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Abstract

We consider a competition-diffusion system for two competing species; the
density of the first species satisfies a parabolic equation together with a in-
homogeneous Dirichlet boundary condition whereas the second one either
satisfies a parabolic equation with a homogeneous Neumann boundary con-
dition, or an ordinary differential equation. Under the situation where the
two species spatially segregate as the interspecific competition rate becomes
large, we show that the resulting limit problem turns out to be a free bound-
ary problem. We focus on the singular limit of the interspecific reaction term,
which involves a measure located on the free boundary.
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1. Introduction

Theoretical understanding of interacting species in ecological systems is
a central problem in mathematical ecology. One of the problems arising in
spatial ecology is the study of the spatial segregation of competing species,
which has been investigated from theoretical as well as from field works.
Among many mathematical models, reaction-diffusion systems can be used
in order to study the spatial segregation between strongly competing species.
As an example, we consider the situation where one species, say V , grows
and moves by diffusion in some habitat, which we denote Ω, with zero flux
boundary conditions. Denoting the population density of the species as v,
we describe its behaviour by a reaction-diffusion equation:

∂tv = d2∆v + g(v),

where d2 is the diffusion rate of V and g(v) is the growth term satisfy-
ing g(0) = g(1) = 0 and g(v) > 0 for 0 < s < 1. This is a Fisher-type
reaction-diffusion equation, which has been extensively studied not only in
mathematical ecology but also in mathematics. We know that function v
converges asymptotically to the stable zero of g, namely v ≡ 1, as t→ +∞.
Next we consider the situation where another species, say U , invades in the
habitat of V from the boundary. The dynamics of U is described by

∂tu = d1∆u+ f(u),

where d1 and f(u) are defined similarly as d2 and g(v), respectively, and
we suppose that u satisfies Dirichlet boundary conditions. Here we assume
that U and V are competing each other to take common food in the habitat.
Then the interaction of the two competing species U and V is described by

∂tu = d1∆u+ f(u) − kF (u, v), ∂tv = d2∆v + g(v) − hF (u, v),

where F (u, v) is the interspecific competition function, and h and k are some
positive constants. A simple but quite well-known system of equations in
mathematical ecology is given by

∂tu = d1∆u+ (1 − u/K1)u− k uv, ∂tv = d2∆v + q(1 − v/K2)v − h uv,

which is called a competition-diffusion system of Lotka-Volterra type. This
is a quite simple invasion problem which amounts to study whether and how
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the species V is invaded by the alien species U . In order to do so, we need
to know the evolutionary dynamics of the spatial segregation between U and
V . If the interspecific competition parameter is large, that is, if k and h are
both large, then one can expect the occurrence of spatial segregation between
the two species. Ecologically we address the following question: how is the
dynamics of the segregating regions for the competing species U and V ? The
purpose of this paper is to derive the equations describing the segregating
boundary between U and V when h and k become large, by using a singular
limit analysis which was originally developed in [6, 14]; in turn this will allow
us to derive the singular limit of the interspecific reaction terms hF (u, v) and
kF (u, v).

In this paper, we consider the reaction-diffusion problem for (u, v):

(
Pk
)





∂tu = d1 ∆u+ f(u) − kF (u, v), in Ω × (0, T ],
∂tv = d2 ∆v + g(v) − α kF (u, v), in Ω × (0, T ],
u = u, d2 ∂nv = 0, on ∂Ω × (0, T ],
u(·, 0) = u0, v(·, 0) = v0, on Ω,

where Ω is a bounded domain in R
N with smooth boundary ∂Ω. The func-

tions f and g are the intraspecific growth functions, whereas F (u, v) is the
interspecific competition term; the diffusion coefficients d1 and d2 are such
that d1 > 0 and d2 ≥ 0, so that the population V can be mobile or immobile
and α is a positive constant. The parameter k is the interspecific competi-
tion rate (k−1 can be also seen as a characteristic time of the interspecific
competition process). We assume that the following hypotheses hold:

Assumption 1 (Interaction of two species).

• F ∈ C1((0, 1] × (0, 1]) ∩ Cδ([0, 1] × [0, 1]), δ ∈ (0, 1),

• F (0, s) = F (s̃, 0) = 0 for s ∈ [0, 1], s̃ ∈ [0, 1],

• F (u, v) > 0 for (u, v) ∈ (0, 1] × (0, 1],

• F is nondecreasing in u and v.

Assumption 2 (Source terms for a single species).

(i) f and g are continuously differentiable on [0,+∞) such that f(0) =
g(0) = 0;
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(ii) f(s) < 0, g(s) < 0 for all s > 1.

Assumption 3 (Initial and boundary conditions).

• u0, v0 and u are functions with values in [0, 1],

• u ∈ C2,1(Ω × R
+) and u > 0 on ∂Ω × R

+,

• u0 = u(·, 0).

In the sequel, we will always assume that Assumptions 1, 2 and 3 hold.

Numerous studies have been carried out for competition models of Lotka-
Volterra type in the case of two competing species, see e.g. [20, 24]. Let
us also mention recent results of Squassina [25, 26] who investigated from
both theoretical and numerical viewpoints the long term behavior for a class
of competition-diffusion systems of Lotka-Volterra type for two competing
species in the case of different interspecific reaction terms. Other studies
have focused on the fast-reaction limit: under suitable assumptions, as the
reaction rate tends to infinity, competition-diffusion systems usually exhibit
a limiting configuration with segregated habitats. We refer the reader to
[2, 3, 5, 7, 8, 9, 17, 19, 20, 21, 22, 23, 24] and in particular to [2, 4, 22]
for models involving Dirichlet boundary data and to [7, 11, 17] for those
involving zero-flux boundary conditions.

Problem (Pk) with d1 > 0 and d2 > 0 has been studied in [6] in the
case of homogeneous Neumann boundary conditions and by [2] in the case
of inhomogeneous boundary conditions. Further we refer to [10, 14, 15, 16]
for studies of the singular limit of systems where a parabolic equation is
coupled to an ordinary differential equation. In this paper we only suppose
that d2 ≥ 0 so that Problem (Pk) contains both classes of systems. About
the singular limit of the term kF (uk, vk) in a one dimensional context where
a parabolic equation is coupled to an ordinary differential equation, we refer
to [12, 13]. Our aim is to show that the two competing species segregate
more and more as k becomes large, and to describe the singular limit of the
interspecific reaction term.

This paper is organized as follows:

• In Section 2, we prove that
(
Pk
)

admits a unique solution. The well-
posedness of the PDE / PDE system is a straightforward application
of a well-known result by Lunardi and the well-posedness of the PDE /
ODE system is obtained as a limit case of the initial system.
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• In Section 3, we focus on the fast reaction limit of
(
Pk
)

corresponding
to an asymptotic study with respect to increasing values of k. We
rigorously prove that the limit problem is a (well-posed) free boundary
problem so that the two biological populations become disjoint.

• In Section 4, we consider again the limit problem: under some regular-
ity assumption on the free boundary, we provide a strong formulation
of the fast reaction limit and show that the support of the interspecific
source term converges to a measure located at the free boundary. This
is the main result of this article.

2. Existence and uniqueness results for the reaction-diffusion sys-

tem

We first prove the well-posedness of the initial value problem. We have
to apply different methods for the P.D.E. / P.D.E. system and the P.D.E. /
O.D.E. system, due to the loss of regularity brought by the vanishing dif-
fusion. In a first step (Subsection 2.1), we easily prove the well-posedness
of the P.D.E. / P.D.E. system and then, in a second step (Subsection 2.2),
we prove the well-posedness of the P.D.E. / O.D.E. system by passing to
the limit in the diffusion parameter. Interestingly, this convergence analysis
will be crucial also for the asymptotic study k → +∞ (see Section 3) as the
estimates that are proven in this section are uniform not only with respect
to the diffusion parameter d2 but also with respect to the reaction rate k.

2.1. Well-posedness of the P.D.E. / P.D.E. system

Theorem 1. If d2 > 0 and k > 0, Problem
(
Pk
)

admits a unique classical
solution1

(uk, vk) ∈ C2,1(Ω × (0, T ]) ∩ C(Ω × [0, T ]).

Moreover,
0 ≤ uk, vk ≤ 1.

Proof. Define U := uk−u and V := vk. We can now apply Proposition 7.3.2,
p. 277, in [18], to the corresponding problem for U and V with homogeneous

1By a classical solution of Problem
(
Pk
)

we mean a pair (u, v) such that u, v ∈ C2,1(Ω×
(0, T ]) ∩ C(Ω × [0, T ]) and satisfies pointwise the partial differential equations as well as
the boundary and initial conditions in Problem

(
Pk
)
.
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boundary conditions to deduce that Problem
(
Pk
)

has a unique classical
solution. Bounds are obtained as follows: we define

L1(u
k) := ∂tu

k − d1 ∆uk − f(uk) + kF (uk, vk),
L2(v

k) := ∂tv
k − d2 ∆vk − g(vk) + αkF (uk, vk).

Since Li(0) = 0 and Li(1) ≥ 0 for i = 1, 2, the assertion 0 ≤ uk, vk ≤ 1
follows from the maximum principle; this completes the proof.

Note, using simple integrations, the following (classical) equalities which
will be useful in the sequel. Let T > 0 be arbitrary; the function pair (uk, vk)
is such that

∫∫

QT

uk ∂tψ +

∫∫

QT

{
d1 u

k ∆ψ +
(
f(uk) − kF (uk, vk)

)
ψ
}

= −
∫

Ω

u0 ψ(·, 0) +

∫ T

0

∫

∂Ω

u ∂n ψ, (1)

∫∫

QT

vk ∂tψ +

∫∫

QT

{
d2 v

k ∆ψ +
(
g(vk) − αkF (uk, vk)

)
ψ
}

= −
∫

Ω

v0 ψ(·, 0) +

∫ T

0

∫

∂Ω

d2 v
k ∂n ψ, (2)

for all ψ ∈ FT :=
{
ψ ∈ C2,1(QT ), ψ(·, T ) = 0 on Ω and ψ = 0 on ∂Ω × [0, T ]

}
.

2.2. Well-posedness of the P.D.E. / O.D.E. system

Lemma 1 (Interspecific source term: estimates). For d2 > 0 and k > 0,
there exists a positive constant c0 which does not depend on k and d2 such
that

k

∫∫

QT

F (uk, vk) ≤ c0. (3)

Proof. Integrating the equation for vk over QT := Ω × (0, T ) yields

k

∫∫

QT

F (uk, vk)

= α−1

(∫ T

0

∫

∂Ω

d2 ∂nv
k +

∫∫

QT

g(vk) −
∫

Ω

vk(·, T ) +

∫

Ω

v0

)

≤ α−1 meas (Ω)
(
2 + T ‖g‖L∞(0,1)

)

which implies the result.
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Proposition 2. For d2 > 0 and k > 0, there exist positive constants c1 and
c2 which do not depend on k and d2 such that

d1

∫∫

QT

∣∣∇uk
∣∣2 ≤ c1. (4)

d2

∫∫

QT

∣∣∇vk
∣∣2 ≤ c2. (5)

Proof. We proceed as follows:

• Estimate for uk. We use the new unknown Uk = uk − u, so that the
equation for uk becomes:

∂tU
k = d1 ∆Uk + f(uk) − kF (uk, vk) − ∂tu+ d1 ∆u.

We multiply this equation by Uk and integrate over Ω. This yields the
inequality

1

2

d

dt

∫

Ω

∣∣Uk
∣∣2 + d1

∫

Ω

∣∣∇Uk
∣∣2 + k

∫

Ω

F (uk, vk)Uk

≤ 2meas(Ω)‖f‖L∞(0,1) + 2

∫

Ω

|∂tu| + d1 |∆u| ,

which we integrate over (0, T ) to obtain (note that Uk(·, 0) = 0)

d1

∫∫

QT

∣∣∇Uk
∣∣2 + k

∫∫

QT

F (uk, vk)Uk

≤ 2meas(Ω)T ‖f‖L∞(0,1) −
1

2

∫

Ω

∣∣Uk
∣∣2 (·, T ) + 2

∫

QT

|∂tu| + d1|∆u|.

Since F is nonnegative and uk, u0 are functions with values in [0, 1],
we obtain

d1

∫∫

QT

∣∣∇Uk
∣∣2 ≤ 2

(
Tmeas(Ω)‖f‖L∞(0,1) +

∫

QT

|∂tu| + d1|∆u|
)
.

Finally, we get

d1

∫∫

QT

∣∣∇uk
∣∣2 = d1

∫∫

QT

∣∣∇Uk + ∇u
∣∣2

≤ 2 d1

(∫∫

QT

∣∣∇Uk
∣∣2 +

∫∫

QT

|∇u|2
)
,
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which yields the estimate for uk with

c1 := 4Tmeas(Ω)‖f‖L∞(0,1) + 4

∫

QT

(|∂tu| + d1|∆u|) + 2d1

∫∫

QT

|∇u|2 .

• Estimate for vk. We multiply the equation for vk

∂tv
k = d2 ∆vk + g(vk) − αkF (uk, vk).

by vk and integrate over Ω. This yields

1

2

d

dt

∫

Ω

∣∣vk
∣∣2 + d2

∫

Ω

∣∣∇vk
∣∣2 + αk

∫

Ω

F (uk, vk)vk ≤ meas(Ω)‖g‖L∞(0,1).

We integrate the result over (0, T ) and obtain

d2

∫∫

QT

∣∣∇vk
∣∣2 + k

∫∫

QT

F (uk, vk) vk

≤ meas(Ω)T ‖g‖L∞(0,1) +
1

2

∫

Ω

(∣∣vk
∣∣2 (·, 0) −

∣∣vk
∣∣2 (·, T )

)
.

Since F is nonnegative and vk, v0 are functions with values in [0, 1], we
get

d2

∫∫

QT

∣∣∇vk
∣∣2 ≤ meas(Ω)

(
T‖g‖L∞(0,1) + 1

)
,

which completes the proof with

c2:=meas(Ω)
(
T‖g‖L∞(0,1) + 1

)
.

Next we state further uniform estimates with respect to d2 and k. They
will be essential for the convergence proof not only as d2 tends to 0 but also as
k tends to +∞. Proposition 3 below is the key ingredient which will permit
to apply the Riesz-Fréchet-Kolmogoroff theorem.

Proposition 3. Assume that d2 > 0 and k > 0. For r > 0 sufficiently small,
say r ∈ (0, r̂), we define

Ωr = {x ∈ Ω, B(x, 2r) ⊂ Ω} , Ω′
r =

⋃

x∈Ωr

B(x, r),
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where B(x, r) denotes the ball in R
N with center x and radius r. We also

define, for any F ∈ L∞(QT ):

∀ξ ∈ B(0, r), ∀(x, t) ∈ Ω′
r × (0, T ), SξF (x, t) := F (x+ ξ, t),

∀τ ∈ (0, T ), ∀(x, t) ∈ Ω × (0, T ), TτF (x, t) := F (x, t+ τ).

For each r ∈ (0, r̂), the folllowing properties hold:

(i) There exists a positive function G which does not depend on k and d2,
such that G(ξ) → 0 as ξ → 0 and

∫ T

0

∫

Ωr

∣∣Sξu
k − uk

∣∣2 ≤ c1|ξ|2,
∫ T

0

∫

Ωr

∣∣Sξv
k − vk

∣∣ ≤ G(ξ),

for all ξ ∈ B(0, r).

(ii) There exist positive constants c3 and c4 which do not depend on k and
d2 such that,

∫ T−τ

0

∫

Ωr

∣∣Tτu
k − uk

∣∣2 ≤ c3τ,

∫ T−τ

0

∫

Ωr

∣∣Tτv
k − vk

∣∣ ≤ c4τ,

for all τ ∈ (0, T ).

(iii) For each ε > 0, there exists ω ⋐ QT which does not depend on k and
d2 such that ‖uk‖L2(QT \ω) < ε, ‖vk‖L1(QT \ω) < ε.

Proof. The proof of the left-hand inequality in (i) is based upon the fact that
the sequence {∇uk} is bounded in L2(Ω× (0, T )), whereas a key idea of the
proof of the right-hand inequality in (i) is that if we would consider Problem(
Pk
)

with f = g = 0, then the quantity

∫

Ω

(
α|uk

1(x, t) − uk
2(x, t)| + |vk

1(x, t) − vk
2(x, t)|

)
dx,

where (uk
1, v

k
1) and (uk

2, v
k
2) are two solution pairs, would decrease in time.

The inequalities in (ii) follow from substituting the corresponding differential
equations for {uk} and {vk} with the use of a suitable cut-off function. The
inequalities in (iii) are a straightforward consequence of the uniform L∞−
boundedness of the solution.
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◦ Proof of (i). This is a consequence of Proposition 2. We have

d1

∫ T

0

∫

Ωr

∣∣Sξu
k − uk

∣∣2 = d1

∫ T

0

∫

Ωr

∣∣uk(x+ ξ, t) − uk(x, t)
∣∣2 dx dt

= d1

∫ T

0

∫

Ωr

∣∣∣∣
∫ 1

0

∇uk(x+ θξ, t) · ξ dθ

∣∣∣∣
2

dx dt

≤ d1|ξ|2
∫ 1

0

∫ T

0

∫

Ωr

∣∣∇uk(x+ θξ, t)
∣∣2 dx dt dθ

≤ d1|ξ|2
∫ T

0

∫

Ω′

r

∣∣∇uk(x, t)
∣∣2 dx dt

≤ d1|ξ|2
∫∫

QT

∣∣∇uk(x, t)
∣∣2 dx dt

≤ c1 |ξ|2.

In the same way, we prove that

d2

∫ T

0

∫

Ωr

∣∣Sξv
k − vk

∣∣2 ≤ c2 |ξ|2.

Next we focus on |Sξv
k − vk|, also allowing that d2 = 0. Since Ωr ⊂

Ω′
r ⊂ Ω, we first construct a function ψ ∈ C∞

0 (Ω′
r), which only depends

on Ω and r, such that

0 ≤ ψ ≤ 1 on Ω′
r and ψ = 1 on Ωr,

with |∇ψ|, |∆ψ| ≤ C(r). To that purpose we set for x ∈ R
N

̺(x) =





̺0 exp

(
− 1

1 − |x|2
)
, if |x| < 1

0, otherwise,

where the constant ̺0 is chosen such that

∫

RN

̺ = 1,

Ω′′
r =

⋃

x∈Ωr

B
(
x,
r

4

)

and

ψ(x) =
4

r

∫

Ω′′

r

̺

(
4(y − x)

r

)
dy, for all x ∈ Ω′

r.
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Take a smooth function m : R → R with

m ≥ 0, m(0) = 0, m(r) = |r| − 1

2
, |r| > 1,

and define for α > 0 approximations of the modulus function

mα(r) = αm
( r
α

)
.

Now subtracting the equations for uk and for Sξu
k (and also for vk and

for Sξv
k) yields:

∂t(u
k − Sξu

k) − d1∆(uk − Sξu
k) −

(
f(uk) − f(Sξu

k)
)

= −k
(
F (uk, vk) − F (Sξu

k,Sξv
k)
)
, (6)

and

∂t(v
k − Sξv

k) − d2∆(vk − Sξv
k) −

(
g(vk) − g(Sξv

k)
)

= −αk
(
F (uk, vk) − F (Sξu

k,Sξv
k)
)
. (7)

For an arbitrary fixed t0 ∈ (0, T ), we multiply Equation (6) by ψm′
α(uk−

Sξu
k) and integrate this equation to obtain, after partial integration,

∫ t0

0

∫

Ω′
r

ψ ∂t

{
mα

(
uk − Sξu

k
)}

= −d1

∫ t0

0

∫

Ω′
r

ψm′′
α

(
uk − Sξu

k
) ∣∣∇(uk − Sξu

k)
∣∣2

−d1

∫ t0

0

∫

Ω′

r

∇ψm′
α

(
uk − Sξu

k
)
∇(uk − Sξu

k)

+

∫ t0

0

∫

Ω′
r

ψm′
α

(
uk − Sξu

k
) (
f(uk) − f(Sξu

k)
)

−
∫ t0

0

∫

Ω′
r

k ψm′
α

(
uk − Sξu

k
) (
F (uk, vk) − F (Sξu

k,Sξv
k)
)
.

Evaluating the left-hand side, using m′′
α ≥ 0 and integrating by parts
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again yields

∫

Ω′
r

ψmα

(
uk − Sξu

k
)
(·, t0) −

∫

Ω′
r

ψmα

(
uk − Sξu

k
)
(·, 0)

≤ d1

∫ t0

0

∫

Ω′
r

∆ψmα

(
uk − Sξu

k
)

+

∫ t0

0

∫

Ω′

r

ψm′
α

(
uk − Sξu

k
) (
f(uk) − f(Sξu

k)
)

−
∫ t0

0

∫

Ω′

r

k ψm′
α

(
uk − Sξu

k
) (
F (uk, vk) − F (Sξu

k,Sξv
k)
)
.

Now we let α → 0 and observe that mα(r) → |r| and m′
α(r) → sign(r).

The dominated convergence theorem allows us to pass to the limit
α→ 0 in the last inequality to obtain

∫

Ω′
r

ψ
∣∣uk − Sξu

k
∣∣ (·, t0) −

∫

Ω′
r

ψ
∣∣uk − Sξu

k
∣∣ (·, 0)

≤ d1

∫ t0

0

∫

Ω′
r

∆ψ
∣∣uk − Sξu

k
∣∣+ Lf

∫ t0

0

∫

Ω′
r

ψ
∣∣uk − Sξu

k
∣∣

−
∫ t0

0

∫

Ω′

r

k ψ sign
(
uk − Sξu

k
) (
F (uk, vk) − F (Sξu

k,Sξv
k)
)
.

in which the local Lipschitz regularity of f implies that

sign
(
uk − Sξu

k
) (
f(uk) − f(Sξu

k)
)
≤ Lf

∣∣uk − Sξu
k
∣∣ .

In the same way, we check that

∫

Ω′
r

ψ
∣∣vk − Sξv

k
∣∣ (·, t0) −

∫

Ω′
r

ψ
∣∣vk − Sξv

k
∣∣ (·, 0)

≤ d2

∫ t0

0

∫

Ω′
r

∆ψ
∣∣vk − Sξv

k
∣∣+ Lg

∫ t0

0

∫

Ω′
r

ψ
∣∣vk − Sξv

k
∣∣

−
∫ t0

0

∫

Ω′

r

αk ψ sign
(
vk − Sξv

k
) (
F (uk, vk) − F (Sξu

k,Sξv
k)
)
.
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Combining the two previous inequalities, we get
∫

Ω′

r

(∣∣uk − Sξu
k
∣∣+ 1

α

∣∣vk − Sξv
k
∣∣
)

(·, t0)ψ

≤
∫

Ω′

r

(∣∣uk − Sξu
k
∣∣+ 1

α

∣∣vk − Sξv
k
∣∣
)

(·, 0)ψ

+d1

∫ t0

0

∫

Ω′

r

∆ψ
∣∣uk − Sξu

k
∣∣ + d2

α

∫ t0

0

∫

Ω′

r

∆ψ
∣∣vk − Sξv

k
∣∣

+Lf

∫ t0

0

∫

Ω′
r

ψ
∣∣uk − Sξu

k
∣∣+ Lg

α

∫ t0

0

∫

Ω′
r

ψ
∣∣vk − Sξv

k
∣∣

−
∫ t0

0

∫

Ω′
r

k E(uk, vk)ψ,

where E(uk, vk) denotes the following quantity
(
sign

(
uk − Sξu

k
)

+ sign
(
vk − Sξv

k
)) (

F (uk, vk) − F (Sξu
k,Sξv

k)
)
.

Next we show that
E(uk, vk) ≥ 0 (8)

a.e. in Ω′
r × (0, T ). Indeed, we can check that E(uk, vk) is equal to

∣∣F (uk, vk) − F (Sξu
k, vk)

∣∣
︸ ︷︷ ︸

E1

+
(
F (uk, vk) − F (Sξu

k, vk)
)

sign(vk − Sξv
k)

︸ ︷︷ ︸
E2

+
(
F (Sξu

k, vk) − F (Sξu
k,Sξv

k
)

sign(uk − Sξu
k)

︸ ︷︷ ︸
E3

+
∣∣F (Sξu

k, vk) − F (Sξu
k,Sξv

k)
∣∣

︸ ︷︷ ︸
E4

,

with E1 + E2 ≥ 0 and E3 + E4 ≥ 0.

From inequality (8) we deduce the inequality
∫

Ω′
r

(∣∣uk − Sξu
k
∣∣+ 1

α

∣∣vk − Sξv
k
∣∣
)

(·, t0)ψ

≤
∫

Ω′
r

(∣∣uk − Sξu
k
∣∣+ 1

α

∣∣vk − Sξv
k
∣∣
)

(·, 0)ψ

+d1

∫ t0

0

∫

Ω′
r

∆ψ
∣∣uk − Sξu

k
∣∣+ d2

α

∫ t0

0

∫

Ω′
r

∆ψ
∣∣vk − Sξv

k
∣∣

+ max (Lf ,Lg)

∫ t0

0

∫

Ω′

r

(∣∣uk − Sξu
k
∣∣+ 1

α

∣∣vk − Sξv
k
∣∣
)
ψ.
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Applying the Cauchy-Schwarz inequality yields

d1

∫ t0

0

∫

Ω′

r

∆ψ
∣∣uk − Sξu

k
∣∣

≤ d1

(∫ T

0

∫

Ω′

r

∣∣uk − Sξu
k
∣∣2
)1/2 (∫ T

0

∫

Ω′

r

|∆ψ|2
)1/2

≤
√
c1d1

(∫ T

0

∫

Ω′
r

|∆ψ|2
)1/2

|ξ|,

d2

∫ t0

0

∫

Ω′
r

∆ψ
∣∣vk − Sξv

k
∣∣

≤ d2

(∫ T

0

∫

Ω′

r

∣∣vk − Sξv
k
∣∣2
)1/2 (∫ T

0

∫

Ω′

r

|∆ψ|2
)1/2

≤
√
c2d2

(∫ T

0

∫

Ω′

r

|∆ψ|2
)1/2

|ξ|.

Thus we obtain
∫

Ω′
r

Aξ(·, t0)ψ ≤
∫

Ω′
r

Aξ(·, 0)ψ

+(
√
c1d1 +

√
c2d2)

(∫ T

0

∫

Ω′

r

|∆ψ|2
)1/2

|ξ|

+ max (Lf ,Lg)

∫ t0

0

∫

Ω′

r

Aξ ψ,

with

Aξ :=
∣∣uk − Sξu

k
∣∣ + 1

α

∣∣vk − Sξv
k
∣∣ .

Applying Gronwall’s lemma to the previous inequality, we finally get

∫

Ω′

r

Aξ(·, t0)ψ

≤
(∫

Ω′
r

Aξ(·, 0)ψ + (
√
c1d1 +

√
c2d2)

√∫ T

0

∫

Ω′
r

|∆ψ|2|ξ|
)
emax(Lf ,Lg)t0

Now for d2 ∈ (0, D⋆] (which may be assumed as we focus on the be-
haviour of the system for vanishing diffusion d2 → 0), since Ωr ⊂ Ω′

r
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and ψ = 1 on Ωr, we get
∫

Ωr

∣∣uk − Sξu
k
∣∣ + 1

α

∣∣vk − Sξv
k
∣∣

≤
(∫

Ω′
r

Aξ(·, 0)ψ + (
√
c1d1 +

√
c2D⋆)

√∫ T

0

∫

Ω′
r

|∆ψ|2|ξ|
)
emax(Lf ,Lg)t0 .

We have therefore completed the proof with G(ξ) being equal to the
right-hand side of this inequality.

◦ Proof of (ii). Let us introduce a cut-off function ψ ∈ C∞
0 (Ω′

r) such that
0 ≤ ψ ≤ 1 in Ω′

r, ψ ≡ 1 in Ωr. Then

∫ T−τ

0

∫

Ω′

r

∣∣Tτu
k − uk

∣∣2 ψ

=

∫ T−τ

0

∫

Ω′

r

([
Tτu

k − uk
]
(x, t)

∫ t+τ

t

∂tu(x, s) ds

)
ψ(x) dx dt

=

∫ T−τ

0

∫

Ω′
r

([
Tτu

k − uk
]
(x, t)

∫ t+τ

t

∂tu(x, s) ds

)
ψ(x) dx dt

=

∫ T−τ

0

∫

Ω′
r

([
Tτu

k − uk
]
(x, t)

∫ τ

0

∂tu(x, t+ s) ds

)
ψ(x) dx dt

= I1 + I2 + I3,

with

I1 :=

∫ τ

0

∫ T−τ

0

∫

Ω′

r

[
Tτu

k − uk
]
(x, t) d1 ∆uk(x, t+ s)ψ(x) dx dt ds.

I2 :=

∫ τ

0

∫ T−τ

0

∫

Ω′

r

[
Tτu

k − uk
]
(x, t) f(uk(x, t+ s))ψ(x) dx dt ds,

I3 := −
∫ τ

0

∫ T−τ

0

∫

Ω′
r

[
Tτu

k − uk
]
(x, t) k

[
F (uk, vk)

]
(x, t+s)ψ(x) dx dt ds.

Since ψ vanishes on ∂Ω′
r, one has

I1 ≤ −d1

∫ τ

0

∫ T−τ

0

∫

Ω′

r

∇
[
Tτu

k − uk
]
(x, t)∇uk(x, t+ s)ψ(x) dx dt ds

−d1

∫ τ

0

∫ T−τ

0

∫

Ω′

r

[
Tτu

k − uk
]
(x, t)∇uk(x, t+ s) · ∇ψ(x) dx dt ds,
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which, together with the Cauchy-Schwarz inequality, yields

I1 ≤ d1 τ

∫ T

0

∫

Ω′

r

∣∣∇uk
∣∣2 + 2 d1 ‖∇ψ‖L∞(Ω′

r) τ

∫ T

0

∫

Ω′

r

∣∣∇uk
∣∣

≤
(
1 + 2T meas(Ω) ‖∇ψ‖L∞(Ω′

r)

)
τ d1

∫ T

0

∫

Ω′
r

∣∣∇uk
∣∣2

≤
(
1 + 2T meas(Ω) ‖∇ψ‖L∞(Ω′

r)

)
c1 τ.

The other terms are easier to handle: using the L∞−bounds in the
integral, we get

I2 ≤
(
2 ‖f‖L∞(0,1) meas(Ω)T

)
τ,

and, using Lemma 1,
I3 ≤ 2 c0 τ.

Thus, we have obtained the estimate on the left-hand side of (ii) with
the constant:

c3 :=
(
1 + 2T meas(Ω) ‖∇ψ‖L∞(Ω′

r)

)
c1 +2 ‖f‖L∞(0,1) meas(Ω)T +2c0.

An L2−estimate for vk can be obtained in a similar way (note that the
boundary condition for uk or vk does not play any role in the proof,
due to the use of a cut-off function). As a consequence, the desired
L1−estimate immediatly follows. Note that the proof is even simpler
for d2 = 0.

◦ Proof of (iii). Let ε be arbitrary. Since uk and vk are bounded by 1,
there exist r0 > 0 and τ0 > 0 such that for 0 ≤ r ≤ r0 and 0 ≤ τ ≤ τ0,

∫ T

T−τ

∫

Ω

∣∣uk
∣∣2 ≤ ε,

∫ T

0

∫

Ω\Ωr

∣∣uk
∣∣2 ≤ ε,

and similar inequalities hold for vk in the L1−norm.

Interestingly, the previous estimates do not depend on k and d2. This
allows us to extend the definition of Problem (Pk) in the case d2 = 0, corre-
sponding to the PDE / ODE system. Thus, we have:
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Lemma 4 (Convergence results). Let k > 0 be fixed. There exists a pair
(uk

⋆, v
k
⋆) ∈ (L∞(QT ; [0, 1]))2 such that, up to a subsequence,

uk → uk
⋆ in L2(QT ).

vk → vk
⋆ in L1(QT ).

uk − u ⇀ uk
⋆ − u in L2(0, T ;H1

0(Ω)),

as d2 → 0.

Proof. We apply the Riesz-Fréchet-Kolmogoroff theorem2: we deduce from
Proposition 3 that the sequence (uk, vk) is relatively compact in L2(QT ) ×
L1(QT ) which, together with the properties of (uk, vk), implies that there
exist functions (uk

⋆, v
k
⋆) ∈ (L∞(QT ; [0, 1]))2 such that, up to a subsequence,

(uk, vk) strongly converge to (uk
⋆, v

k
⋆) in L2(QT ) × L1(QT ). Since QT is a

bounded domain, we easily check that vk strongly converges to vk
⋆ in L2(QT ).

The weak convergence in L2(0, T ;H1
0(Ω)) follows from the estimate on ∇uk

(see Proposition 2).

The previous convergence result allows us to conclude this section with
the well-posedness of the P.D.E. / O.D.E. system: existence is obtained by
using simple convergence procedure, thanks to Lemma 4, whereas uniqueness
of the solution has to be investigated in an independant way, as a consequence
of a comparison principle.

Theorem 2. Let d2 = 0 and k > 0. Problem
(
Pk
)

admits a unique weak
solution

(uk, vk) ∈W 2,1
2 (QT ) × C0,1([0, T ];L∞(Ω)),

2Let F be a bounded subset of Lp(QT ) with 1 ≤ p < +∞. Suppose that

(i) for any ε > 0 and any subset ω ⋐ QT , there exists a positive constant δ <

dist(ω, ∂QT ) such that

‖f(·+ (ξ, 0)) − f(·)‖Lp(ω) + ‖f(· + (0, τ)) − f(·)‖Lp(ω) < ε

for all ξ, τ and f ∈ F satisfying |ξ| + |τ | < δ,

(ii) for any ε > 0, there exists ω ⋐ QT such that ‖f‖Lp(QT \ω) < ε for all f ∈ F .

Then F is precompact in Lp(QT ).
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which means that it satisfies
∫∫

QT

uk ∂tψ +

∫∫

QT

{
d1 u

k ∆ψ +
(
f(uk) − kF (uk, vk)

)
ψ
}

= −
∫

Ω

u0 ψ(·, 0) +

∫ T

0

∫

∂Ω

u ∂n ψ, (9)

∫∫

QT

vk ∂tψ +

∫∫

QT

(
g(vk) − αkF (uk, vk)

)
ψ = −

∫

Ω

v0 ψ(·, 0) (10)

for all ψ ∈ FT :=
{
ψ ∈ C2,1(QT ), ψ(·, T ) = 0 on Ω and ψ = 0 on ∂Ω × [0, T ]

}
.

Moreover, one has
0 ≤ uk, vk ≤ 1.

Proof. Existence of a solution follows from the convergence result stated in
Lemma 4 applied to the formulations (1) and (2). In particular, strong
convergence results in L2(QT ) allow us to pass to the limit with respect to
d2 in the nonlinear terms. Uniqueness of the solution is a straightforward
consequence of the following comparison principle (Lemma 5).

Lemma 5. Let d2 = 0 and k > 0. Let (u, v) and (ũ, ṽ) two solutions of (Pk)
with different boundary and initial data. In particular, assume the following:

i) u, ũ ∈W 2,1(QT ) and v, ṽ ∈ C([0, T ];L∞(Ω)),

ii) (u, v) and (ũ, ṽ) satisfy




∂tu = d1∆u+ f(u) − kF (u, v), in QT ,
∂tû = d1∆û+ f(û) − kF (û, v̂), in QT ,
∂tv = g(v) − αkF (u, v), in QT ,
∂tv̂ = g(v̂) − αkF (û, v̂), in QT ,
u(·, 0) ≥ û(·, 0), on Ω,
v(·, 0) ≤ v̂(·, 0), on Ω,
u ≥ û, on ∂Ω × (0, T ].

Then u ≥ ũ and v ≤ ṽ in QT .

Proof. We set U = u − û and V = v − v̂. Then, we subtract the first two
equations to obtain

0 = ∂tU − d1∆U − f(u) + f(û) + kvU + kûV,
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which we multiply by −U− (with U− = max(0,−U)) and integrate over
Ω × (t0, t). This yields

0 =
1

2

∫

Ω

|U−|2(·, t) − 1

2

∫

Ω

|U−|2(·, t0) + d1

∫ t

t0

∫

Ω

|∇U−|2

−
∫ t

t0

∫

Ω

U−(f(û) − f(u)) +

∫ t

t0

∫

Ω

(
kv|U−|2 − kûV U−

)
.

Note that ∫ t

t0

∫

Ω

|∇U−|2 ≥ 0,

∫ t

t0

∫

Ω

kv(U−)2 ≥ 0,

and that

−
∫ t

t0

∫

Ω

U−(f(û) − f(u)) ≥ −Lf

∫ t

t0

∫

Ω

|U−|2,

where Lf denotes the Lipschitz constant of f . Moreover, one has

−
∫ t

t0

∫

Ω

kûV U− = −
∫ t

t0

∫

Ω

kûV +U− +

∫ t

t0

∫

Ω

kûV −U− ≥ −
∫ t

t0

∫

Ω

kûV +U−

so that we obtain

1

2

∫

Ω

|U−|2(·, t) − 1

2

∫

Ω

|U−|2(·, t0) −
∫ t

t0

∫

Ω

kûV +U− − Lf

∫ t

t0

∫

Ω

|U−|2 ≤ 0.

Letting t0 → 0 and applying Cauchy-Schwarz inequality, we obtain

1

2

∫

Ω

|U−|2(·, t) ≤
∫ t

0

∫

Ω

(
(k + Lf)|U−|2 + k|V +|2

)
.

Using a similar procedure with respect to V , we get

1

2

∫

Ω

|V +|2(·, t) ≤
∫ t

0

∫

Ω

(
αk|U−|2 + (αk + Lg)|V +|2

)
,

where Lg denotes the Lipschitz constant of g. Thus, adding the two in-
equalities permits to conclude that there exists a positive constant K :=
K(α, k,Lf ,Lg) such that

∫

Ω

(
|U−|2(·, t) + |V +|2(·, t)

)
≤ K

∫ t

0

∫

Ω

(
|U−|2 + |V +|2

)
.

Finally we deduce from Gronwall’s lemma that U− = V + = 0.
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Remark 1. The previous results show that Problem (Pk) for d2 = 0 can be
obtained as a limit of Problem (Pk) for d2 > 0; although the functional frame-
works are different (due to the loss of regularity when the diffusion vanishes),
the corresponding solutions have similar properties. Some of the results which
have been proved for d2 > 0 may be extended to the PDE/ODE system: in
particular Lemma 1, Equation(4) in Proposition 2, and Proposition 3 still
hold in the case d2 = 0.

Remark 2. Equations (1)-(2) on the one hand and Equations (9)-(10) on
the other hand show that the weak formulations of both problems are iden-
tical, which allows us to treat both cases in the same way. In particular,
for convenience, we will denote (uk, vk) the unique solution of Problem (Pk),
d2 ≥ 0.

3. Asymptotic analysis: the fast reaction limit

3.1. Derivation of the fast reaction problem

Now we focus on the behaviour of the unique solution (uk, vk) of Problem
(Pk) (for d2 ≥ 0) in the sense of Theorems 1 and 2. As we noticed before,
uniform estimates stated in Section 2 allow us to lead the asymptotic study
with respect to k.

Lemma 6 (Convergence results). Let d2 ≥ 0. There exists a pair (u, v) ∈
(L∞(QT ; [0, 1]))2 such that, up to a subsequence,

uk → u in L2(QT ).
vk → v in L1(QT ).

uk − u ⇀ u− u in L2(0, T ;H1
0(Ω)),

as k → +∞.

Proof. We apply again the Riesz-Fréchet-Kolmogoroff theorem: in particular,
Proposition 3 has been proved in the case d2 > 0 but it can be easily extended
to the case d2 = 0 since the estimates are uniform with respect to d2 (see
Remark 1). We deduce from Proposition 3 that the sequence (uk, vk) is
relatively compact in L2(QT ) × L1(QT ). Consequently, also in view of the
properties of (uk, vk), there exist functions (u, v) ∈ (L∞(QT ; [0, 1]))2 such
that, up to a subsequence, (uk, vk) strongly converges to (u, v) in L2(QT ) ×
L1(QT ). Since QT is a bounded domain, we easily check that vk strongly
converges to v in L2(QT ). The weak convergence follows from the estimate
on ∇uk (see Equation (4) in Proposition 2).
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Next we prove that, in the limit k → +∞, the two biological populations
are segregated or, in other words, that their habitats are disjoint.

Lemma 7 (Disjoint habitats). Let d2 ≥ 0. One has:

uv = 0, a.e. in QT .

Proof. By Lemma 1 (which has been proved in the case d2 > 0 but is easily
extended to the case d2 = 0 since the estimates are uniform in d2) and by
Lemma 6, we deduce that F (u, v) = 0 from the fact that F is nonnegative on
(0, 1) × (0, 1). Furthermore, by Assumption 1, either u = 0 or v = 0, which
concludes the proof.

Lemma 7 shows the segregating effect of fast reaction: for fixed k > 0,
we have in general a mixture of the two populations in the whole domain,
whereas the habitats tend to spatially segregate as k becomes large. At the
limit, the competition process concentrates on a free boundary. Now, let
us focus on the behaviour of the two species at the boundary of the finite
domain:

Proposition 8. Let d2 > 0and let γ the trace on the boundary ∂Ω × (0, T );
we have that:

γ

(
uk − vk

α

)
⇀ u in L2(∂Ω × (0, T )),

as k → +∞.

Proof. It follows from Proposition 2 and the uniform L∞−bounds on uk and
vk that ∥∥uk

∥∥
L2(0,T ;H1(Ω))

≤ c5 :=
(
d−1

1 c1 + T meas(Ω)
)1/2

, (11)

∥∥vk
∥∥

L2(0,T ;H1(Ω))
≤ c6 :=

(
d−1

2 c2 + T meas(Ω)
)1/2

. (12)

where the constants c5 and c6 do not depend on k. Therefore,

uk ⇀ u, vk ⇀ v in L2(0, T ;H1(Ω)),

as k → +∞. Thus, by linearity of the trace operator, we have that

γ

(
uk − vk

α

)
⇀ u− γ(v)

α
in L2(∂Ω × (0, T )).
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Moreover, since ∇(uv) = v∇u+ u∇v ∈ L2(QT ), uv ∈ L2(0, T ;H1(Ω)) and,
more precisely, we have that the trace of uv on ∂Ω × (0, T ) is well-defined;

γ(uv) = u γ(v) = 0.

Since u is a positive function, we conclude that γ(v) = 0.

Next we focus on the derivation of the limit problem. To this aim we take
uk − vk/α as a new unknown function and state the following result:

Proposition 9. For d2 ≥ 0, the function pair (u, v) defined in Lemma 6
(i.e. obtained as the fast reaction limit of (uk, vk)) satisfies the following
weak formulation

−
∫∫

QT

(
u− v

α

)
∂tψ −

∫

Ω

(
u0 −

v0

α

)
ψ(·, 0)

= −
∫ T

0

∫

∂Ω

u ∂nψ +

∫∫

QT

{(
d1u− d2

v

α

)
∆ψ +

(
f(u) − g(v)

α

)}
,

for all ψ ∈ FT :=
{
ψ ∈ C2,1(QT ), ψ(·, T ) = 0 on Ω, ψ = 0 on ∂Ω × [0, T ]

}
.

Proof. For d2 > 0 (resp. d2 = 0), divide Equation (2) (resp. Equation (10))
by α and subtract this equation from Equation (1) (resp. Equation (9)). In
both cases, this yields

−
∫∫

QT

(
uk − vk

α

)
∂tψ −

∫

Ω

(
u0 −

v0

α

)
ψ(·, 0) (13)

=

∫∫

QT

{(
d1u

k − d2
vk

α

)
∆ψ +

(
f(uk) − g(vk)

α

)}

−
∫ T

0

∫

∂Ω

(
d1u− d2

vk

α

)
∂nψ

for all ψ ∈ FT :=
{
ψ ∈ C2,1(QT ), ψ(·, T ) = 0 on Ω, ψ = 0 on ∂Ω × [0, T ]

}
.

Note that in Equation (13) the boundary term should be read as

∫ T

0

∫

∂Ω

(
d1u− d2

vk

α

)
∂nψ, if d2 > 0,

∫ T

0

∫

∂Ω

d1u ∂nψ, if d2 = 0,
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since the value of vk may be undefined on the boundary if d2 = 0. We let
k → +∞ in Equation (13). In particular, by Proposition 8, in both cases,
the boundary term converges to

−
∫ T

0

∫

∂Ω

d1u ∂nψ.

In view of the strong L2 convergence result (see Lemma 6), the weak formu-
lation is obtained by considering the corresponding limits in the linear and
nonlinear integral terms.

The convergence result stated in Proposition 9 and the segregation prin-
ciple lead us to work with the unknown functions:

wk = uk − 1

α
vk, w = u− 1

α
v. (14)

The key idea is that, because of the segregation property, function w com-
pletely characterizes the two unknown functions u and v. Indeed, we deduce
from Lemmas 6 and 7 that there exists w ∈ L∞(QT ) such that the following
strong convergence results hold:

uk − vk

α
→ w, u = w+, v = αw−.

This suggests the definition of the following nonlinear diffusion operator and
source terms:

Definition 4. We define

D(s) :=

{
d1s if s ≥ 0,
d2s if s < 0,

h(s) :=

{
f(s) if s ≥ 0,

−g(−αs)
α

if s < 0.

It suggests the definition of the limit problem:

(
P0
)




∂tw = ∆D(w) + h(w), in Ω × (0, T ],
D(w) = D(u), on ∂Ω × (0, T ],
w(·, 0) = w0 := u0 − v0/α, on Ω.
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Remark 3. We remark that, since the function D is inversible, the boundary
condition is a Dirichlet condition: indeed, D(u) = d1u so that D(w) = w+

and we get

w+ = u = u, αw− = v = 0, on ∂Ω × (0, T ),

so that the segregation principle is also valid on the boundary of Ω.

The way to analyse this problem relies on the following definition:

Definition 5. A function w is a weak solution of Problem (P0) if it satisfies

(i) w ∈ L∞(Ω × R
+),

(ii) for all T > 0,

∫∫

QT

(w ∂tψ + D(w) ∆ψ + h(w)ψ) =

∫ T

0

∫

∂Ω

D(u) ∂nψ−
∫

Ω

w0 ψ(·, 0),

for all ψ ∈ FT :=
{
ψ ∈ C2,1(QT ), ψ(·, T ) = 0 on Ω, ψ = 0 on ∂Ω × [0, T ]

}
.

In the next subsection we will prove that function w defined by Equa-
tion (14) is the unique weak solution of Problem (P0) ; we will see below
how Problem (P0) can be expressed as a free boundary problem.

3.2. Well-posedness of the limiting free boundary problem (P0)

Theorem 3 (Existence of a weak solution). Function w defined by Equa-
tion (14) is a weak solution of Problem (P0).

Proof. This result is a straightforward consequence of Definition 5 and Propo-
sition 9.

Before proving the uniqueness result, we introduce the auxiliary problem:

(A)





∂tψ + σ∆ψ = η, in QT ,
ψ = 0, on ∂Ω × (0, T ),
ψ(·, T ) = 0, on Ω.

and show the following preliminary result.
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Proposition 10. Let T > 0, η ∈ C∞
0 (QT ) be such that |η| ≤ 1 and σ ∈

C∞(QT ) be such that there exists a positive constant σ⋆ with σ ≥ σ⋆ > 0 in
QT . Then there exists a unique solution ψ ∈ C2,1(QT ) of Problem (A). It
satisfies ∫∫

QT

σ (∆ψ)2 ≤ 4T

∫∫

QT

|∇η|2. (15)

|ψ| ≤ T − t in QT , (16)
∫∫

QT

(∆ψ)2 ≤ T meas(Ω)

σ2
⋆

. (17)

Proof. Let us prove the existence and uniqueness result. Since σ is bounded
away from zero, Problem (A) is a uniformly parabolic problem in which
the time variable is reversed, and since both σ and η are smooth functions,
Problem (A) has a unique solution ψ ∈ FT , with

FT := {v ∈ C2,1(QT ), v = 0 on ∂Ω × [0, T ], v(·, T ) = 0 on Ω}.

In order to prove Inequality (15), we multiply the main equation of Problem
(A) by ∆ψ and integrate by parts. This gives for all t ∈ (0, T )

1

2

∫

Ω

|∇ψ(·, 0)|2 − 1

2

∫

Ω

|∇ψ(·, t)|2 +

∫ t

0

∫

Ω

σ |∆ψ|2 = −
∫ t

0

∫

Ω

∇η∇ψ, (18)

which implies in particular that

1

2

∫

Ω

|∇ψ(·, 0)|2 +

∫ T

0

∫

Ω

σ |∆ψ|2 = −
∫ T

0

∫

Ω

∇η∇ψ,

and that

1

2

∫

QT

|∇ψ|2 ≤ T

2

∫

Ω

|∇ψ(·, 0)|2 + T

∫

QT

σ |∆ψ|2 + T

∫

QT

|∇η∇ψ|.

This implies that
1

2

∫

QT

|∇ψ|2 ≤ 2T

∫

QT

|∇η∇ψ|. (19)

Next, we use the Cauchy-Schwarz inequality

(∫

QT

|∇η∇ψ|
)2

≤
∫

QT

|∇η|2
∫

QT

|∇ψ|2,
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in which we substitute Equation (19) to obtain

(∫

QT

|∇η∇ψ|
)2

≤ 4T

∫

QT

|∇η|2
∫

QT

|∇η∇ψ|.

Therefore, ∫

QT

|∇η∇ψ| ≤ 4T

∫

QT

|∇η|2,

which together with Equation (18) (with t = T ) implies Inequality (15).
Inequalities (16)–(17) can be proved as in [2].

Lemma 11 (Technical result). Assume that d2 ≥ 0. Let wi, i ∈ {1, 2}, be

two solutions of Problem (P0) with initial conditions w
(i)
0 . Then,

∫∫

QT

|w1 − w2| ≤ T

∫

Ω

∣∣∣w(1)
0 − w

(2)
0

∣∣∣ +
∫∫

QT

(T − t) |h(w1) − h(w2)| . (20)

Proof. Set w̃ := w1 − w2, w̃0 := w
(1)
0 − w

(2)
0 , z := h(w1) − h(w2) and define

for all (x, t) ∈ QT

q(x, t) :=






D(w1(x, t)) −D(w2(x, t))

w1(x, t) − w2(x, t)
if w1(x, t) 6= w2(x, t),

min(d1, d2) otherwise.

Note that
min(d1, d2) ≤ q(x, t) ≤ max(d1, d2) in QT .

It follows from Definition 5 that for all ψ ∈ FT ,

∫∫

QT

{w̃(∂tψ + q∆ψ) + zψ} = −
∫

Ω

w̃0ψ(·, 0). (21)

Now let n ∈ N. Using mollifiers one can find a smooth function qn such that

‖qn − q‖L2(QT ) ≤
1

n
, min(d1, d2) ≤ qn(x, t) ≤ max(d1, d2) in QT .

Additionally, we define q̃n = qn + 1/n. Then,

min(d1, d2) +
1

n
≤ q̃n ≤ max(d1, d2) +

1

n
in QT ,
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so that
∫∫

QT

(q̃n − q)2

q̃n
≤ 2

(∫∫

QT

(q̃n − qn)2

q̃n
+

(qn − q)2

q̃n

)
≤ 2

n
(T meas(Ω) + 1).

Fix η ∈ C∞
0 (QT ) with |η| ≤ 1 and let ψn be the solution of Problem (A) with

the same function η and function σ replaced by q̃n. Setting ψ = ψn in (21)
gives ∫∫

QT

{w̃(∂tψn + q∆ψn) + zψn} −
∫

Ω

w̃0ψn(·, 0) = 0.

and hence, since
∂tψn + q̃n ∆ψn = η,

we obtain
∫∫

QT

w̃ η =

∫∫

QT

{w̃ (q̃n − q) ∆ψn − zψn} +

∫

Ω

w̃0ψn(·, 0),

and consequently
∣∣∣∣
∫∫

QT

w̃η

∣∣∣∣ ≤
∫∫

QT

|zψn| +
∫

Ω

|w̃0ψn(·, 0)|+
∫∫

QT

|w̃ (q − qn) ∆ψn| .(22)

Next we analyse each term of the right-hand side of Inequality (22) to obtain

• by Proposition 10 (see Inequality (16)),
∫∫

QT

|zψn| ≤
∫∫

QT

(T − t) |z|;

• by Proposition 10 (see Equation (16) in t = 0),
∫

Ω

|w̃0ψn(·, 0)| ≤ T

∫

Ω

|w̃0|;

• by the Cauchy-Schwarz inequality and Proposition 10 (see Inequali-
ties (15) and (17)),

∫∫

QT

|w̃ (q̃n − q) ∆ψn| ≤ ‖w̃‖L∞(QT )

√∫∫

QT

(q̃n − q)2

q̃n

√∫∫

QT

q̃n (∆ψ)2

≤ 2

√
8T

n
(T meas(Ω) + 1)

∫∫

QT

|∇η|2.
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Now letting n→ +∞ in Inequality (22) gives

∣∣∣∣
∫∫

QT

w̃η

∣∣∣∣ ≤
∫∫

QT

(T − t) |z| + T

∫

Ω

|w̃0|, (23)

for each η ∈ C∞
0 (QT ) with |η| ≤ 1. Next we take as the functions η the

elements of a subsequence {ηk}k∈N such that {ηk} converges to sign(w̃) in
L1(QT ) as k → ∞. Passing to the limit in (23) yields

∫∫

QT

|w̃| ≤
∫∫

QT

(T − t) |z| + T

∫

Ω

|w̃0|,

which completes the proof.

Theorem 4 (Uniqueness of the weak solution). Assume that d2 ≥ 0. There
exists at most one weak solution w of Problem (P0) and the whole sequence
(uk, vk) converges to (u, v) = (w+, αw−).

Proof. Suppose that w1 and w2 are two weak solutions of Problem (P0) with

initial data w
(1)
0 and w

(2)
0 . Since h is locally Lipschitz continuous on R, there

exists a constant L such that

|h(w1) − h(w2)| ≤ L|w1 − w2| in QT .

Applying (20) with QT replaced by Ω × (t0, t0 + τ) gives

∫ t0+τ

t0

∫

Ω

|w1 − w2|

≤ τ

∫

Ω

|w1(·, t0) − w2(·, t0)| +
∫ t0+τ

t0

∫

Ω

(t0 + τ − t)|h(w1) − h(w2)|

≤ τ

∫

Ω

|w1(·, t0) − w2(·, t0)| + τL

∫ t0+τ

t0

∫

Ω

(t0 + τ − t)|w1 − w2|,

from which it follows that, for all τ ≤ (2L)−1,

∫ t0+τ

t0

∫

Ω

|w1 − w2| ≤ 2τ

∫

Ω

|w1(·, t0) − w2(·, t0)|. (24)

Let
t̃ := sup {t ∈ [0, T ], w1(·, s) = w2(·, s) for 0 ≤ s ≤ t}
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and assume that t̃ < T . Let

t0 :=

{
0 if t̃ = 0,
t̃− ε if t̃ > 0 with ε < min

(
t̃, (2L)−1

)
.

Then w1(·, t0) = w2(·, t0) so that by (24),

w1 = w2 on Ω × (t0, t0 + τ)

with τ ∈ [0,min{(2L)−1, T−t0}], which contradicts the definition of t̃. There-
fore, Problem (P0) has at most one weak solution w. To complete the proof,
we remark that the functions u = w+ and v = αw− are uniquely defined as
well.

The previous results highlight the fact that the same expression of the
limit free boundary problem holds in both cases that d2 > 0 and d2 = 0. In
the next section, we present a strong form of the limit free boundary problem,
under a simple regularity assumption of the free boundary.

4. Behaviour of the free boundary

4.1. Strong formulation and interface jump conditions

Next we show that under suitable regularity assumptions (P0) can be
more explicitely written as a free boundary problem, where the free boundary
is the level set where w = 0. This free boundary formulation unifies those
either in the case d2 > 0 or in the case that d2 = 0.

Theorem 5 (Free boundary problem under the regularity assumption). Let
w be the unique solution of Problem (P0). Suppose that T ∗ > 0 is such that
for all t ∈ [0, T ∗], there exists a closed hypersurface Γ(t), and two subdomains
Ωu(t), Ωv(t) such that (see Fig. 1)

Ω = Ωu(t) ∪ Ωv(t), Γ(t) = Ωu(t) ∩ Ωv(t),

and
w(·, t) > 0, on Ωu(t)
w(·, t) < 0, on Ωv(t).
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Assume furthermore that t 7→ Γ(t) is smooth enough and that (u, v) :=
(w+, αw−) is smooth up to Γ(t), then u and v satisfy

(
P0
)






∂tu = d1∆u+ f(u), in Qu :=
⋃

t∈[0,T ∗]

{Ωu(t) × {t}},

∂tv = d2∆v + g(v), in Qv :=
⋃

t∈[0,T ∗]

{Ωv(t) × {t}},

[u] = d2 [v] = 0, on Γ :=
⋃

t∈[0,T ∗]

{Γ(t) × {t}},

[v] Vn = α

[
d1∂nu−

d2

α
∂nv

]
, on Γ :=

⋃

t∈[0,T ∗]

{Γ(t) × {t}},

u = u, on ∂Ω × [0, T ∗],

u(·, 0) =
[
u0 −

v0

α

]+
, in Ω,

v(·, 0) = α
[
u0 −

v0

α

]−
, in Ω.

where [·] denotes the jump across Γ(t) from Ωu(t) to Ωv(t), n denotes the
outward normal unit vector from Ωu(t) to Ωv(t) (see Fig. 2) and Vn denotes
the normal speed of propagation of the free boundary). We use here the
convention that all the terms containing d2 as a factor vanish in the case
that d2 = 0.

Before proving Theorem 5, let us make some comments the interface jump
conditions at the free boundary:

Remark 4. We analyse the behaviour of (u, v) at the boundaries: for this,
we will denote by Γu the points of Γ when they are reached as limits of points
of Qu and by Γv the points of Γ when they are reached as limits of points of
Qv, so that in particular [A] = A|Γv

−A|Γu
, where A is an arbitrary function.

This can be rewritten as

[A(·, t)] = lim
̺→0+

A(· + ̺ nu(t), t) − lim
̺→0−

A(· + ̺ nu(t), t) on Γ(t),

� First we analyze the jump condition. By the segregation principle, we
have

[u] = u|Γv︸︷︷︸
=0

− u|Γu︸︷︷︸
≥0

, d2 [v] = d2 v|Γv︸ ︷︷ ︸
≥0

− d2 v|Γu︸ ︷︷ ︸
=0

so that the jump condition reduces to

d1u|Γu
= d2 v|Γv

= 0.
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Ω
u
(t) Ω

v
(t)

Ω
v
(t)

Figure 1: Geometrical illustration (Ω is a ball) of the segregation principle.

Γ(t)

Ω
u
(t) := [u(⋅,t)>0, v(⋅,t)=0]

n(⋅,t)=n
u
(⋅,t)

Ω
v
(t) := [u(⋅,t)=0, v(⋅,t)>0]

Figure 2: Free boundary assumption: n denotes the outward normal unit vector from
Ωu(t) to Ωv(t) (i.e. n(·, t) = nu(·, t)).
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In particular, we have the following properties:

− if d2 ≥ 0, the function u(·, t) is continuous on Ω, i.e.

u|Γu
= u|Γv

= 0 on Γ(t);

− if d2 > 0, the function v(·, t) is continuous on Ω, i.e.

v|Γu
= v|Γv

= 0 on Γ(t);

− if d2 = 0, v(·, t) jumps across Γ(t):

v|Γv
6= v|Γu

= 0 on Γ(t).

The loss of regularity is not surprising since the diffusion process
has vanished. This is somehow similar to the loss of boundary
conditions (in a classical sense) when passing from a parabolic
problem to a hyperbolic problem by the vanishing viscosity method
(see e.g. [1]).

� Next we consider the Rankine-Hugoniot condition:

[v] Vn = α

[
d1∂nu−

d2

α
∂nv

]
.

• If d2 > 0, then the Rankine-Hugoniot reduces a jump condition on
the normal derivatives

[
d1∂nu−

d2

α
∂nv

]
= 0.

• If d2 = 0, then the speed of propagation of the free boundary is
given by

[v] Vn = α [d1∂nu] ≥ 0.

Proof. We recall that (u, v) satisfies:

−
∫∫

QT

(
u− v

α

)
∂tψ −

∫

Ω

(
u0 −

v0

α

)
ψ(·, 0)

= −
∫ T

0

∫

∂Ω

d1u ∂nψ +

∫∫

QT

{(
d1u− d2

v

α

)
∆ψ +

(
f(u) − g(v)

α

)}
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for all ψ ∈ FT :=
{
ψ ∈ C2,1(QT ), ψ(·, T ) = 0 on Ω and ψ = 0 on ∂Ω × [0, T ]

}
.

Next we consider the time-derivative term and the diffusion term, namely

(⋆) = −
∫∫

QT

(
u− v

α

)
∂tψ,

(⋆⋆) =

∫∫

QT

(
d1u− d2

v

α

)
∆ψ,

• Analysis of the time derivative term. Since the space domains depend on
time, we have

d

dt

∫

Ωu(t)

uψ =

∫

Ωu(t)

(∂tuψ + u ∂tψ) +

∫

Γ(t)

uψ Vn,

where Vn denotes the speed of propagation of the boundary t 7→ Γ(t). We
apply the following convention: when Ωu(t) increases, then Vn is nonnegative.
Moreover, the term u in the boundary integral term should be understood
in the following sense:

u := lim
̺→0−

u(· + ̺ n(t), t) on Γ(t).

In the same way, taking into account the property nv = −nu = −n, we get

d

dt

∫

Ωv(t)

vψ =

∫

Ωv(t)

(∂tv ψ + v ∂tψ) −
∫

Γ(t)

vψ Vn

where the expression v in the boundary integral term should be understood
in the following sense:

v := lim
̺→0+

u(· + ̺ n(t), t) on Γ(t).

Now, since the jump [·] is defined as

[w(·, t)] = lim
̺→0+

w(· + ̺ n(t), t) − lim
̺→0−

w(· + ̺ n(t), t) on Γ(t),

integrating in time gives:

(⋆) = −
∫∫

Qu

u ∂tψ +
1

α

∫∫

Qv

v ∂tψ

=

∫∫

Qu

∂tuψ − 1

α

∫∫

Qv

∂tv ψ +

∫ T

0

∫

Γ(t)

[
−u+

v

α

]
ψ Vn.
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• Analysis of the diffusion term. After two integrations by parts, we get

∫∫

Qu

u∆ψ =

∫∫

Qu

∆uψ −
∫ T

0

∫

Γ(t)

∂nuψ +

∫ T

0

∫

∂Ωu(t)

u ∂nψ,

∫∫

Qv

v∆ψ =

∫∫

Qv

∆v ψ +

∫ T

0

∫

Γ(t)

∂nv ψ −
∫ T

0

∫

Ωv(t)

v ∂nψ,

where we have taken into account the property that nv = −nu = −n. Again,
the values of u and v in the boundary terms have to be considered in the sense
that has been explained before. Moreover, note that, due to the regularity
assumption, one has:

Ωu(t) = ∂Ω ∪ Γ(t), Ωv(t) = Γ(t).

so that integrating in time gives

(⋆⋆) =

∫∫

Qu

d1u∆ψ −
∫∫

Qv

d2

α
v∆ψ

=

∫∫

Qu

d1∆uψ −
∫∫

Qv

d2

α
∆v ψ −

∫ T

0

∫

∂Ω

d1u ∂nψ

+

∫ T

0

∫

Γ(t)

[
−d1∂nu+

d2

α
∂nv

]
ψ +

∫ T

0

∫

Γ(t)

[
−d1u+

d2

α
v

]
∂nψ.

• Conclusion of the proof. The computations yield

0 =

∫∫

Qu

(∂tu− d1∆u− f(u)) ψ − 1

α

∫∫

Qv

(∂tv − d2∆v − g(v)) ψ

−
∫ T

0

∫

∂Ω

d1 (u− u) ∂nψ −
∫∫

Γ

[
−d1u+

d2

α
v

]
∂nψ

+

∫∫

Γ

([
−u+

v

α

]
Vn +

[
−d1∂nu+

d2

α
∂nv

])
ψ,

for all ψ ∈ F̃T := {φ ∈ FT , φ(·, 0) = 0 on Ω}. Now, by using suitable test-
functions with suitable supports, namely ψ ∈ C∞

0 (Qu) and ψ ∈ C∞
0 (Qv), we

obtain
∂tu = d1∆u+ f(u), in Qu,

and ∂tv = d2∆v + g(v), in Qv.

Besides, one has [
−d1u+

d2

α
v

]
= 0, on Γ,
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which follows from either the continuity in space of u and v if d2 > 0, or the
continuity in space of u combined with the fact that the term d2v does not
exist if d2 = 0. By the segregation principle and non-negativity of u and v,
we get:

[d1u] =

[
d2

α
v

]
= 0, i. e. [u] = d2 [v] = 0.

The remaining term in the in the intial integral equality allows us to conclude
that ∫∫

Γ

([
−u+

v

α

]
Vn +

[
−d1∂nu+

d2

α
∂nv

])
ψ, ∀ψ ∈ F̃T ,

which gives:

[
−u+

v

α

]
Vn +

[
−d1∂nu+

d2

α
∂nv

]
= 0, on Γ.

Because of the jump condition, this equality reduces to

[v]Vn = α

[
d1∂nu−

d2

α
∂nv

]
= 0, on Γ.

The initial condition is obtained by restarting all the previous computations
with a slightly modified space of test-functions: indeed, considering test-
functions in FT , we obtain

0 =

∫∫

Qu

(∂tu− d1∆u− f(u)) ψ − 1

α

∫∫

Qv

(∂tv − d2∆v − g(v)) ψ

−
∫

Ω

(
u(·, 0) − v(·, 0)

α

)
ψ(·, 0) +

∫

Ω

(
u0 −

v0

α

)
ψ(·, 0)

−
∫ T

0

∫

∂Ω

d1 (u− u) ∂nψ −
∫∫

Γ

[
−d1u+

d2

α
v

]
∂nψ

+

∫∫

Γ

([
−u+

v

α

]
Vn +

[
−d1∂nu+

d2

α
∂nv

])
ψ,

for all ψ ∈ FT . Thanks to the previous computations, we obtain in a straight-
forward way

∫

Ω

{(
u(·, 0) − v(·, 0)

α

)
−
(
u0 −

v0

α

)}
ψ(·, 0), ∀ψ ∈ FT .

As a consequence,

u(·, 0) − v(·, 0)

α
= u0 −

v0

α
,
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which implies that

u(·, 0) =
[
u0 −

v0

α

]+
, v(·, 0) = α

[
u0 −

v0

α

]−
.

4.2. Concentration effect of the interspecific reaction term

In the previous subsection we have described the behavior of the species
at the free boundary. On each side of this moving free boundary, intraspecific
reaction-diffusion only involves one species, whereas the interspecific reaction
terms concentrate on the free boundary, where also the Rankine-Hugoniot
type condition is satisfied. In order to describe this concentration effect, we
focus on the singular limit as k tends to infinity of the interspecific reaction
term. Previous estimates (see Lemma 1) ensure that, up to a subsequence,

kF (uk, vk) ⇀ µ in the sense of measures.

It remains to identify µ.

Theorem 6 (Singular limit of the interspecific reaction term). Under the
assumptions of Theorem 5, there exists a measure µ such that

k F (uk, vk) ⇀ µ, in the sense of measures as k → ∞.

The measure µ is localized on Γ and is given by

µ(x, t) =
1

1 + α
([d1 ∂nu+ d2 ∂nv] + [v] Vn) δ(x− ξ(t)),

which we rewrite as

µ(x, t) =





1

1 + α
[(d1∂nu+ d2∂nv) (ξ(t), t)] δ(x− ξ(t)), if d2 > 0,

1

α
[v(ξ(t), t)] Vn δ(x− ξ(t)), if d2 = 0,

where (x, t) ∈ Q∗
T = Ω×(0, T ∗) and the function t 7→ ξ(t) is a parametrization

of the free boundary Γ.
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Proof. Defining µk = k F (uk, vk) and taking ψ ∈ C∞
0 (QT ), we have:

∫∫

QT

µk ψ =

∫∫

QT

(
uk ∂tψ + d1 u

k ∆ψ + f(uk)ψ
)

=
1

α

∫∫

QT

(
vk ∂tψ + d2 v

k ∆ψ + g(vk)ψ
)
.

Therefore, letting k → +∞ gives
∫∫

QT

µψ =

∫∫

QT

(u ∂tψ + d1 u∆ψ + f(u)ψ)

=
1

α

∫∫

QT

(v ∂tψ + d2 v∆ψ + g(v)ψ)

which we integrate by parts to obtain

∫∫

QT

µψ =

∫ T

0

∫

Ωu(t)

(−∂tu+ d1∆u+ f(u))︸ ︷︷ ︸
=0

ψ

+

∫ T

0

∫

Γ(t)

[u]︸︷︷︸
=0

(Vn ψ − d1∂nψ) + [d1∂nu]ψ,

α

∫∫

QT

µψ =

∫ T

0

∫

Ωv(t)

(−∂tv + d2 ∆v + g(v))︸ ︷︷ ︸
=0

ψ

+

∫ T

0

∫

Γ(t)

[v]Vn ψ − d2[v]︸︷︷︸
=0

∂nψ + [d2∂nv]ψ.

This yields

∫∫

QT

µψ =
1

1 + α

∫ T

0

∫

Γ(t)

([d1 ∂nu+ d2 ∂nv] + [v] Vn) ψ.

which concludes the proof.

This result highlights the particular behaviour of the two species in the
following sense: the fast reaction limit enforces the segregation of the two
populations so that the interspecific competition effects focus on the free
boundary. Thus, the interspecific reaction is governed by this localized
measure whereas each subdomain rules the behaviour of each intraspecific
(diffusion-)reaction process.
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