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Estimates on the speedup and slowdown for a diffusion in a drifted brownian potential

 . Our results are in agreement with their results in the discrete case.

1 Introduction.

Process in random media have been introduced in order to study physical or biological mechanisms such as the replication of DNA. The first model, in discrete time, goes back to A. Chernov [START_REF] Chernov | Replication of a multicomponent chain, by the lightning mechanism[END_REF] and D. Temkin [START_REF] Temkin | One-dimensional random walks in a two-component chain[END_REF]. It is now well understood : see, for example [START_REF] Solomon | Random walks in a random environment[END_REF], [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF], or [START_REF] Kesten | A limit law for random walk in a random environment[END_REF]. A continuous time version of this process has been introduced by S. Schumacher [START_REF] Schumacher | Diffusions with random coefficients[END_REF], and studied by T. Brox [START_REF] Brox | A one-dimensionnal diffusion process in a Wiener medium[END_REF]. It can be described as follows.

Let (W (x)) x∈R be a one-dimensional brownian motion defined on R starting from 0, and, for κ ∈ R,

W κ (x) := W (x) - κ 2 x.
Let (β(t)) t≥0 be another one-dimensional brownian motion, independent of W . We call diffusion process with potential W κ a solution to the (formal) equation

dX t = dβ t - 1 2 W ′ κ (X t )dt. (1.1)
W ′ κ has clearly no rigorous meaning, but a mathematical definition of (1.1) can be given in terms of the infinitesimal generator. For a given realization of W κ , X t is a real-valued diffusion started at 0 with generator 1 2

e Wκ(x) d dx e -Wκ(x) d dx .

This diffusion can also be defined by a time-change representation :

X t = A -1 κ B(T -1 κ (t)) ,
where A κ (x) =

x 0 e W κ(y) dy, T κ (t) = t 0 e -2Wκ(A -1 κ (B(s))) ds, and B is a standard Brownian motion. A κ is the scale function of this process, and its speed measure is 2e -Wκ(x) dx.

Intuitively, for a given environment W κ , the diffusion X t will tend to go to places where W κ is low, and to spend a lot of time in the "valleys" of W κ . If the environment is drifted (κ > 0), the process will be transient to the right, but it will be slowed by those valleys (see figure 1). This will be explained more precisely in section 3.

For general background on diffusion processes and time-change representation we refer to [START_REF] Rogers | Diffusions, Markov processes and Martingales[END_REF][START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF][START_REF] Itō | Diffusion processes and their sample paths[END_REF].

We will call P the probability associated to W , P W the quenched probability associated to the diffusion, and P := P ⊗ P W the annealed probability. T. Brox gave a result concerning the long time behavior of the diffusion in the case κ = 0. Namely, under the probability P,

X t (log t) 2 → U,
where U follows an explicit distribution.

The case κ > 0 was studied both by K. Kawazu and H. Tanaka ( [START_REF] Kawazu | A diffusion process in a brownian random environment with drift[END_REF]) and Y. Hu, Z. Shi, M. Yor ( [START_REF] Hu | Rates of convergence of diffusions with drifted brownian potentials[END_REF]) and exhibits a "Kesten-Kozlov-Spitzer" behavior: when κ > 1, the diffusion has a positive speed; when κ = 1, under P,

X t log t t → 4 
in probability, while, when 0 < κ < 1,

X t t κ → V
in distribution, where V follows the inverse of a completely asymmetric stable law. We are interested in the deviations between X t and its asymptotic behavior, in the case 0 < κ < 1.

This questions have already been studied in the other cases, we refer to [START_REF] Hu | Moderate deviations for diffusions with brownian potentials[END_REF] for estimates in the case κ = 0, and to [START_REF] Talet | Annealed tail estimates for a brownian motion in a drifted brownian potential[END_REF] for large deviation estimates in the case κ > 1.

Our study will split into four different problems, indeed the quenched and annealed settings present different behavior, and for each of them we have to consider deviations above the asymptotic behavior (or speedup) and deviations under the asymptotic behavior (or slowdown).

We start with the annealed results. For u and v two functions of t, we note u ≫ v if u/v → t→∞ ∞.

Theorem 1.1 (Annealed speedup/slowdown) Suppose 0 < κ < 1, and u → ∞ is a function of t such that for some ε > 0, u ≪ t1-κ-ε , then there exist two positive constants C 1 and C 2 such that lim t→∞ log P (X t > t κ u) u

1 1-κ = C 1 , (1.2) 
and if log u ≪ t κ , lim t→∞ uP X t < t κ u = C 2 .

(1.3)

Furthermore, the results remain true if we replace X t by sup s<t X s .

This is in fact a easy consequence of the study of the hitting time of a certain level by the diffusion. We set H(v) = inf{t > 0 : X t = v}. We have the following estimates.

Theorem 1.2 Suppose 0 < κ < 1 and ε > 0. For u → ∞ v → ∞ two functions of t such that for some ε > 0, u ≪ v 1-κ-ε , there exist two positive constants C 1 and C 2 such that

lim t→∞ -log P H(v) < v u 1/κ u 1 1-κ = C 1 , (1.4 
)

and if log u ≪ v, lim t→∞ uP H(v) > (vu) 1/κ = C 2 . (1.5) 
The proof of this result involves a representation of H(v) introduced in [START_REF] Hu | Moderate deviations for diffusions with brownian potentials[END_REF].

We now turn to the quenched setting. We have the following estimates for the speedup Theorem 1.3 (Quenched speedup) Suppose 0 < κ < 1, and u → ∞ is a function of t such that for some ε > 0, u ≪ t 1-κ-ε , then there exists a positive constants C 3 such that lim t→∞ log P W (X t > t κ u) u 1 1-κ = C 3 , Pa.s.. Furthermore the result remains true if we replace X t by sup s≤t X s .

As before, the proof of this will reduce to estimates on the hitting times.

Theorem 1.4 For u → ∞ v → ∞ two functions of t such that for some ε > 0, u ≪ v 1-κ-ε , then For the slowdown, our result is less precise.

Theorem 1.5 (Quenched slowdown) Suppose κ > 0. Let ν ∈ (0, 1 ∧ κ), then

lim t→∞ log(-log P W [H(t ν ) > t]) log t = 1 - ν κ ∧ κ κ + 1
, Pa.s.,

lim t→∞ log(-log P W [X t < t ν ]) log t = 1 - ν κ ∧ κ κ + 1 , P -a.s.. (1.7) 
Corresponding results for Random Walk in Random Environment have been developed in a recent article from A. Fribergh, N. Gantert and S. Popov [START_REF] Fribergh | On the slowdown and speedup of transient random walks in random environment[END_REF]. Our proof of the last result is quite inspired from theirs.

The article will be organized as follows :

• In Section 2 we show Theorem 1.1 and 1.2,

• In Section 3 we show Theorem 1.5,

• In Section 4 we show Theorem 1.3 and 1.4.

2 The annealed estimate.

For any nondecreasing function u(t), we will denote by u -1 (t) := inf{v : u(v) > t} the inverse function of u. We start with some preliminary statements.

Preliminary statements.

We first recall the Ray-Knight Theorems, they can be found in chapter XI of [START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF]. Let L x t be the local time at x before t of a brownian motion γ t , and τ t := L 0 .

-1 (t) the inverse function of L 0 t . Let σ(x) be the first hitting time of x by γ t .

Statement 2.1 (First Ray-Knight Theorem) The process {L a-t σ(a) } t≥0 is a squared Bessel process, started at 0, of dimension 2 for 0 ≤ t ≤ a and of dimension 0 for t ≥ a.

Statement 2.2 (Second Ray

-Knight Theorem) Let u ∈ R + , The pro- cess {L t τ (u) } t≥0 is a squared Bessel process of dimension 0, starting from u.
We have a useful representation of H(v), due to Y. [START_REF] Hu | Moderate deviations for diffusions with brownian potentials[END_REF]. Let

θ 1 (v) = H(v) 0 1 {Xs≥0} ds, and θ 2 (v) = H(v) 0 1 {Xs<0} ds, such that H(v) = θ 1 (v) + θ 2 (v).
Statement 2.3 Let κ ≥ 0 and v > 0. Under P, we have

(θ 1 (v), θ 2 (v)) law = 4 v 0 e Ξκ(s) -1 ds, 16Υ 2-2κ e Ξκ(v)/2
1 .

Where Υ 2-2κ (x y) denotes the first hitting time of y by a Bessel process of dimension (2-2κ) starting from x, independent of the diffusion Ξ κ , which is the unique nonnegative solution of

Ξ κ (t) = t 0 1 -e -Ξκ(s) dβ ′ s + t 0 - κ 2 + 1 + κ 2 e -Ξκ(s) ds, t ≥ 0. (2.1)
β ′ being a standard brownian motion.

We shall use the following lemma from [START_REF] Talet | Annealed tail estimates for a brownian motion in a drifted brownian potential[END_REF](Lemma 3.1).

Statement 2.4 Let {R t } t≥0 denote a squared Bessel process of dimension 0 started at 1. For all v, δ > 0, we have

P sup 0≤t≤v |R t -1| > δ ≤ 4 (1 + δ)v δ exp - δ 2 8(1 + δ)v .
We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2.

Our proof will be separated in two parts : in the first part we will deal with the positive part of H(v), θ 1 , then we will focus on θ 2 .

The positive part.

In view of statement 2.3, we set

Z t := e Ξκ(t) -1,
then Z t is the unique nonnegative solution of

dZ t = Z t (1 + Z t )dβ t + 1 -κ 2 Z t + 1 2 dt,
and

θ 1 (v) = 4 v 0 Z t dt.
We call

f (z) = z 1 (1 + s) κ s ds (2.2)
the scale function of Z t . We have

f (Z t ) = t 0 (1 + Z s ) κ+ 1 2 √ Z s dβ s .
By the Dubbins-Schwartz representation (see chapter V, Theorem (1.6) of [START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF]), there exists a standard Brownian motion γ(t) such that

f (Z t ) = γ t 0 (1 + Z s ) 2κ+1 Z s ds := γ(ρ(t)). (2.3) 
We introduce

α t = ρ(t) -1 = t 0 Z αs (1 + Z αs ) 1+2κ ds = t 0 f -1 (γ s ) [1 + f -1 (γ s )] 1+2κ ds := t 0 h(γ s )ds. (2.4)
We obtain easily the following equivalents

f (z) ∼ z→∞ z κ /κ, f (z) ∼ z→0 log z, f -1 (z) ∼ z→∞ (κz) 1/κ , f -1 (z) ∼ z→-∞ e z , h(z) ∼ z→∞ (κz) -2 , h(z) ∼ z→-∞ e z .
We continue with a lemma, whose proof is postponed. Let τ t be the inverse local time of γ.

Lemma 2.1 Let ǫ > 0, c h := ∞ 0 h(x)dx. Let w(t) → ∞, such that w(t)/t → 0. Then for t large enough, P ρ(t) > τ t (1-3ǫ)c h ≤ exp (-w) , and 
P ρ(t) < τ t (1+3ǫ)c h ≤ exp (-w) . Let ṽ ≪ v, in view of (2.3), θ 1 (v) = 4 v 0 f -1 (γ ρ(s) )ds = 4 ρ(v) 0 f -1 (γ s ) 2 [1 + f -1 (γ s )] 1+2κ ds := 4 ρ(v) 0 g(γ s )ds.
(2.5) Using lemma 2.1, with probability at least 1e -ṽ ,

τ " v (1+3ǫ)c h « 0 g(γ s )ds ≤ θ 1 (v) 4 ≤ τ " v (1-3ǫ)c h « 0 g(γ s )ds.
(2.6)

One can easily check that g(x) ∼ ∞ (κx) 1 κ -2 , and g(x) ∼ -∞ e 2x . In view of this it is clear that the most important part of the preceding integral will come from the high values of γ u . To be precise, for w ∈

v (1+3ǫ)c h , v (1-3ǫ)c h
and some large constant A, we have

τw 0 g(γ s )1 γs<A ds = A -∞ g(s)L s τw ds law = w 2 A/w -∞ g(sw)L s τ 1 ds = w 2 -A log(w) 5 /w -∞ g(sw)L s τ 1 ds + w 2 A/w -A log(w) 5 /w g(sw)L s τ 1 ds := J 1 + J 2 .
(2.7)

Using statement 2.4, for some constant C > 0, P(J 2 > w log(w) 5 ) < Ce -w . Recalling that, under the assumption of theorem 1.2, v ≪ v u 1/κ , we get that, for any δ > 0, as t → ∞,

P J 2 > δ v u 1/κ ≤ Ce - v (log v) 10 .
We postpone the proof of the following Lemma 2.2 for every δ > 0, as t → ∞,

P J 1 > δ v u 1/κ ≤ Ce - v (log v) 10 .
As a consequence, for every δ > 0, as t → ∞,

P τw 0 g(γ s )1 γs<A ds > 2δ v u 1/κ ≤ Ce - v (log v) 10 . (2.8) 
It remains to deal with τw 0 g(γ s )1 γs>A ds. Due to the equivalent of g, for every ǫ > 0, for A large enough

(1 -ǫ) τw 0 (γ s ) 1/κ-2 1 γs>0 ds -I ′ ≤ τw 0 g(γ s )1 γs>A ds ≤ (1 + ǫ) τw 0 (γ s ) 1/κ-2 1 γs>0 ds, (2.9)
where

I ′ := τw 0 γ 1/κ-2 u 1 γu<A du law = w 1/κ A/w 0 y 1/κ-2 L y τ (1)
dy by the same computations as above. Using statement 2.4, for some constant C ′ > 0, with probability at least (1e -C ′ v ), L y τ (1) is lesser than, say, 100 on [0, A/w]. Therefore

I ′ ≤ 100w 1/κ A/w 0 y 1/κ-2 dy < 1000A 1/κ-1 w.
(2.10)

By the same proof as on page 218 of [START_REF] Jeulin | Sur les distributions de certaines fonctionnelles du mouvement brownien[END_REF], the process

U s = τs 0 (γ u ) 1/κ-2 1 γs>0 du
is an asymmetric κ-stable subordinator, more precisely

E exp - λ 2 U s = exp (-sc κ λ κ ),
where c κ = π 2κ sin (πκ)

κ κ Γ(κ) 2
. From a result of de Bruijn (see p 221 of [START_REF] Bertoin | Lévy processes[END_REF]), there exists a constant C 0 such that

log P U s s 1/κ < 1 u 1/κ = log P U 1 < 1 u 1/κ ∼ ∞ -C 0 u 1 1-κ . (2.11)
Similarly, by standard estimates on stable laws, for u → ∞, there exists a constant C ′ 0 such that

P U s s 1/κ > u 1/κ ∼ ∞ C ′ 0 u .
(2.12)

This, together with (2.6), (2.8), (2.9) and (2.10), implies that, for u → ∞, u ≪ v 1-κ there exists positive constants C 1 and C 2 such that, lim t→∞

-log P θ 1 (v) < v u 1/κ u 1 1-κ = C 1 and for u ≪ e v , lim t→∞ uP θ 1 (v) > (vu) 1/κ = C 2 ,
where

C 1 = 4 κ 1-κ C 0 c 1 1-κ h and C 2 = 4 κ C ′ 0 c h .

The negative part.

To finish the proof of Theorem 1.2, we need to deal with θ 2 . Note that for ε > 0,

P H v < v u 1/κ ≤ P θ 1 (v) < v u 1/κ , (2.13) 
hence the lower bound in (1.4) is direct. We now turn to the upper bound. We recall that u and v are two functions of t such that u ≪ v 1-κ-ǫ . This implies in particular that u ≪ v. Note that

P θ 1 (v) < (1 -ε) v u 1/κ , θ 2 (v) < ε v u 1/κ ≤ P H(v) < v u 1/κ .
(2.14) Using statement 2.3, we obtain

P θ 1 (v) < (1 -ε) v u 1/κ , θ 2 (v) < ε v u 1/κ = P Υ 2-2κ e Ξκ(v)/2 1 < ε v u 1/κ , θ 1 (v) < (1 -ε) v u 1/κ . (2.15)
By a scaling argument, we get, for a ≥ 1

P Υ 2-2κ √ a 1 < a = P Υ 2-2κ 1 1 √ a < 1 ≥ C > 0. (2.16)
We recall from section 2.2.1 the representation e Ξκ(v) -1 = f -1 (γ(ρ(t))).

Let 0 < ǫ < ε/1000, and δ < ε/3 we call A the event that the condition of lemma 2.1 is fullfilled, that is

A = τ v/(1+3ǫ)c h < ρ(v) < τ v/(1-3ǫ)c h ,
Set ǫ ′ ≤ (εκ) 1/κ /2, we introduce the event

B := sup τ v/(1+3ǫ)c h <s<τ v/(1-3ǫ)c h γ(s) < ǫ ′ v u .
Formula 4.1.2 page 185 of [START_REF] Borodin | Handbook of Brownian Motion. Probability and its application[END_REF] (and the Markov property) implies

P [B] ≥ e -ε ′ u
for some positive ε ′ . We recall from section 2.2.1 the representation

e Ξκ(v) -1 = f -1 (γ(ρ(t))),
where f -1 is an increasing function such that f -1 (z) ∼ ∞ z κ /κ. Therefore for t large enough, on B ∩ A, e Ξκ(v) < ε v u 

P H(v) < v u 1/κ ≥ P(B)P Υ 2-2κ e Ξκ(v)/2 1 < ε v u 1/κ , θ 1 (v) < (1 -ε) v u 1/κ |B ≥ P(B)P Υ 2-2κ ε v u 1/κ 1 < ε v u 1/κ , θ 1 (v) < (1 -ε) v u 1/κ |B -P(B)P(A c |B).
Recalling lemma 2.1 we get

P(B)P(A c |B) < e -v log v .
On the other hand, Υ 2-2κ

ε v u 1/κ
1 is independent of B and θ 1 , and

P Υ 2-2κ ε v u 1/κ 1 < ε v u 1/κ > C
by (2.16); therefore the upper bound in (1.4) will follow as soon as we show that lim t→∞

-log P θ 1 (v) < (1 -ε) v u 1/κ |B u 1 1-κ ≤ C 1 + µ(ε),
where µ(ε) → 0 as ε → 0. We recall from equation (2.5) that

g(x) = f -1 (γ s ) 2 [1 + f -1 (γ s )] 1+2κ ,
where f has been defined in (2.2). We now recall from equation (2.6) that, on

A θ 1 (v) 4 ≤ τ " v (1-3ǫ)c h « 0 g(γ s )1 γs>0 ds, therefore P θ 1 (v) < (1 -ε) v u 1/κ |B ≥ P τ " v (1-3ǫ)c h « 0 g(γ s )ds < (1 -ε) v u 1/κ |B -P[A c |B].
Once again, P[A c |B] is easily bounded. On the other hand, by Ito's brownian excursion theory (see for example chapter XII of [START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF]), for every l ∈ R, γ(τ l + t) is a brownian motion started at 0, independent of (γ(t)) t≤τ l . Therefore

P τ " v (1-3ǫ)c h « 0 g(γ s )ds < (1 -ε) v u 1/κ |B ≥ P τ " v (1+3ǫ)c h « 0 g(γ s )ds < (1 -2ε) v u 1/κ |B P    τ " v (1-3ǫ)c h « τ " v (1+3ǫ)c h « g(γ s )ds < ε v u 1/κ |B    .
The event in the first probability on the right hand side is independent from B, therefore the conditionnal expectation is equal to the expectation and we can apply the results of section 2.2.1 to get

-log P τ " v (1+3ǫ)c h « 0 g(γ s )ds < (1 -2ε) v u 1/κ |B ≤ (C 1 +µ 1 (ε)+o(1))u 1 1-κ .
On the other hand, using the Markov property,

P    τ " v (1-3ǫ)c h « τ " v (1+3ǫ)c h « g(γ s )ds < ε v u 1/κ |B    = P τ δv 0 g(γ s )ds < ε v u 1/κ | sup 0<t<τ δv γ s < ǫ ′ v u , where δ = 1 ((1-3ǫ)c h ) - 1 ((1-3ǫ)c h )
. Note that, as the positive and negative excursions are independent, τ δv 0 g -(γ s )ds and B are independent, therefore we only need to bound

P τ δv 0 g(γ s )ds < ε 2 v u 1/κ | sup 0<t<τ δv γ s < ǫ ′ v u = P ∞ 0 g(x)L x τ δv dx < ε 2 v u 1/κ |L α τ δv = 0 .
where α = ǫ ′ v u . Intuitively, it seems clear that ∞ 0 g(x)L x τ δv dx will have better chances to be small if L α τ δv = 0, we are going to give a rigorous proof of that. Note that, using the second Ray-Knight theorem (Statement 2.2), L x τ δv is a squared Bessel process of dimension 0 starting from δv. On the other hand, under P[•|L α τ δv = 0], L x τ δv is a squared Bessel bridge of dimension 0 between δv and 0 over time α (we refer to section XI of [START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF] for the definition and properties of the Bessel bridge).

We are going to use Girsanov's theorem in order to compute the equation solved by the squared Bessel bridge of dimension 0. Let P x and P α x,0 be respectively the distributions of the Bessel process of dimension 0 started at x and the distribution of the Bessel bridge of dimension 0 between x and 0 over time α. Let E x and E α x,0 be the associated expectations. Let X t be the canonical process and F t its canonical filtration.

Using the Markov property, we get, for every F t -measurable function F ,

E α x,0 [F (X s , s ≤ t)] = E x [F (X s , s ≤ t), X α = 0] P x [X α = 0] = E x F (X s , s ≤ t) P Xt [X (α-t) = 0] P x [X α = 0] := E x [F (X s , s ≤ t)h(X t , t)] ;
where h(s, t) can be explicitely computed (see for example Corollary XI.1.4 of [START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF]). We get

h(X t , t) = exp x 2α - X t 2(α -t)
.

Using Ito's Formula, we can transform this expression to get

h(X t , t) = exp - t 0 1 2(α -s) dX s + t 0 X s 2(α -s) 2 ds .
Recalling that, under P x , X t is a solution to

dX t = 2 X t dβ t ,
where β is a Brownian motion, we get

h(X t , t) = exp - t 0 √ X s (α -s) dβ s + t 0 X s 2(α -s) 2 ds .
Therefore, thanks to Girsanov's theorem (see for example Theorem VIII.1.7 of [START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF]), under P α x,0 ,

X t = x + t 0 X s dβ s -2 t 0 X s (α -s) ds.
Coming back to our original problem, we obtain that, under P(•|L α τ δv = 0), L x τ δv is a solution to

X t = δv + t 0 X s dβ s -2 t 0 X s (α -s) ds.
while, under P, L x τ δv is a solution to

X t = δv + t 0 X s dβ s .
Therefore, as there is pathwise uniqueness for these equation (see for example Theorem IX.3.5 of [START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF]), the comparison theorem (see [START_REF] Watanabe | A comparison theorem for solutions of stochastic differential equations and its applications[END_REF]) allows us to construct a couple (X (1) , X (2) ) such that X (1) follows the same distribution as L x τ δv under P, X (2) follows the same distribution as L x τ δv under P(•|L α τ δv = 0) and X (1) ≥ X (2) almost surely. Then one gets easily that the distribution of

∞ 0 g(x)L x τ δv dx under P(•|L α τ δv = 0
) is dominated by its distribution under P. Then the upper bound in (1.4) follows easily by the results of section 2.2.1.

We now turn to the proof of (1.5). We have the trivial inequality

P[θ 1 (v) > (vu) 1/κ ] ≤ P[θ 1 (v) + θ 2 (v) > (vu) 1/κ ] ≤ P[θ 1 (v) > (1 -ε)(vu) 1/κ ] + P[θ 2 (v) > ε(vu) 1/κ ],
therefore the lower bound is direct. To get the upper bound, note that θ 2 (v) is increasing, so we have to show that for every ε > 0, and some s > 0,

P Υ 2-2κ e Ξκ(v+s)/2 1 > ε (vu) 1/κ = o 1 u .
Recalling the diffusion Z t from the last part, we need to bound

P Υ 2-2κ Z v+s + 1 1 > ε (vu) 1/κ = ∞ 0 P Υ 2-2κ √ z + 1 1 > ε (vu) 1/κ dµ v+s (z), (2.17)
where µ v (y) is the distribution of Z v . By scaling,

P Υ 2-2κ √ z + 1 1 > ε (vu) 1/κ = P Υ 2-2κ 1 1 √ z + 1 > ε (vu) 1/κ z + 1 ≤ P Υ 2-2κ (1 0) > ε (vu) 1/κ z + 1 .
It is known (see for example [START_REF] Werner | Some remarks on perturbed reflecting brownian motion[END_REF] page 40) that Υ 2-2κ (1 0) has the same distribution as 1 2Γ where Γ follows a distribution Γ(κ, 1), therefore, easy computations leads to

P Υ 2-2κ (1 0) > ε (vu) 1/κ z + 1 ≤ 1 κΓ(κ)(2ǫ) κ (1 + z) κ uv ∧ 1.
Recalling (2.17), we have, for all A > 0

P θ 2 > ε(uv) 1/κ ≤ A 0 1 κΓ(κ)(2ǫ) κ (1 + z) κ uv dµ v+s (z) + ∞ A dµ v+s (z)
Using for example exercise VII.3.20 of [START_REF] Revuz | Continuous Martingales ans Brownian Motion[END_REF], the diffusion Z t has speed measure dm(z) = 2 (1+z) 1+κ dz, so by Theorem 54.4 of [START_REF] Rogers | Diffusions, Markov processes and Martingales[END_REF] and a change of variable in order to lift the natural scale assumption, for any φ bounded and measurable,

∞ 0 φ(z)dµ v+s (z) → s→∞ ∞ 0 φ(z)π(dz), with π(dz) = m(dz)
2κ . Therefore as s goes to infinity, and for some finite constant c(ε),

P θ 2 > ε(uv) 1/κ ≤ c(ε) uv log(1 + A) + (1 + A) -κ .
Now, taking A such that (1 + A) ≫ u 1/κ and log(1 + A) ≪ v (this is possible due to the assumptions on u and v), we get the upper bound in (1.5).

Proof of Theorem 1.1.

In this section we use the results for the hitting times to get the results for the diffusion itself. We begin with the proof of (1.2). We have the trivial inequality

P (X t > t κ u) ≤ P [H(t κ u) < t] ; by taking v = t κ u in Theorem 1.2, we get the upper bound in (1.2). The condition u ≪ v 1-κ becomes u ≪ t 1-κ .
To get the lower bound, note that, for every ε > 0,

log P (X t > t κ u) ≥ log [P [H((1 + ε)t κ u) < t] P (X t > t κ u|H((1 + ε)t κ u) < t)] ≥ -C 1 ((1 + ε)u) 1 1-κ + log P (X t > t κ u|H((1 + ε)t κ u) < t) . (2.18)
The bound in the first term coming from (1.4). To treat the second term, note that

P (X t < t κ u|H((1 + ε)t κ u) < t) ≤ E P (1+ε)t κ u W inf s>0 X s < t κ u = P inf s>0 X s < -εt κ u ,
by invariance of the environment. By [12],

P inf t>0 X t < -u ≤ Cx -3/2 exp -(κ/2) 2 x/2 ,
(note that c in K. Kawazu and H. Tanaka's article corresponds to -κ/2 in our setting). Therefore we get easily that, for t large enough,

P (X t < t κ u|H((1 + ε)t κ u) < t) < 1/2. (2.19)
The lower bound in (1.2) then follows from equations (2.18) and (2.19).

To prove (1.3), we use the fact that, for every ε > 0, We begin with the proof of Lemma 2.1. It will turn out that once the tools for this Lemma will we introduced, Lemma 2.2 will be quite obvious. We recall from equation (2.4) that

P H t κ u > t ≤ P X t < t κ u ≤ P H (1 + ε)t κ u > t + P X t < t κ u ; H (1 + ε)t κ u < t . Taking v = t κ /u,
α = ρ(t) -1 = t 0 h(γ s )ds,
where h is some positive, integrable function. We have

α τt = ∞ -∞ h(x)L x τt dx = tc h + ∞ -∞ h(x) L x τt -t dx.
Our result then follows as soon as we show that, for t large enough

P ∞ -∞ h(x) L x τt -t dx > 3tǫ < exp (-w) . Let s such that s → ∞ and t/s 4 ≫ w, then ∞ -∞ h(x) L x τt -t dx = s -s h(x) L x τt -t dx + ∞ s h(x) L x τt -t dx + s -∞ h(x) L x τt -t dx := I 1 + I 2 + I 3 .
By a scaling argument, and using the fact that h is bounded, we have

|I 1 | ≤ C s -s L x τt -t dx law = Ct s -s L x/t τ 1 -1 dx = Ct 2 s/t -s/t L y τ 1 -1 dy.
Then, for t large enough,

P(|I 1 | > tǫ) ≤ P sup y∈[-s/t,s/t] |L y τ 1 -1| > ǫ 2Cs ≤ 2P sup y∈[0,s/t] |L y τ 1 -1| > ǫ 2Cs
, the last bound coming from the symmetry of L y τ 1 in y. On the other hand, using statement 2.2, L y τ 1 is a squared Bessel process of dimension 0 started from 1, therefore using statement 2.4 with δ = ǫ 2Cs , v = s/t, we get

P(|I 1 | > tǫ) ≤ C ′ s exp - ǫ 2 t s 3 ≤ exp(-w).
It is clear that, for large t, P(|I 3 | ≥ tǫ) ≤ P(|I 2 | ≥ tǫ). To bound I 3 , we note that, for t large enough,

|I 3 | ≤ 2 s -∞ L x τt x 2 dx + t s -∞ 1 x 2 dx law = 2 t s + ∞ s/t L x τ 1
x 2 dx , by the same scaling argument. The first part is negligible, and, using statement 2.2,

∞ s/t L x τ 1 x 2 dx = ∞ s/t Z x x 2 dx,
where Z t is a squared Bessel process of dimension 0 started at 1. The following result from [START_REF] Pitman | Sur une decomposition des ponts de Bessel[END_REF] allows us to compute the Laplace transform of this random variable.

Statement 2.5 (J. Pitman and M.Yor) Let Z t be a squared Bessel process of dimension d, starting from x, and µ a positive (Radon) measure on (0, ∞) such that, for all n, µ(0, n) < ∞. Then one has

E exp -Z t dµ(t) = φ µ (∞) d/2 exp x 2 φ ′ µ (0) ,
where φ µ is the unique decreasing and convex solution of

1 2 φ ′′ = µ.φ on (0, ∞), φ(0) = 1.
We note η = s/t, and

A t = ∞ η L x τ 1
x 2 dx. The preceding statement implies that

E [exp -λA t ] = exp 1 2 φ ′ µ (0) ,
where φ µ is the solution of:

φ ′′ (x) = 2λ φ(x) x 2 1 x≥η .
A decreasing solution on (η, ∞) of this equation is

φ(x) = C x η 1- √ 1+8λ 2
.

The condition φ(0) = 1 and the fact that

φ ′ is constant on [0, η] implies that C 1 -1- √ 1+8λ 2 = 1, thus E [exp -λA t ] = exp 1 - √ 1 + 8λ 2(1 + √ 1 + 8λ)η ,
As this function is analytic, for some λ > 0 (not depending on t),

E [exp λA t ] = exp 1 - √ 1 -8λ 2(1 + √ 1 -8λ)η , then P(I 2 > ǫt) ≤ exp 1 - √ 1 -8λ 2(1 + √ 1 -8λ)η -λǫt ,
from which the result follows, as 1/η ≪ t.

Let us now prove Lemma 2.2. We recall from (2.7) that,

J 1 = w 2 -A log(w) 5 /w -∞ g(sw)L s τ 1 ds ≤ 2 -A log(w) 5 /w -∞ 1 s 2 L s τ 1 ds.
Then the proof follows easily as a corollary of the proof of Lemma 2.1.

3 Quenched slowdown.

We now turn to the proof of Theorem 1.5. As before we first recall some useful facts.

Preliminary statements.

We recall the time change representation of X t (see, for example [START_REF] Hu | Rates of convergence of diffusions with drifted brownian potentials[END_REF])

X t = A -1 κ B(T -1 κ (t)) ,
where

A κ (x) = x 0 e W κ(y) dy, T κ (t) = t 0 e -2Wκ(A -1 κ (B(s))) ds,
and B is a standard Brownian motion.

We also need a result about Sturm-Liouville equations. Let V (t) be a positive function of t ≥ 0, and V (t) = t 0 V (u)du. We are interested in the solution of the differential equation

z ′′ (t) = -λV (t)z(t), t ≥ 0, z(0) = 1, z ′ (0) = 0. (3.1)
We have the following statement from [START_REF] Bobkov | Muckenhoupt's condition via Riccati and Sturm-Liouville equations[END_REF] (corollary 3.2)

Statement 3.1 Let λ(V ) be the supremum of all λ > 0 for which a solution to the problem (3.1) is positive in [0, 1), then

sup 0<t<1 (1 -t) V (t) ≤ 1 λ(V ) ≤ 4 sup 0<t<1 (1 -t) V (t).
We recall the following inequality from lemma 1.1.1 of [START_REF] Csörgö | Strong approximations in Probability and Statistics[END_REF] Statement 3.2 Let γ(t) be a one-dimensional brownian motion, then

P sup 0≤s 1 <s 2 <t,s 2 -s 1 <u |γ(s 2 ) -γ(s 1 )| > x 2 ≤ c t u exp - x 2 9u .
We finish with a useful lemma Lemma 3.1 let a > 0, and µ a Radon measure on [0, a], and suppose there exists φ a positive solution of the Sturm-Liouville equation

φ ′′ = -φµ, t ≥ 0, φ(a) = 1, φ ′ (a) = 0. (3.2)
Let X t be a squared Bessel process of dimension δ, starting at x, then

E exp a 0 X t dµ(t) ≤ φ(0) -δ/2 exp 1 2 φ ′ (0) φ(0) x .
Remark: This lemma is a extension of Statement 2.5, but we do not get equality in this case.

Proof: Let F µ (t) = φ ′ (t)/φ(t), by the concavity of φ this is a right continuous and decreasing function, thus we can apply the integration by parts formula to get

F µ (t)X t = F µ (0)x + t 0 F µ (s)dX s + t 0 X s dF µ (s).
Using (3.2), we can compute the last part

t 0 X s dF µ (s) = t 0 X s dφ ′ (s) φ(s) - t 0 φ ′ (s)dφ(s) φ(s) 2 = - t 0 X s dµ(s) - t 0 X s F µ (s) 2 ds.
Recalling that M t = X tδt is a local martingale, we set

Z µ (t) = exp 1 2 t 0 F µ (s)dM s - 1 2 t 0 X s F µ (s) 2 ds ,
which is a positive local martingale, hence a supermartingale. Using the previous computation, we get

Z µ (t) = exp 1 2 F µ (t)X t -F µ (0)x -δ t 0 F µ (s)ds + t 0 X s dµ(s) .
As Z µ is a supermartingale, E[Z µ (a)] ≤ E[Z µ (0)] = 1. Therefore the result follows easily.

3.2 Quenched slowdown for the hitting time.

In this section we show (1.8). The idea of the proof is to decompose the environment in valleys of a certain size, then to study the process of the valleys visited and the time spent in the valleys. We first give a formal definition of what a valley is. For t > 0, v > 0 and i ∈ N , we set K 0 = -⌊t⌋, and

K i+1 = inf x > K i , W κ (K i ) -inf y∈[K i ,x] W κ (y) > 3 κ log⌊t⌋, W κ (x) ≥ sup y>x W κ (y) -1 .
K i is finite almost surely, due to the transience of the drifted brownian motion. The intervals [K i , K i+1 ] will be called "valleys". An example of such valleys is given in figure 2.

Ki 0 Wκ(x)

x 3 κ log⌊t⌋ Ki 0 +1 Ki 0 +2 Ki 0 -1 Ki 0 -2 . . .

Figure 2: Decomposition in Valleys

We introduce the sequence defined, for k ≥ 0 by

s 0 = 0 s k+1 = inf{t > s k , X t ∈ {K j , j ≥ 0}}. We call Y k = X s k , l t = max{i : s i < H(v)} and 
ξ(i) = ♯ {j ∈ [0, l t ], Y j = K i+1 , Y j+1 = K i } .
We set i 0 = max{j, K j < 0} and i 1 = max{j, K j < v}. By convention we note

K i 1 +1 = v. Let B = i 1 -1 i=1 ξ(i) (3.3)
denote the number of times the "walk" Y k backtracks. Let θ(t) be the timeshift associated to the diffusion, we set for 0

≤ i < i 1 next(i) = inf{t ≥ 0 : X t = K i , H(K i+1 ) • θ(t) < H(K i-1 ) • θ(t)} and H next (i) = H(K i+1 ) • θ(next(i)) -next(i).
We have the following decomposition of H v :

H(v) = H init + H dir + H back + H lef t + H right ,
where

H init = H(K i 0 +1 ) if H(K i 0 +1 ) < H(K i 0 ) H(K i 0 ) + H next (i 0 ) • θ(H(K i 0 )) else , (3.4) 
is the time the diffusion takes to get to K i 0 +1 ,

H lef t = t 0 1 Xt<K 1 dt, (3.5) 
is the time the diffusion spends at the left of K 1 ,

H right = H(v) • θ(next(i 1 )) -next(i 1 ), (3.6) 
is the time spent to get from

K i 1 to v H dir = i 1 -1 i=i 0 +1 H next (i) (3.7)
is the time used for the direct crossings of the valleys and

H back = i 1 -1 i=i 0 +1 lt j=0 1 Y j =K i+1 ,Y j+1 =K j × H(K i ) • θ(s j ) -s j + H next (i) • θ(H(K i ) • θ(s j )) (3.8)
is the time "lost" as a consequence of the different backtracks of Y k . We introduce

D i = sup K i <s<t<K i+1 W κ (t)-W κ (s)
, to which we will refer as the "depth" of the valley [K i , K i+1 ], and

N (s, t) = {i ≥ 1, [K i , K i + 1) ∩ [s, t) = ∅}.
Note that, as seen on figure 2 there are some valleys of depth 0.

We have the following lemmas, whose proof will be postponed Lemma 3.2 (environment estimates) Let v = t ν and ǫ > 0. P-almost surely, for m > m 0 , for t large enough, W ∈ Ω where

Ω = Ω(t, m) = A(t) ∩ G(t) ∩ G(v) ∩ B(t, m) ∩ K(t) ∩ L(t) and 
A(t) = max i≤i 1 (K i+1 -K i ) ≤ (log(t)) 2 , G(u) = sup -u≤r<s≤u W κ (s) -W κ (r) ≤ 1 κ (log u + 3 log log u) , B(t, m) = m-1 j=1 ♯{i ∈ N (-v, v) : D i ≥ 1 κ log v k/m + 4 log log(v)} ≤ v 1-k m , K(t) = sup -t<t 1 <t 2 <t |t 2 -t 1 |<1 |W κ (t 2 ) -W κ (t 1 )| ≤ (log t) 1/2 log log t , L(t) = sup 0<r<s<v W κ (s) -W κ (r) > 1-ǫ κ log v .
Furthermore, whenever u → ∞, the event G(u) is fullfilled for u large enough.

We now turn to some quenched estimates: let [a, c] be an interval of R. We call

D + = sup x∈[a,c] max y∈[x,c] W κ (y) -min y∈[a,x) W κ (y) , (3.9) 
D -= sup x∈[a,c] max y∈[a,x] W κ (y) -min y∈(x,c]) W κ (y) , (3.10) 
and

D = D -∧ D + .
We also introduce 

M := sup x∈[a,c] W κ (x) -min x∈[a,c] W κ (x)
P x W H(a) ∧ H(c) > Cu(M ∨ 1)(1 ∨ (c -a) 4 ))e D < e -u . (3.11)
We also have a bound on the number of backtracks. For f → ∞, f = O(t)

P W [B ≥ f ] ≤ C 3 e -f . (3.12)
Finally, if W ∈ Ω, for some constant γ, for every 1 ≤ i ≤ i 1 , and for t large enough,

P K i W H(K i+1 ) > uγ(log t) 20 e D i-1 ∨D i |H(K i+1 ) < H(K i-1 ) ≤ e -u , (3.13) 
P K i W H(K i-1 ) > uγ(log t) 20 e D i-1 ∨D i |H(K i-1 ) < H(K i+1 ) ≤ e -u , (3.14) P 0 W H(K i 0 ) ∧ H(K i 0 +1 ) > uγ(log t) 20 e D i 0 -1 ∨D i 0 ≤ e -u . (3.15) 
Thanks to these lemmas, we are able to finish the proof of Theorem 1.5.

Upper bound.

We recall v = t ν . Suppose Ω(t, m) is fulfilled, by the previous decomposition,

P W (H(v) > t) ≤ P W H init > t 5 + P W H dir > t 5 + P W H back > t 5 + P W H lef t > t 5 + P W H right > t 5 .
We begin with H init . We recall from (3.4) that H init is the time the diffusion takes to get to K i 0 +1 . Using the precedent estimates, on G(v), we have, for t large enough

D i 0 ∨ D i 0 +1 < 1 κ (log v + 3 log log v).
Thus, for every ǫ > 0,

P W H init > t 5 ≤ P 0 W H(K i 0 +1 ) > t 1-ν/κ 5 e D i 0 ∨D i 0 +1 ∩ H(K i 0 +1 ) < H(K i 0 ) + P 0 W H(K i 0 ) > t 1-ν/κ 10 e D i 0 ∨D i 0 +1 ∩ H(K i 0 ) < H(K i 0 +1 ) +P K i 0 W H(K i 0 +1 ) > t 1-ν/κ 10 e D i 0 ∨D i 0 +1 |H(K i 0 +1 ) < H(K i 0 -1 ) ≤ 3e -t 1-ν/κ-ǫ .
Similarly, we have

P W H right > t 5 = P K i 1 W H(v) > t 5 |H(v) < H(K i 1 -1 ) ≤ e -t 1-ν/κ-ǫ .
It is also a direct consequence of lemma 3.3 that, on A(t), i 0 > t 2(log t) 2 , whence, recalling the definition of B in (3.3),

P W H lef t > t 5 ≤ P W B ≥ t 4 log 2 t ≤ exp - t 4 log 2 t .
To deal with H dir , note that

H dir = i 1 -1 i=i 0 +1 τ (0) + (i),
where τ

+ (i) is the first crossing of the interval [K i , K i+1 ]. The τ (0) 
+ (i) are independent random variables, and τ (0) + (i) follows the same law as H(K i+1 ) under

P K i W [•|H(K i+1 ) < H(K i-1 )
]. On the other hand, if H dir > t/5, then the process spends an amount of time greater than t/20m in the valleys of depth in

k κm log v + 4 log log v, (k + 1) κm log v + 4 log log v .
On Ω(t, m), the number of such valleys is at most v 1-k m , we call σ(k) the time spent in those valleys. By lemma 3.3, and the precedent remarks, for some constant C,

σ(k) C(log t) 11 v (k+1)/κm ⊳ 2v (1-k/m) + Γ 2⌈v (1-k/m) ⌉, 1 ,
where we note A ⊳ B for " A is stochastically dominated by B", and Γ(k, β) is the Gamma distribution of parameter (k, β).

For m large enough, one can check easily that ν(1-k/m) < 1-ν(k+1)/m for all k ≤ m, whence, for t large enough,

P W σ(k) ≥ t 20m ≤ P Γ 2v (1-k/m) , 1 > t 1-ν(k+1)/κm (log t) 12 ≤ 4 t ν(1-k/m) exp - t 1-ν(k+1)/κm (log t) 12 ≤ exp -2t 1-ν(k+2)/(κm) + log(4)t ν(1-k/m) .
Therefore, as t → ∞,

P W [H dir > t/5] ≤ m exp -t 1-ν(k+2)/(κm) ≤ m exp -t 1-(1+ 2 m ) ν κ .
We now deal with H back .

P W H back > t 5 ≤ m-1 k=0 P W H back > t 5 , B ∈ [t k/m , t (k+1)/m ] + P W [B > t].
By lemma 3.3, P W [B > t] < e -t , and

P W H back > t 5 , B ∈ [t k/m , t (k+1)/m ] ≤ C exp -t k/m . (3.16)
On the other hand,

H back = i 1 -2 i=1 ξ(i) j=1 τ (j) + (i) + τ (j) -(i),
where

• τ (j) -(i) is the j -th crossing of the interval [K i+1 , K i ].
• τ

(j) + (i) is the first crossing of the interval [K i , K i+1 ] after the j -th crossing of the interval [K i+1 , K i ].
The τ (j) +,-(i) are independent variables, and τ (j) + (i) follows the same law as H(K i+1 ) under

P K i W [•|H(K i + 1) < H(K i-1
)], and τ (j)

-(i) follows the same law as H(K i ) under P K i+1 W [•|H(K i ) < H(K i+2 )],
(with the convention that K i 1 +1 = v). Therefore, thanks to lemma 3.3, τ (j) +,-(i) Ce H (log t) 10 ⊳ 1 + e for some constant C and

H = max i∈N " -t (k+1) log 2 t m ,v « D i .
Then, for W κ ∈ Ω(n, m)∩G t (k+1) log 2 t m , on the event {B ∈ [t k/m , t (k+1)/m ]},

H back C(t (k+1)/mκ ∨ v 1/κ )(log t) 10 ⊳ 2t (k+1)/m + Γ(2t (k+1)/m , 1). Therefore, when 1 -1 κ ν ∨ k+1 m ≥ k+1 m , P W H back > t 5 , B ∈ [t k/m , t (k+1)/m ] ≤ C exp -C ′ t 1-1 κ (ν∨ k+1 m ) .
Putting this together with (3.16), we obtain

P W H back > t 5 , B ∈ [t k/m , t (k+1)/m ] ≤ C exp -C ′ t (1-1 κ (ν∨ k+1 m ))∨ k m -1 m .
Putting together all the estimates, we get

lim inf t→∞ log(-log P W [H(t ν ) > t]) log t ≥ min k∈[-1,m+1] k m ∨ 1 - 1 κ ν ∨ k + 1 m - 1 m ∧ 1 -(1 + 2 m ) ν κ ≥ 1 - ν κ ∧ κ κ + 1 - 3 (1 ∧ κ)m
, Pa.s..

By taking the limit as m goes to infinity, we get the upper bound for

P W [H(t ν ) > t], namely lim inf t→∞ log(-log P W [H(t ν ) > t]) log t ≥ 1 - ν κ ∧ κ κ + 1
.

We now turn to the proof of the lower bound.

Lower bound.

We suppose that L(t) is fullfilled, therefore there is one valley of depth greater than 1-ǫ κ log v before v. Let b be the bottom of this valley, and c such that b < c and

W κ (c) -W κ (b) = 1 -ǫ κ log v.
It is easy to see that H(v) ≥ H(c) -H(b), whence

P W [H(t ν ) > t] ≥ P b W [H(c) > t].
We can suppose, without loss of generality, that b = 0. By the time change representation from the preliminary statements, under

P W , H(c) = T κ (σ(A κ (c)))
, where σ(x) is the first hitting time of x by a brownian motion B. Therefore

H(c) = σ(Aκ(c)) 0 e -2Wκ(A -1 κ (Bs)) ds. = Aκ(c) -∞ exp (-2W κ (A -1 κ (x)))L x σ(Aκ(c)) dx = c -∞ exp (-W κ (u))L Aκ(u) σ(Aκ(c)) du.
The last equality coming from a change of variable in the integral. By a scaling argument, we get

H(c) law = c -∞ exp (-W κ (u))A κ (c)L Aκ(u)/Aκ(c) σ(1)
du.

We suppose W κ ∈ K(t), so

A κ (c) ≥ e Wκ(c)-(log t) 2/3 > t (1-2ǫ) ν κ ,
and A κ (-1) > -e -(log t) 2/3 . Hence

H(c) ⊲ t (1-3ǫ) ν κ inf x∈[Aκ(-1)/Aκ(c),0] L x σ(1) .
For t large enough, A κ (-1)/A κ (c) > -1/2. Therefore by the first Ray-Knight theorem (Statement 2.1)

P b W [H(c) > t] ≥ P inf x∈[-1/2,0] L x σ(1) > t 1-ν κ +ε ≥ P Z ′ 1 > 2t 1-ν κ +ε P sup u∈[0,1/2] |Z u | < t 1-ν κ +ε ,
where Z t is a squared Bessel process of dimension 0 started at 0 and Z ′ t is a squared Bessel process of dimension 2 started at 0. The last probability is greater than 1/2 for t large enough, and the first one is explicitly known (see for example [START_REF] Borodin | Handbook of Brownian Motion. Probability and its application[END_REF]). We obtain that, for all ε > 0,

P W [H(v) > t] ≥ exp - 1 2 t 1-ν κ +ε .
To obtain the other lower bound, note that, similarly to lemma 3.2, almost surely, there is a valley of depth at least 1-ǫ κ+1 log t in [-t κ/(κ+1) , 0], let b ′ be the bottom of such valley, and c ′ > b ′ such that

W κ (c ′ ) -W κ (b ′ ) ≥ 1 -ǫ κ + 1 log t.
We have

P W [H(v) > t] ≥ P W [H(b) < H(t ν )]P b W [H(c) > t].
Recalling the time change representation,

P W [H(b) < H(t ν )] = A κ (t ν ) A κ (t ν ) -A κ (b)
.

when W κ ∈ K(t), we can easily show that for every ǫ > 0, as n goes to infinity,

P W [H(b) < H(t ν )] ≥ exp -t κ κ+1 +ǫ
. By the same computations as for the first bound, we get

P b W [H(c) > t] ≥ exp -t κ κ+1 +ǫ .
Putting together both inequalities, we get

lim inf t→∞ log(-log P W [H(t ν ) > t]) log t ≤ 1 - ν κ ∧ κ κ + 1 ,
which finishes the proof of Theorem 1.5.

Quenched slowdown for the diffusion.

In this section we finish the proof of Theorem 1.5. The lower bound is trivial, since

P W [X t < t ν ] ≥ P W [H(t ν ) > t].
To get the upper bound, let m ∈ N, note that

P W [X t < t ν ] ≤ P W [H(t ν ) > t] + m-1 k=0 P W H t ν+ k m < t < H t ν+ k+1 m P t ν+ k m W [H(t ν ) < t] + P W [H(t ν+1 ) < t]P t ν+1 W [H(t ν ) < t]. (3.17)
Using the explicit distribution of the supremum before t of a drifted brownian motion (see page 197 of [START_REF] Borodin | Handbook of Brownian Motion. Probability and its application[END_REF]) and the Borel-Cantelli lemma, we can easily see that for every k ∈ {1, m}, the event

U k m (n) :=    sup (n+1) ν <s<t<n ν+ k m W κ (s) -W κ (t) ≥ κ 4 n ν+ k m   
is fullfilled for all n large enough, therefore so does

U n = m k=1 U k m (n).
Hence on U ⌈t⌉ , there exist t ν < a < b < t ν+ k m such that

W κ (a) -W κ (b) ≥ κ 4 t ν+ k m .
By the same computations as in part 3.2.2, we get that, on U (⌈t⌉),

P b W [H(a) < t] ≤ P W   e κ 8 t ν+ k m inf x∈[0,e -κ 8 t ν+ k m ] L x σ(1) < t   ≤ P W   inf u∈[1,1-e -κ 8 t ν+ k m ] Z u < te -κ 8 t ν+ k m   ,
where Z u is a squared Bessel process of dimension 2 started at zero. We have

P W inf u∈[1,1-e -κ 8 t α ] Z u < te -κ 8 t α ≤ P W Z 1 < 2te -κ 8 t α + P W   sup u∈[1,1-e -κ 8 t α ] |Z u -Z 1 | ≥ te -κ 8 t α   .
Using statement 3.2 with u = te -κ 8 t α and the fact that

√ Z 1-t -Z 1 is
the Euclidean norm of a two dimensional Brownian motion, we get

P W   sup t∈[1,1-e -κ 8 t α ] |Z t -Z 1 | ≥ te -κ 8 t α   ≤ 2 exp - t 10 .
On the other hand, by the exact distribution of Z 1 ,

P (Z 1 < x) = 1 -e -x/2 < x.
Therefore we get that for some constant

C P t ν+ k m W [H(t ν ) < t] ≤ P b W [H(a) < t] < e -Ct ν+ k m .
On the other hand, the bound for the hitting time implies that

P W H t ν+ k m < t < H t ν+ k+1 m ≤ exp -t (1-(ν+ k+1 m )/κ)∧( κ κ+1 )-1 m ,
indeed the bound is trivial when ν + k/m > κ.

The same arguments apply to the other terms of (3.17), whence

lim inf t→∞ log(-log P W [X t < t ν ]) log t ≥ min k∈[0,m] ν + k m ∨ 1 - ν + (k + 1)/m κ ∧ κ κ + 1 - 1 m .
Minimizing over k and taking the limit as m go to infinity, we get the desired upper bound.

Proof of the lemmas.

We begin with the estimates on the environment.

Proof of lemma 3.2.

Note that, as an easy consequence of statement 3.2, almost surely for t large enough i 1 < 2t. Therefore

A(t) ⊃ Ã(⌊t⌋) := max i≤2⌊t⌋+1 |K i+1 -K i | ≤ log 2 (⌊t⌋) . (3.18)
Let us show that

P[ Ã(n) c ] = O(1/n 2 ). (3.19)
We have

P[ Ã(n) c ] ≤ 2n+1 i=0 P[K i+1 -K i ≥ (log (n)) 2 ]. (3.20)
By invariance of the environment,

P[K 1 -K 0 ≥ (log (n)) 2 ] = P[ K1 ≥ (log (n)) 2 ],
where

K1 = min t ≥ 0 : -min s∈[0,n] W κ (s) ≥ 3 κ log n, W κ (t) > sup s≥t W κ (s) -1 .
On the other hand, conditionally to K i , the process W κ (K i + s) -W κ (K i ) is a drifted Brownian motion conditionned to have its supremum lesser than 1. Therefore

P[K i+1 -K i ≥ (log n) 2 ] = P[ K1 ≥ (log n) 2 | sup t≥0 W κ ≤ 1] ≤ P[ K1 ≥ (log n) 2 ] P[sup t≥0 W κ ≤ 1] . For κ > 0, P[sup t≥0 W κ ≤ 1] is a positive constant. It remains to bound P[ K1 ≥ (log n) 2 ], note that if W κ (log n) 2 < - 6 κ log n,
and sup

t≥(log n) 2 W κ (t) -W κ (log n) 2 < 3 κ log n,
then there exists one point 3), therefore K1 < (log n) 2 . Taking the complementary events, we get

x * before (log n) 2 such that inf t∈[0,x * ] W κ (t) < -3 κ log n and W κ (x * ) ≥ sup s≥x * W κ (s) -1 (see figure
P[ K1 ≥ (log n) 2 ] ≤ P W κ (log n) 2 > - 6 κ log n or sup t≥(log n) 2 W κ (t) -W κ (log n) 2 > 3 κ log n .
x Wκ(x) 

(log n) 2 -3 κ log n -6 κ log n x *
P W κ (log n) 2 > - 6 κ log n = O(n -3 )
and

P sup t≥(log n) 2 W κ (t) -W κ (log n) 2 > 3 κ log n = P sup t≥0 W κ (t) > 3 κ log n .
By formula 1.1.4(1) from page 197 of [START_REF] Borodin | Handbook of Brownian Motion. Probability and its application[END_REF], the last probability is equal to n -3 . Therefore recalling equation (3.20), this finishes the proof of (3.19). Therefore, using the Borel-Cantelli lemma and (3.18), A(t) is fullfilled for every t large enough. We now turn to G. We consider the process

U t := sup -∞≤s≤t W κ (t) -W κ (s). (3.21) 
Note that for n = ⌊t⌋, sup

-(n+1)≤t≤n+1 U t ≤ 1 κ (log n + 3 log log n) ⊂ G(t).
The process U t is called a Reflected Brownian Motion with drift. This kind of process appears naturally in some queueing system models. It is a positive and stationnary diffusion, with stationnary law the exponential law of parameter κ. It is also reversible in time, therefore we can reduce to proving that, as n goes to infinity, the event

sup 0≤t≤n+1 U t ≤ 1 κ (log n + 3 log log n) (3.22)
is fullfilled.

In [START_REF] Salminen | On busy periods of the unbounded brownian storage[END_REF] it is shown that the length of the excursions away from zero (or busy periods) of U t follows a gamma distribution Γ 1 2 , κ 2

8

, and that the supremum m 0 over one excursion of U t has an explicit law, given by P(m 0 > y) = 2e -κy (1e -κy ) 2 (κy -(1e -κy )).

(

Let C be some large constant. We call F (n) the event that U t makes more than Cn excursions between time 0 and time n + 1. We have

P(F (n)) ≤ P Γ Cn 2 , κ 2 8 < n + 1 = γ(Cn/2, (n+1)κ 2 8 ) Γ(Cn/2)
,

where γ(•, •) is the incomplete gamma function. By Stirling's formula,

P(F (n)) = O(((n + 1)κ 2 /8) Cn/2 (Cn/2e) -Cn/2-1/2 ) = o(n -4 )
for C large enough. Therefore by the Borel-Cantelli lemma, almost surely there exists n 0 such that F (n) is fullfilled for all n ≥ n 0 . On the other hand, we call G(k) the event that the maximum during the kth excursion is lower than 1/κ(log k + 3 log log k). Recalling (3.23), for k ≥ 10,

P G(k) c = P m 0 > 1 κ (log k + 3 log log k) ≤ 8 k(log k) 2 .
By the Borel-Cantelli lemma, we get that there exists k 0 such that G(k) is fullfilled for all k ≥ k 0 . Take n > n 0 ∨ k 0 , and such that

1 κ (log n + 3 log log n)
is greater than the supremum over the k 0 first excursions of U t . Then on F (n) ∩ n k=k 0 G(k) the event in (3.22) is fullfilled. This implies the result for G(t).

Let us turn to B(t, m). Let n = ⌊v⌋. We call, for 0 < a < 1

B(n, a) = ♯ i ∈ N [-(n + 1), n + 1] : D i ≥ a κ log n + 4 κ log log n < n 1-a .
Recalling the definitions of the K i and U t , we note that the event that two different K i belong to the same excursion of U t implies that the maximum during this excursion is at least 3/κ log n, therefore, by the same argument as before, when n is large enough, this does not happen. We can also suppose that U t makes less than Cn excursions between time -(n + 1) and n + 1. Thus, on these events,

♯ i ∈ N [-(n + 1), (n + 1)] : H i ≥ a κ log n + 4 log log n
is stochastically dominated by a Binomial(2n + 1, p), where

p = P m t ≥ a κ log n + 4 log log n < 2 n -a log n 2 .
Whence, using Chebyshev's exponential inequality,

P [ B(n, a) c ] ≤ exp -n 1-a exp ((2n + 1) log(1 + p(e -1))) ≤ exp 4np -n 1-a .
The estimate on p, together with the Borel-Cantelli lemma, implies that, almost surely for n large enough,

m-1 1 B(n, k/m) ⊂ B(t, m) is fullfilled.
We finally prove that L(t) is fullfilled for t large enough. Recalling the notations concerning U t from (3.21), we call f (n) the event that U t makes more that n (log n) 2 excursions before time n. Using the explicit distribution of the length of the excursions of U t , we have

P (f (n) c ) ≤ P Γ n 2(log n) 2 , κ 2 8 > n .
Recalling that a Γ(k, θ) distribution has expectation kθ and variance kθ 2 , by Bienaymé-Chebyshev's inequality, for n large,

P (f (n) c ) ≤ 10 n(log n) 2 .
Now the Borel-Cantelli lemma implies that f (n) is fullfilled for all n large enough. Now suppose that f (⌊v⌋) is fullfilled, Note that U t and sup 0<s<t W κ (t) -W κ (s) are equal after the first 0 of U t . Call L(t) the event that there exists one excursion of height at least 1-ǫ κ log(n + 1) between the second and the ⌊ n (log n) 2 ⌋-th excursion of U t . It is easy to see that

f (⌊v⌋) ∩ L(t) ⊂ L(t).
On the other hand, by (3.23),

P L(t) c ≤ P m t < 1 -ǫ κ log(n + 1) n (log n) 2 ≤ 1 -e -(1-ǫ) log n+1 n (log n) 2 .
This is summable, therefore we can apply the Borel-Cantelli lemma to get the result on L(t), then on L(t).

The result on K(t) is a direct consequence of statement 3.2.

We now turn to the quenched estimates.

Proof of Lemma 3.3.

We begin with the proof of (3.11). Without loss of generality we can suppose x = 0 and D = D + . We suppose |c -a| ≥ 1, the proof being similar when |c -a| ≤ 1.

Recalling from the preliminary statements the time change representation of X t , we get that, under P W , H(v) = T κ (σ(A κ (v))), where κ (A κ (c)x))), and X s is a Bessel process of dimension 2, started at 0. We call α := A κ (c) -A κ (a), and λ(V ) the supremum of all λ such that a solution to y ′′ (t) = -λV (t)y(t), t ≥ 0 y ′ (α) = 0, y(α) = 1 is positive in [0, α]. λ(V ) is usually known as the spectral gap, or Poincaré's constant associated to V.

A κ (x) = x 0 e W κ(y)
By a standard change of variable in the previous differential equation, and an application of statement 3.1, we get From Lemma 3.1 we get that E[exp λ(V )U ] is finite, but we need an explicit bound. Toward this goal we are going to extend the interval : let c ′ be such that (c ′a) = 2(ca) and let us extend W κ on [c, c ′ ] by a constant function (equal to W κ (c)). We call Ṽ

1 λ(V ) ≤ 32(A κ (c) -A κ (a)) 2 sup 0<t<1 (1 -t)
(x) = exp (-2W κ (A -1 κ (A κ (c) -x))), for x ∈ [A κ (c) -A κ (c ′ ), A κ (c) -A κ (a)
] and λ( Ṽ ) the supremum of all λ such that a solution to

y ′′ (t) = -λ Ṽ (t)y(t), t ≥ y ′ (α) = 0, y(α) = 1 (3.24) is positive in [A κ (c) -A κ (c ′ ), α].
By the same calculations as before we get

1 λ( Ṽ ) ≤ 32 sup a≤x≤c ′ x a e -Wκ(v) dv c ′ x e Wκ(v) dv ≤ 32(c ′ -a)e D + = 64(c -a)e D + .
For λ < λ( Ṽ ), let φ be a solution to (3.24) on [A κ (c) -A κ (c ′ ), α], then φ is a solution to (3.24) on [0, α], and by concavity,

φ(0) ≥ A κ (c ′ ) -A κ (c) A κ (c ′ ) -A κ (a) ≥ e -M 2 .
Together with lemma 3.1, we get

E W [exp(λH(a) ∧ H(c))] < 2e M .
This, together with Markov's inequality, finishes the proof of the first part of lemma 3.3.

In order to prove (3.12), note that, due to the time change representation, and for W ∈ Ω,

P K i W [H(K i-1 ) < H(K i+1 )] = K i+1 K i e Wκ(x) dx K i+1 K i-1 e Wκ(x) dx -1 ≤ max i≤i 1 (K i -K i-1 )
e 1+Wκ(K i ) e Wκ(K i-1 )-(log t) 1/2 log log t ≤ t -3/2 , (3.25)

using the fact, that, by definition of the K i , on

K(t) ∩ G(t), W κ (K i-1 ) ≥ inf K i-1 ≤x≤K i W κ (x) + 3 κ log t ≥ W κ (K i ) + 2 κ log t - 3 κ log log t.
Then we have to distinguish two cases : either the walk Y j gets to the level v in more than 3n steps or in less than 3n steps. In the first case there are at least n steps back before H(v), and in the second case the number of steps back is dominated by a Binomial(3n, n -3/2 ). Thus

P W [B ≥ f (t)] ≤ 3n n 1 n 3/2 n + P Binomial(3n, n -3/2 ) ≥ f (t) .
The result follows easily from Stirling's formula and Chebyshev's exponential inequality.

We now turn to the proof of (3.13), (3.14) and (3.15). We start with (3.13). First note that

P K i W H(K i+1 ) > uγ(log t) 20 e D i-1 ∨D i |H(K i+1 ) < H(K i-1 ) ≤ P K i W H(K i-1 ) ∧ H(K i+1 ) > uγ(log t) 20 e D i-1 ∨D i ) P K i W [H(K i+1 ) < H(K i-1 )] ,
As a direct consequence of (3.25), we have, Pa.s., for n large enough,

P K i W [H(K i+1 ) < H(K i-1 )] ≥ 1 2 .
We are going to use (3.11) in order to bound the numerator. Note that, due to the definition of the K i ,

sup K i-1 <s<t<K i+1 W κ (s) -W κ (t) ≥ D i-1 ∨ D i .
On the other hand, on

A(t) ∩ K(t), K i+1 -K i-1 ≤ 2(log t) 2 , and then sup x∈[K i-1 ,K i+1 ] W κ (x) - min x∈[K i-1 ,K i+1 ] W κ (x) < (log t) 3 .
Therefore, the result follows easily by application of (3.11).

We now turn to the proof of (3.14). As before,

P K i W H(K i-1 ) > uγ(log t) 20 e D i-1 ∨D i |H(K i-1 ) < H(K i+1 ) ≤ P K i W H(K i-1 ) ∧ H(K i+1 ) > uγ(log t) 20 e D i-1 ∨D i ) P K i W [H(K i-1 ) < H(K i+1 )]
.

The numerator is the same as in the proof of (3.13), so we only have to deal with the denominator. We recall from (3.25) that

P K i W [H(K i-1 ) < H(K i+1 )] = K i+1 K i e Wκ(x) dx K i+1 K i-1 e Wκ(x) dx -1
.

On K(t) ∩ G(t), we obtain easily 4 Quenched speedup.

P K i W [H(K i-1 ) < H(K i+1 )] ≥ e Wκ(K i )-Wκ(K i-1 )-log t (log t) 3 . Note that on A(t) ∩ K(t), W κ (K i-1 ) -W κ (K i ) ≤ (log t)
In this part we show Theorem 1.3. We first recall some facts.

Preliminary statements.

Our proof is mainly based on "Kotani's formula", expressed in [START_REF] Kawazu | A diffusion process in a brownian random environment with drift[END_REF],

Statement 4.1 (Kotani's lemma) Let λ > 0. Then for t ≥ 0

E W e -λH(t) = exp -2λ t 0 U λ (s)ds , P -a.s.,
where U λ (t) is the unique stationnary and positive solution of the equation

dU λ (t) = U λ (t)dW (t) + 1 + 1 -κ 2 U λ (t) -2λU λ (t) 2 dt.
(Here W (t) is the Brownian motion defined in the introduction).

We shall also use the following result from [START_REF] Hu | Moderate deviations for diffusions with brownian potentials[END_REF] (Lemma 2.4)

Statement 4.2 lim 1 r sup |x|<u L x τ (r) -r = 0, a.s.,
whenever u → ∞ and r ≫ u log log u.

Proof of Theorem 1.4.

We use the same time change method as in the annealed case, in order to get almost sure estimates for U λ . Let g(x) =

x 1 e 2/s+4λs s 1-κ ds.

One can easily check that g is a scale function of U λ . By the same arguments as in section 2.2.1, we get

t 0 U λ (s)ds = µ(t) 0 g -1 (γ(u)) 1-2κ exp - 4 g -1 (γ(u)) -8λg -1 (γ(u)) du,
where γ(u) is a standard brownian motion,

µ(t) = t 0 U λ (s) 2κ exp 4 U λ (s) + 8λU λ (s) ds, and 
µ -1 (t) = t 0 g -1 (γ(s)) -2κ exp - 4 g -1 (γ(s)) -8λg -1 (γ(s)) ds.
We have the following lemma, whose proof is postponed

In order to get the lower bound, we introduce a small δ > 0. For the sake of clarity we call ε := v u 1/κ . Note that for λ > 0

E W e -λ * H(v) = E W e -λ * H(v) 1 H(v)<(1-δ)ε + E W e -λ * H(v) 1 (1-δ)ε≤H(v)≤(1+δ)ε + E W e -λ * H(v) 1 H(v)>(1+δ)ε := J 1 + J 2 + J 3 .
We are going to show that J

1 + J 3 ≪ E W e -λ * H(v) . We call F (x) = P W [H(v) < x]
. By the Cramer-Chernoff inequality, for x < ε, one gets

F (x) ≤ exp (λ(x)x -C(1 -o(1))vλ(x) κ ) = exp (-C(1 -o(1))v(1 -κ)λ(x) κ ) = exp -(1 -o(1))C 1 1-κ (1 -κ)κ κ 1-κ v 1 1-κ x κ κ-1 . (4.4) Recall that E e -λ * H(v) = e -C(1+o(1))(Cκ) κ 1-κ u 1 1-κ .
We deduce that for α

= 2(1 -κ) κ-1 κ , F (αε) ≪ E W e -λ * H(v) .
For this α, we have

J 1 ≤ F (αε) + (1-δ)ε αε e -λ * x dF (x) = e -(1-δ)ελ * F ((1 -δ)ε) + (1 -e -αε )F (αε) + λ * (1-δ)ε αε e -λ * x F (x)dx. (4.5) 
Our goal is to use (4.4) in order to bound F in the last equation. The problem is that the o(1) in (4.4) depends on x. We are going to use the monotonicity of F (x) in order to get an uniform bound. Let η < δ/1000, n > κ α(1-κ)η . For 1 ≤ k ≤ n, we set x k = kε/n. Using (4.4), there exists v 0 such that, for all v > v 0 , and 1

≤ k ≤ n, F (x k ) ≤ exp -(1 -η)C 1 1-κ (1 -κ)κ κ 1-κ v x k v κ κ-1 . Note that for x k-1 < x < x k , x > αε, and v > v 0 , F (x) ≤ F (x κ ) ≤ exp -(1 -η)C 1 1-κ (1 -κ)κ κ 1-κ v 1 1-κ x + ε n κ κ-1
.

By the concavity of the function x → x κ κ-1 , and the condition ε > x > αε, we get easily

x + ε n κ κ-1 ≥ x κ κ-1 + 1 n κ α(κ -1) α κ κ-1 ε κ κ-1 ≥ (1 -η)x κ κ-1 .
We deduce that for every ε > x > αε,

F (x) ≤ exp -(1 -η) 2 C 1 1-κ (1 -κ)κ κ 1-κ v 1 1-κ x κ κ-1 := e G(x) (4.6)
Therefore, replacing F by e G in (4.5), and doing the integration by parts in the other direction, we get

J 1 ≤ e -(1-δ)ελ * e G((1-δ)ε) + (1 -e -αε )e G(αε) + λ * (1-δ)ε αε e -λ * x e G(x) dx = e G(αε) + (1-δ)ε αε e -λ * x de G(x) . (4.7)
Recalling the definition of α, e G(αε) ≪ E e -λ * H(v) , and the integral can be bounded by

C ′ v κ 1-κ (1-δ)ε αε x 1 κ-1 e -λ * x e G(x) dx.
Therefore, recalling (4.1), and (4.3) for estimates on E W e -λ * H(v) , and the expressions of λ(x) and G respectively in (4.2) and (4.6), one gets

J 1 E W e -λ * H(v) -1 ≤ o(1) + P sup x∈[αǫ,(1-δ)ǫ] exp -C 1 1-κ κ κ 1-κ v 1 1-κ (1 -η) 2 (1 -κ)x κ 1-κ + κε 1 κ-1 -ε κ κ-1 (1 + o(1)) .
where P is some polynom in (u, v) and the terms between the brackets come respectively from e G , e -λx and E W e -λ * H(v) -1 . By a change of variable in the sup, we get We now deal with J 3 . As before we get As before, we can take η small and get

J 3 ≪ E W e -λ * H(v) .
Therefore we get that, as v → ∞,

J 2 > 1 2 E W e -λ * H(v) .
Recall that J 2 = E W e -λ * H(v) 1 (1-δ)ε≤H(v)≤(1+δ )ε ≤ e -λ * (1-δ)ε P W [H(v) < (1 + δ)ε] .

Note that the preceding computations remain true for u ′ := (1+δ) κ u, whence lim inf

v→∞ log P W H(v) < v u 1/κ u 1 1-κ > (1 + δ) κ 1-κ ((1 -δ)κ -1)C 1 1-κ κ κ 1-κ .
Taking the limit as δ → 0, we get the result.

It remains to prove lemma 4.1, which is the purpose of the next section. g -1 (s) ν exp -4 g -1 (s) -8λg -1 (s) L s τr ds

:= I 1 + I 2 + I 3 ,
where a is such that a > 1/λ and e 4λa 4λa = log 1 λ log log log 1 λ .

We shall use the following consequence of the law of large numbers : let f : R → R such that R |f (x)|dx < ∞, then On the other hand

I 1 = 0 -∞ g -1 (s) ν exp - 4 g -1 (s) -8λg -1 (s) L s τr ds ≤ 0 -∞ g -1 (s) ν exp - 4 g -1 (s)
L s τr ds.

Using (4.11), it is not difficult to check that g -1 (s) ν exp -4 g -1 (s) is integrable on (-∞, 0), therefore an application of (4.10) lays

I 1 = O(r).
Let us now treat I 3 . Note that for y ≥ a, yλ → ∞ and for some constant As yλ → ∞, we get g(y) ≤ 2ce 4λy .

Therefore, for x ≥ g(a), 2ce 4λg -1 (x) ≥ x, so g -1 (x) ≥ 1 4λ log x 2c . Therefore, using (4.10) we get, for some constant c ′ > 0,

I 3 ≤ ∞ g(a)
(g -1 (x)) ν∨0 e -8λg -1 (x) L x τr dx ≤ c ′ ∞ g(a)

log(x/2c) 4λ To deal with I 2 , note that, by the definition of a and (4.12), r ≫ g(a) log log g(a).

Therefore we can apply statement 4.2 to get

I 2 = r(1 + o(1)) g(a) 0 g -1 (s) ν exp - 4 g -1 (s) -8λg -1 (s) ds.
By a change of variables g -1 (s) = y, as λ → 0, the last integral is equal to g -1 (s) ν exp -4 g -1 (s) -8λg -1 (s) L s τr ds

:= I ′ 1 + I ′ 2 + I ′ 3 .
I ′ 3 is similar to the precedent case, with ν < 0, so we get I ′ 3 = o(r). We have easily

I ′ 1 ≤ e -1 b 0 -∞ g -1 (s) ν exp - 3 g -1 (s)
-8λg -1 (s) L s τr ds.

The integral is a O(r) by the same proof as for I 1 , therefore

I ′ 1 = o(r).
By the same proof as for I 2 , we get e -8λ/u-u u 1+κ du.

I ′ 2 =
One can easily check that the integral is bounded, therefore this part goes to zero. This finishes the proof of lemma 4.1.
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4. 3

 3 Proof of Lemma 4.1.Let ν = 1 -2κ, andD ν = τr 0 g -1 (γ(s)) ν exp -4 g -1 (γ(s)) -8λg -1 (γ(s)) ds. = ∞ -∞ g -1 (s) ν exp -4 g -1 (s)-8λg -1 (s) L s τr ds.

  some constant c > 0, for all x ≤ 0 and λ < 1

  κ ds ≤ g(y) ≤ c

ν∨0 x - 2 2 ∞ 1 log

 221 L x τr dx ≤ c ′ (g(a)) -1/

u 1 -

 1 (ν+κ) du.Recalling the definition of ν we have ν + κ = 1κ > 0, thenI 2 = r(1 + o(1)) Γ(1κ) (4λ) 1-κ .This finishes the proof of the first part of lemma 4.1, as 1κ > ν ∨ 0. To treat the case ν = -2κ, let b < 1 be such that b → 0 and -g(b) = o r log log r . As before, we separate the integral as follows

y

  1+κ dy.The first part converges, by dominated convergence, to
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-8λg -1 (γ((s)) ds.

Then, whenever λ → 0 and r ≫ log(1/λ) log log(1/λ),

and for some positive constant D,

Let us use this lemma to finish the proof of Theorem 1.4. We get easily that µ -1 (τ r ) = D -2κ (r). Whence, for some constant D ′ ,

almost surely, as λ → 0 and t ≫ log(1/λ) log log(1/λ). Therefore, under the same assumptions, for some constant D ′′ ,

Thus, going back to Kotani's lemma, for t > 0, and for some constant C, we get, as

)λ κ v), P -a.s.. (4.1) By application of Chebyshev's inequality, for λ as before,

We call λ(x) the value of lambda that minimizes λx -Cvλ κ . It is clear that λ(x) is a decreasing function of x, such that

Let λ * = λ v u 1/κ , we get easily the expression

One can easily check that λ * → 0, v ≫ log(1/λ * ) log log log(1/λ * ). Therefore we can apply the precedent estimate to get lim sup

Quenched Speedup for the diffusion.

In this section we prove Theorem 1.3. The upper bound is a trivial consequence of Theorem 1.4 , since

To get the lower bound, let ε > 0. Note that

Note that almost surely, for t large enough, we can find

It is clear that

. By the same computations as in 3.2.2, one gets easily that

for t large enough. Taking the limit as ε → 0, this finishes the proof of Theorem 1.3.