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Abstract

Models of random walks in a random environment were introduced at first by Chernoff in 1967

in order to study biological mechanisms. The original model has been intensively studied since

then and is now well understood. In parallel, similar models of random processes in a random

environment have been studied. In this article we focus on a model of random walk on random

marked trees, following a model introduced by R. Lyons and R. Pemantle (1992). Our point of

view is a bit different yet, as we consider a very general way of constructing random trees with

random transition probabilities on them. We prove an analogue of R. Lyons and R. Pemantle’s

recurrence criterion in this setting, and we study precisely the asymptotic behavior, under re-

strictive assumptions. Our last result is a generalization of a result of Y. Peres and O. Zeitouni

(2006) concerning biased random walks on Galton-Watson trees.
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1 Introduction and statement of results.

Models of random walks in a random environment were introduced at first by Chernov in 1967 ([6])

in order to study biological mechanisms. The original model has been intensively studied since then

and is now well understood. On the other hand, more recently, several attempts have been made

to study extensions of this original model, for example in higher dimensions, continuous time, or

different space.

It is remarkable that the random walk in Zd , d > 1, is still quite mysterious, in particular no precise

criterion for recurrence/transience has ever been found.

In the case of trees, however, a recurrence criterion exists, and even estimates for the asymptotic

behavior have been proven. To present our model and the existing results, we begin with some

notations concerning trees. Let T be a tree rooted at some vertex e. For each vertex x of T we call

N(x) the number of his children {x1, x2, ..., xN(x)}, and
←−
x his father. For two vertices x , y ∈ T , we

call d(x , y) the distance between x and y , that is the number of edges on the shortest path from x

to y , and |x | := d(e, x). Let Tn be the set of vertices such that |x | = n, and T ∗ = T \ {e}. We also

note x < y when x is an ancestor of y .

We call a marked tree a couple (T,A), where A is a random application from the vertices of T to R∗+.

Let T be the set of marked trees. We introduce the filtration G n on T defined as

Gn = σ{N(x),A(x i), 1≤ i ≤ n, |x |< n, x ∈ T}.

Following [20], given a probability measure q on N⊗R∗N∗+ , there exists a probability measure MT on

T such that

• the distribution of the random variable (N(e),A(e1),A(e2), ...) is q,

• given Gn, the random variables (N(x),A(x1),A(x2), .....), for x ∈ Tn, are independent and their

conditional distribution is q.

We will always assume m := E[N(e)]> 1, ensuring that the tree is infinite with a positive probability.

We now introduce the model of random walk in a random environment. Given a marked tree T , we

set for x ∈ T ∗, x i a child of x ,

ω(x , x i) =
A(x i)

1+
∑N(x)

j=1 A(x j)

and

ω(x←−x ) =
1

1+
∑N(x)

j=1 A(x j)
.

Morever we set ω(x , y) = 0 whenever d(x , y) 6= 1,

It is easy to check that (ω(x , y))x ,y∈T is a family of non-negative random variables such that,

∀x ∈ T,
∑

y∈T

ω(x , y) = 1,

and

∀x ∈ T ∗, A(x) =
ω(←−x , x)

ω(←−x ,
←−←−
x )

, (1)
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where ω(e,
←−
e ) is artificially defined as

1

ω(e,
←−
e )
=
∑

|x |=1

A(x).

Further, ω(x , y) 6= 0 whenever x and y are neighbors.

T will be called “the environment”, and we call “random walk on T” the Markov chain (Xn,PT )

defined by X0 = e and

∀x , y ∈ T, PT (Xn+1 = y |Xn = x) =ω(x , y).

We call “annealed probability” the probability PMT = MT⊗ PT taking into account the total alea.

We set, for x ∈ T , Cx =
∏

e<z≤x A(z). We can associate to the random walk Xn an electrical network

with conductance Cx along [
←−
x , x], and a capacited network with capacity Cx along [

←−
x , x]. We

recall the definition of an electrical current on an electrical network. Let G = (V, E) be a graph, C

be a symmetric function on E, and A, Z be two disjoint subsets of V . We define the electrical current

between A and Z as a function i that is antisymmetric on E such that, for any x ∈ V\(A∪Z), the sum

on the edges e starting from x of i(e) equals zero (this is call Kirchhoff’s node Law), and, moreover,

i satisfies the Kirchhoff’s cycle Law, that is, for any cycle x1, x2, . . . , xn = x1,

n∑

i=1

i(x i , x i+1)

C(x i, x i+1)
= 0.

A flow on a capacited network is an antisymmetric function θ that satisfies the Kirchhoff’s node Law,

and such that, for all edges e, θ (e) < C(e), (for more precisions on this correspondence we refer to

the chapters 2 and 3 of [17]).

We shall also frequently use the convex function ρ defined for α≥ 0 as

ρ(α) = EMT




N(e)∑

0

A(ei)
α


= Eq




N∑

0

A(i)α


 .

Remark : This model is in fact inspired by a model introduced in [16]. In this case the tree T and

the A(x) were introduced separately, and the A(x) were supposed to be independent. Here we can

include models in which the structure of the tree and the transition probabilities are dependent. A

simple example that is covered in our model is the following : Let T be a Galton-Watson tree. We

chose an i.i.d. family (B(x))x∈T and set, for every x ∈ T , 1 ≤ i ≤ N(x), A(x i) = B(x). This way

the transition probabilities to the children of any vertex are all equal, but randomly chosen. In R.

Lyons and R. Pemantle’s article, a recurrence criterion was shown, our first result is a version of this

criterion in our setting.

Theorem 1.1. We suppose that there exists 0 ≤ α ≤ 1 such that ρ is finite in a small neighborhood

of α, ρ(α) = inf0≤t≤1ρ(t) := p and ρ′(α) = Eq

h∑N(e)

i=1 A(ei)
α log(A(ei))

i
is finite. We assume that

∑N(e)

i=1 A(ei) is not identically equal to 1.

Then,

1. if p < 1 then the RWRE is a.s. positive recurrent, the electrical network has zero conductance a.s.,

and the capacited network admits no flow a.s..
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2. if p ≤ 1 then the RWRE is a.s. recurrent, the electrical network has zero conductance a.s. and the

capacited network admits no flow a.s..

3. if p > 1, then, given non-extinction, the RWRE is a.s. transient, the electrical network has positive

conductance a.s. and the capacited network admits flow a.s..

(By “almost surely” we mean “for MT almost every T”).

Remark: In the case where
∑N(e)

i=1 A(ei) is identically equal to 1, which belongs to the second case,

|Xn| is a standard unbiased random walk, therefore Xn is null recurrent. However, there exists a

flow, given by θ (←−x , x) = Cx .

The proof of this result is quite similar to the proof of R. Lyons and R. Pemantle, but there are some

differences, coming from the fact that in their setting i.i.d. random variables appear along any ray

of the tree, whereas it is not the case here. Results on branching processes will help us address this

problem.

Theorem 1.1 does not give a full answer in the case p = 1, but this result can be improved, provided

some technical assumptions are fulfilled. We introduce the condition

(H1) : ∀α ∈ [0,1], Eq






N(e)∑

0

A(ei)
α


 log+




N(e)∑

0

A(ei)
α




 <∞,

In the critical case, we have the following

Proposition 1.1. We suppose p = 1, m > 1 and (H1). We also suppose that ρ′(1) =

Eq

h∑N(e)

i=1 A(ei) log(A(ei))
i

is defined and that ρ is finite in a small neighborhood of 1. Then,

• if ρ′(1)< 0, then the walk is a.s. null recurrent, conditionally on the system’s survival,

• if ρ′(1) = 0 and for some δ > 0,

EMT[N(e)
1+δ]<∞,

then the walk is a.s. null recurrent, conditionally on the system’s survival,

• if ρ′(1) > 0, and if for some η > 0, ω(x ,
←−
x ) > η almost surely, then the walk is almost surely

positive recurrent.

Remark: The distinction between the case ρ′(1) = 0 and ρ′(1)> 0 is quite unexpected.

The study of the critical case turns out to be quite interesting, indeed several different behaviors

appear in this case. The quantity κ = inf{t > 1, ρ(t) > 1}, associated to q is of particular interest.

When ρ′(1) ≥ 0, for regular trees and identically distributed A(x), Y. Hu and Z. Shi showed ([9])

that there exist constants 0< c1 ≤ c2 <∞ such that

c1 ≤ lim inf
n→∞

max0<s<n |Xs|
(log n)3

≤ lim sup
n→∞

max0<s<n |Xs|
(log n)3

≤ c2, P− a.s..

It was recently proven by G. Faraud, Y. Hu and Z. Shi that
max0<s<n |Xs|
(log n)3

actually converges to an

explicit constant (see [7]). Interestingly, this constant has a different form when ρ′(1) = 0 and

when ρ′(1)> 0.
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ρ(t) ρ(t) ρ(t)

t t t

ρ′(1)< 0 ρ′(1) = 0 ρ′(1)> 0

1 1 1κ

Figure 1: Possible shapes for ρ in the critical case

In the case ρ′(1)< 0, Y. Hu and Z. Shi showed ([8]) that

lim
n→∞

log max0<s<n |Xs|
log n

= 1−
1

min{κ, 2} , P− a.s..

Results in the case p < 1 have also been obtained by Y. Hu and Z. Shi ([8]), and the case p > 1 has

been studied by E. Aidekon ([1]).

Let us go back to the critical case. Our aim is to study what happens when κ is large. When κ ≥ 2,

the walk behaves asymptotically like n
1

2 . Our aim is to get a more precise estimate in this case.

However we are not able to cover the whole regime κ ∈ [2,∞].
We first introduce the ellipticity assumptions

∃ 0< ǫ0 <∞; ∀i, ǫ0 ≤ A(ei)≤
1

ǫ0
, q− a.s. (2)

and we assume that (A(ei))1≤i≤N(e) is of the form (A′(i)1(i≤N(e))i≥1, where (A′(i))i≥1 is a i.i.d. family

independent of N(e) and that Eq[N(e)
κ+1]<∞. (H2)

Remark : We actually only need this assumption to show Lemma 4.3, we can, for example, alterna-

tively suppose that

∃N0 ; N(e)≤ N0, q− p.s. et Pq[N ≥ 2|A(e1)]≥
1

N0

(3)

Note furthermore that those conditions imply (H1).

Theorem 1.2. Suppose N(e)≥ 1, q− a.s., (2), (3).

If p = 1, ρ′(1) < 0 and κ ∈ (8,∞], then there is a deterministic constant σ > 0 such that, for MT

almost every tree T, the process {|X⌊nt⌋|/
p
σ2n} converges in law to the absolute value of a standard

Brownian motion, as n goes to infinity.

Remark : This result is a generalization of a central limit theorem proved by Y. Peres and O. Zeitouni

[21] in the case of a biased standard random walk on a Galton-Watson tree. In this case, A(x) is a

constant equal to 1

m
, therefore κ=∞. Our proof follows the same lines as theirs.

In the annealed setting, things happen to be easier, and we can weaken the assumption on κ.

Theorem 1.3. Suppose N(e) ≥ 1, q− a.s., (2), (3). If p = 1, ρ′(1) < 0 and κ ∈ (5,∞], then there is

a deterministic constant σ > 0 such that, under PMT, the process {|X⌊nt⌋|/
p
σ2n} converges in law to

the absolute value of a standard Brownian motion, as n goes to infinity.
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Remark : As we will see, the annealed CLT will even be true for κ ∈ (2,∞), on a different kind

of tree, following a distribution that can be described as “the invariant distribution” for the Markov

chain of the “environment seen from the particle”.

We thank P. Mathieu for indicating to us the technique of C. Kipnis and S.R.S. Varadhan ([12]), that

was quite an inspiration for us.

Our article will be organized as follows

• In section 2 we show Theorem 1.1.

• In section 3 we introduce a new law on trees, with particular properties.

• In section 4 we show a Central Limit Theorem for random walks on trees following the “new

law”.

• In section 5 we expose a coupling between the original law and the new one.

• In section 6 we show some lemmas.

• In section 7 we show Theorem 1.3

2 Proof of Theorem 1.1.

Let us first introduce an associated martingale, which will be of frequent use in the sequence.

Let α ∈ R+ and

Y (α)n =
∑

x∈Tn

∏

e<z≤x

A(z)α =
∑

x∈Tn

Cαx .

Y (α)n is known as Mandelbrot’s Cascade.

It it is easy to see that if ρ(α)<∞ then
Y (α)n

ρ(α)n
is a non-negative martingale, with a.s. limit Y (α).

We have the following theorem, due to J.D. Biggins (1977) (see [3, 4]) that allows us to know when

Y (α) is non trivial.

Statement 2.1 (Biggins). Let α ∈ R+. Suppose ρ is finite in a small neighborhood of α, and ρ′(α)
exists and is finite, then the following are equivalent

• given non-extinction, Y (α) > 0 a.s.,

• PMT[Y
(α) = 0]< 1,

• EMT[Y
(α)] = 1,

• Eq

h�∑N(e)

0 A(ei)
α
�

log+
�∑N(e)

0 A(ei)
α
�i
<∞, and

(H2):= αρ′(α)/ρ(α)< logρ(α),

• Y (α)

ρ(α)
converges in L1.
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This martingale is related to some branching random walk, and has been intensively studied ([18,

3, 4, 13, 14, 19]). We will see that it is closely related to our problem.

Let us now prove Theorem 1.1. We shall use the following lemma, whose proof is similar to the

proof presented in page 129 of [16] and omitted.

Lemma 2.1.

min
0≤t≤1

E


∑

x∈T1

A(x)t


 = max

0<y≤1
inf
t>0

y1−t E


∑

x∈T1

A(x)t


 .

(1) Let us begin with the subcritical case, We suppose there exists some 0 < α < 1 such that

ρ(α) = inf0≤t<1ρ(t) < 1. Then, following [11] (Prop 9-131), and standard electrical/capacited

network theory, if the conductances have finite sum, then the random walk is positive recurrent, the

electrical network has zero conductance a.s., and the capacited network admits no flow a.s.. We

have ∑

x∈T ∗
Cαx =

∞∑

n=0

∑

x∈Tn

Cαx =
∑

n

ρ(α)nY (α)n .

Since Y (α)n is bounded (actually it converges to 0), we have

∑

x∈T ∗
Cαx <∞, MT− a.s..

This implies that a.s., for all but finitely many x , Cx < 1, and then Cx ≤ Cαx , which gives the result.

(2) As before, we have α such that ρ(α) = inf0≤t≤1ρ(t) ≤ 1. We have to distinguish two cases.

Either ρ′(1)≥ 0, therefore it is easy to see that, for α, (H2) is not verified, so

∑

x∈Tn

Cαx = Y (α)n → 0,

when n goes to∞ . Then for n large enough, Cx < 1 for every x ∈ Tn, whence

∑

x∈Tn

Cx → 0,

then by the max-flow min-cut theorem, the associated capacited network admits no flow a.s., this

implies that no electrical current flows, and that the random walk is recurrent MT-a.s..

We now deal with the case where ρ′(1) < 0, then α = 1. The proof is similar to [16], but, as it is

quite short, we give it for the sake of clarity. We use the fact that, if the capacited network admits

no flow from e, then the walk is recurrent.

We call F the maximum flows from e in T , and for x ∈ T, |x | = 1, we call Fx the maximum flow in

the subtree Tx = {y ∈ T, x ≤ y}, with capacity
Cy

A(x)
along the edge (

←−
x , x). It is easy to see that F

and Fx have the same distribution, and that

F =
∑

|x |=1

A(x)(Fx ∧ 1). (4)
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Taking the expectation yields

E[F] = E[Fx ∧ 1] = E[F ∧ 1],

therefore ess sup F ≤ 1. By independence, we obtain from (4) that

ess sup F = (ess sup
∑

|x |=1

A(x))(ess sup F).

This implies that F = 0 almost surely, as (ess sup
∑
|x |=1 A(x)) > 1, when

∑
|x |=1 A(x) is not identi-

cally equal to 1 .

(3) We shall use the fact that, if the water flows when Cx is reduced exponentially in |x |, then the

electrical current flows, and the random walk is transient a.s. (see [15]).

We have

inf
α∈[0,1]

E




N(e)∑

0

A(ei)
α


 = p > 1

(p can be infinite, in which case the proof still applies).

We introduce the measure µn defined as

µn(A) = E[♯(A∩ {log Cx}x∈Tn
)],

where ♯ denotes the cardinality.

One can easily check that

φn(λ) :=

∫ +∞

−∞
eλt dµn(t) = E


∑

x∈Tn

Cλx


= ρ(λ)n.

Let y ∈ (0,1] be such that p = inft>0 y1−t E[
∑

x∈T1
A(x)t]. Then, using Cramer-Chernov theorem

(and the fact that the probability measure µn/m
n has the same Laplace transform as the sum of n

independent random variables with law µ1/m), we have

1

n
logµn([n(− log y),∞))→ log(p/y).

Now, if we set 1/y < q < p/y , there exists k such that

E[♯{x ∈ Tk|Cx > yk}] > qk.

Then the end of the proof is similar to the proof in [16]. We chose a small ε > 0 such that,

E[♯{x ∈ Tk|Cx > yk, and ∀e < z ≤ x ,A(z)> ε}]> qk.

Let T k be the tree whose vertices are {x ∈ Tkn, n ∈ N} such that x =
←−
y in T k iff x ≤ y in T and

|y |= x + k. We form a random subgraph T k(ω) by deleting the edges (x , y) where

∏

x<z≤y

A(z)< qk or ∃x < z ≤ y,A(z)< ε.
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Let Γ0 be the connected component of the root. The tree Γ0 is a Galton-Watson tree, such that the

expected number of children of a vertex is qk > 1, hence with a positive probability Γ0 is infinite

and has branching number over qk.

Using Kolmogoroff’s 0-1 Law, conditionally to the survival there is almost surely a infinite connected

component, not necessarily containing the root. This connected component has branching number

at least qk. Then we can construct almost surely a subtree T ′ of T , with branching number over q,

such that ∀x ∈ T ′, A(x) > ε and if |x | = nk, |y | = (n+ 1)k and x < y then
∏

x<z≤y A(z) > qk. This

implies the result.

We now turn to the proof of Proposition 1.1. Let π be an invariant measure for the Markov chain

(Xn, PT ) (that is a measure on T such that, ∀x ∈ T, π(x) =
∑

y∈T π(y)ω(y, x)), then one can easily

check that

π(x) =
π(e)ω(e,

←−
e )

ω(x ,
←−
x )

∏

0<z≤x

A(z),

with the convention that a product over an empty set is equal to 1.

Then almost surely there exists a constant c > 0 (dependant of the tree) such that

π(x)> c Cx .

Thus ∑

x∈T

π(x)> c
∑

n

Y (1)n .

-If ρ′(1) < 0, then (H2) is verified and Y > 0 a.s. conditionally to the survival of the system, thus

the invariant measure is infinite and the walk is null recurrent.

-If ρ′(1) = 0, we use a recent result from Y. Hu and Z. Shi. In [10] it was shown that, under the

assumptions of Theorem 1.1, there exists a sequence λn such that

0< lim inf
n→∞

λn

n1/2
≤ lim sup

n→∞

λn

n1/2
<∞

and λnY (1)n →n→∞ Y , with Y > 0 conditionally on the system’s survival. The result follows easily.

-If ρ′(1) > 0, there exists 0 < α < 1 such that ρ(α) = 1, ρ′(α) = 0. We set, for every x ∈ T ,

Ã(x) := A(x)α. We set accordingly C̃(x) =
∏

0<z≤x Ã(z), and

ρ̃(t) := Eq




N(e)∑

i=1

Ã(ei)
t


 = ρ(αt).

Note that ρ̃(1) = 1 = inf0<t≤1ρ(t) and ρ̃′(1) = 0. Note that under the ellipticity condition

ω(x ,
←−
x )> η, for some constant c > 0

∑

x∈T

π(x)< c
∑

x∈T

Cx =
∑

x∈T

C̃1/α
x .

Using Theorem 1.6 of [10] with β = 1/α and C̃x = e−V (x), we get that for any 2

3
α < r < α,

EMT




∑

x∈Tn

Cx




r
 = n−

3r

2α
+o(1).
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Note that as r < 1, �∑
n

Y (1)n

�r

≤
∑

n

�
Y (1)n

�r
,

whence, using Fatou’s Lemma,

EMT



 ∑

x∈T

Cx

!r
 <∞.

This finishes the proof.

3 The IMT law.

We consider trees with a marked ray, which are composed of a semi infinite ray, called Ra y = {v0 =

e, v1 =
←−
v0 , v2 =

←−
v1 ...} such that to each vi is attached a tree. That way vi has several children, one

of which being vi−1.

As we did for usual trees, we can “mark” these trees with {A(x)}x∈T . Let T̃ be the set of such trees.

Let Fn be the sigma algebra σ(Nx ,Ax i
, vn ≤ x) and F∞ = σ(Fn, n ≥ 0). While unspecified, “mea-

surable” will mean “F∞ - measurable”.

Let q̂ be the law on N×R∗N∗+ defined by

dq̂

dq
=

N(e)∑

1

A(ei).

Remark : For this definition to have any sense, it is fundamental that Eq[
∑N(e)

1 Ai] = 1, which is

provided by the assumptions ρ′(1)< 0 and p = 1.

Following [21], let us introduce some laws on marked trees with a marked ray. Fix a vertex v0

(the root) and a semi infinite ray, called Ra y emanating from it. To each vertex v ∈ Ra y we attach

independently a set of marked vertices with law q̂, except to the root e to which we attach a set of

children with law (q+ q̂)/2. We chose one of these vertices, with probability
A(vi)∑

A(vi)
, and identify it

with the child of v on Ra y . Then we attach a tree with law MT to the vertices not on Ra y . We call

IMT the law obtained.

We call θ v T be the tree T “shifted” to v, that is, θ v T has the same structure and labels as T , but its

root is moved to vertex v.

Note that as before, given a tree T in T̃, we can define in a unique way a family ω(x , y) such that

ω(x , y) = 0 unless d(x , y) = 1,

∀x ∈ T,
∑

y∈T

ω(x , y) = 1,

and

∀x ∈ T, A(x) =
ω(←−x , x)

ω(←−x ,
←−←−
x )

. (5)

We call random walk on T the Markov chain (X t ,PT ) on T , starting from v0 and with transition

probabilities (ω(x , y))x ,y∈T .
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(q+ q̂)/2
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Ray

Figure 2: The IMT law.

Let Tt = θ
X t T denote the walk seen from the particle. Tt is clearly a Markov chain on T̃. We set,

for any probability measure µ on T̃, Pµ = µ⊗PT the annealed law of the random walk in a random

environment on trees following the law µ. We have the following

Lemma 3.1. IMT is a stationnary and reversible measure for the Markov process Tt , in the sense that,

for every F : T̃2→ R measurable,

EIMT[F(T0, T1)] = EIMT[F(T1, T0)].

Proof : Suppose G is a Fn-measurable function, that is, G only depends on the (classical) marked

tree of the descendants of vn, to which we will refer as T−n and on the position of v0 in the n− th

level of T−n. We shall write accordingly G(T ) = G(T−n, v0)

We first show the following

Lemma 3.2. If G is Fn measurable, then

EIMT[G(T )] = EMT


∑

x∈Tn

Cx G(T, x)

�
1+
∑

A(x i)

2

�
 . (6)

Remark : These formulae seem to create a dependency on n, which is actually irrelevant, since

Eq[
∑N(e)

i=1 A(ei)] = 1.

Proof : This can be seen by an induction over n, using the fact that

EIMT[G(T
−n, v0)] = Eq




N∑

i=1

A(ei)E
�

G(T ′(i, N ,A(e j)), v0)|i, N ,A(e j)
�

 ,
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where T ′(x , N ,A(ei)) is a tree composed of a vertex vn with N children marked with the A(ei), and

on each of this children is attached a tree with law MT, except on the i-th, where we attach a tree

whose law is the same as T−(n−1).

Iterating this argument we have

EIMT[G(T
−n, v0)] = EMT


∑

x∈Tn

Cx E
�

G(T ′′(x , T ), x)|x , T
�

 ,

where the n first levels of T ′′(x , T ) are similar to those of T, to each y ∈ T ′′n , x 6= y is attached a

tree with law MT, and to x is attached a set of children with law (q̂ + q)/2, upon which we attach

MT trees. The result follows.

Let us go back to the proof of Lemma 3.1. Using the definition of the random walk, we get

EIMT[F(T0, T1)] = EIMT


∑

x∈T

ω(v0, x)F(T,θ x T )


 .

Suppose F is F(n−2) ×F(n−2) measurable; then T → F(T,θ x T ) is at least F(n−1) measurable. Then

we can use (6) to get

EIMT[F(T0, T1)] = EMT


∑

x∈Tn

Cx

�
1+
∑

A(x i)

2

�∑

y∈T

ω(x , y)F(T,θ y T )


 .

It is easily verified that

∀x , y ∈ T,ω(x , y)
1+
∑

A(x i)

2
Cx =ω(y, x)

1+
∑

A(yi)

2
Cy .

Using this equality, we get

EIMT[F(T0, T1)] = EMT


∑

x∈Tn

∑

y∈T

ω(y, x)Cy

�
1+
∑

A(yi)

2

�
F((T, x), (T, y))




= EMT



∑

y∈Tn+1

ω(y,
←−
y )Cy

�
1+
∑

A(yi)

2

�
F((T,

←−
y ), (T, y))




+ EMT



∑

y∈Tn−1

∑

i

ω(y, yi)Cy

�
1+
∑

A(yi)

2

�
F((T, yi), (T, y))


 .

Using (6) and the fact that F is F(n−2)×F(n−2)-measurable, we get

EIMT[F(T0, T1)] = EIMT

h
ω(e,

←−
e )F(θ

←−
e T, T )

i
+ EIMT


∑

i

ω(e, ei)F(θ
ei T, T )




= EIMT
�

F(T1, T0)
�

.

This finishes the proof of (3.1).
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4 The Central Limit Theorem for the RWRE on IMT Trees.

In this section we introduce and show a central limit theorem for random walk on a tree following

the law IMT. For T ∈ T̃, let h be the horocycle distance on T (see Figure 2). h can be defined

recursively by (
h(v0) = 0

h(
←−
x ) = h(x)− 1, ∀x ∈ T

.

We have the following

Theorem 4.1. Suppose p = 1, ρ′(1) < 0 and κ ∈ [5,∞], as well as assumptions (2) and (H2) or

(3). There exists a deterministic constant σ such that, for IMT− a.e. T, the process {h(X⌊nt⌋)/
p
σ2n}

converges in distribution to a standard Brownian motion, as n goes to infinity.

The proof of this result consists in the computation of a harmonic function Sx on T . We will show

that the martingale SX t
follows an invariance principle, and then that Sx stays very close to h(x).

Let, for v ∈ T,

Wv = lim
n

∑

x∈T,v<x ,d(v,x=n)

∏

v<z≤x

A(z).

Statement 2.1 implies that Wv > 0 a.s. and E[Wv |σ(A(x i), N(x), x < v)] = 1. Now, let M0 = 0 and

if X t = v,

Mt+1−Mt =

¨
−Wv if X t+1 =

←−
v

Wvi
, if X t+1 = vi

.

Given T , this is clearly a martingale with respect to the filtration associated to the walk. We intro-

duce the function Sx defined as Se = 0 and for all x ∈ T ,

Sx i
= Sx +Wx i

, (7)

in such a way that Mt = SX t
.

Let

η= EGW[W
2
0 ], (8)

which is finite due to Theorem 2.1 of [13] (the assumption needed for this to be true is κ > 2). We

call

Vt :=
1

t

t∑

i=1

ET [(Mi+1−Mi)2|Ft]

the normalized quadratic variation process associated to Mt . We get

ET [(Mi+1−Mi)2|Ft] =ω(X i ,
←−
X i )W

2
X i
+

N(X i)∑

j=1

ω(X i , X i j)W
2
X i j
= G(Ti),

where X i j are the children of X i and G is a L1(IMT) function on T̃ (again due to κ > 2).

Let us define σ such that EIMT[G(T )] := σ2η2. We have the following

Proposition 4.1. The process {M⌊nt⌋/
p
σ2η2n} converges, for IMT almost every T, to a standard

Brownian motion, as n goes to infinity.
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Proof : We need the fact that when t goes to infinity,

Vt → σ2η2.

This comes from Birkhof’s Theorem, using the transformation θ on T̃ , which conserves the measure

IMT. The only point is to show that this transformation is ergodic, which follows from the fact that

any invariant set must be independent of F p
n = σ(N(x),A(x i), vn ≤ x ,h(x) < p), for all n, p, hence

is independent of F∞.

The result follows then from the Central Limit Theorem for martingales. Our aim is now to show

that h(X t) and Mt/η stay close in some sense, then the central limit theorem for h(X t) will follow

easily.

Let

ε0 < 1/100,δ ∈ (1/2+ 1/3+ 4ε0, 1− 4ε0)

and for every t, let ρt be an integer valued random variable uniformly chosen in [t, t + ⌊tδ⌋].
It is important to note that, by choosing ε0 small enough, we can get δ as close to 1 as we need.

We are going to show the following

Proposition 4.2. For any 0< ε < ε0,

lim
t→∞
PT (|Mρt

/η− h(Xρt
)| ≥ ε

p
t) = 0, IMT− a.s.,

further,

lim
t→∞
PT

 
sup

r,s<t,|r−s|<tδ
|h(X r)− h(Xs)|> t1/2−ε

!
= 0, IMT− a.s..

Before proving this result, we need some notations. For any vertex v of T , let

SRay
v =

∑

y on the geodesic connecting v and Ray,y 6∈Ray
Wy .

We need a fundamental result on marked Galton-Watson trees. For a (classical) tree T , and x in T ,

set

Sx =
∑

e<y≤x

Wx ,

with Wx as before, and

Aεn =

¨
v ∈ T, d(v, e) = n,

����
Sv

n
−η
����> ε

«
.

We have the following

Lemma 4.2. Let 2< λ < κ− 1, then for some constant C1 depending on ε,

EMT



∑

x∈Aεn

Cx


 < C1n1−λ/2. (9)
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Proof : We consider the set T∗ of trees with a marked path from the root, that is, an element of T∗

is of the form (T, v0, v1, ...), where T is in T, v0 = e and vi =
←−−
vi+1.

We consider the filtration Fk = σ(T, v1, ...vk). Given an integer n, we introduce the lawdMT∗
n

on T∗ de-

fined as follows : we consider a vertex e (the root), to this vertex we attach a set of marked children

with law q̂, and we chose one of those children as v1, with probability P(x = v1) = A(x)/
∑

A(ei).

To each child of e different from v1 we attach independently a tree with law MT, and on v1 we iterate

the process : we attach a set of children with law q̂, we choose one of these children to be v2, and

so on, until getting to the level n. Then we attach a tree with law MT to vn.

q̂

MTMTMT

v0

v1

q̂

MT MT v2

vn−1

vn

MT MT MT MT

Figure 3: the law dMT∗
n
.

The same calculations as in the proof of Lemma 3.2 allow us to see the following fact : for f

Fn-measurable,

EdMT∗
n

[ f (T, v0, ..., vn)] = EMT


∑

x∈Tn

Cx f (T, p(x))


 , (10)

where p(x) is the path from e to x . Note that, by construction, under dMT∗
n

conditionally to F̃∗n :=

(Cvi
, 0 ≤ i ≤ n), the trees T (vi), 0 ≤ i ≤ n of the descendants of vi who are not descendants of vi+1

are independent trees, and the law of T (vi) is the law of a MT tree, except for the first level, whose

law is q̂ conditioned on vi+1, A(vi+1).

For a tree T in T∗ we have

Wvk
=

∑

vk=
←−
x ,x 6=vk+1

A(x)Wx + A(vk+1)Wvk+1
:=W ∗

k + A(vk+1)Wvk+1
,

where

Wj∗= lim
n→∞

∑

x∈T,v j<x ,v j+1 6≤x ,d(v j ,x)=n

∏

v≤z≤x

A(z).

Iterating this, we obtain

Wvk
=

n−1∑

j=k

W ∗
j

j∏

i=k+1

A(vi) +Wvn

n∏

i=k+1

A(vi),
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with the convention that the product over an empty space is equal to one. We shall use the notation

Ai := A(vi) for a tree with a marked ray.

Finally, summing over k, we obtain

Svn
=

n−1∑

j=0

W ∗
j

j∑

k=0

j∏

i=k+1

Ai +Wvn

n∑

k=0

n∏

i=k+1

Ai . (11)

Let B j =
∑ j

k=0

∏ j

i=k+1
Ai . We note for simplicity Wvn

:=W ∗
n . Note that

EdMT∗
n

[W0] = EMT




∑

x∈Tn

Cx




2

 := EMT[M

2
n ]

converges to η= EMT[W
2
0 ] as n goes to infinity. Indeed, recalling that EMT[Mn] = 1, we have

EMT[(Mn+1− 1)2] = Eq






N(e)∑

i=1

A(ei)Ui − 1




2



= Eq






N(e)∑

i=1

A(ei)(Ui − 1) +

N(e)∑

i=1

A(ei)− 1




2

 ,

where, conditionally to the Ai , Ui are i.i.d. random variables, with the same law as Mn. We get

EMT[(Mn+1− 1)2] = ρ(2)EMT[(Mn− 1)2] + C2,

where C2 is a finite number. It is easy to see then that E[M2
n ] is bounded, and martingale theory

implies that Mn converges in L2. Using the fact that EdMT∗
n

[Wvk
] = EØMT∗n−k

[W0], a “Cesaro” argument

implies that EdMT∗
n

[Svn
]/n converges to η as n goes to infinity. In view of that and (10) it is clear that,

for n large enough

EMT



∑

x∈Aεn

Cx


 ≤ EMT


∑

x∈Tn

Cx1Sx−EÔMT∗n
[Sx ]>nε/2




≤ PdMT∗
n

����Svn
− EdMT∗

n

[Svn
|F̃∗n]

���> nε

4

�

+ PdMT∗
n

����EdMT∗
n

[Svn
|F̃∗n]− EdMT∗

n

[Svn
]

���> nε

4

�
:= P1+ P2.

Let us first bound P1. Let W̃ ∗
j :=W ∗

j − EdMT∗
n

[W ∗
j |F̃∗n] and λ ∈ (2,κ− 1). We have

E(1)n := EdMT∗
n

����Svn
− EdMT∗

n

[Svn
|F̃∗n]

���
λ
�
= EdMT∗

n



�����

n∑

i=0

W̃ ∗
i Bi

�����

λ



= EdMT∗
n


EdMT∗

n



�����

n∑

i=0

W̃ ∗
i Bi

�����

λ

|F̃∗n





 .
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Inequality from page 82 of [22] implies

E(1)n ≤ C(λ)nλ/2−1EdMT∗
n




n∑

i=0

EdMT∗
n

h�
W̃ ∗

i Bi

�λ |F̃∗n
i
≤ C3nλ/2−1EdMT∗

n




n∑

i=0

Bλi


 ,

where we have admitted the following lemma

Lemma 4.3. ∀µ < κ, there exist some constant C such that

EMT∗
n
[(W ∗

i )
µ|F̃∗n]< C . (12)

moreover, there exists some ǫ1 > 0 such that

EMT∗
n
[W ∗

i |F̃
∗
n]> ǫ1.

We postpone the proof of this lemma and finish the proof of Lemma 4.2. In order to bound EdMT∗
�

Bλi

�

we need to introduce a result from [4] (lemma 4.1).

Statement 4.1 (Biggins and Kyprianou). For any n≥ 1 and any measurable function G,

EMT


∑

x∈Tn

Cx G(Cy , e < y ≤ x)


= E[G(eSi ; 1≤ i ≤ n)],

where Sn is the sum of n i.i.d variables whose common distribution is determined by

E[g(S1)] = Eq




N(e)∑

i=1

A(ei)g(logA(ei))




for any positive measurable function g.

In particular, E[eλS1] = Eq[
∑N(e)

i=1 A(ei)
λ+1] = ρ(λ+ 1)< 1. We are now able to compute

EdMT∗
n

�
Bλn

�
= EMT



∑

x∈Tn

Cx


 ∑

e≤y≤x

∏

y<z≤x

A(z)



λ

= E



 

n∑

k=0

eSn−Sk

!λ
 .

Using Minkowski’s Inequality, we get

EdMT∗
n

�
Bλn

�
≤
 

n∑

k=0

E
�

eλ(Sk−Sn)
� 1

λ

!λ
≤
 

n∑

k=0

ρ(λ+ 1)
n−k

λ

!λ
≤ C4. (13)

We can now conclude,

E(1)n ≤ C5nλ/2,

and by Markov’s Inequality,

P1 < C6/(ε
λnλ/2). (14)

Now we are going to deal with

P2 = PdMT∗
n

����EdMT∗
n

[Svn
|F̃∗n]− EdMT∗

n

[Svn
]

���> nε/2

�
.
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Lemma 4.3 implies that EdMT∗
n

[W ∗
j |F̃∗n] is bounded above and away from zero, and a deterministic

function of A j+1. We shall note accordingly

EdMT∗
n

[W ∗
j |F̃
∗
n] := g(A j+1). (15)

Recalling (11), we have

EdMT∗
n

[Svn
|F̃∗n] =

n∑

j=0

EdMT∗
n

[W ∗
j |F̃
∗
n])B j =

∑

0≤ j≤k≤n

k∏

i= j

Ai g(Ak+1).

with the convention g(An+1) = 1 and A0 = 1. We set accordingly

EdMT∗
n

[Svn
|F̃∗n] := F(A1, ...,An).

Recalling that, due to Statement 4.1, under the law dMT∗
n
, the Ai are i.i.d random variables we get

EdMT∗
n

[F(A1, ...,An)] =
∑

0≤ j≤k≤n

k∏

i= j

EdMT∗
n

[Ai]EdMT∗
n

[g(Ak+1)].

For m≥ 0 we call

F m[Am+1, ...,An]

:=
∑

0≤ j≤k≤n
k≤m−1

k∏

i= j

EdMT∗
n

[Ai]EdMT∗
n

[g(Ak+1)] +
∑

0≤ j≤k≤n
k≥m

m∏

i= j

EdMT∗
n

[Ai]

k∏

i′=m+1

Ai′ g(Ak+1).

Note that F0 = F and F n = EdMT∗
n

[Svn
], thus we can write

EdMT∗
n

[Svn
|F̃∗n]− EdMT∗

n

[Svn
] = F0(A1, ...An)− F n

= F0(A1, ...An)− F1(A2, ...An)

+ F1(A2, ...An)− F2(A3, ...An)....

+ F n−1(An)− F n.

We introduce the notations ρ := EdMT∗
n

[A1] = ρ(2) < 1, and for a random variable X , X̃ := X −
EdMT∗

n

[X ].
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The last expression gives us

EdMT∗
n

[Svn
|F̃∗n]− EdMT∗

n

[Svn
]

= g̃(A1) + Ã1(g(A2) + A2 g(A3) + ...+

n∏

i=2

Ai g(An+1))

+ρ g̃(A2) + Ã2(1+ρ)




n∑

j=3

j∏

i=3

Ai g(A j+1)




+ρ2 g̃(A3) + Ã3(1+ρ+ρ
2)




n∑

j=4

j∏

i=4

Ai g(A j+1)


+ ...

+ρn−1 g̃(An) + Ãn(1+ρ+ρ
2+ ...ρn−1).

We deduce easily that

���EdMT∗
n

[Svn
|F̃∗n]− EdMT∗

n

[Svn
]

���< C7+ C8

�����
n∑

k=1

ÃkDk(1+ρ+ρ
2+ ...ρk−1)

����� , (16)

where C7, C8 are finite constants and

Dk =

n∑

j=k+1

j∏

i=k+1

Ai g(A j+1).

To finish the proof of Lemma 4.2, we need to show that for every ε > 0, PdMT∗
n

[
∑n

k=1 ÃkDk(1+ ρ +

ρ2+ ...ρk−1)> nε]<
C(ε)

nλ/2−1 .

Recalling that λ < κ− 1, we can find a small ν > 0 such that λ(1+ ν) < κ− 1. Then we have, by

Minkowski’s Inequality

EdMT∗
n

h
D
λ(1+ν)
k

i
≤




n∑

j=k+1

 
EdMT∗

n


C8

n∏

i=k+1

A
λ(1+µ)
i



!1/λ(1+ν)



λ(1+ν)

≤




n∑

j=k

�
C9ρ(1+λ(1+µ))

n−k+1
�1/λ(1+ν)



λ(1+ν)

< C10.

(17)

Markov’s Inequality then implies

PdMT∗
n

�
max
k≤n

Dn > (ε
2n)

1

2(1+ν)

�
≤ C11

n

nλ/2ελ
. (18)

192



On the other hand, we call for 0≤ k ≤ n,

Nk :=

n∑

j=n−k

D j g(An+1)(1+ρ+ρ
2+ ...ρ j−1).

It is easy to check that Nk is a martingale with respect to the filtration Hk = σ(A j , n− k ≤ j ≤ n).

We can compute the quadratic variation of this martingale

〈Nk〉 :=

k∑

j=1

EdMT∗
n

[(Nk − Nk−1)
2|Hk−1] = ρ(3)

k∑

j=1

(Dn− j)
2.

On the other hand, the total quadratic variation of Nk is equal to

[Nk] :=

k∑

j=1

(Nk − Nk−1)
2 =

k∑

j=1

(Ãn− j Dn− j)
2.

It is easy to check that if the event in (18) is fullfilled, then there exists some constant C12 such that

〈Nk〉< C12n
1+ 1

2(1+ν) and [Nk]< C12n
1+ 1

2(1+ν) . Therefore, using (18) and Theorem 2.1 of [2],

PdMT∗
n

[|
n∑

k=1

ÃkDk|> nε]≤ C11

n

nλ/2ελ
+ 2 exp−

(εn)2

2C12n
1+ 1

2(1+ν)

. (19)

Putting together (14) and (19), we obtain (9). This finishes the proof of Lemma 4.2. In particular,

if κ > 5, we can choose λ > 4, so that

EMT[
∑

x∈Aεn

Cx]< n−µ,

with µ > 1 . The following corollary is a direct consequence of the proof.

Corollary 4.4. For every a > 0 and 2< λ < κ− 1,

PdMT∗
n

[|Svk
− kη|> a]≤ C1

k1−λ/2

aλ
.

We now give the proof of Lemma 4.3. As we said in the introduction, for this lemma we need

either the assumption (H2) or the assumption (3). We give the proof in both cases. Note that, by

construction of MT∗, as, using Theorem 2.1 of [13], for every x a child of vi , different from vi+1,

W (x) has finite moments of order µ,

EMT∗
n
[(W ∗

i )
µ|F̃∗n] = C0EMT∗

n







∑
←−
x =vi ,x 6=vi+1

A(x)



µ

��F̃∗n


 (20)

= C0Eq̂







∑

|x |=1,x 6=v1

A(x)



µ

|A(v1)


 (21)
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Note that the upper bound is trivial under assumption (3). We suppose (H2), Let f be a measurable

test function, we have by construction

Eq̂







∑

|x |=1,x 6=v1

A(x)



µ

f (A(v1))




= Eq




N(e)∑

i=1

A(ei)



∑

i 6= j

A(e j)



µ

f (A(ei))




≤
∞∑

n=1

Pq(N(e) = n)Eq




n∑

i=1

A′(i)



∑

i 6= j

A′(1)



µ

f (A′(1))




By standard convexity property, we get that the last term is lesser or equal to

∞∑

n=1

Pq(N(e) = n)Eq




n∑

i=1

A′(i)nµ−1
∑

i 6= j

A′( j)µ f (A′(i))




≤ Eq[A
′(1)µ]

∞∑

n=1

Pq(N(e) = n)nµ+1Eq

�
A′(i) f (A′(i))

�

= Eq[A
′(1)µ]Eq

�
A′(i) f (A′(i))

�
Eq

�
N(e)µ+1

�
,

while, still by construction

Eq̂

�
f (A(v1))

�
= Eq




N(e)∑

i=1

A(ei) f (A(ei))




=

∞∑

n=1

Pq(N(e) = n)Eq[

n∑

i=1

A′(i) f (A′(i))]

= Eq[N(e)]Eq[A
′(1) f (A′(1))].

Therefore the result is direct. To prove the lower bound we begin with assumption (3). Actually we

will only use the second part of this assumption, which is trivially implied by (H2), so the proof will

also work for this case.
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We have

Eq̂




∑

|x |=1,x 6=v1

A(x) f (A(v1))


= Eq




N(e)∑

i=1

A(ei)



∑

i 6= j

A(e j)


 f (A(ei))




≥ ε0

∞∑

i=1

Eq[A(ei) f (A(ei))1{i≤N(e)}(N(e)− 1)]

≥ ε0

∞∑

i=2

Eq[A(ei) f (A(ei))1{i≤N(e)}(N(e)− 1)] + ε0Eq[A(e1) f (A(e1))(N(e)− 1)]

≥ ε0

∞∑

i=2

Eq[A(ei) f (A(ei))1{i≤N(e)}] + ε0Eq[A(e1) f (A(e1))P(N(e)> 2|A(e1))]

≥
ε0

N0

Eq




N(e)∑

i=1

A(ei) f (A(ei)


= Eq̂

�
f (A(v1))

�
,

indeed for i ≥ 2, the event {i < N(e)} implies N(e)− 1> 1. This finishes the proof of Lemma 4.3.

Let us go back to IMT trees. We consider the following sets

Bεn =

(
v ∈ T, d(v,Ray) = n,

�����
S
Ray
v

n
−η

�����> ε
)

. (22)

We can now prove the following

Lemma 4.5.

lim
t→∞
PT (Xρt

∈ ∪∞n=1Bεn) = 0, IMT− a.s..

Proof : we recall that a IMT tree is composed of a semi-infinite path from the root : Ray = {v0 =

e, v1 =
←−
v0 ...}, and that

W ∗
j = lim

n

∑

x∈T,v j<x ,v j−1 6≤x ,d(v j ,x=n)

∏

v≤z≤x

A(z).

Recalling Lemma 4.3, under IMT, conditionally to {Ray,A(vi)}, W ∗
j are independent random vari-

ables and E[W ∗
j ]> ǫ0.

Let 1/2< γ < δ. For a given tree T, we consider the event

Γt = {∃u≤ 2t|Xu = v⌊tγ⌋}.

We have

Γt ⊂ { inf
u≤2t

Mu ≤ Sv⌊tγ⌋},

and IMT almost surely, for some ε,

Sv⌊tγ⌋ ≤ −
⌊tγ⌋∑

0

W ∗
j <−εtγ, for t large enough.
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Since Mt is a martingale with bounded normalized quadratic variation Vt , we get that, for IMT

almost every tree T ,

PT (Γt)→ 0.

Going back to our initial problem, we have

PT (Xρt
∈ ∪∞m=1Bεm) ≤ PT (Xρt

∈ ∪∞n=1Bεm;Γc
t) + PT (Γt) (23)

≤
1

⌊tδ⌋
ET




Hv⌊tγ⌋∑

s=0

1Xs∈∪∞m=1Bεm


+ PT (Γt), (24)

where Hv⌊tγ⌋ is the first time the walk hits v⌊tγ⌋.

As before we call T (vi) the subtree constituted of the vertices x ∈ T such that vi ≤ x 6≤ x . The first

part of the right hand term of (23) is equal to

1

⌊tδ⌋
ET



⌊tγ⌋∑

i=0

Hv⌊tγ⌋∑

s=0

1Xs∈∪∞m=1
Bεm∩T (vi )


 ≤ 1

⌊tδ⌋

⌊tγ⌋∑

i=0

ET




Hv⌊tγ⌋∑

s=0

1Xs=vi


Ni ,

where Ni is the PT -expectation of the number of visits to ∪∞n=1Bεm∩T (vi) during one excursion in T (vi).

Lemma 4.2 implies that, under IMT conditioned on {Ray,A(vi)}, Ni are independent and identically

distributed variables, with finite expectation, up to a bounded constant due to the first level of those

subtrees. We are now going to compute ET

�∑Hv⌊tγ⌋
s=0 1Xs=vi

�
. Given T , we have

Hv⌊tγ⌋∑

s=0

1Xs=vi
≤ 1+Mi ,

where Mi is the number of times the walk, leaving from vi , gets back to vi before hitting v⌊tγ⌋. Mi

follows a geometric law, with parameter pi = P
vi

T [Hv⌊tγ⌋ < Hvi
].

Standard computations for random walks on Z, (see, for example, Theorem 2.1.12 of [24]) imply

that

pi =
ω(vi , vi+1)

1+
∑⌊tγ⌋−1

j=i

∏⌊tγ⌋
k= j−1 A(vk)

,

and, going back to our initial problem,

PT (Xρt
∈ ∪∞m=1Bεm) ≤ PT (Γt) +

C14

⌊tδ⌋

⌊tγ⌋∑

i=0


1+

⌊tγ⌋−1∑

j=i

⌊tγ⌋∏

k= j−1

A(vk)


Ni

≤ PT (Γt) + Vt

C14

⌊tδ⌋

⌊tγ⌋∑

i=0

Ni ,

with Vt = 1+
∑⌊tγ⌋−1

j=0

∏⌊tγ⌋
k= j−1 A(vk).

As in the proof of Lemma 4.2, statement 4.1 implies that EIMT[V
α
t ] < C15 for some α > 2. Now we

can choose δ close to one and γ close to 1/2, and µ such that 1/α < µ < δ− γ
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Markov’s Inequality and the Borel Cantelli Lemma imply that, IMT-almost surely, there exists t0 such

that ∀t > t0, Vt ≤ tµ, and then,

PT (Xρt
∈ ∪∞n=1Bεm)≤ PT (Γt) +

C16

⌊tδ−µ⌋

⌊tγ⌋∑

i=0

Ni .

Since δ−µ < γ, an application of the law of large numbers finishes the proof of Lemma 4.5.

We are now able to prove the first part of Proposition 4.2. Note that under IMT, Svn
follows the same

law as Svn
in a T∗ tree under dMT∗n, whence

Svn
/n →

n→∞
−η

in probability. Let Q t be the first ancestor of Xρt
on Ray. Statement 4.1 and standard RWRE theory

imply that Q t is transient, therefore

SQ t
/h(Q t) →

t→∞
η,

so that, for any positive ε1, for large t,

|SQ t
/η− h(Q t)| ≤ ε1 sup

s≤2t

|Mt |. (25)

We can now compute

|Mρt
/η− h(Xρt

)|= |SRay

Xρt
/η− d(Xρt

,Ray) + SQ t
/η− h(Q t)|.

In view of (25) on the event {Xρt
6∈ ∪∞n=1Bεm}, we have

|Mρt
/η− h(Xρt

)| ≤ 2ε1 sup
s≤2t

|Ms|.

The process Vt being bounded IMT a.s., a standard martingale inequality implies

lim
ε1→0

lim sup
t→∞
P

0
T(sup

s≤t

|Ms|> ε
p

t/(2ε1)) = 0.

It follows that

lim
t→∞
PT (|Mρt

/η− h(Xρt
)| ≥ ε

p
t) = 0,IMT− a.s.

We are now going to prove the second part of Proposition 4.2. The course of the proof is similar to

[21]. We have the following lemma

Lemma 4.6. for any u, t ≥ 1,

PMT(|X i | ≥ u for some i ≤ t)≤ 2te−u2/2t .

Proof : We consider the graph T∗ obtained by truncating the tree T after the level u−1, and adding

an extra vertex e∗, connected to all vertices in Tu−1. We construct a random walk X ∗s on T∗ as

following

P
0
T(X

∗
i+1 = y |X ∗i = x) =





ω(x , y) if |x |< u− 1 or |x |= u− 1, |y |= u− 2

1−ω(x ,
←−
x ) if |x |= u− 1, y = e∗

ω̃(e∗, y) if x = e∗, |y |= u− 1

.
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We can choose ω̃(e∗, y) arbitrarily, provided
∑

y∈Tu−1
ω̃(e∗, y) = 1, so we will use this choice to

ensure the existence of an invariant measure : indeed, if π is an invariant measure for the walk, one

can easily check that, for any x such that |x | ≤ u− 1, calling x (1) the first vertex on the path from e

to x ,

π(x) =
π(e)ω(e, x (1))

ω(x ,
←−
x )

∏

x (1)<z≤x

A(z).

Further, we need that, for every x ∈ Tu−1,

π(x)(1−ω(x ,
←−
x )) = π(e∗)ω̃(e∗, x).

Summing over x, and using
∑

y∈Tu
ω̃(e∗, y) = 1, we get

π(e∗) = π(e)
∑

x∈Tu−1

ω(e, x (1))
∏

x (1)<z≤x

A(z)

∑
ω(x , x i)

ω(x ,
←−
x )

≤ π(e)
∑

x∈Tu

∏

x (1)<z≤x

A(z)≤ π(e)Yu.

Then,

PMT(∃i ≤ t, X i ≥ u)≤ PMT(∃i ≤ t, X ∗i = e∗)≤
t∑

i=1

PMT(X
∗
i = e∗).

By the Carne-Varnopoulos Bound (see [17], Theorem 12.1),

PT (X
∗
i = e∗)≤ 2

p
Yue−u2/2i .

Since, by Jensen’s Inequality, EMT(
p

Yn)≤ 1,

PMT(X i ≥ u for some i ≤ t)≤ 2te−u2/2t .

We have the following corollary, whose proof is omitted

Corollary 4.7.

PIMT(|h(X i)| ≥ u for some i ≤ t)≤ 4t3e−(u−1)2/2t .

Proof : see [21], Corollary 2.

We can now finish the proof of the second part of Proposition 4.2. Under PIMT, the increments

h(X i+1)− h(X i) are stationnary, therefore, for any ε and r, s ≤ t with |s− r| ≤ tδ,

PIMT(|h(X r)− h(Xs)| ≥ t1/2−ε)≤ PIMT(|h(X r−s)| ≥ t1/2−ε)≤ 4t3e−t1−δ−2ε

.

Whence, by Markov’s Inequality, for all t large,

PIMT

�
P

0
T

�
|h(X r−s)| ≥ t1/2−ε�≥ e−t1−δ−ε

�
≤ e−t1−δ−ε

.

Consequently,

PIMT

 
P

0
T

 
sup

r,s≤t,|r−s|≤tδ
|h(X r)− h(Xs)| ≥ t1/2−ε

!
≥ e−t1−δ−ε

!
≤ e−t1−δ−ε

.
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The Borel-Cantelli Lemma completes the proof.

We are now able to finish the proof of Theorem 4.1. Due to Proposition 4.1, the process

{M⌊nt⌋/
p
σ2η2n} converges, for IMT almost every T, to a standard Brownian motion, as n goes

to infinity. Further, by Theorem 14.4 of [5], {Mρnt/
p
σ2η2n} converges, for IMT almost every T, to

a standard Brownian motion, as n goes to infinity. Proposition 4.2 implies that the sequence of pro-

cesses {Y n
t } = {h(Xρnt

)/
p
σ2n} is tight and its finite dimensional distributions converge to those of

a standard Brownian motion, therefore it converges in distribution to a standard Brownian motion,

and, applying again Theorem 14.4 of [5], so does {h(X⌊nt⌋/
p
σ2n}.

5 Proof of Theorem 1.2.

In this section we finish the proof of Theorem 1.2. Our argument relies on a coupling between

random walks on MT and on IMT trees, quite similar to the coupling exposed in [21]. Let us introduce

some notations : for T,S two trees, finite or infinite, we set LT the leaves of T , that is the vertices

of T that have no offspring, T o = T/LT and for v ∈ T we denote by T ◦v S the tree obtained by

gluing the root of S to the vertex v of T , with vertices marked as in their original tree (the vertex

coming from both v and the root of S is marked as v). Given a tree T ∈ T and a path {X t} on T we

construct a family of finite trees Ti , Ui as follows : let τ0 = η0 = 0, and U0 the finite tree consisting

of the root e of T and its offspring, marked as in T . For i ≥ 1, let

τi =min{t ≥ ηi−1 : X t ∈ LUi−1} (26)

ηi =min{t > τi; X t ∈ Uo
i−1}. (27)

Let Ti be the tree “explored” by the walk during the excursion [τi ,ηi), that is to say Ti is composed

of the vertices of T visited by {X t , t ∈ [τi ,ηi)}, together with their offspring, marked as in T , and

the root of Ti is Xτi
. Let Ui = Ui−1 ◦Xτi Ti be the tree explored by the walk from the beginning. We

call {ui
t}
ηi−τi−1

t=0 the path in Ti defined by ui
t = Xτi+t . If T is distributed according to MT, and X t is

the path of the random walk on T , then, the walk being recurrent, PMT−almost surely T = lim Ui .

We are now going to construct T̃ ∈ T̃, a tree with a semi-infinite ray emanating from the root,

coupled with T , and a path {X̃ t} on T, in such a way that, if T is distributed according to MT, and

X t is the path of the random walk on T , then T̃ will be distributed according to IMT and {X̃ t} will

follow the law of a random walk on T̃ .

Let Ũo be the tree defined as follows : we choose a vertex denoted by e, as the root of Ũo, and a

semi-infinite ray {e = v0, v1, ...}. To each vertex vi ∈ Ra y different from e we attach independently

a set of marked vertices with law q̂. To e we attach a set of children with distribution (q + q̂)/2 If

i ≥ 1 we chose one of those vertices, with probability
A(x)∑
y A(y)

, and identify it with vi−1. We obtain a

tree with a semi-infinite ray and a set of children for each vertex vi on Ra y , one of them being vi−1.

We set τ̃0 = η̃0 = 0. Recalling the relation (5) between the Ax and the ω(x , y), one can easily check

that for any vertex x , knowing the {w(x , y)}y∈T is equivalent to knowing {A(x i)}x i children of x . Thus,

knowing Ũ0 one can compute the {ω(x , y)}x∈Ra y,y∈Ũ0
and define a random walk X̃ t on Ũ0, stopped

when it gets off Ray. We set accordingly τ̃1 =min{t > 0 : X̃ t ∈ LŨ0}.
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X̃τ1
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Ũ2
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X̃τ3

b

U2

Ũ3U3

Xn

Figure 4: the coupling
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We are now going to “glue” the first excursion of {X t}. Let

Ũ1 = Ũ0 ◦X̃ τ̃1 T1,

η̃1 = τ̃1+η1−τ1,

{X̃ t}
η̃1−1

t=τ̃1
= u1

t−τ̃1
,

X̃ η̃1 =
←−−−
X̃ η̃1−1.

One can easily check that {X̃ t}t≤η̃1
follows the law of a random walk on Ũ1.

We iterate the process, in the following way : for i > 1, start a random walk {X̃ t}t≥η̃i−1
on Ũi−1, and

define

τ̃i =min{t > 0 : X̃ t ∈ LŨi−1},
Ũi = Ũi−1 ◦X̃ τ̃i Ti ,

η̃i = τ̃i +ηi −τi,

{X̃ t}
η̃i−1

t=τ̃i
= ui

t−τ̃i
,

X̃ η̃i =
←−−−
X̃ η̃i−1.

Finally, set Ũ =
⋃∞

0 Ũi and T̃ the tree obtained by attaching independents MT trees to each leaves of

Ũ . It is a direct consequence of the construction that

Proposition 5.1. If T is distributed according to MT and X t follows PT , then T̃ is distributed according

to IMT, and X̃ t follows PT̃ .

As a consequence, under proper assumptions on q, application of Proposition 4.1 implies that for MT

almost every T the process {h(X̃⌊nt⌋)/
p
σ2n} converges to a standard Brownian motion, as n goes

to infinity.

We introduce Rt = h(X̃ t)−mint
i=1

h(X̃ i). We get immediately that

{R⌊nt⌋/
p
σ2n} converges to a Brownian motion reflected to its minimum, which has the same law

as the absolute value of a Brownian motion.

In order to prove Theorem 1.2, we need to control the distance between Rt and |X t |.
Let It = max{i : τi ≤ t} and Ĩt = max{i : τ̃i ≤ t} the number of excursions started by {X t} and

{X̃ t} before time t. Let ∆t =
∑It

i=1
(τi − ηi−1) and ∆̃t =

∑ Ĩt

i=1
(τ̃i − η̃i−1), which measure the time

spent by {X t} and {X̃ t} outside the coupled excursions before time t. By construction, the distance

between Rt and |X t | comes only from the parts of the walks outside those excursion. In order to

control these parts, we set for 0≤ α < 1/2

∆αt =

It∑

i=1

τi−1∑
s=ηi−1

1|Xs|≤tα;

similarly,

∆̃αt =

Ĩt∑

i=1

τ̃i−1∑

s=η̃i−1

1d(X̃s,Ra y)≤tα .
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Finally, let

Bt = max
0≤r<s≤t,X̃ r∈Ra y,X̃s∈Ra y

(h(X̃s)− h(X̃ r)),

be the maximum amount the walk {X̃ t} moves against the drift on Ra y . We have the following

Proposition 5.2. Under the assumptions of Theorem 1.2, for some α < 1/2

lim
t→∞
PT (∆t 6=∆αt ) = 0, MT− a.s., (28)

and

lim
t→∞
PT (∆̃t 6= ∆̃αt ) = 0, IMT− a.s.. (29)

Further,

lim sup
∆t

t
= 0, MT− a.s., (30)

and

lim sup
∆̃t

t
= 0, IMT− a.s.. (31)

Finally,

lim sup
Btp

t
= 0, IMT− a.s.. (32)

Before proving this proposition, note that on the event {∆t =∆
α
t } ∩ {∆̃t = ∆̃

α
t }, we have

min
s:|s−t|≤∆t+∆̃t

||X t | − Rs| ≤ 2tα + Bt .

Therefore we obtain that almost surely, there exists a time change θt such that, for t large enough,

|X t − Rθt
|

p
t

→t→∞ 0

and
|θt − t|

t
→t→∞ 0.

As we said earlier, Proposition 4.1 implies that {R⌊nt⌋/
p
σ2n} converges, as n goes to infinity, to the

law of the absolute value of a Brownian motion. Therefore so does {R⌊nθt⌋/
p
σ2n}. We deduce the

result for |X t |.
We now turn to the proof of Lemma 5.2. We introduce some notations: for k ≥ 1, let ak =

∑k

j=1τ j ,

bk =
∑k−1

j=0 η j and Jk = [ak − bk + k, ak+1 − bk+1 + k]. Note that {Jk}k≥1 is a partition of N, such

that the length of Jk is equal to the time spent by the walk between the k − th and the k+ 1− th

excursion. For s ∈ Jk, let t(s) = ηk + s− (ak − bk + k) and Y0 = 0, Y1 = Xτ1
, and Ys = Xt(s). {Ys}s≥0

is the walk Xn restricted off the excursions, it is clearly not Markovian, nevertheless, it is adapted

to the filtration Gs = σ(Xk, k ≤ t(s)). For a fixed t, we set the sequence Θi of stopping times with

respect to Gs defined by Θ0 = 0 and

Θi =min{s >Θi−1 :

���|Ys| − |YΘi−1
|
���= ⌊(log t)3/2⌋}.
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Similarly, we set, for k ≥ 1, ãk =
∑k

j=1 τ̃ j , b̃k =
∑k−1

j=0 η̃ j and J̃k = [ãk − b̃k + k, ãk+1 − b̃k+1 + k],

and for s ∈ J̃k, we call t̃(s) = η̃k + s − (ãk − b̃k + k) and Ỹ0 = 0, Ỹ1 = X̃ τ̃1
, and Ỹs = X̃ t̃(s) the walk

X̃n restricted off the excursions. We set G̃s = σ(X̃k, k ≤ t̃(s)). For a fixed t, we set the sequence of

stopping times Θ̃i with respect to G̃s defined by Θ̃0 = 0 and

Θ̃i =min

§
s > Θ̃i−1 :

���d(Ỹs,Ra y)− d(ỸΘi−1
,Ra y)|

���= ⌊(log t)3/2⌋
ª

.

We need the following lemma, whose demonstration will be postponed.

Lemma 5.1. For all ε > 0

lim
t→∞
PT




t1/2+ε∑

i=1

(ηi −τi)< t


 = 0, MT− a.s., (33)

lim
t→∞
PT




t1/2+ε∑

i=1

(η̃i − τ̃i)< t


 = 0, IMT− a.s., (34)

∃ε′ > 0 : lim
t→∞
PT

�
∃s ≤ t,WXs

> t1/4−ε′�= 0, MT− a.s., (35)

and lim
t→∞
PT

�
∃s ≤ t,WXs

> t1/4−ε′�= 0, IMT− a.s., (36)

lim
t→∞
PT (∃k ≤ It ,Θi−1,Θi ∈ Jk, |YΘi

|> |YΘi−1
|) = 0, MT− a.s., (37)

lim
t→∞
PT (∃k ≤ It , Θ̃i−1, Θ̃i ∈ J̃k, d(ỸΘ̃i

,Ra y)> d(ỸΘ̃i−1
,Ra y) = 0, IMT− a.s., (38)

lim
t→∞
PT (Xs ∈ ∪tα

k=tα−(log t)2
Aεk for some s ≤ t) = 0, MT− a.s., (39)

lim
t→∞
PT (Xs ∈ ∪tα

k=tα−(log t)2
Bεk for some s ≤ t) = 0, IMT− a.s.. (40)

Using this lemma, we can finish the proof of Proposition 5.2. We shall prove the following statement,

which implies (28) : for some α≤ 1/2,

lim
t→∞
PT ( max

s∈∪It
k=1

Jk

|Ys| ≥ tα) = 0, MT− a.s.. (41)

It is a direct consequence of (33) and (37) that, MT almost surely, with PT probability approaching

1 as t goes to infinity,

t(Θ2t1/2+ε)> t,

whence, using lemma 5.1,

lim
t→∞
PT

�
max

s∈∪It
k=1

Jk

|Ys| ≥ tα)

≤ lim sup
t→∞

2t1/2+ε∑

i=0

PT

�
∃ j > i : |YΘ j

| ≥ tα− (log t)2, YΘi
= e,

SYΘ j
≥ (η− ε1)t

α/2, |YΘk
|> 0,∀i < k ≤ j;

|SXs
− |Xs|| ≤ ε|Xs|,∀s ≤ t

�
:= lim sup

t→∞

2t1/2+ε∑

i=1

Pi,t ;
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where ε′,ε1 are positive numbers that can be chosen arbitrarily small.

For a fixed i and a fixed t, we set M̃s = SXΘi+s
, and

Kt =min
�
s > 1 : X r = 0 for some r ∈

�
s(θi+1), s(θi+t)

�	
.

The process {Ns} = {M̃s∧Kr
− M̃1} is a supermartingale with respect to the filtration G̃′s = G̃θi+s

;

indeed as long as the walk does not come back to the root, the conditional expectation of SYs+1
−SYs

is lesser or equal to 0, and by construction the walk can only return to the root at a Θi .

Note that Ms and Ns depend on t, whereas this is omitted in the notation. Let As be the predictable

process such that Ns + As is a martingale.

Note that, on the event {WXs
≤ t1/4−ε′ ,∀s ≤ t} the increments of Ns are bounded by t1/4−ε′(log t)3/2.

One can easily see that the increments of As are also bounded by t1/4−ε′(log t)3/2. Therefore Azuma’s

Inequality implies

Pi,t ≤ exp
�
−t2α/t1/2+ 2ε+ 2(1/4− ε′)

�
.

Recalling that we can choose ε arbitrarily small and α arbitrarily close to 1/2, we get the result.

The proof of (29) is quite similar and omitted.

To prove (30) we introduce

T ε(t) =min{s : |Xs| ≥ t1/2+ε}. (42)

By Lemma 4.6, we have

PMT(Tε(t)< t)≤ te−t2ε

.

Using the Borel-Cantelli Lemma, we get that, MT almost surely

PT (Tε(t)< t)≤ e−tε for t > t0(T ). (43)

Let C0,l be the conductance between the root and the level l of the tree. Recalling that for w an

offspring of v, the conductance associated to the edge [v, w] is Cw , Thomson’s principle implies that

C−1
0,l
= inf

f unit flow

l∑

i=0

∑

v∈Ti

∑

w offspring of v

f 2
v,w

Cw

.

As one can easily check, fv,w =
CwWw

We
is a unit flow from the root to Tl , so we get

C−1
0,l
≤

1

We

l∑

i=1

∑

v∈Ti

CwW 2
w .

As, conditionally to Gi , W 2
w are independent and identically distributed variables, with finite moment

of order two (the assumption needed for that is κ > 4), we have

EMT




∑

v∈Ti

CwW 2
w −

∑

v∈Ti

Cw EMT[W
2
w]




2

 ≤ C17ρ(2)

i,
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for some constant C17, then, using Markov’s Inequality, for every ν > 0 there exists a constant C18

such that

PMT


∑

v∈Ti

Cw |W 2
w − E[W 2

w]|> ν

≤ C18ρ(2)

i.

This is summable, so by the Borel-Cantelli Lemma, for some constant C(T ) dependant only on T ,

we get ∑

v∈Ti

CwW 2
w ≤ C(T )

∑

v∈Ti

Cw .

The last part being convergent, thus bounded, we get

C−1
0,l
≤ C(T )l. (44)

If L0(t) denotes the number of visits to the root before time t, we get

ET [L0(Tε(t))] = 1+ C−1

0,t1/2+ε ,

indeed L0(Tε(t))− 1 follows a geometric law with parameter 1− C−1

0,t1/2+ε .

Let Nt(α) =
∑t

k=0 1|Xk|≤tα On the event that Tε(t)> t, we have, using Markov’s property,

ET [Nt(α); Tε(t)> t]≤ ET [L0(Tε(t))]π




tα⋃

0

Tt


 ≤ C19(T )t

1/2+ε+α.

Thus as PT (Tε(t) ≤ t) ≤ C19(T )e
−nε , using the monotonicity of Nn(α), we obtain Nt(α)/t → 0,

from which the result follows, as ∆αt ≤ Nαt and PT (∆t 6=∆αt )→ 0.

Now we turn to the proof of (31). By the same calculations as in the proof of Lemma 4.5, for κ > 5,

we get that EIMT[
∑

s≤t 1d(Xs,Ray)<tα] ≤ t1/2+α+ε for any ε > 0, from which the result follows by

an application of Markov’s Inequality and the Borel-Cantelli Lemma, using also the fact that the

quantity in the expectation is non-decreasing in n.

The conductance from vk to vk−u is at most Cvk−u
, thus we have the bound

PT (Bt > u)≤ t

t∑

k=u

Πk−u
i=k

A(vi).

By Theorem 2.1 and Lemma 3.2, the IMT-expectation of the right hand side is of order at most

t2ρ(2)u, therefore (32) follows by standard arguments.

6 Proof of Lemma 5.1.

It is clear that (33) and (34) are equivalent. We postpone the proof of these parts to the end of the

section.
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Proof of (35) : following [21], we call “fresh time” a time where the walk explore a new vertex, we

have

PMT

�
∃s ≤ t,WXs

> t1/4−ε′� ≤
t∑

0

PMT[WXs
> t1/4−ε′; s is a fresh time]

= PMT[W0 > t1/4−ε′]< C20 t/tµ(1/4+ε
′),

for µ < κ. If κ > 8, for ε small enough, we can chose µ such that this is summable. Then the

Borel-Cantelli Lemma implies the result.

Proof of (36) We are going to use the same arguments, excepted that we have to treat separately

the vertices on Ray. More precisely

PMT

�
∃s ≤ t,WXs

> t1/4−ε′�

≤
t∑

0

PIMT[WXs
> t1/4−ε′; s is a fresh time and Xs 6∈ Ra y]+

PMT

�
∃s ≤ t,Wvs

> t1/4−ε′� .

The second term is easily bounded, and the first one is similar to the previous case.

Proof of (37) : the event in the probability in (37) implies that, before time t the walk Xs gets to

some vertex u, situated at least at a distance ⌊(log t)3/2⌋, then back to the ancestor a(u) of u situated

at distance ⌊(log t)3/2⌋ from u, then back again. Decomposing on the hittings of the root, we can

majorate this probability by

∑

s≤t

PT (X t = e)

t∑

k=⌊(log t)3/2⌋

∑

u∈Tk

PT (Hu < He)P
a(u)
T (Hu < t),

where Hu stands for the hitting time of u. Using the fact that the conductance from 0 to u is bounded

by Cu, the probability we are considering is at most

n

t∑

k=⌊(log t)3/2⌋

∑

u∈Tk

CuP
a(u)
T (Hu < t).

Denoting by C(v→ u) the conductance between v and u, we have easily

P
v
T (Hu < t)< t

C(v→ u)

π(v)
< c1 t

Cu

Cv

.

As a direct consequence of Theorem 4.1, we have

EMT


∑

u∈Tk

CuP
a(u)
T (Hu < t)


≤ c1 t2EMT


∑

u∈Tk

Cu

Cu

Ca(u)




≤ c1 t2
�

Eq

h∑
Ai exp(log(Ai))

i�⌊(log t)3/2⌋
≤ c1 t2ρ(2)⌊(log t)3/2⌋.
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The result follows by an application of the Borel-Cantelli Lemma.

Proof of (38) : The proof is quite similar to the precedent argument, summing over the different

T (vi).

Proof of (39) : using κ > 5, by Lemma 4.2 we can find an ǫ > 0 such that IMT- almost surely the

sequence n3/2+ǫπ(Aεn) is summable, thus bounded, so there exists a constant C ′(T ) such that for

each n, Ce→Anε
≤ C ′(T )/n3/2+ǫ. Recalling from the proof of (30) the definition of L0(t), and Tε(t)

we have

PT (X t ∈ Aεtα; t ≤ Tε(t))≤ ET [L0(Tε(t))]C
′(T )/tα(3/2+ǫ) ≤ t1/2+ε′−α(1+ǫ), (45)

where ε′ can be chosen arbitrarily close to 0. By choosing α close enough to 1/2, the result follows

easily, using (43).

Proof of (40) : we recall from (22) the definition of the sets Bεn. By the same argument as in the

proof of Lemma 4.5, we get

lim
t→∞
PT (Xs ∈ Bεtα for some s ≤ t} ≤ H⌊t1/2+ε⌋

⌊t1/2+ε⌋∑

i=0

U tα

i ,

with Ht = 1+
∑t−1

j=0

∏t

k= j−1 A(vk), and U tα

i
is the probability to get to Bε

tα
during one excursion in

T vi . By the same argument as in the proof of Lemma 4.2, we get that, almost surely, there exists a

constant C ′′(T ) such that

Ht ≤ C ′′(T )t1/7,

whence

lim
t→∞
PT (Xs ∈ Bεtα for some s ≤ t} ≤ C ′′(T )t1/7

⌊t1/2+ε⌋∑

i=0

U tα

i .

Then, denoting
∑∞

t=0 U t
i
t1+ε′ := Ei , the Ei are i.i.d. variables (under IMT) with finite expectation

for ε′ small enough and U t
i
< 1

t3/2 Ei . Then the result follows, using the law of large numbers.

Proof of (33) and (34): Note that, under MT, the random variables ηi −τi are i.i.d.. On the other

hand, as a consequence of (2), for some constant ν0 > 0,

PMT[ηi −τi > x]≥ ν0PMT[T0 > x],

Where T0 is the first return to the root. We recall from (42) that

T ε(t) =min{t : |Xs| ≥ t1/2+ε}

Then, following the proof of Lemma 10 of [21], we have,

PT [T0 > t]≥ PT [T0 > T ε/2(t)]PT[T
ε/2(t)≥ t|T0 > T ε(t)]. (46)

As a consequence of (44), for come constant depending on the tree C3(T ),

PT [T0 > T ε/2(t)]> C3(T )t
−1/2−ε/2.
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On the other hand,

PT [T
ε/2(t)< t|T0 > T ε/2(t)]≤

PT [T
ε/2(t)< t]

PT [T0 > T ε/2(t)]
≤ C4(T )t

1/2+εe−tε/2 ,

MT−almost surely, using (43) and the previous estimate. We get then that almost surely, for t large

enough (the “enough” depending on T),

PT [T
ε/2(t)> n|T0 > T ε/2(t)]> 1/2.

Therefore for some positive constant C5(T ),

PT [T0 > t]≥ C5(T )t
−1/2−ε/2.

We deduce by taking the expectation that

PMT[T0 > t]≥ C22 t−1/2−ε/2,

for some positive and deterministic constant C22. Now

PMT




t1/2+ε∑

i=1

ηi −τi < t


≤

�
1− ν0C22 t−1/2−ε/2�t1/2+ε

≤ e−C23 tε/2 .

An application of the Borel-Cantelli Lemma finishes the proof of (33) and (34). This finishes the

proof of Lemma 5.1.

We now turn to our last part, namely the annealed central limit theorem. The proof has many parts

in common with the proof in the quenched case, so we feel free to refer to the previous part.

7 Proof of Theorem 1.3.

We recall from section 3 the definition of the “environment seen from the particle Tt = θ
v(T ). As

for the quenched case, we will first show a central limit theorem on IMT trees, then in a second part

we will use the coupling to deduce the result for MT trees

7.1 The annealed CLT on IMT trees

We will first show the following proposition :

Proposition 7.1. Suppose N(e) ≥ 1, q− a.s., (2). If p = 1, ρ′(1) < 0 and κ ∈ (2,∞], then there is a

deterministic constant σ > 0 such that, under PIMT, the process {h(X⌊nt⌋)/
p
σ2n} converges in law to

a standard Brownian motion, as n goes to infinity.

Remark : This result is of great theoretical interest, as it is the only context where we are able

to cover the whole case κ > 2, we could actually make the proof of Theorem 1.3 without this

proposition, but as it has an interest in itself, we give the proof in the general case.

Proof : Let, as in the quenched setting, 0< δ < 1 and ρt be a random variable, independent of the

walk, uniformly chosen in [t, t + tδ]. We recall from (7) the definition of Sx , x ∈ T and from (8)

the definition of η. We are going to show the following
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Lemma 7.1. Under the assumptions of Theorem 1.3,

SXρt

h(Xρt
)
→ η, (47)

in probability.

We admit for the moment this lemma and finish the proof of Proposition 7.1. We have

h(Xρt
) =

h(Xρt
)

SXρt

SXρt
= ηSXρt

+


h(Xρt

)

SXρt

−η

SXρt

.

The first term converges to a Brownian motion with variance σ, by the same arguments as in the

quenched setting, while the second one is a o(SXρt
). The result then follows easily, using the same

arguments as in the proof of Theorem 1.2.

We now turn to the proof of Lemma 7.1. The proof is quite similar to the proof of Proposition 4.2:

we take some small ε > 0, then we estimate the number of visits to the points in Bεn during one

excursion in T vi , and estimate the number of such excursion before time n. We rely on the following

lemma, similar to Lemma 4.2

Lemma 7.2. Suppose that the assumptions of Theorem 1.3 are true. Then for 1 < λ < κ− 1∧ 2, and

n> 0, there exists some constant C ′1 such that

EMT



∑

x∈Aεn

Cx


< C ′1n−(λ−1).

Proof : the proof relies on the same ideas as the proof of Proposition 4.2. First recall that, for n

large enough,

EMT



∑

x∈Aεn

Cx


 ≤ PdMT∗

n

����Svn
− EdMT∗

n

[Svn
|F̃∗n]

���> nε

4

�

+ PdMT∗
n

����EdMT∗
n

[Svn
|F̃∗n]− EdMT∗

n

[Svn
]

���> nε

4

�
:= P1+ P2.

To bound P1, we recall that, under the law dMT∗
n
,

Svn
− EdMT∗

n

[Svn
|F̃∗n] =

n∑

i=0

W̃ ∗
i Bi ,

where Wi are centered and independent random variables with bounded moments of order λ+ 1

and

B j =

j∑

k=0

j∏

i=k+1

Ai .
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Using Inequality 2.6.20 from page 82 of [23], we obtain that, for some constant C2

E

����Svn
− EdMT∗

n

[Svn
|F̃∗n]

���
λ
�
< C2

n∑

k=0

E[Bλk ].

Then, using the same arguments as in the proof of Proposition 4.2, we get that E[Bλ
k
] is bounded

independently of n and k, whence

E

����Svn
− EdMT∗

n

[Svn
|F̃∗n]

���
λ
�
< C3n.

Using Markov’s Inequality, there exists C4 such that

P1 <
C4

2
n−(λ−1). (48)

On the other hand, recalling (16),

���EdMT∗
n

[Svn
|F̃∗n]− EdMT∗

n

[Svn
]

���< C5+

�����
n∑

k=1

ÃkDk g(An+1)(1+ρ+ρ
2+ ...ρk−1)

����� ,

where C5 is a finite constant and

Dk =

n∑

j=k+1

j∏

i=k+1

Ai g(A j+1),

where g is a bounded function. We recall that

Nk :=

n∑

j=n−k

Ã j D j(1+ρ+ρ
2+ ...ρ j−1)

is a martingale with respect to the filtrationHk = σ(A j , n− k ≤ j ≤ n), whence, using Burkholder’s

Inequality,

EdMT∗
n

[(Nn)
λ]≤ C6EdMT∗

n



 

n∑

i=0

(Di)
2

!λ/2
 .

We recall that 1< λ < (κ− 1)∧ 2, whence, by concavity, the last expression is bounded above by

C6EdMT∗
n




n∑

i=0

(Di)
λ


 < C7n.

Therefore, using Markov’s Inequality, we get that

P2 < n1−λ.

This, together with (48), finishes the proof of Lemma 7.2.
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We now finish the proof of Lemma 7.1. Let us go back to IMT trees. We recall the definition of the

sets Bεn:

Bεn =

(
v ∈ T, d(v,Ray) = n,

�����
S
Ray
v

n
−η

�����> ε
)

. (49)

We are going to prove that

lim
t→∞
PT (Xρt

∈ ∪∞n=1Bεm) = 0, IMT− a.s..

We introduce γ > 1/2, and recall the definition of the event

Γt = {∃u≤ 2t|Xu = v⌊tγ⌋}.

It is easy to see, using the same arguments as in the proof of Lemma 4.5, that

PIMT[Γt] →
t→∞

0.

Furthermore, we introduce the event

Γ′t = {∃0≤ u≤ t, d(Xu,Ray)> nγ};

then it is a direct consequence of Lemma 4.6 that

PIMT[Γ
′
t] →t→∞ 0.

As for the quenched case, we have

PIMT(Xρt
∈ ∪∞m=1Bεm) ≤ PIMT(Xρt

∈ ∪nγ

m=1Bεm;Γc
t ∩ Γ

′c
t) + PIMT(Γt) + PIMT(Γ

′
t)

≤
1

⌊tδ⌋
EIMT


ET




Hv⌊tγ⌋∑

s=0

1
Xs∈∪tγ

m=1
Bεm





+ o(1), (50)

where Hv⌊tγ⌋ is the first time the walk hits v⌊tγ⌋.

We recall that T (vi) the subtree constituted of the vertices x ∈ T such that vi ≤ x , vi−1 6≤ x , the same

computations as in the proof of Lemma 4.5 imply

PIMT(Xρt
∈ ∪∞m=1Bεm)≤

1

⌊tδ⌋
EIMT



⌊tγ⌋∑

i=0

ET




Hv⌊tγ⌋∑

s=0

1Xs=vi


 Ñi


 , (51)

Where Ñi is the PT−expectation of the number of visits to ∪nδ

m=1Bεm ∩ T (vi) during one excursion in

T (vi). Lemma 7.2, and the method of 4.3 imply that, under IMT conditioned on {Ray,A(vi)}, Ñi are

independent and identically distributed variables, with expectation at most equal to C ′1
∑nγ

i=0 i1−λ

for some λ > 1. By choosing γ close enough to 0, we get EIMT[Ñi |{Ray,A(vi)}] ≤ C ′1n1/2−ǫ for some

ǫ > 0. We recall that

ET




Hv⌊tγ⌋∑

s=0

1Xs=vi


≤ C ′′


1+

⌊tγ⌋−1∑

j=0

⌊tγ⌋∏

k= j−1

A(vk)


 .
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The latter expression has bounded expectation under IMT, as an easy consequence of Statement 4.1

and Lemma 3.2.

We deduce that

PIMT(Xρt
∈ ∪∞m=1Bεm)≤ C5n

1

2
−ǫ+γ−δ.

Since γ can be chosen as close to 1/2 as needed, the exponent can be taken lower than 0. The end

of the proof is then completely similar to the quenched case.

7.2 The annealed CLT on MT trees.

We now turn to the proof of Theorem 1.3. We use the coupling and the notations presented in

section 5. Our main proposition in this part will be the following:

Proposition 7.2. Under the assumptions of Theorem 1.3, for some α < 1/2

lim
t→∞
PMT(∆t 6=∆αt ) = 0, (52)

and

lim
t→∞
PIMT(∆̃t 6= ∆̃αt ) = 0. (53)

Further, under MT,

lim sup
∆t

t
= 0, (54)

and under IMT,

lim sup
∆̃t

t
= 0. (55)

Finally, under IMT,

lim sup
Btp

t
= 0. (56)

(Here lim sup denotes the limit in law.)

Before proving the latter proposition, we introduce some technical estimates, whose proof will be

postponed.
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Lemma 7.3. For all ε > 0

lim
t→∞
PMT




t1/2+ε∑

i=1

(ηi −τi)< t


 = 0, (57)

lim
t→∞
PIMT




t1/2+ε∑

i=1

(η̃i − τ̃i)< t


 = 0, (58)

lim
t→∞
PMT(∃k ≤ It ,Θi−1,Θi ∈ Jk, |YΘi

|> |YΘi−1
|) = 0, (59)

lim
t→∞
PIMT(∃k ≤ It , Θ̃i−1, Θ̃i ∈ J̃k, d(ỸΘ̃i

,Ra y)> d(ỸΘ̃i−1
,Ra y) = 0, (60)

lim
t→∞
PMT(Xs ∈ ∪tα

k=tα−(log t)2
Aεt for some s ≤ t} = 0, (61)

lim
t→∞
PIMT(Xs ∈ ∪tα

k=tα−(log t)2
Bεk for some s ≤ t) = 0. (62)

lim
t→∞
PMT

�
WXs
> t1/4−ǫ for some 0≤ s ≤ t

�
= 0 (63)

lim
t→∞
PIMT

�
WXs
> t1/4−ǫ for some 0≤ s ≤ t

�
= 0 (64)

We now turn to the proof of (52). As a consequence of (57) and (59) that, with PMT probability

approaching 1 as n goes to infinity,

t(Θ2t1/2+ε)> t,

whence, using Lemmas 7.3 and 4.6,

lim
t→∞
PMT

 
max

s∈∪It
k=1

Jk

|Ys| ≥ tα

!

≤ lim sup
t→∞

2t1/2+ε∑

i=0

PMT

�
∃ j > i : |YΘ j

| ≥ tα− (log t)2, YΘi
= e,

SYΘ j
≥ (η− ε1)t

α/2, |YΘk
|> 0,∀i < k ≤ j; WXs

≤ t1/4−ǫ∀0≤ s ≤ t

|SXs
− |Xs|| ≤ εt1/4−ε′ |Xs|,∀s ≤ t

�
:= lim sup

t→∞

2t1/2+ε∑

i=1

Pi,t ;

where ε,ε1 are positive numbers that can be chosen arbitrarily small. We recall that the process

{Ns}= {SXθi+s∧Kt

} is a supermartingale. and that there exists a previsible and non-decreasing process

As such that Ns + As is a martingale. Furthermore, on the event {WXs
≤ t1/4−ǫ∀0 ≤ s ≤ t}, the

increments of this martingale are bounded above by t1/2−ǫ. Azuma’s Inequality implies the result,

as in the quenched case.

The proof of (53) is similar and omitted.

We recall that in the proofs of (30),(31) and (32) we only used the assumption κ > 5, therefore the

proof of (54),(55) and (56) are direct consequence, by dominated convergence.
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We now turn to the proof of Lemma 7.3. The proofs of (57), (58), (59), (60) and (61) follow

directly from equations (33), (34), (37), (38) and (39), whose proofs did not use any assumption

other than κ > 5, by dominated convergence.

To prove (62), note that, similarly to the proof of 7.1,

PIMT(Xs ∈ ∪tα

k=tα−(log t)2
Bεk for some s ≤ t)

= EIMT



⌊tγ⌋∑

i=0

ET




Hv⌊tγ⌋∑

s=0

1Xs=vi


N ′i


 ,

where N ′i is the PT−expectation of the number of visits to ∪tα

k=tα−(log t)2
Bε

k
∩T (vi) during one excursion

in T (vi). Lemma 4.2 and the method of Lemma 4.3 imply that, under IMT conditioned on {Ray,A(vi)},
N ′i are independent and identically distributed variables, up to a bounded constant, with expection

at most equal to C ′(log t)2 t−α(λ−1) for some λ > 2. We also recall that

ET




Hv⌊tγ⌋∑

s=0

1Xs=vi


≤ C ′′


1+

⌊tγ⌋−1∑

j=0

⌊tγ⌋∏

k= j−1

A(vk)


 .

has bounded expectation under IMT, as an easy consequence of Statement 4.1 and Lemma 3.2. By

choosing γ close enough to 0 and α close to 1, we get the result.

The proofs of (63) and (64) are easily deduced from the proofs of (35) and (36), the only difference

being that we do not need to apply the Borel-Cantelli Lemma.
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