w′, a) = ε, and ρ(w′a) =
(u ∧ v)−1 · w′a, thus

η(ε, wa) = w · ((u ∧ v)−1 · w′)−1

= wa · a−1 · ((u ∧ v)−1 · w′)−1

= wa · ρ(w′a)−1 .

The claim yields that JTrK coincides with JrK on words in Σ∗\(Σ∗ · u · Σ∗),
i.e. is the identity over Σ∗\(Σ∗ · u ·Σ∗). Then, since u 6= ε, a word in Σ∗ · u ·Σ∗
can be written as waw′ with w in Σ∗\(Σ∗ ·u ·Σ∗), a in Σ with wa in Σ∗ ·u, and
w′ in Σ∗. Let u = u′a; the claim implies that

δ(ε, w) = u′ η(ε, w) = w · ρ(u′)−1 .

Thus, by definition of Tr, δ(ε, wa) = u′a = u and thus

η(ε, wa) = η(ε, w) · η(u′, a) = w · ρ(u′)−1 · (u ∧ v)−1 · v ;

if (u ∧ v) <pref u′

η(ε, wa) = w · ((u∧ v)−1 · u′)−1 · (u∧ v)−1 · v = w · u′−1 · v = wa · u−1 · v ;

otherwise i.e. if u′ = (u ∧ v):

η(ε, wa) = w · u′−1 · v = wa · u−1 · v .

Thus in all cases JTrK(wa) = JrK(wa), and since Tr starting in state u (i.e. Tr(u))
implements the identity over Σ∗, we have more generally JTrK = JrK.

Lemma 3.4 (Normality). Let r = u→ v. Then Tr is normalized.

Proof. Let w ∈ Prefix(u) be a state of Tr; let us show that
∧

JTr(w)K(Σ∗) = ε.

If (u ∧ v) <pref w <pref u let u′ = w−1u ∈ Σ+, and consider the two out-
puts

JTr(w)K(u′) = η(w, u′)ρ(u) = (u ∧ v)−1v

JTr(w)K(ε) = ρ(w) = (u ∧ v)−1w .

Since (u∧v) <pref u we can write u as (u∧v)au′′u′, and either v = (u∧v)bv′

or v = u∧v, for some a 6= b in Σ and u′′, v′ in Σ∗; this yields w = (u∧v)au′′

and thus JTr(w)K(u′) ∧ JTr(w)K(ε) = ε.

7

otherwise ρ(w) = ε, which yields the lemma.

Proposition 3.5 (Minimality). Let r = u→ v with u 6= ε and u 6= v. Then Tr
is the minimal sequential transducer for JrK.

Proof. Let w <pref w
′ be two different states in Prefix(u); we proceed to prove

that Jw−1TrK 6= Jw′−1TrK, hence that no two states of Tr can be merged. By
Lemma 3.4 it suffices to prove that JTr(w)K 6= JTr(w′)K, thus to exhibit some
x ∈ Σ∗ such that JTr(w)K(x) 6= JTr(w′)K(x). We perform a case analysis:

if w′ ≤pref (u ∧ v) then w <pref (u ∧ v) thus JTr(w)K(x) = x for all x 6∈ w−1 ·
Σ∗ · u · Σ∗; consider

JTr(w)K(w′−1u) = w′−1u 6= w′−1v = JTr(w′)K(w′−1u) ;

if w ≤pref (u ∧ v) and w′ = u then JTr(w′)K(x) = x for all x and we consider

JTr(w)K(w−1u) = w−1v 6= w−1v = JTr(w′)K(w−1u) ;

otherwise that is if w ≤pref (u∧v) and (u∧v) <pref w
′ <pref u, or (u∧v) <pref

w <pref w
′ ≤pref u, we have ρ(w) 6= ρ(w′) thus

JTr(w)K(ε) 6= JTr(w′)K(ε) .

4 Conclusion

The results of the previous section yield (the cases u = ε and u = v are trivial):

Theorem 4.1. Given a contextual rule r = u → v, one can construct directly
the minimal normalized sequential transducer Tr of size O(|r|) for JrK.

The remaining question is whether we can obtain better upper bounds on the
size of the sequential transducer TC for a cascade C = r1 · · · rn than O(2n log k). It
turns out that there are cascades of length n for which no sequential transducer
with a subexponential (in n) number of states can exist, thus our construction
is close to optimal.

References

Brill, E., 1992. A simple rule-based part of speech tagger. In ANLP ’92 , third
Conference on Applied Natural Language Processing, pages 152–155. ACL
Press. doi:10.3115/974499.974526.

Crochemore, M. and Hancart, C., 1997. Automata for matching patterns. In
Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages,
volume 2. Linear Modeling: Background and Application, chapter 9, pages
399–462. Springer. ISBN 3-540-60648-3.

Kaplan, R.M. and Kay, M., 1994. Regular models of phonological rule sys-
tems. Computational Linguistics, 20(3):331–378. http://www.aclweb.org/
anthology/J94-3001.pdf.

8

http://www.aclweb.org/anthology/A92-1021.pdf
http://www.aclweb.org/anthology/J94-3001.pdf
http://www.aclweb.org/anthology/J94-3001.pdf

Mihov, S. and Schultz, K.U., 2007. Efficient dictionary-based text
rewriting using subsequential transducers. 13(4):353–381. doi:10.1017/
S1351324905004092.

Roche, E. and Schabes, Y., 1995. Deterministic part-of-speech tagging with
finite-state transducers. Computational Linguistics, 21(2):227–253. http://
www.aclweb.org/anthology/J95-2004.pdf.

Sakarovitch, J., 2009. Elements of Automata Theory. Cambridge University
Press. ISBN 978-0-521-84425-3.

Schützenberger, M.P., 1977. Sur une variante des fonctions séquentielles. The-
oretical Computer Science, 4(1):47–57. doi:0.1016/0304-3975(77)90055-X.

Simon, I., 1994. String matching algorithms and automata. In Karhumäki, J.,
Maurer, H., and Rozenberg, G., editors, Results and Trends in Theoretical
Computer Science: Colloquium in Honor of Arto Salomaa, volume 812 of
Lecture Notes in Computer Science, pages 386–395. Springer. ISBN 978-3-
540-58131-4. doi:10.1007/3-540-58131-6 61.

9

http://dx.doi.org/10.1017/S1351324905004092
http://dx.doi.org/10.1017/S1351324905004092
http://www.aclweb.org/anthology/J95-2004.pdf
http://www.aclweb.org/anthology/J95-2004.pdf
http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1977-3SequentiellesTcs.pdf
http://dx.doi.org/10.1007/3-540-58131-6_61

	Introduction
	Contextual Rules
	Example
	Cascade of Contextual Rules

	Sequential Transducer of a Rule
	Preliminaries
	Main Construction

	Conclusion

