N

N

Using Bounded Model Checking to Focus Fixpoint
Iterations

David Monniaux, Laure Gonnord

» To cite this version:

David Monniaux, Laure Gonnord. Using Bounded Model Checking to Focus Fixpoint Iterations.
Static analysis symposium (SAS), Sep 2011, Venezia, Italy. pp.369-385, 10.1007/978-3-642-23702-
727 . hal-00600087

HAL Id: hal-00600087
https://hal.science/hal-00600087

Submitted on 13 Jun 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00600087
https://hal.archives-ouvertes.fr

Using Bounded Model Checking
to Focus Fixpoint Iterations

David Monniaux’ Laure Gonnord

June 13, 2011

Abstract

Two classical sources of imprecision in static analysis lstract inter-
pretation are widening and merge operations. Merge op&atan be done
away by distinguishing paths, as in trace partitioninghatéxpense of enu-
merating an exponential number of paths.

In this article, we describe how to avoid such systematidagation by
focusing on a single path at a time, designated by SMT-sgh@ur method
combines well with acceleration techniques, thus doingyamith widenings
as well in some cases. We illustrate it over the well-knowmdm of convex
polyhedra.

1 Introduction

Program analysis aims at automatically checking that rgrfit their specifica-
tions, explicit or not — e.g. “the program does not crash’niplicit. Program
analysis is impossible unless at least one of the followinfgi$ it is unsound
(some violations of the specification are not detected)primete (some correct
programs are rejected because spurious violations arete@}eor the state space
is finite (and not too large, so as to be enumerated explioitlimplicitly). Ab-
stract interpretationis sound, but incomplete: it over-approximates the set of be
haviours of the analysed program; if the over-approximaggdcontains incorrect
behaviours that do not exist in the concrete program, thkse falarms are pro-
duced. A central question in abstract interpretation igtluce the number of false
alarms, while keeping memory and time costs reasongable [8].

Our contribution is a method leveraging the improvementSMir-solving to
increase the precision of invariant generation by absfigpbint iterations. On
practical examples from the literature and industry, if@ens better than previ-
ous generic technique and is less “ad-hoc” than syntactidstes found in some
pragmatic analyzers.

*This research was partially funded by ANR project “ASOPT".
TCNRS, VERIMAG, Giéres, France
#Université Lille 1, LIFL, Villeneuve d'Ascq, France

http://asopt.inrialpes.fr

Listing 1: C implementation of = sin(x)/x — 1, with the-0.01 < x < 0.01
range implemented using a Taylor expansion around zerader @0 avoid loss of
precision and division by zero as s x — 0.

if (x >= 0) { xabs = x; } else { xabs = —-x; }
if (xabs >= 0.01) {
y = sin(x) / x = 1;
} else {
xsq = x¥x; y = xsqx*(-1/6. + xsq/120.);
}

The first source of imprecision in abstract interpretatisrihie choice of the
set of properties represented inside the analyseraftsract domaih Obviously,
if the property to be proved cannot be reflected in the alisttamain (e.g. we
wish to prove a numerical relation but our abstract domaly considers Boolean
variables), then the analysis cannot prove it.

In order to prove that there cannot be a division by zero infitts¢ branch
of the second if-then-else of Listiig 1, one would need the-canvex property
thatx > 0.01v x < —-0.01. An analysis representing the invariant at that point
in a domain of convex properties (intervals, polyhedra,)etgll fail to prove the
absence of division by zero (incompleteness).

Obviously, we could represent such properties using disjoms of convex
polyhedra, but this leads to combinatorial explosion asntimaber of polyhedra
grows: at some point heuristics are needed for merging pdighin order to limit
their number; it is also unclear how to obtain good widenipgrators on such
domains. The same expressive power can alternatively laénellt by considering
all program paths separately (“merge over all paths”) aradyaing them indepen-
dently of each other. In order to avoid combinatorial exiglosthetrace partition-
ing approachl([36] applies merging heuristics. In contrast,neethod relies on the
power of modern SMT-solving techniques.

The second source of imprecision is the useviofening operator§l4]. When
analysing loops, static analysis by abstract interpi@tadittempts to obtain an-
ductive invariantoy computing an increasing sequenteXs, . .. of sets of states,
which are supersets of the sets of states reachable in atlpn#yst. iterations. In
order to enforce convergence within finite time, the most mam method is to
use a widening operator, which extrapolates the first israf the sequence to a
candidate limit. Optional narrowing iterations may regsime precision lost by
widening.

[llustrating Example Consider Listind R, a simplification of a fragment of an
actual industrial reactive program: indexing of a circudeffer used only at certain
iterations of the main loop of the program, chosen non-datestically. If the
non-deterministic choicaondet() is replaced bytrue, analysis with widening
and narrowing finds [®9]. Unfortunately, the “narrowing” trick is brittle, andho

2

Listing 2: Circular bdfer indexing

int x = 0;
while (true) |{
if (nondet()) f{
X = x+1;
if (x >= 100) x = 0;
bl

Listing [2, widening yields [0+c0), and this is not improved by narrowin@ In
contrast, our semantically-based method would computdQ#9] invariant on
this example by firstocusingon the following path inside the loop:

Listing 3: Example focus path

assume(nondet()); x = x+1; assume(x < 100);

If we wrap this path inside a loop, then the least inductivaiiant is [Q 99]. We
then check that this invariant is inductive for the origitap.

This is the basic idea of our method: it performs fixpointdatems by focusing
temporarily on certain paths in the program. In order to iobthe next path, it
performs bounded model checking using SMT-solving.

2 Background and Notationsin Abstract I nterpretation

X < 100

(a) With original variables (b) SSA version.x = ¢(ey,&,,...) denotes
a SSA¢-node: x takes valuee; if control
flows from the first incoming edge, from
the second. ..

Figure 1: Control flow graph corresponding to list[dg 2.

We consider programs defined by a control flow graph: 8sdtontrol points,
for each control poinp € P a (possibly empty) sdt, of initial values, a seE C
P x P of directed edges, and the semantigs P(X) — P(X) of each edge € E

10n this example, it is possible to compute thed®] invariant by so called “widening up-to”
[28, Sec. 3.2], or with “thresholds!’[8]: essentially, theadyser notices syntactically the comparison
X < 100 and concludes that 99 is a “good value” xps0 instead of widening directly teco, it first
tries 99. This method only works if the interesting value &yatactic constant.

whereP(Z) is the set of possible values of the tuple of program vaemhil, thus
maps a set of states before the transition expressed byectigthe set of states
after the transition.

To each control poinp € P we attach a seX, C X of reachable values of
the tuple of program variables at program pomt The concrete semantics of
the program is the least solution of a system of semantictemsa[14]: X, =
o U Upr.pree 7(p.p) (Xpr)-

Abstract interpretation replaces the concrete sets &dsstaf(X) by elements
of an abstract domaib. In lieu of applying exact operationsto sets of concrete
program states, we apply abstract counterpzéh@sAn abstractionr? of a concrete
operationr is deemed to be correct if it never “forgets” states:

¥X e D 7(X) € 7¥(X) 1)

We also assume an “abstract union” operatigrsuch thatX U Y ¢ X u Y. For
instance X can beQ", D can be the set of convex polyhedra anthe convex hull
operation|[[27, 117,13].

In order to find an inductive invariant, one solves a systewbstract semantic
inequalities:

V(P p) e BTl (Xp) € Xp. o)
Since therg are correct abstractions, it follows that any solution aftsa system
defines an inductive invariant; one wishes to obtain oneisted strong as possible
(“strong” meaning “small with respect Q") or at least sfficiently strong as to
imply the desired properties.

Assuming that all functionsﬁ are monotonic with respect ©, and thatJl is
the least upper bound operation Inwith respect toc, one obtains a system of
monotonic abstract equationXp = lp U | |y pee T?p/ p)(Xp/). If (D, <) has no
infinite ascending sequenced; (¢ do ¢ ... with d, dy, - € D), then one can
solve such a system by iteratively replacing the contentief/ariable on the left
hand side by the value of the right hand side, until a fixed tpisineached. The
order in which equations are iterated does not change thHadisalt.

Many interesting abstract domains, including that of carpelyhedra, have
infinite ascending sequences. One then classically usest@p@ation operator
known aswideningand denoted by in order to enforce convergence within finite
time. The iterations then follow the “upward iteration sateg:

{Vplpgxp

Xp 1= xpv[xpu | | Tﬁp,’p)(x,y)] ®)
(7-PIEE

where the contents of the left hand side gets replaced byailue wf the right hand
side. The convergence property is that any sequepad elements oD of the

2Many presentations of abstract interpretation distirtytiie abstract element e D from the
set of stateg/(x¥) it represents. We opted not to, for the sake of brevity.

4

formun,1 = U v Vyy, Wherev, is another sequence, is stationaryi [14]. It iffisient
to apply widening only at a set of program control no@ggssuch that all cycles in
the control flow graph are cut. Then, through a processhabtic iterationg]13,
Def. 4.1.2.0.5, p. 127], one converges within finite time maraductive invariant
satisfying Rel[2.

Once an inductive invariant is found, it is possible to imgrdt by iterating
they* function defined a¥ = y#(X), noting X = (Xp)pep andY = (Yp)pep, With
Yp = lpUll(p.peE r?p,’p)(xp/). If X is an inductive invariant, then for arkywﬁk(X)
is also an invariant. This technique is an instanceafowing iterations which
may help recover some of the imprecision induced by widefiidgy 84].

Algorithm 1 Classical Algorithm
1. A0
2: for all pe Psuchthat, # 0 do
3: A~ Au{p}

4: end for; > Initialise A to the set of all non empty initial nodes
5. while Ais not emptydo > Fixpoint Iteration
6: Choosep; € A
7 A< A\{py)
8: for all outgoing edge (e) fronp; do
9: Let p, be the destination af :
10: if po € Pwthen
11: Xtemp < Xp, V (Xp, U Ti(xpl)) > Widening node;
12: ese
13: Xtemp < Xp, U Tﬁe(Xpl) ;
14: end if
15: if Xtemp & Xp, then > The value must be updated
16: sz — Xtemp;
17: A< AU {pa};
18: end if
19: end for;
20: end while; > End of Iteration

21: Possibly narrow
22: return all Xy s;

A naive implementation of the upward iteration scheme deedrabove is to
maintain a work-list of program points such thatX, has recently been updated
and replaced by a strictly larger value (with respect)o pick and remove the
foremost membep, apply the corresponding rub, := ..., and insert into the
work-list all p’ such that p, p’) € E (This algorithm is formally described in Al-
gorithm[1).

Exampleof Section[Il(Cont’d) Figure 1(d) gives the control flow graph obtained
by compilation of Listing 2. Node, is the unique widening node.

The classical algorithm (with the interval abstract domagiarforms on this
control flow graph of the following iterations :

e Initialisation : Xp, « (=00, +00), Xp, ¢ Xp, Xp, < 0.

e Step 1:Xp, < [0, 0], then the transition tgs is enabled X, « [1, 1], then
the return edge t@, gives the new poink = 1 to Xp,, the new polyhedron
is thenXp, = [0, 1] after performing the convex hull. Widening gives the
polyhedronX,, = [0, o).

(The widening operator on intervals is definedx@as)] v[x/,] = [X"|, X"¢]
wherex’| = x if X = X/ else—co, andX’; = x; if X = X else+co.)

e Step 2: X, becomes [l+o0). The second transition froms to p; is thus
enabled, and the back edgegggives the poini = 0 to Xp,. At the end of
step 2 the convergence is reached.

¢ If we perform a narrowing sequence, there is no gain of pi@tisecause of
the simple loop over the control poips.

3 Our Method

We have seen two examples of programs where classical mbBlhenalysis fails
to compute good invariants. How could we improve on thesalts?

e In order to get rid of the imprecision in Listirg 1, one coukekplode” the
control-flow graph: in lieu of a sequence ofif-then-else, withn merge
nodes with 2 input edges, one could distinguish the@mgram paths, and
having a single merge node witR put edges. As already pointed out, this
would lead to exponential blowup in both time and space.

e One way to get rid of imprecision of classical analysis (£@n the pro-
gram from Fig[1(g) would be to consider each path throughdbp at a
time and compute a local invariant for this path. Again, thenber of such
paths could be exponential in the number of tests insidecihy |

The contribution of our article is a generic method that adsges both of these
difficulties.

3.1 Reduced Transition Multigraph and Path Focusing

Consider a control flow graphP(E) with associated transitiongdecg, a set of
widening points B < P such that removindfy cuts all cycles in the graph, and
a setPg of abstraction pointssuch thatPy, € Pr € P (On the figures, the nodes
in Pr are in bold). We make no assumption regarding the choidgygfthere are

6

classical methods for choosing widening poiits [9, 83 can be taken equal to
Pw, or may include other nodes; this makes sense only if thedesnoave several
incoming edges. Including other nodes will tend to reducecigion, but may
improve scalability. We also make the simplifying assuimptihat the set of initial
valuesl is empty for all nodes iP \ Pr — in other words, the set of possible
control points at program start-up is includedda.

We construct (virtually) the reduced control multigrag?r(ER), with edges
Eg consisting of the paths ifP(E) that start and finish on nodesRg, with associ-
ated semantics the composition of the semantics of thenatigdgesre, —..e, =
Te, © -+ 0 Tg. There are only a finite number of such edges, because the orig
nal graph is finite and removinBgr cuts all cycles. There may be several edges
between two given nodes, because there may exist sevetablcpaths between
these nodes in the original program. Equivalently, thistigraph can be obtained
by starting from the original graptiP(E) and by removing all nodegin P\ Pr as
follows: each couple of edges, from p; to p, ande,, from pto py, is replaced by
a single edge fronp; to p, with semanticgp, o 7p,.

Exampleof Section[Il(Cont’d) The reduced control flow graph obtained for our
running example is
I?x =0

guardx < 99 I guardx > 99
 loop} > 9vere

X:=x+1 U

Our analysis algorithm performs chaotic iterations ovet tteduced multi-
graph, without ever constructing it explicitly. We starbtin an iteration strategy,
that is, a method for choosing which of the equations to apphkt; one may for
instance take a variant of the naive “breadth-first” aldgmonitfrom &2, but any iter-
ation strategyl[9, §83.7] befits us (see also Alg. 1). An iferastrategy maintains a
set of “active nodes”, which initially contains all nodpsuch that, # 0. It picks
one edges from an active nod@; to a nodep,, and applies(;, := Xp, urg(xpl) in
the case of anodg, € Pr\Pw, and applieXp, := X, v(szuTﬁ(Xpl)) if po € Pw;
thenp; is added to the set of active nodes if the valu&Xgfhas changed.

Our alteration to this algorithm is that we only pick edgdsom p; to p, such
that there exisk; € X, X2 € 7e({X1}) andxz ¢ Xp, with the current values of
Xp, and Xp,. In other words, going back to the original control flow grapre
only pick paths that add new reachable states to their engl, aod we temporarily
focuson such a path.

How do we find such edgesout of potentially exponentially many? We ex-
press them as the solution ofbaunded reachabilitproblem — how can we go
from control statep; with variable state itX, to control statep, with variable state
in Xy, —, which we solve using satisfiability modulo theory (SMT3e¢ Alg[2)

3.2 Finding Focus Paths

We now make the assumption that both the program transigomasticsre and
the abstract elementé € D can be expressed within a decidable the®rithis
assumption may be relaxed by replacing the concrete sergainicluding e.g.
multiplicative arithmetic, by a more abstract one through énearization[[30]).

Such is for instance the case if the program operates omahti@lues, so a
program state is an element bf= Q", all operations in the program, including
guards and assignments, are linear arithmetic, and theaabgbmain is the do-
main of convex polyhedra ove®", in which caseTl can be the theory of linear
real arithmetic (LRA). If program variables are integerthyprogram state space
> = Z", but still retaining the abstract domain of convex polykedverQ", then
we can takd to be the theory of linear integer arithmetic (LIA). Decidithe sat-
isfiability of quantifier-free formulas in either LIA or LRAyith atoms consisting
in propositional variables and in linear (in)equalitiegiwinteger cofficients, is
NP-complete. There however exigtieient decision procedures for such formu-
las, known as SMT-solvers, as well as standardised theaniddile formats|[5];
notable examples of SMT-solvers capable of dealing with Bl LRA are Z3
and Yices. Kroening & Strichmai [29] give a good introduntio the techniques
and algorithms in SMT solvers.

We assume that the program is expressed in SSA form, with gagram
variable being assigned a value at only a single point witha program[[18];
standard techniques exist for converting to SSA. Figliresésgboth “normal” and
SSA-form control-flow graphs for Listing 2.

We transform the original control flow grapB,) in SSA form by disconnect-
ing the nodes iPr: each nodey, in Pgis split into a “source” nodg; with only
outbound edges, and a “destination” ngafawith only inbound edges. We call the
resulting graph R, E”). Figure[2(d) gives the disconnected SSA form graph for
Listing[2 wherep; and p, have been split.

We consider execution traces starting fromSaode and ending in g node.
We define them as for doing bounded model checkKing [2]. To eaclep € P’
we attach a Booleah, or reachability predicate expressing that the trace goes
through program poinp. For nodesp’ not of the formpy, we have a constraint
by = Vpepp, for e,y ranging over all incoming edges. To each eqige> p’
we attach a Booleag, y, and a constraint, y = bp A 7 y. The conjunctiorp of
all these constraints, expresses the transition relatween thep® and p? nodes
(with implicit existential quantification).

If the transitionsr(p vy are non-deterministic, a little care must be exercised for
the path obtained from thg, to be unique. For instance, if from program pomt
one can move non-deterministically g or ps through edges, andes an incorrect
way of writing the formula would be = &) A(bs = e3)A(e = b)) A(e3 = by), in
which caseb, andbs could be simultaneously true. Instead, we introduce specia
“choice” variablesc; that model non-deterministic choices (Fig). 2).

In order to find a path from program poipi € Pg, with variable statexs,

3 = X2 + 1 @
X3 /
X1=0 100 X3<1 Xlzo@
Xg =0 !
P3 X = $(X1, Xa, X3, X2) o P9 = Pk xa X o) |-
(a) Disconnected (SSA) CFG (b) With a focus path (solid edges) frora = 0 at

program point 2 toc, = 1 at the same program point
(1 =Xt =0)Ab)A(E3 = (X3 =X+1)AbBSAC) A (2 = b5 A-C) A
(5 = baAXz > 100A X4 = 0)A(es = b3AXz < 100 (bs = eg)/\(b‘zj = e1VeVesVey)
A (%, = ite(en, xq, ite(es, Xq, ite(€s, X3, X2))))

Figure 2: Disconnected version of the SSA control flow grapig.[I(b], and the
corresponding SMT formulate(b, e, &) is a SMT construct whose value is tif
then the value oé; else the value of,”. To each nodegy corresponds a Boolean
bx and an optional choice variabtg; to each edge, a Boolea.

to program pointp, € Pg, with variable statex;, we simply conjoino with the
formulasx; € Xp, andxa ¢ Xp,, With X1, X2, X1 € Xp, andxp ¢ Xp, expressed
in terms of the SSA variabl&sFor instance, i, and X, are convex polyhedra
defined by systems of linear inequalities, one simply witihese inequalities using
the names of the SSA-variables at program pomtand p,.

We apply SMT-solving over that formula. The result is eithemsatisfiable”,
in which case there is no path fropa, with variable values, to p,, with variable
valuesxp, such thatx; € Xp, andx; ¢ X,,, or “satisfiable”, in which case SMT-
solving also provides a model of the formula (a satisfyingigrement of its free
variables); from this model we easily obtain such a pathgumiby construction
of p.

Indeed, a model of this formula yields a trace of executiboseb, predicates
that are true designate the program points through whichréioe goes, and the
other variables give the values of the program variables.

Example of Section[Il(Cont’d) The SSA form of the control flow graph of Fig-
ure[1(@) is depicted in Figufe I{b). Fid. 2 shows the discotateversion of the
SSA Graph (the nodp; is now split), and the formula expressing the semantics
is shown beneath it.

Then, consider the problem of finding a path starting in admoint 2 inside
polyhedronx = 0 and ending at the same control point but outside of thathely

3The formula defining the set of values represented by anafstiemeni has sometimes been
denoted byy T34].

dron. Note that because there are two outgoing transitians fiodep3, which are
chosen non-deterministically, we had to introduce a Baoldwice variablezg.

The focus path of Fid. 2(p) was obtained by solving the foamuh b} =
falseA b5 = true A bg = true A (x2 = 0) A =(X;, = 0): we impose that the path
starts at poinp; (thus forcingb? = falseA b3 = true) in the polyhedromx = 0 (thus
X2 = 0) and ends at poirn)g (thus forcingbg = true) outside of that polyhedron
(thus—=(x> = 0)).

3.3 Algorithm

Algorithm[Z consists in the iteration of the path finding nuettof Sec 3.2, coupled
with forward abstract interpretation along the paths foand, optionally, path
acceleration.

3.4 Correctness and Termination

We shall now prove that this algorithm terminates, and thatrésultingX, define
an inductive invariant that contains all initial statgs The proof is a variant of the
correctness proof of the chaotic iterations.

The invariant maintained by this algorithm is that all noges Pr\Aare such
that there is no execution trace starting at pqnin a statex; € Xp, and ending
at pointp, in a statex, ¢ Xp,. Evidently, if A becomes empty, then this condition
means thak, is an inductive invariant.

Termination is ensured by the classical argument of tertioinaf chaotic iter-
ations in the presence of widening: they always terminaé dycles in the control
flow graph are broken by widening points [13, Th. 4.1.2.0.6128]. In short, an
infinite iteration sequence is bound to select at least ode pan Py an infinite
amount of times, becaus$®y breaks all cycles, but due to the properties of widen-
ing, Xp should be stationary, which contradicts the infinite nuntfeselections.
Our comment at line_20 of Ald.12 is important for terminatiahensures that for
any widening nodep, the sequence of values taken Xy when it is updated and
reinserted into seA is strictly ascending, which ensures termination in firiiteet

3.5 Sdf-Loops

The algorithm in the preceding subsection is merely a “cleveplementation of
standard polyhedral analysis [17,27] on the reduced comtuitigraph Pr, ER);
the diference with a naive implementation is that we do not have (diatty
enumerate an exponential number of paths and instead leacdoice of the focus
path to the SMT-solver. We shall now describe an improverimetiite case of self-
loops, that is, single paths from one node to itself.

Algorithm[3 is a variant of Alg. R where self-loops are trebgpecially:

e Theloopiter(z¥, X) function returns the result of a widenirigrarrowing it-
eration sequence for abstract transforafestarting inX; it returnsX’ such

10

Algorithm 2 Path-focused Algorithm

1:
: ChoosePg, compute the disconnected graph,E’) accordingly.
. p « computeFormuld’, E”) > Precomputations

e
= o

[EnY
N

13:
14:

15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:

© 0NN

Compute SSA-form of the control flow graph.

A< 0

: for all pe Prsuch that, # 0 do

A~ Au{p}
end for;

: while Ais not emptydo > Fixpoint Iteration on the reduced graph

Choosep; € A
A< A\ {p1}
repeat

res SmtSoIve{p Abp AxaeXp A \/ (bp AXe ¢ Xp,)

]] p2l(p1.p2)eE’
if resis not “unsat”"then

Computeg € E’ fromres » Extraction of path from the model
(83.2)
Y 74 (Xp)
if p2 € Pw then
Xtemp < Xp, V (Xp, UY) » Final pointp; is a widening point
ese
Xemp ¢ Xp, U'Y
end if
> at this pointXiemp € X;, otherwisep, would not have been chosen
Xp, < Xtemp
A< AuU{pz}
end if
until res="unsat”
end while > End of Iteration
Possibly narrow (see Séc. 1.1)
ComputeX, for pi ¢ Pr
return all X,

thatX ¢ X’ andr#(X’) C X'.

¢ In order not to waste the precision gainedlbgpiter, the first time we con-
sider a self-loopg we apply a union operation instead of a widening; set
U records the self-loops that have already been visited. iShisform of
delayed widening [28].

Termination is still guaranteed, because the inner loopatioop forever: it

can visit any self-loop edge at most once before applying widening.

11

Algorithm 3 Path-focused Algorithm with Self-Loops,, marks changes from
Alg. 2.
1: Compute SSA-form of the control flow graph.

2: ChoosePr, compute the disconnected gragt,[E’) accordingly.
3: p « computeFormuld’, E’) > Precomputations
4: A~ 0;
5: for all p e Prsuch that, # 0 do
6: A— Au{p}
7: end for;
8: while A'is not emptydo > Fixpoint Iteration on the reduced graph
9 Choosep; € A
10: A — A\ {p1}
11: Uu=20 > U is a set of “already seen” edges
12: repeat
13: res— SmtSolvgp Abp, Axa € Xpy A \/ by, A Xe ¢ Xop,)
P2l(p1,p2)eE’
14: if resis not “unsat’then
15: Computeg’ € E’ fromres
16: if fPp7"="p2 then
17: Y « Ioopiter(rﬁe,, Xp1)
18: else
19: Y « Ti, (Xpy)
20: end if
21: if p2ePw and(ps# p2V e eU) then
22: Xp, — Xp, V (Xp, L) > Final pointp; is a widening point
23: else
24: Xp, & Xp, LY
25: U< Uule}
26: end if
27: A— AU {pz}
28: end if
29: until res="unsat”
30: end while > End of Iteration

31: ComputeXys for p; ¢ Pr
32: return all Xy s

Example of Section[Il(Cont’d) Let us perform our algorithm on our example :

e Step 1 : Is there a path from control poipt to control pointp, feasible
(without additional constraint) ? Yes. On Figlide 2, the oted model cor-
responds to the transition fropf to pg, and leads to the interva,, = [0, 0].

e Step 2 : Is there a path fromp with x = 0 to p, with x # 0 ? The answer
to this query is depicted in Figufe Z2[b): there is such a pathwhich we

12

now focus. This path is considered as a loop and we therefore Idcal
iteration with wideningsloopiter). X,, becomes [01], then after widening
[0, co]. A narrowing step gives finall)p, = [0, 99], which is thus the result
of loopiter.

e Step 3: Is there a path frompy with x € [0, 99] to p, with X’ ¢ [0,99] ? No.

The iteration thus ends with the desired invariant.

4 Extensions

4.1 Narrowing

Narrowing iterations can also be applied within our framekvd.et us assume that
some inductive invarianXpep, has been computed; it satisfies the relatigX)
X component-wise, notin& = (X, ..., Xp), andy(X) denotes Yy, ..., Yp) de-

fined as
Yo, = Ip, U U 7e(Xp,) (4)

ecEr efrom p; to p2

The abstract counterpart to this operatogisdefined similarly, replacing by
andu by L. It satisfies the correctness condition (see[BetXLE D y(X) C y#(X).
As per the usual narrowing iterations, we compute a narpséguenc&® =
w#(X). Itis often sfficient to stop ak = 1; otherwise one may stop wha2) ¢
X®_ Let us now see a practical algorithm for computiig #(X):
For all p € Pg, we initialise Yy := . For all p, € Pr, we consider all paths
e € Er from p; € Prto p; such that there exist; € X;,, X2 € Xp,, X2 € Te({X1}) as

explained in E3.2. We then updatg, := Y, U Tg(Xpl).

4.2 Acceleration

In Sec[3.5, we have describlmbpiter function that performs a classical widening
/ narrowing iteration over a single path. In fact, the onlyuiegment over it is that
loopiter(#, X) returnsX’ such thatX ¢ X’ and7#(X’) € X’. In other words X’ is
an over-approximation af”*(X), noting R* the transitive closure dR.

In some cases, we can compute directly such an over-appaitigimy some-
times even obtainingﬁ*(X) exactly; this is known asccelerationof the loop.
Examples of possible accelerations include the case whesegiven by a difer-
ence bound matrix [12], an octagdn [10], ultimately peroidieger relations [11]
or certain #ine linear relations [23, 22] 1].

For instance, the focus path of Fig. 3(b) consists in theatjmers and guards
X = X+ 1;x < 100; instead of iterating that path, we can compute its exexler-
ation, yieldingx € [0, 99].

13

4.3 Partitioning

It is possible to partition the states at a given program tpadatording to some
predicate or a partial history of the computation|[36]. Tdaisounts to introducing
several graph nodes representing the same program poihgli@ning the transi-
tion relation.

4.4 Input-Output Relations

As with other analyses using relational domains, it is gaesio obtain abstrac-

tions of the input-output relation of a program block or mdare instead of an

abstraction of the set of states at the current point [1§ #tso allows analyzing

recursive procedures [27, Sec. 7.2]. Ifimes to include in the set of variables
copies of the variables at the beginning of the block or pilaoe; then the abstract
value obtained at the end of the block or procedure is theetkabstraction.

5 Implementation and Preliminary Results

Our algorithm has been implemented as an option fetcAthat computes invari-
ants from counter automata with Linear Relation Analys&]]]. We wrote an
Ocaml interface to the Yices SMT-solver ([19]), and modifikd fixpoint compu-
tation inside Apric to deal with local iterations of paths. The implementatith s
needs some improvements, but the preliminary results amiping, and we de-
scribe some of them in Tallé 1. We provide no timing resuttsesive were unable
to detect any overcost due to the method. These two exanpbasthat since we
avoid (some) convex hulls, the precision of the whole angligsmproved.

The rate limiter example is particularly interesting, gintike the one in List-
ing [(which does not include a loop), it will be impreciselgatyzed by any
method enforcing convex invariants at intermediate steps.

6 Reated Work

Our algorithm may be understood as a forntéotic iterationg13, §2.9.1, p. 53]
over a certain system of semantic questions; we use SMT asaatedo know
which equations need propagating. The choice of wideningtpoand the order
in which to solve the abstract equations, have an impact empthcision of the
whole analysis, as well as its running time. Even thoughethexist few hard
general results as to which strategy is best [13, §84.1.2%], $ome methods tend
to experimentally behave bettér [9].

“Lookahead widening”[[24] was our main source of inspiratigderations and
widenings are adapted according to the discovery of nevitiegsaths in the pro-
gram. This approach avoids loss of precision due to widemingrograms with

14

Table 1: Invariant generation on two simple challenginggpamns

Program

Automaton

Result and notes

Listing 4: Boustrophedon

void boustrophedon() ({
int x;

int d;

x = 0;

d = 1;

while (1) {
if (x == 0) d=1;
if (x == 1000) d=-
X += d;

)
J

The compilation of the
program gives an ex
panded control structure
where some paths af
“clearly” unfeasible
(e.g. imposing both
X < 0 andx > 1000),
thus the only feasi;
ble ones are guarde
by x < 0, x = 0,
0 < x < 1000,x = 1000

D

D

o

andx > 1000.
The tool finds
the invariant

{0<x<1000,-1<d<1}
Classical Analysis with
widening “upto” gives
{d < 1,d+ 1999 > 2x}
and Gopan and Reps’
improvement is not able
to findx > 0.

Listing 5: Rate limiter

void main () {
float x old, x;
x_old = 0;
while (1) {
x = input(-1000,10
if (x >= x_old+1)
X = x_old+1;
if (x <= x_old-1)
x = x_old -1;
x_old = x;
}
}

Source :[[32]

In order to properly
analyse such a progran
Astree distinguishes
all four execution paths
inside the loop through
trace partitioning [36],
which is triggered by
ad hoc syntactic criteria
(e.g. two successiv
if-then-else). Our algo;
rithm finds the invariant
{—=1000 < Xqg¢ < 1000},
which is not found by
classical analysis.

—

D

multiple paths inside loops. It has proved ifB@acy to suppress some gross over-
approximations induced by naive widening. However, it doatssolve the impre-
cisions introduced by convex hull (e.g. it produces falserabk on Listing11).

Our method analyzes separately the paths between cut-ngdsave pointed
out that this is (almost) equivalent to considering finitéous of elements of
the abstract domain, known as tfieite powersetonstruction, between the cut-
noded The finite powerset construction is however costly even éaplree
code, and it is not so easy to come up with widening operatrapply it to
codes with loops or recursive functions [4]; for limitingetmumber of elements
in the unions, some may be lumped together (thus generalydincing further
over-approximation) according tdtanity heuristics([37],_33].

Still, in the recent years, muchfert has been put into the discovery dib-
junctive invariants for instance in predicate abstraction|[25]. Of particulate is
the recent work by Gulwani and Zuleger on inferring disjurectnvariants|[26] for
finding bounds on the number of iterations of loops. We improm their method
on two points:

¢ In contrast to us, they assume that the transition relai@ivien in disjunc-
tive normal form [26, Def. 5], which in general has exponainsize in the
number of tests inside the loop. By using SMT-solving, wepkde DNF
implicit and thus avoid this blowup.

e By using acceleration, we may obtain more precise resudts tising widen-
ing, as they do for lattices that do not satisfy the ascendivagn condition.

Nevertheless, their method allows expressing disjundtivariants at loop
heads, and not only at intermediate points, as we do. Howgethink it is
possible to get the best of both worlds and combine our meththdtheirs. In or-
der to obtain a disjunctive invariant, they first choose an\@xity witness” (given
that the number of possible witnesses is exponential, thepse it using heuris-
tics) [2€, p. 7], and then they compute a “transitive clos(@é} Fig. 6], which is
a form of fixed point iteration of input-output relations (aour Sec[4.4) over an
expanded control-flow graph. The choice of the convexityn@ss amounts to a
partitioning of the nodes and transition (9ec] 4.3). Thiseeéms to possible to ap-
ply their technique, but replace their fixed point iteratj@fi, Fig. 6] by one based
on SMT-solving and path focusing, using acceleration ifsgus.

In recent years, because of improvement in SMT-solvindjrtiegies such as
ours, distinguishingpathsinside loops, have become tractable! [31, 7,32, 21]. An
alternative to using SMT-solving is to limit the number amedth of traces to
consider, as irace partitioning[36], used in the Astrée analyzér [16, 15, 8], but

“Itis equivalent if the only source of disjunctions are thktsjin the control flow, and not atomic
operations. For instance, if the tégt> 1 is considered an atomic operation, then we could take the
disjunctionx > 1 v x < -1 as output. We can rephrase that as a control flow problem dipgd
a testx > 0, otherwise said to exprepg as a piecewise linear function with explicit tests for split
between the pieces.

16

the criteria for limitation tend to be ad hoc. In addition,thals for abstracting the
sets of paths inside a loop, weeding out infeasible path& been introduced [5].

With respect to optimality of the results, our method wilhgeate the strongest
inductive invariant inside the abstract domain if the dansatisfies the ascending
chain condition and no widening is used; for other domaiks,dll methods using
widenings, it may or may not generate it. In contrast, soncenteworks [[21]
guarantee to obtain the strongest invariant for the samiysasgroblem, at the
expense of restriction to template linear domains and figeastructions inside
the code.

7 Conclusion and future work

We have described a technique which leverages the boundddl itecking ca-
pacities of current SMT solvers for guiding the iteratiorfsan abstract inter-
preter. Instead of normal iterations, which “push” abdtradues along control-
flow edges, including control-flow splits and merges, we @®ersndividual paths.
This enables us, for instance, to use acceleration techsithat are not available
when the program fragment being considered contains deffivo merges. This
technique computes exact least invariants on some examplegich more con-
ventional static analyzers incur gross imprecision or haveesort to syntactic
heuristics in order to conserve precision.

We have focused on numerical abstractions. Yet, one wadkéddi use similar
techniques for heap abstractions, for instance. The ciwglavill then be to use
a decidable logic and an abstract domain such that both tharg&s of the pro-
gram statements and the abstract values can be exprességllogic. This is one
direction to explore. With respect to the partitioning teicjue,[4.8, we currently
express the partition as multiple explicit control nodas, ibseems desirable, for
large partitions (e.g. according to Boolean values, as ideAnnet's BDD-Apron
library) to represent them succinctly; this seems to fitlgi@dgth our succinct en-
coding of the transition relation as a SMT-formula.

Another direction is to evaluate the scalability of thesdhuds on larger pro-
grams. The implementation needs to be tested more to egaiuatprecision of
our method on middle-sized programs, the main advantageatsfseic imple-
ments some of the acceleration techniques. Analyzers suékrate scale up to
programs running a control loop several hundreds of thalssahlines long; trans-
lating such a loop to a SMT formula and solving for this forenaind additional
constraints does not seem tractable. It is possible thatsgerslicing techniques
[35] could help in reducing the size of the generated SMT |erok.

References

[1] Corinne Ancourt, Fabien Coelho, and Francois Irigoin. mddular static
analysis approach toffane loop invariants detectionElectr. Notes Theor.

17

Comput. Scj.267(1):3-16, 2010. Proceedings of NSAD.

[2] Alessandro Armando, Jacopo Mantovani, and LorenzoaRlat Bounded

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

model checking of software using smt solvers instead ofdaéss. Interna-
tional Journal on Software Tools for Technology TransfeF (), 11(1):69—
83, 2009.

Roberto Bagnara, Patricia M. Hill, and Eneafzaella.The Parma Polyhedra
Library, version 0.9

Roberto Bagnara, Patricia M. Hill, and Eneaffz2amella. Widening operators
for powerset domainsinternational Journal on Software Tools for Technol-
ogy Transfer (STTTB(4-5):449-466, August 2006. See also erratum in June
2007 issue.

Gogul Balakrishnan, Sriram Sankaranarayanan, Fravamdic, and Aarti
Gupta. Refining the control structure of loops using statialysis. In
Samarijit Chakraborty and Nicolas Halbwachs, editeéfglSOFT pages 49—
58. ACM, 2009.

Clark Barrett, Silvio Ranise, Aaron Stump, and Cesareeflli. The satisfia-
bility modulo theories library (SMT-LIB)www.smt1lib.org, 2008.

Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and aydRy-
balchenko. Path invariants. RLDI, pages 300-309. ACM, 2007.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jéroraeetl- Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier RivAl static an-
alyzer for large safety-critical software. Frogramming Language Design
and Implementation (PLD)pages 196—207. ACM, 2003.

Francois BourdoncleSémantique des langages impératifs d’ordre supérieur
et interprétation abstraitePhD thesis, Ecole polytechnique, Palaiseau, 1992.

Marius Bozga, Codruta Girlea, and Radu losif. Itemiiictagons. Technical
Report 16, VERIMAG, 2008.

Marius Bozga, Radu losif, and Filip Konecny. Fast aecation of ultimately
periodic relations. Technical Report 2010-3, VERIMAG, 201

Hubert Comon and Yan Jurski. Multiple counters aut@anaiafety analy-
sis and Presburger arithmetic. In Alan J. Hu and Moshe Y. iVauditors,
Computer-aided verification (CAWolume 1427 oL.LNCS pages 268-279.
Springer, 1998.

Patrick Cousot.Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, aralgémantique des
programmes State doctorate thesis, Université scientifigue et mésida
Grenoble and Institut National Polytechnique de Grend$&g.

18

file:www.smtlib.org

[14] Patrick Cousot and Radhia Cousot. Abstract interpiceiframeworks.J. of
Logic and Computatigrpages 511-547, August 1992.

[15] Patrick Cousot, Radhia Cousot, Jérébme Feret, Laureatiddrgne, An-
toine Miné, David Monniaux, and Xavier Rival. The ASTREE buaar.
In Shmuel “Mooly” Sagiv, editor,Programming Languages and Systems
(ESOP) number 3444 in LNCS, pages 21-30. Springer, 2005.

[16] Patrick Cousot, Radhia Cousot, Jérébme Feret, Laurentiddrgne, Antoine
Miné, David Monniaux, and Xavier Rival. Combination of albstions in
the astrée static analyzer. In Mitsu Okada and Ichiro Sa&miprs,Advances
in Computer Science — ASIAN 2006lume 4435 o£.NCS pages 272-300.
Springer, 2008.

[17] Patrick Cousot and Nicolas Halbwachs. Automatic disey of linear re-
straints among variables of a program. Rrinciples of Programming Lan-
guages (POPL)pages 84-96. ACM, 1978.

[18] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and.RZ&deck. An
efficient method of computing static single assignment fornPrinciples of
programming languages (POPLpages 25-35. ACM, 1989.

[19] Bruno Dutertre and Leonardo de Moura. A fast lineatranietic solver for
DPLL(T). In Thomas Ball and Robert B. Jones, edito@ymputer-aided
verification (CAV)volume 4144 of NCS pages 81-94. Springer, 2006.

[20] Paul Feautrier and Laure Gonnord. Accelerated inmarggeneration for C
programs with Aspic and C2fsm. [fools (TAPAS)2010.

[21] Thomas Gawlitza and David Monniaux. Improving stréegvia SMT solv-
ing. InESOR 2011. to appear.

[22] Laure Gonnord.Accelération abstraite pour I'amélioration de la précigio
en analyse des relations linéairesPhD thesis, Université Joseph Fourier,
October 2007.

[23] Laure Gonnord and Nicolas Halbwachs. Combining widgrind acceler-
ation in linear relation analysis. In Kwangkeun Yi, edit@tatic analysis
(SAS)volume 4134 oL NCS pages 144-160. Springer, 2006.

[24] Denis Gopan and Thomas W. Reps. Lookahead widening.htmiks Ball
and Robert B. Jones, editoilSAV, volume 4144 of_ecture Notes in Com-
puter Sciencgpages 452—-466. Springer, 2006.

[25] Sumit Gulwani, Saurabh Srivastava, and Ramarathnamkatesan.
Constraint-based invariant inference over predicaterattsdn. InVerifica-
tion, Model Checking, and Abstract Interpretation (VMCAQIume 5403 of
LNCS pages 120-135. Springer, 2009.

19

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Sumit Gulwani and Florian Zuleger. The reachabiliabd problem. In Ben-
jamin G. Zorn and Alexander Aiken, editoBLDI, pages 292-304. ACM,
2010.

Nicolas HalbwachsDétermination automatique de relations linéaires véri-
fiées par les variables d’'un programmeState doctorate thesis, Université
scientifique et médicale de Grenoble and Institut Natiomdytechnique de
Grenoble, 1979.

Nicolas Halbwachs. Delay analysis in synchronous @wot. In Costas
Courcoubetis, editorComputer Aided Verification (CAVyolume 697 of
LNCS pages 333-346. Springer, 1993.

Daniel Kroening and Ofer Strichmaiecision proceduresSpringer, 2008.

Antoine Miné. Symbolic methods to enhance the prenisibnumerical ab-
stract domains. |Verification, Model Checking, and Abstract Interpretation
(VMCAI'06), volume 3855 o NCS pages 348-363. Springer, January 2006.

David Monniaux. Automatic modular abstractions fardar constraints. In
Benjamin C. Pierce, edito§ymposium on Principles of programming lan-
guages (POPL)ACM, 2009.

David Monniaux. Automatic modular abstractions fomf@ate numerical
constraints.Logical Methods in Computer Scien@910. To appear.

Corneliu Popeea and Wei-Ngan Chin. Inferring disjirgcipostconditions.
In ASIAN’0G pages 331-345. Springer, 2007.

Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. Symirolidementa-
tion of the best transformer. In Bernhard @ and Giorgio Levi, editors,
VMCAI, volume 2937 oL NCS pages 252—-266. Springer, 2004.

Xavier Rival. Understanding the origin of alarms in A&. In Chris Hankin
and Igor Siveroni, editor§tatic analysis (SASYyolume 3672 o£NCS pages
303-319. Springer, 2005.

Xavier Rival and Laurent Mauborgne. The trace panitigy abstract domain.
Transactions on Programming Languages and Systems (TOPRHS):26,
2007.

Sriram Sankaranarayanan, Franjo &i&nllya Shlyahkter, and Aarti Gupta.
Static analysis in disjunctive numerical domains. Static analysis (SAS)
volume 4134 oL NCS pages 3-17. Springer, 2006.

20

	1 Introduction
	2 Background and Notations in Abstract Interpretation
	3 Our Method
	3.1 Reduced Transition Multigraph and Path Focusing
	3.2 Finding Focus Paths
	3.3 Algorithm
	3.4 Correctness and Termination
	3.5 Self-Loops

	4 Extensions
	4.1 Narrowing
	4.2 Acceleration
	4.3 Partitioning
	4.4 Input-Output Relations

	5 Implementation and Preliminary Results
	6 Related Work
	7 Conclusion and future work

