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Abstract

A large number of properties of a vector addition system—for instance

coverability, boundedness, or regularity—can be decided using its cover-

ability graph, by looking for some characteristic pattern. We propose to

unify the known exponential-space upper bounds on the complexity of

such problems on vector addition systems, by seeing them as instances

of the model-checking problem for a suitable extension of computation

tree logic, which allows to check for the existence of these patterns. This

provides new insights into what constitutes a “coverability-like” property.

Keywords. Vector Addition Systems; CTL; Coverability Properties; Com-

plexity.

1 Introduction

Vector addition systems (or equivalently Petri nets) are widely employed to
reason about concurrent computations. Many decidable problems for vector
addition systems are known to be ExpSpace-hard thanks to a proof originally
due to Lipton (Cardoza et al., 1976). Regarding complexity upper bounds, a
key distinction arises between “reachability-like” problems on the one hand, for
which no upper-bound is currently known in spite of continuous research on
the subject (Mayr, 1981; Kosaraju, 1982; Leroux, 2011), and “coverability-like”
problems on the other hand, for which ExpSpace upper bounds have been de-
rived after the work of Rackoff (1978). The latter class of problems is known to
encompass many questions for the analysis of vector addition systems (promi-
nently linear-time model-checking (Habermehl, 1997)), and related models of
concurrency (e.g. Ganty et al., 2009; Kaiser et al., 2010).

We promote in this paper a characterization of “coverability-like” prop-
erties as relying on the existence of some witness pattern in the coverability
graph (Karp and Miller, 1969; Hack, 1974) of the system—this graph provides a
finite abstraction of the system’s possible behaviours. This stance is backed up
by several results (see e.g. Valk and Vidal-Naquet, 1981; Finkel and Sangnier,
2008; Chambart et al., 2011) that rely on the same powerful technique: since
the coverability graph is finite, the existence of a witness can be checked, yield-
ing the decidability of the property at hand. As the coverability graph might
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have non primitive-recursive size (Cardoza et al., 1976), this technique comes
however at a very high price—at least at first sight.

We show in this paper that a fragment of existential computation tree logic
(ECTL) extended with Presburger constraints on paths enjoys a small model
property when checked against runs in coverability graphs, and deduce an Ex-

pSpace complexity upper bound for properties expressed in this fragment.
These properties encompass many examples of properties testable in exponen-
tial space we found in the literature. We further believe the resulting formulæ
to be quite natural and intuitive (they can express branching properties and the
existence of !-markings directly), and illustrate this point with several examples.

On the technical side, the proof of this small model property is in the line of
similar results shown by Rackoff (1978) for the coverability and the bounded-
ness problems, and extended by Yen (1992); Atig and Habermehl (2009); Demri
(2010) to more complex properties. These extensions rely on rather terse, ad-hoc
logical formalisms, which are checked against the actual runs of the system—it
is tempting to blame the complexity of Yen’s logical formalism for the issue
found in his proof by Atig and Habermehl. Thus a major contribution of the
paper is the key insight that what should be checked are runs in coverability
graphs instead of actual runs, and that a reasonably standard logic based on
CTL is perfectly usable to this end. In more details, we define a notion of
VAS coverability graphs that will constitute the models of our logic (Section 2)
and investigate their simulation relations; we define an extension of CTL using
Presburger constraints on path and atomic propositions testing for coverabil-
ity (Section 3.1) before considering the decidability of VAS model-checking for
some of its fragments (Section 3.2); we then consider a restricted fragment of
eventually increasing formulæ and prove its VAS model-checking problem to be
ExpSpace-complete (Section 4).

Notations. Let ℤ! = ℤ ⊎ {!} be the set of integers completed with a limit
element !, which is larger than any finite z in ℤ and verifies ! + d = ! for all
d in ℤ. Whenever working on vectors in ℤ

k
! for some k, we implicitly employ

component-wise orderings. We consider throughout the paper rooted labeled
transition systems (LTS) S = ⟨S,→, ℓ, sinit⟩ where, for some k ≥ 1, S is a set of
states, ℓ is a state labeling function from S to ℤ

k
!, sinit is the initial state in S,

and→ is a labeled transition relation included in S×ℤk×S. In our developments
we ignore labels and define the size ∣S∣ of a LTS S as the cardinality of →, and
for a set of vectors V ⊆ ℤ

k
!, ∥V∥ = maxv∈V,1≤j≤k,v(j)<!(0, ⌈log2(∣v(j)∣) + 1⌉).

An LTS is called tree-shaped if any state has at most one predecessor by →, i.e.
for all s, ∣{s′ ∈ S ∣ s′ → s}∣ ≤ 1, and path-shaped if furthermore it has at most
one successor by →, i.e. for all s, ∣{s′ ∈ S ∣ s→ s′}∣ ≤ 1.

2 Coverability Graphs

Let us first recall the definition of coverability graphs for vector addition systems
and how they can be used to decide various properties.

Vector Addition Systems. A k-dimensional vector addition system (k-VAS)
is a pair S = ⟨V, x0⟩ where V is a finite set of transitions in ℤ

k and x0 an initial
marking in ℕ

k (Karp and Miller, 1969). Formally, we can define the reachability
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graph of such a k-VAS as the (generally infinite) LTSR(S) = ⟨ℕk,→, id , x0⟩ with
states (also calledmarkings) in ℕ

k, the identity id as state labeling function, and

transitions labels in V s.t. x
a
−→ x′ iff x+a = x′ (note that it implies x+a ≥ 0). In

some proofs, we will consider generalized VAS, where x0 can be taken from ℤ
k
!.

We consider several parameters for VAS size, as do Rosier and Yen (1986): the
size of the binary encoding of the largest difference a vector from the transitions
set can induce ∥V∥, the cardinal of the transition relation ∣V∣, and the dimension
k.

Canonical Coverability Graph. Coverability graphs are finite abstractions
of VAS reachability graphs. In order to remain finite, they employ markings over
the complete space (ℕ⊎{!})k, noted ℕ

k
!. There are several possible definitions

for coverability graphs, all based on the original Karp and Miller coverability
tree construction (Karp and Miller, 1969); here is a particular flavour, as found
for instance in (Valk and Vidal-Naquet, 1981)

Given a LTS ⟨S,→, ℓ, sinit⟩ and given some 1 ≤ j ≤ k, let us first define a
j-antecedent of a pair (s, a) in S × ℤ

k as a state s′ satisfying

sinit →
∗ s′

w
−→ s ∧ ℓ(s′) ≤ ℓ(s) + a ∧ ℓ(s′)(j) < (ℓ(s) + a)(j) (1)

for some w in (ℤk)∗. A j-antecedent witnesses the fact that, by repeating
the sequence of transitions wa from s′, we can obtain arbitrarily high values
in coordinate j—which will be represented symbolically by an ! value in the
coverability graph.

The coverability tree of a k-VAS S = ⟨V, x0⟩ is a tree-shaped LTS T (S) =
⟨S,→, ℓ, sinit⟩ with state labels in ℕ

k
! and transition labels in V constructed by:

basis initially S = {sinit} with label ℓ(sinit) = x0 and sinit is flagged as unpro-
cessed,

step for every unprocessed state s and every a in V

∙ if ℓ(s) + a ∕≥ 0: do nothing, as a is not firable in ℓ(s),

∙ otherwise, let s′ be a fresh state, update S to be S ⊎ {s′}, add a

transition s
a
−→ s′, and set the label of s′ in ℕ

k
! to

ℓ(s′)(j)
def
=

{

! if ∃s′′ a j-antecedent of (s, a)

(ℓ(s) + a)(j) otherwise
(2)

If there does not exist any state s′′ in S with ℓ(s′) = ℓ(s′′) and
sinit →

∗ s′′ →∗ s, flag s′ as unprocessed; s′ is otherwise a leaf of the
tree.

The canonical coverability graph C(S) of a k-VAS S = ⟨V, x0⟩ is obtained by
identifying identically-labeled states in T (S), i.e. it is the quotient C(S) =
T (S)/≡ for the equivalence relation s ≡ s′ iff ℓ(s) = ℓ(s′) (see e.g. Figure 1).

Examples of Coverability Properties. Coverability graphs allow to decide
many properties on a k-VAS S; for instance,
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⟨1, 0, 1⟩

⟨2, 1, 0⟩ ⟨0, 0, 2⟩

⟨2, 0, 0⟩ ⟨1, !, 1⟩

⟨2, !, 0⟩ ⟨0, !, 2⟩

a

b

c

b a

b

c

a

b

c

b

c

a

Figure 1: The canonical coverability graph for the VAS S = ⟨{a, b, c}, ⟨1, 0, 1⟩⟩
with transitions a = ⟨1, 1,−1⟩, b = ⟨−1, 0, 1⟩, and c = ⟨0,−1, 0⟩.

coverability given a marking x in ℕ
k, whether a marking x′ ≥ x is reachable

in R(S)—simply check whether a state s with ℓ(s) ≥ x is reachable in
C(S); for instance in Figure 1 we see that ⟨1, 5, 1⟩ is coverable but ⟨2, 1, 2⟩
is not—,

boundedness whether the set of reachable markings in R(S) is finite—this
occurs iff no ! value appears in the label of any state of C(S); for instance
in Figure 1 the VAS is not bounded—,

place boundedness given a coordinate 1 ≤ j ≤ k, whether the set of values
x(j) for all reachable x in R(S) is finite—this occurs iff no ! value appears
as ℓ(s)(j) for some state s of C(S); for instance in Figure 1, the second
coordinate is unbounded but the other two are bounded,

language regularity whether the language, i.e. the set of labels w in V∗ of
transition sequences s0

w
−→ s in R(S), is regular—this occurs if no state

s with a cycle s
a1⋅⋅⋅an−−−−→ s appears in C(S) s.t. there exists 1 ≤ j ≤ k,

ℓ(s)(j) = ! and (
∑n
i=1 ai) (j) < 0 (Valk and Vidal-Naquet, 1981, Theo-

rem 5); for instance in Figure 1 we find one such cycle ⟨1, !, 1⟩
c
−→ ⟨1, !, 1⟩,

and indeed the language of this VAS yields (ab)nc≤n when intersected
with (ab)∗c∗, and is therefore non-regular.

All these properties are decidable in exponential space; see (Rackoff, 1978)
for the first two, and (Demri, 2010) for the last two. Observe that we were able
to characterize each property by the existence of some witness in the canonical
coverability graph; we shall see in Section 3 that we can easily express those
properties in a modal logic, and later in Section 4 that the exponential space
upper bound applies to all properties expressed in this logic.

Partial Covers. In preparation of the technical developments of the following
sections, we define structures related to the coverability graph that will serve as
witnesses. The motivation is that later we will build small models for properties
by induction on the dimension, thus it will be convenient to consider partial
coverability graphs, which are “correct” only on the first j coordinates out of k.

Definition 2.1. A partial cover for a generalized k-VAS ⟨V, x0⟩ is an accessible

LTS ⟨S,→, ℓ, sinit⟩ with transition labels in V s.t. ℓ(sinit) = x0 and, if s
a
−→ s′,
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then for all 1 ≤ j ≤ k, either ℓ(s)(j)+ a(j) = ℓ(s′)(j), or ℓ(s)(j) < !, ℓ(s′)(j) =

!, and on every path sinit = s0
a1−→ ⋅ ⋅ ⋅

an−→ sn = s, there exists 0 ≤ i ≤ n s.t. si
is a j-antecedent of (s, a) (see (1)).

Thus a partial cover does not enforce positive values on the state labels, but
guarantees transition labels to be compatible with state labels, and ! values
to be introduced only when legal, i.e. when at least one j-antecedent exists on
every path from the initial state. Partial covers can also be seen as LTS with j-
antecedency relations—in addition to the transition relation—from a state with
a newly introduced ! value to each of its j-antecedents. When constructing
partial covers we will need to preserve the existence of at least one such j-
antecedent.

With the example of Figure 1, the system reduced to the initial marking

⟨1, 0, 1⟩ (3)

is a partial cover, the following are two more (path-shaped) partial covers of the
same VAS:

⟨1, 0, 1⟩
a
−→ ⟨2, 1, 0⟩

a
−→ ⟨3, 2,−1⟩ (4)

⟨1, 0, 1⟩
a
−→ ⟨2, 1, 0⟩

b
−→ ⟨1, !, 1⟩

c
−→ ⟨1, !, 1⟩ , (5)

and this last one is not a partial cover, as we cannot introduce an ! value at
this point:

⟨1, 0, 1⟩
a
−→ ⟨2, !, 0⟩ . (6)

Definition 2.2. Let 0 ≤ i ≤ k. A partial cover C = ⟨S,→, ℓ, sinit⟩ is i-admissible
if for all 1 ≤ j ≤ i and for all s in S, 0 ≤ ℓ(s)(j).

Note that in particular the initial marking x0 of a generalized k-VAS also needs
to satisfy x0(j) ≥ 0 for 1 ≤ j ≤ i in order for a i-admissible partial cover to
even exist. Both the canonical coverability graph and the reachability graph of
a k-VAS are k-admissible partial covers. Among the previous examples, (3) and
(5) are 3-admissible, (4) is 2-admissible but not 3-admissible. Considering our
examples of coverability properties, the LTS in (5) could be used as a witness
of coverability of ⟨1, 5, 1⟩, unboundedness in the second coordinate, and non
regularity of the language.

Covering Simulations. Among all the k-admissible partial covers of a k-
VAS S (Defs. 2.1 and 2.2), we find in particular its canonical coverability graph
C(S). All these k-admissible partial covers are in fact related to C(S) by a
simulation relation (see App. A.1 for details):

Definition 2.3. Let k ≥ 1 and S1 = ⟨S1,→1, ℓ1, s1⟩ and S2 = ⟨S2,→2, ℓ2, s2⟩
be two LTS. A covering simulation between S1 and S2 is a relation R ⊆ S1×S2

s.t.

1. s1 R s2,

2. if s R s′, then

(a) ℓ1(s) ≤ ℓ2(s
′) and

(b) if s
a
−→1 q for some a in ℤ

k and q in S1 then there exists q′ in S2 with

s′
a
−→2 q

′ and q R q′.
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We say that S2 simulates S1, noted S1 ≼ S2, if there exists a covering simulation
R between S1 and S2.

Lemma 2.4. Let S = ⟨V, x0⟩ be a k-VAS and C a k-admissible partial cover of
S. Then C ≼ C(S).

3 CTL Logics for Coverability Graphs

We first propose a very general logic based on CTL for model-checking cover-
ability graphs (Section 3.1). Our purpose with this general logic is to motivate
our choice of CTL fragment for the following sections: indeed, the full logic
will turn out to be too powerful, and we will restrict ourselves to an existential
fragment with a decidable model checking problem (Section 3.2).

3.1 An Extension of CTL

We define an extension PrCTL≥(U) of CTL specifically designed to express
properties of VAS coverability graphs. It features

coverability constraints �(j) ≥ c, where c is a constant in ℕ!, as atomic
formulæ, allowing to express that the label in the current state has value
greater or equal to c in its jth coordinate. These extend the usual cov-
erability constraints (see e.g. Esparza, 1997) by also allowing to express
�(j) = !.

Presburger-refined temporal modalities U using Presburger formulæ  
to constrain the allowed paths—this is similar to the regular modalities
found for instance in (Axelsson et al., 2010), but what is constrained here
is the effect of a transition sequence rather than its label.

Presburger Formulæ. We restrict our attention to quantifier-free Presburger
(QFP) formulæ, since one such formula can be obtained from any Presburger for-
mula at the expense of a worst-case triple exponential blowup (see e.g. Weispfen-
ning, 1990, Theorem 2.1). More precisely, given an infinite countable set of
variables X , a QFP formula  is defined through

 ::= ⊤ ∣ ¬ ∣  ∨  ∣ �, � ::= � ≥ � ∣ � ≡p �, � ::= 0 ∣ 1 ∣ x ∣ � + � (7)

where x is a variable from X and p ≥ 2.1 Given a vector x of values in ℤ
k and a

formula  with k free variables x1, . . . , xk, we write  (x) for the closed formula
with x(j) substituted for xj for each 1 ≤ j ≤ k. Given a closed Presburger
formula  , we write PA ∣=  if the formula is valid.

Syntax of PrCTL≥(U). Formally, fix some k in ℕ; a k-formula of PrCTL≥(U)
is a term ' defined by the abstract syntax

' ::= ⊤ ∣ ¬' ∣ ' ∨ ' ∣ E(' U ') ∣ �(j) ≥ c

1We include the divisibility relations, which are required for quantifier elimination, with

semantics x ≡p y iff ∃z.x+ pz = y for all x, y in ℤ and p ≥ 2.
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where  denotes a QFP formula with k free variables, 1 ≤ j ≤ k, and c is a
constant in ℕ!. Note that a k-formula is also a k′-formula for all k′ ≥ k. We
can simulate the classical “next” modalities X (see the proof of Proposition 3.1).

The classical, unrefined U modality can be defined by E(' U '′)
def
= E(' U⊤ '′)

using the ⊤ formula of QFP. We also define as usual EF '
def
= E(⊤ U '), and

the dualities ⊥
def
= ¬⊤, '∧'′ def

= ¬((¬')∨ (¬'′)), (�(j) < c)
def
= ¬(�(j) ≥ c), and

AG '
def
= ¬EF ¬'.

Semantics of PrCTL≥(U). The models of PrCTL≥(U) formulæ are labeled
transition systems ⟨S,→, ℓ, sinit⟩. Given a state s in S, write Paths(s) for the

set of maximal paths � = s0
a1−→ s1

a2−→ ⋅ ⋅ ⋅ starting in s = s0 and where each
ai is in ℤ

k and each si in S. The path is either infinite with length ∣�∣ = !, or

finite of form � = s0
a1−→ ⋅ ⋅ ⋅

an−→ sn if sn has no successor and then ∣�∣ = n. If
a1 ⋅ ⋅ ⋅ an is a sequence in (ℤk)∗ (with n = 0 for the empty sequence), then its
effect is Δa1 ⋅ ⋅ ⋅ an =

∑n
i=1 ai in ℤ

k.
A state s in S satisfies a PrCTL≥(U) formula ', written s ∣= ', in the

following inductive cases:

s ∣= ⊤ always,

s ∣= ¬' iff s ∕∣= ' ,

s ∣= '1 ∨ '2 iff s ∣= '1 or s ∣= '2 ,

s ∣= E(' U '
′) iff ∃� = s0

a1−→ s1
a2−→ ⋅ ⋅ ⋅ ∈ Paths(s), ∃n ≤ ∣�∣,

PA ∣=  (Δa1 ⋅ ⋅ ⋅ an), sn ∣= '′, and ∀m < n, sm ∣= ',

s ∣= �(j) ≥ c iff ℓ(s)(j) ≥ c .

As usual, a LTS S satisfies ', written S ∣= ', if sinit ∣= '. A k-VAS ⟨V, x0⟩ satis-
fies a PrCTL≥(U) k-formula ', written ⟨V, x0⟩ ∣= ', if there exists a k-admissible
partial cover C of ⟨V, x0⟩ such that C ∣= '. We will see later (Proposition 3.2)
that for existential PrCTL≥(U) this boils down to model-checking the canonical
coverability graph.

Examples of Formulæ. Consider once more the coverability properties of
Section 2: the coverability problem for a marking x can be checked by model-
checking these formulæ against C(S):

'cov,x
def
= EF

k
⋀

j=1

�(j) ≥ x(j) ; (8)

unboundedness by

'unb
def
= EF

k
⋁

j=1

�(j) ≥ ! ; (9)

place unboundedness in coordinate 1 ≤ j ≤ k by

'unb,j
def
= EF�(j) ≥ ! ; (10)
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non-regularity of the language by

'unreg
def
= EF

⋁

I ⊆ {1, . . . , k}
I ∕= ∅

⋁

I⊆J⊆{1,...,k}

⎛

⎝

⋀

j∈J

�(j) ≥ ! ∧ EF I,J
⊤

⎞

⎠ (11)

where
 I,J(x1, . . . , xk)

def
=
⋀

j∈I

xj < 0 ∧
⋀

j ∕∈J

xj ≥ 0 . (12)

We can check that the 3-admissible partial cover (5) satisfies all these formulæ
(setting x = ⟨1, 5, 1⟩ for (8)), thus our example VAS satisfies all these formulæ.

3.2 VAS Model Checking

We turn now to the VAS model checking problem: for a VAS S = ⟨V, x0⟩ and a
PrCTL≥ formula ', does ⟨V, x0⟩ satisfy '?

Undecidability of PrCTL≥(U). When considering how general PrCTL≥

is, its model-checking problem is rather unsurprisingly undecidable, even if re-
stricted to EFmodalities, i.e. for the PrCTL≥(F) fragment (the proof uses results
by Esparza (1997); see App. A.2):

Proposition 3.1. The VAS model-checking problem for PrCTL≥(F) is unde-
cidable.

Decidability of PrECTL≥(U). The formulæ used in the proof of Propo-
sition 3.1 employ alternation in a crucial way in order to encode the VAS con-
tainment problem, and a natural question is whether the existential fragment
PrECTL≥(U), with syntax

' ::= ⊤ ∣ ⊥ ∣ ' ∨ ' ∣ ' ∧ ' ∣ E(' U ') ∣ �(j) ≥ c ,

is decidable. This is the case: it suffices to check whether the canonical cover-
ability graph satisfies the formula, since by Lemma 2.4 it simulates any other
k-admissible partial cover. This is one of the benefits of considering CTL frag-
ments rather than ad-hoc logics: the standard toolkit of modal logic is readily
applicable, like the connection between simulations and existential CTL (see
App. A.3 for details):

Proposition 3.2. The VAS model-checking problem for PrECTL≥(U) is de-
cidable in nondeterministic polynomial time in ∣C(S)∣ and ∣'∣.

The decidability of VAS model-checking for PrECTL≥(U) is encouraging, but
our decision procedure relies on the construction of the canonical coverability
graph C(S). As the latter can have non primitive-recursive size (Cardoza et al.,
1976, who attribute the idea to Hack), this is not a very efficient algorithm: it
yields an Ackermannian upper bound (Figueira et al., 2011, Section VII.C) on
the complexity of VAS model-checking for PrECTL≥(U). This is a ridiculously
high upper bound, but we actually suspect the VAS model-checking problem
for PrECTL≥(U) to be Ackermann-complete. On the one hand, Proposition 3.2
implies the PrECTL≥(U) problem to be in NPTime for fixed VAS; on the other
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hand, small extensions within existential fragments quickly lead to undecidabil-
ity (e.g. when allowing �(j) < c or G ; see App. B.1 for a discussion).

The remainder of the paper is dedicated to a fragment of PrECTL≥(F) for
which we demonstrate a small model property and deduce decision procedures
working in exponential space. Although we use techniques adapted from Rack-
off and his successors, several points make these contributions stand out: the
simplicity of the logic, its ability to express branching properties directly, and
its intuitive semantics in terms of coverability graphs.

4 Eventually Increasing Formulæ

Let us consider the PrECTL≥(F) fragment. We are going to introduce a se-
mantic restriction to PrECTL≥(F) formulæ, inspired by a similar restriction
employed by Atig and Habermehl (2009) to fix Yen (1992)’s proof.

4.1 The PrECTL≥(F) Fragment

Eventually Increasing Formulæ. We can restrict ourselves to finite tree-
shaped models for PrECTL≥(F) formulæ; such a model C has a root s and a
number of leaves s1, . . . , sn, each satisfying some coverability constraint (CC)
subformula 
, of form


 ::= ⊤ ∣ ⊥ ∣ 
 ∧ 
 ∣ 
 ∨ 
 ∣ �(j) ≥ c , (13)

where 1 ≤ j ≤ k and c is in ℕ!. We call this model increasing if ℓ(si) ≥ ℓ(s) for
all 1 ≤ i ≤ n. A formula ' of PrECTL≥(F) is increasing if all its tree-shaped
models are increasing. An eventually increasing formula is a formula of form
EF' for some increasing formula '. We denote the set of (eventually) increasing
PrECTL≥(F) formulæ by (e)iPrECTL≥(F). All our example formulæ (8)–(11)
are eventually increasing.

Such a semantic restriction naturally leads to the question: is it decidable
whether a formula fits into the fragment? We first consider the related problem
of PrECTL≥(F) satisfiability: given a k-formula ', does there exist a k-VAS
⟨V, x0⟩ s.t. ⟨V, x0⟩ ∣= '? It turns out that this satisfiability problem reduces to
the satisfiability of its QFP subformulæ, which can be checked in NPTime (see
App. A.4):

Proposition 4.1. The satisfiability problem for PrECTL≥(F) is decidable in
NPTime.

Checking whether a formula is increasing is a bit more involved: we need to check
whether the various QFP subformulæ ensure every possible model is increasing,
which we do by constructing a (universal) Presburger formula (see App. A.5):

Proposition 4.2. Let ' be a k-formula of PrECTL≥(F). Whether ' is a k-
formula of iPrECTL≥(F) is decidable in NPTime.

4.2 Small Model Properties

The proof of the small model property for eiPrECTL≥(F) formulæ follows the
general design of Rackoff’s proof: first a small model property on models with
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bounded values (Lemma 4.3) using results on the existence of small solutions for
linear integer programming, and then a proof of existence of a small model in
general by induction on the dimension (Lemma 4.4).

Bounded Models. Define as usual with Rackoff’s approach an (i, r)-bounded
LTS as an i-admissible one where no finite value on the first i coordinates is
larger than r: for all s and every 1 ≤ j ≤ i, ℓ(s)(j) ≥ r implies ℓ(s)(j) = !.
If i ≤ k, the i-projection of a formula ' is a formula '∣i where every �(j) ≥ c
term of ' with j > i and c < ! has been replaced by ⊤. Adapting the proof of
(Rackoff, 1978, Lemma 4.5) to our case, we obtain (see App. A.6 for details):

Lemma 4.3 (Small Models for Bounded LTS). Let ⟨V, x0⟩ be a generalized k-
VAS with k > 1, ' be a PrECTL≥(F) formula, and 0 ≤ i ≤ k and r ≥ 0. If
there exists an (i, r)-bounded partial cover C of ⟨V, x0⟩ s.t. C ∣= '∣i , then there
exists a tree-shaped (i, r)-bounded partial cover C′ of ⟨V, x0⟩ with C

′ ∣= '∣i and

∣C′∣ ≤ (2∥V∥r)(k+∣'∣)d for some constant d (independent of V, x0, k, ', i, and
r).

General Models. We prove now a general small model property for eiPrECTL≥(F)
formulæ. It borrows several elements from earlier research, prominently (Rack-
off, 1978, Lemma 4.6 & 4.7), but also crucially the use of an increasing condi-
tion to allow “replaying” a model at a leaf (Atig and Habermehl, 2009). Given
V ⊆ (ℤ!)

k, a k-coverability formula ', and some 0 ≤ i < k, let

g(0)
def
= (2∥V∥ ⋅ ∣V∣)(k+∣'∣)d

g(i+ 1)
def
=
(

2∥V∥ ⋅ (2∥V∥g(i) + ∣'∣)
)(k+∣'∣)d

+ 1 + g(i)

where d is the constant of Lemma 4.3. We finally obtain our small model
property (see App. A.7 for a proof):

Lemma 4.4 (Small Model Property). Let ⟨V, x0⟩ be a generalized k-VAS and
' = EF'′ be a k-eventually increasing formula. Let '∣i be satisfiable. Then
there exists a tree-shaped i-admissible partial cover of ⟨V, x0⟩ that models '∣i

and of size ≤ g(i).

Lemma 4.4 results in a doubly exponential bound on the size of a k-admissible
model for an eventually increasing formula, from which an ExpSpace algorithm
can be designed, which is optimal considering the ExpSpace lower bound (Car-
doza et al., 1976):

Theorem 4.5 (Complexity of VAS model checking). The VAS model-checking
problem for eiPrECTL≥(F) formulæ is ExpSpace-complete.

See App. A.8 for details. Note that the different parameters on the size of the
VAS and of the formula influence this complexity differently: for fixed k the
obtained algorithm works in PSpace. A matching PSpace lower bound on the
place coverability problem is given by Rosier and Yen (1986, Corollary 3.1) for
fixed k ≥ 4.

Another interesting consequence of our bounds is that bounds for model
checking vector addition systems with states (VASS) are easy to derive; for in-
stance by encoding a k-VASS with state-space Q into a (k + 2⌈log2 ∣Q∣⌉)-VAS:

10



this is not as tight as the (k+3)-VAS encoding of Hopcroft and Pansiot (1979),
but allows to test in which control state we are in an eiPrECTL≥(F) formula
using coverability constraints �(j) ≥ 1. Thus the number ∣Q∣ of states only influ-
ences polynomially the complexity of VASS model checking for eiPrECTL≥(F).

4.3 Related Work

The first attempt at unifying ExpSpace upper bounds on VAS problems was
proposed by Yen (1992). This provided ExpSpace upper bounds for many
problems (boundedness, coverability, self-coverability, etc.; see Section 4 in (Yen,
1992)). For instance, we can consider the place boundedness problem: a path
formula for it has to guess nondeterministically a sequence � of introductions of
!-values leading to the desired unboundedness of place j. Let Π be the set of
repetition-free sequences � over {1, . . . , k}∖{j} and ∣Π∣ = n; write c(�) for the
set of elements appearing in � and �[i..k] for the factor of � between indices i
and k (inclusive):

∃�1, . . . , �2n+2, ∃�1, . . . , �2n+2(�0
�1−→ �1

�2−→ ⋅ ⋅ ⋅
�2n+2
−−−−→ �2n+2)

∧
⋁

�∈Π

⎛

⎝�2n+1(j) < �2n+2(j) ∧
⋀

i ∕∈c(�)

�2n+1(i) ≤ �2n+2(i)

⎞

⎠

∧

∣�∣
⋀

m=1

⎛

⎝�2m−1(�[m..m]) < �2m(�[m..m]) ∧
⋀

i ∕∈c(�[1..m])

�2m−1(i) < �2m(i)

⎞

⎠ .

The first main conjunct under the scope of the choice of � checks that an !-
value can appear in place j. The second main conjunct verifies the same for
each element of � in sequence.

The proof of (Yen, 1992) was flawed, and corrected by Atig and Habermehl
(2009) who introduced the increasing restriction to Yen’s logic to characterize
formulæ for which the ExpSpace bound held. Nevertheless, this restriction
meant that some of the bounds claimed by Yen did not hold any longer, for
instance for the regularity problem, and the above formula for place unbound-
edness is another instance of a non-increasing formula. Demri (2010) finally
proposed to relax the class of models by considering “pseudo-runs” instead of
actual runs, and provided a formal framework (general unboundedness proper-
ties) to express properties on such runs, allowing him to prove ExpSpace up-
per bounds for several open problems like place boundedness, regularity, strong
promptness, etc. This is the most closely related approach.

We can express general unboundedness properties as PrECTL≥(F) formulæ,
but not as eventually increasing ones, because these properties only enforce local
increasing conditions instead of the global one we employed in this work. On
the other hand many aspects of eiPrECTL≥(F) formulæ are beyond the reach
of general unboundedness properties, since for instance we allow full Presburger
arithmetic, and can nest EF modalities directly (general unboundedness prop-
erties would intersperse plain EF modalities between any two Presburger-refined
modalities). This opens the question whether we could design a larger fragment
of PrECTL≥(F) with an ExpSpace-easy VAS model-checking problem and cap-
turing general unboundedness properties.

11



We believe eiPrECTL≥(F) formulæ to be much easier to write than general
unboundedness properties; for instance for place unboundedness, one would also
have to write explicitly all the different permutations on the order in which !-
values can be introduced in a general unboundedness property, instead of the
straightforward formula (10).
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A Omitted Proofs

A.1 Proof of Lemma 2.4

Lemma A.1. Let S = ⟨V, x0⟩ be a k-VAS and C a k-admissible partial cover of
S. Then C ≼ C(S).

Proof. Let C = ⟨S,→, ℓ, s0⟩ be a k-admissible partial cover of S and C(S) =
⟨S′,→C , ℓ

′, s′0⟩ its CCG. Let us show that

Claim A.1.1. If s0
a1⋅⋅⋅an−−−−→ sn in C, then there exists s′n in S′ s.t. s′0

a1⋅⋅⋅an−−−−→C s′n
in C(S) and ℓ(sn) ≤ ℓ

′(s′n).

The claim is trivially true for n = 0, and for the induction step, assume

s0
a1⋅⋅⋅an−−−−→ sn

an+1
−−−→ sn+1 in C with s

′
0

a1⋅⋅⋅an−−−−→C s′n and ℓ(sn) ≤ ℓ
′(s′n) by induction

hypothesis. Since sn
an+1
−−−→ sn+1 and ℓ(sn) ≤ ℓ

′(s′n), the transition an+1 can also
be fired from s′n, leading to some s′n+1. Now, by definition of k-admissibility
(see Definition 2.2), for every 1 ≤ j ≤ k, either

1. ℓ(sn+1)(j) < ! and thus ℓ′(s′n+1)(j) ≥ ℓ(sn+1)(j) by monotonicity, or

2. ℓ(sn+1)(j) = ! and two cases arise:

∙ if ℓ(sn)(j) = !, then ℓ′(s′n)(j) = ! = ℓ′(s′n+1)(j), or

∙ there exists a j-antecedent si of (sn, an+1) on the path s0
a1⋅⋅⋅an−−−−→ sn

in C, thus by induction hypothesis on i ≤ n, ℓ′(s′i) ≥ ℓ(si).

We proceed by contradiction: assume that ℓ′(s′n+1)(j) = (ℓ′(s′n) +
an+1)(j) < !. By definition of a j-antecedent (see (1)),

ℓ(si)(j) < (ℓ(sn) + an+1)(j) = (ℓ(si) + Δai+1 ⋅ ⋅ ⋅ an+1)(j) , (14)

hence (Δai+1 ⋅ ⋅ ⋅ an+1)(j) > 0 and

ℓ′(s′i)(j) < (ℓ′(s′i) + Δai+1 ⋅ ⋅ ⋅ an+1)(j) = (ℓ′(s′n) + an+1)(j) < ! .
(15)

Furthermore, for every 1 ≤ m ≤ k with m ∕= j, either ℓ(sn)(m) = !
and then ℓ′(s′n)(m) = ! = ℓ′(s′n+1)(m), or ℓ(sn)(m) < ! and thus
ℓ(si)(m) < ! and (ℓ(sn)+ an+1)(m) = (ℓ(si)+Δai+1 ⋅ ⋅ ⋅ an+1)(m) ≥
ℓ(si)(m) implies (Δai+1 ⋅ ⋅ ⋅ an+1)(m) ≥ 0: therefore ℓ′(s′i)(m) ≤
(ℓ′(s′n) + an+1)(m) by monotonicity.

Thus overall ℓ′(s′i) ≤ ℓ
′(s′n)+ an+1 and ℓ′(s′i)(j) < (ℓ′(s′n)+ an+1)(j),

i.e. s′i is a j-antecedent for (s
′
n, an+1), in contradiction with ℓ′(s′n+1)(j) <

!.

Returning to the main proof, let us show that the relation

R = {(sn, s
′
n) ∈ S × S

′ ∣ ∃a1 ⋅ ⋅ ⋅ an ∈ V∗, s0
a1⋅⋅⋅an−−−−→ sn ∧ s

′
0

a1⋅⋅⋅an−−−−→C s′n} (16)

is a monotone simulation between C and C(S). Indeed,

1. s0 R s′0 thus R fulfills Definition 2.3.1, and

2. if sn R s′n then
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(a) because C(S) is deterministic, given a1 ⋅ ⋅ ⋅ an there is no choice for
s′n, which verifies ℓ(sn) ≤ ℓ

′(s′n) by the previous claim, thus R fulfills
Definition 2.3.2a, and

(b) if furthermore sn
an+1
−−−→ sn+1, then by the claim there exists s′n+1

s.t. s′0
a1⋅⋅⋅anan+1
−−−−−−−→C s′n+1, thus verifying sn+1 R s′n+1 by definition

of R and s′n
an+1
−−−→C s′n+1 because C(S) is deterministic: R fulfills

Definition 2.3.2b.

A.2 Proof of Proposition 3.1

Proposition A.2. The VAS model-checking problem for PrCTL≥(F) is unde-
cidable.

Proof sketch. We reduce from the VAS model-checking problem for CTL(F,Xa),
which is shown undecidable by Esparza (1997, Section 4.5) using a reduc-
tion from the VAS containment problem. Consider an instance ⟨S, '⟩ of the
VAS model-checking problem for CTL(F,Xa); we build an instance ⟨S ′,Φ⟩ of
the PrCTL≥(F) model-checking problem s.t. S ∣= ' iff S ′ ∣= Φ. Indeed, let
S = ⟨V, x0⟩ be a k-VAS with V = {a1, . . . , an}, and define a (k + n)-VAS S ′

that simulates each transition aj on the first k coordinates and additionally
increments coordinate k + j. We also define inductively a PrCTL≥(F) formula
�(') from the CTL(F,Xa) formula ', by preserving EF modalities, and by trans-
lating relativized “next” subformulæ EXaj

'′ with aj in V as EF aj
�('′) where

 aj
(x1, . . . , xk′)

def
= xk+j = 1. Finally, we need to ensure that the considered

partial cover is a partial unfolding of the reachability graph, i.e. that we do not

allow !-values, by defining Φ
def
= �(') ∧ AG

(

⋀k+n
j=1 �(j) < !

)

.

A.3 Proof of Proposition 3.2

Lemma A.3. If S1 ≼ S2 and ' is a PrECTL≥(U) formula, then S1 ∣= '
implies S2 ∣= '.

Proof. By definition of S1 ≼ S2, there exists a covering simulation R ⊆ S1×S2.
First note that the following claim holds by induction on i thanks to Defini-
tion 2.3.2b:

Claim A.3.1. If s R s′ and � = q0
a1−→ q1

a2−→ ⋅ ⋅ ⋅ is a path in Paths(s), then

there exists a path �′ = q′0
a1−→ q′1

a2−→ ⋅ ⋅ ⋅ in Paths(s′) s.t. qi R q′i for all i and
∣�′∣ ≥ ∣�∣.

For the main proof, let us prove by induction on ' that for any s R s′, s ∣= '
implies s′ ∣= ', which will yield the lemma by Definition 2.3.1.

For ⊤ and ⊥ s ∣= ⊤ and s′ ∣= ⊤, s ∕∣= ⊥ and s′ ∕∣= ⊥.

For a coverability constraint if s ∣= �(j) ≥ c, then since ℓ2(s
′) ≥ ℓ1(s) ≥ c

by Definition 2.3.2a, s′ ∣= �(j) ≥ c.

For ' ∨ '′ or ' ∧ '′ the result holds by ind. hyp.
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For E(' U '′) if s ∣= E(' U '
′), i.e. if there exists a path � = q0

a1−→ q1
a2−→

⋅ ⋅ ⋅ in Paths(s) and an index n ≤ ∣�∣, s.t. PA ∣=  (Δa1 ⋅ ⋅ ⋅ an), qn ∣= '′,
and for all 0 ≤ m < n, qm ∣= ', then by the claim, there exists a path

�′ = q′1
a1−→ q′2

a2−→ ⋅ ⋅ ⋅ in Paths(s′) s.t. qi R q′i for all i and ∣�′∣ ≥ ∣�∣.
In particular for i = n ≤ ∣�∣ ≤ ∣�′∣, by ind. hyp. q′n ∣= '′, and for all
0 ≤ i = m < n, by ind. hyp. q′m ∣= '. All in all, s′ ∣= E(' U '

′).

Corollary A.4. Let S = ⟨V, x0⟩ be a k-VAS and ' a k-formula of PrECTL≥(U,X).
Then S ∣= ' iff C(S) ∣= '.

Proof. First assume S ∕∣= '. By definition, this means that for any k-admissible
partial cover C of S, C ∕∣= '. Since C(S) is a k-admissible partial cover of S,
C(S) ∕∣= '. Conversely, assume S ∣= '. By definition, there exists a k-admissible
partial cover C of S s.t. C ∣= '. By Lemma 2.4, C ≼ C(S), and by Lemma A.3,
C(S) ∣= '.

By Corollary A.4, the VAS model-checking problem for PrECTL≥(U) re-
duces to the model-checking problem on a particular, finite LTS. As expected,
this is a decidable problem:

Lemma A.5. Let k ≥ 1, S = ⟨S,→, ℓ, sinit⟩ be a finite LTS, and ' a k-
formula of PrCTL≥(U). Then whether S ∣= ' is decidable in nondeterministic
polynomial time in ∣S∣ and ∣'∣.

Proof. The decision procedure is an extension of the classical dynamic algorithm
for CTL that computes the satisfaction set J'′K for every subformula '′ of ': for

a PrCTL≥ formula '′, J'′K
def
= {s ∈ S ∣ s ∣= '′}. We show that these satisfaction

sets can be computed in a finite LTS, and the decision problem then reduces to
checking whether sinit ∈ J'K.

Write V = {a ∈ ℤ
k ∣ ∃s, s′ ∈ S, s

a
−→ s′}; V is a finite set {a1, . . . , an} since S

is finite. Let us first prove the following:

Claim A.5.1. Let X,Y ⊆ S and  be a QFP formula with k free variables.
Then

Pre ,Y (X)
def
= {s0 ∈ S ∣ ∃s

′ ∈ X, ∃m ≥ 0, ∃a1, . . . , am ∈ ℤ
k,

s0
a1−→ s1 ⋅ ⋅ ⋅ sm−1

am−−→ s′ ∧ PA ∣=  (Δa1 ⋅ ⋅ ⋅ am) ∧ ∀i < m, si ∈ Y }

is effectively computable.

The claim is an easy consequence of Parikh’s Theorem: for every s0 in S, we
define the finite automaton A = ⟨X ∪ Y,V, �, {s0}, X⟩ with s0 as unique initial
state, � = → ∩ (Y × V × (X ∪ Y )) as set of transitions, and X as set of final

states. Accepting runs s0
a1−→ s1 ⋅ ⋅ ⋅ sm−1

am−−→ s′ in A verify s′ ∈ X and ∀i < m,
si ∈ Y .

The language L(A) has a semilinear Parikh image, which can be described by
an existential Presburger formula Ψ(y1, . . . , yn) verifying PA ∣= Ψ(y) for a vector

y in ℕ
n iff there exists an accepting run s0

a1⋅⋅⋅am−−−−→ s′ in A with ai occurring
exactly y(i) times in the string a1 ⋅ ⋅ ⋅ am for every 1 ≤ i ≤ n—see (Verma et al.,
2005) for a polynomial-time construction of Ψ from S. Thus a state s0 belongs
to Pre ,Y (X) iff

PA ∣= ∃y1, . . . , ∃yn,

n
⋀

i=1

yi ≥ 0∧Ψ(y1, . . . , yn)∧ 

(

n
∑

i=1

ai(1) ⋅ yi, . . . ,

n
∑

i=1

ai(k) ⋅ yi

)
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which is decidable in NPTime since this is an existential formula of Presburger
Arithmetic.

Returning to the main proof, we merely need to define J'K by induction on
':

J⊤K
def
= S

J¬'K
def
= S∖J'K

J' ∨ '′K
def
= J'K ∪ J'′K

JE(' U '
′)K

def
= Pre ,J'K(J'

′K)

J�(j) ≥ cK
def
= {s ∈ S ∣ ℓ(s)(j) ≥ c} .

As a direct consequence of Corollary A.4, of the finiteness of the canonical
coverability graph, and of Lemma A.5, we conclude:

Proposition A.6. The VAS model-checking problem for PrECTL≥(U) is de-
cidable in nondeterministic polynomial time in ∣C(S)∣ and ∣'∣.

A.4 Proof of Proposition 4.1

Proposition A.7. The satisfiability problem for PrECTL≥(F) is decidable in
NPTime.

Proof sketch. Let ' be a k-formula of PrECTL≥(F). Let V be the positive and
negative canonical base: V = {ej ,−ej ∣ 1 ≤ j ≤ k} where ej is the unit vector
with ej(j) = 1 and ej(i) = 0 if i ∕= j. For any x0 in ℕ

k, ⟨V, x0⟩ is a k-VAS.
Introducing an ! value in coordinate j in order to satisfy a �(j) ≥ ! constraint is
always possible by firing ej and −ej in sequence. Finite coverability constraints
of form �(i) ≥ c are satisfiable by choosing a high enough x0. Thus coverability
constraints are always satisfiable. Finally, satisfying QFP constraints  on paths
for EF modalities is done by finding a solution to  in NPTime, and if there
exists one, playing the corresponding sequence of transitions. To sum up, ' is
satisfiable iff all its Presburger formulæ are satisfiable.

A.5 Proof of Proposition 4.2

Proposition A.8. Let ' be a k-formula of PrECTL≥(F). Whether ' is a
k-formula of iPrECTL≥(F) is decidable in NPTime.

Proof. Let ' be a k-formula of PrECTL≥(F). We are going to compile the
constraints on any tree-shaped model of ' into Presburger arithmetic.

Consider a modal subformula EF '
′ and a tree-shaped submodel with s

u
−→ s′

s.t. s′ ∣= '′ and PA ∣=  (Δu) (and thus s ∣= EF '
′). We associate k-tuples of

variables x̄ = ⟨x̄(1), . . . , x̄(k)⟩, ȳ = ⟨ȳ(1), . . . , ȳ(k)⟩, and Ω̄ = ⟨Ω̄(1), . . . , Ω̄(k)⟩
to each such modal subformula of ' representing the reached label ℓ(s′), the
effect of the last followed sequence of transitions Δu, and the set of coordinates
holding an ! value {1 ≤ j ≤ k ∣ ℓ(s)(j) = !} (represented by integers with
the “C semantics” that value “1” stands for true and any other value for false),
along with a k-tuple of variables x̄0 representing the initial (root) marking ℓ(s0).
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We inductively define an existential Presburger formula �(x̄0, x̄, Ω̄, '
′) for

each subformula '′ of ', carrying information about the root marking (x̄0) and
the previous marking (x̄ and Ω̄):

�(x̄0, x̄, Ω̄,⊤)
def
= ⊤ (17)

�(x̄0, x̄, Ω̄,⊥)
def
= ⊥ (18)

�(x̄0, x̄, Ω̄, '1 ∨ '2)
def
= �(x̄0, x̄, Ω̄, '1) ∨ �(x̄0, x̄, Ω̄, '2) (19)

�(x̄0, x̄, Ω̄, '2 ∧ '2)
def
= �(x̄0, x̄, Ω̄, '1) ∧ �(x̄0, x̄, Ω̄, '2) (20)

�(x̄0, x̄, Ω̄, �(j) ≥ c)
def
=

{

Ω̄(j) = 1 if c = !

⊤ otherwise
(21)

�(x̄0, x̄, Ω̄, '
′ = EF '

′′)
def
=

{

∃x̄′Ω̄′.�(Ω̄, Ω̄′) ∧ � ′(x̄0, x̄, x̄
′, Ω̄′, '′) if '′′ is a CC (13)

∃x̄′Ω̄′.�(Ω̄, Ω̄′) ∧ � ′′(x̄0, x̄, x̄
′, Ω̄′, '′) otherwise

(22)

� ′(x̄0, x̄, x̄
′, Ω̄, '′)

def
= (∃j.1 ≤ j ∧ j ≤ k ∧ Ω̄(j) ∕= 1 ∧ x̄′(j) < x̄0(j))

∧ � ′′(x̄0, x̄, Ω̄, '
′) (23)

� ′′(x̄0, x̄, x̄′, Ω̄, '
′ = EF '

′′)
def
= ∃ȳ.�(x̄0, x̄

′, Ω̄′, '′′) ∧  (ȳ)

∧

⎛

⎝

⋀

1≤j≤k

Ω̄(j) ∕= 1 =⇒ ȳ(j) = x̄′(j)− x̄(j)

⎞

⎠

(24)

�(Ω̄, Ω̄′)
def
=

k
⋀

j=1

Ω̄(j) = 1 =⇒ Ω̄′(j) . (25)

Hence for each '′ = EF '
′′ modal subformula, we guess the reached marking

(the x̄′ and Ω̄′ variables in (22)) and the effect of the last sequence of transitions
Δu (the ȳ variables in (24)). The latter is checked against  in (24). However
some of the ȳ variables might be left unrelated to the actual effect of u (which
is x̄′ − x̄) if the coordinate j at hand contains an !-value, i.e. if Ω̄(j) = 1.
Equation (21) checks the consistency of the set of !-values guessed in (22) with
coverability constraints, while (25) ensures that !-values are propagated in the
model. When we reach a leaf, i.e. when we consider a formula EF 
 with 
 a
CC, we check with (23) whether the formula has decreased on this branch, that
is to say, whether there is a place on which no ! value was introduced and the
current marking x̄ is not greater the that of the root x̄0: thus the constructed
Presburger formula checks the existence of a counter-example to the fact that
' is increasing.

Consider the same set of vectors V as in the proof Proposition 4.1; given an
appropriate x0 this set can satisfy any '. Let

Ψ
def
= ∃x̄0.�(x̄0, x̄0, (0)1≤i≤k, ') ; (26)

Ψ is an existential Presburger formula which is satisfiable iff we can build a k-
admissible partial cover of the k-VAS ⟨V, x0⟩ (for an appropriate x0) satisfying '
but not increasing. We have thus reduced the question of increasingness to exis-
tential Presburger satisfaction formula; as Ψ can be constructed in polynomial
time, the problem can thus be solved in NPTime.
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A.6 Proof of Lemma 4.3

We prove Lemma 4.3 with refined parameters for the size of formulæ:

Formula Size. We consider several parameters on the size of PrECTL≥(F)
formulæ ': its disjunctive size ∣'∣

∨
, corresponding to its modal size when max-

imizing over disjunctions, defined inductively by

∣⊤∣∨
def
= ∣⊥∣∨

def
= ∣�(j) ≥ c∣∨

def
= 0 ∣EF '∣∨

def
= 1 + ∣'∣∨

∣' ∨ '′∣
∨

def
= max(∣'∣

∨
, ∣'′∣

∨
) ∣' ∧ '′∣

∨

def
= ∣'∣

∨
+ ∣'′∣

∨

its conjunctive size ∣'∣
∧

measuring the maximal number of leaves in a tree-
shaped model and defined inductively by

∣⊤∣
∧

def
= ∣⊥∣

∧

def
= ∣�(j) ≥ c∣

∧

def
= 0 ∣EF '∣∧

def
=

{

1 if ' is a CC (13)

0 otherwise

∣' ∨ '′∣∧
def
= max(∣'∣∧ , ∣'

′∣∧) ∣' ∧ '′∣∧
def
= ∣'∣∧ + ∣'′∣∧

(note that ∣'∣∨ ≥ ∣'∣∧ for any formula '), its maximal constant size

∥'∥
def
= ∥{c ∈ ℕ ∣ ∃j, (�(j) ≥ c) ∈ sub(')}∥

and two measures related to the QFP formulæ  appearing in EF modalities:
the Presburger constant size Prc(') defined as the log of the maximal constant
(i.e. size of a � subterm according to (7)) appearing in any QFP formula, and
the Presburger constraint size Prm(') defined as the total number of Presburger
constraints (i.e. of subterms � according to (7)) appearing in '. For instance,
with formulæ (8)–(11), ∣'∣

∨
≤ 2, ∣'∣

∧
= 1, and Prm(') ≤ k.

Lemma A.9 (Small Models for Bounded LTS). Let ⟨V, x0⟩ be a generalized
k-VAS with k > 1, ' be a PrECTL≥(F) formula, and 0 ≤ i ≤ k and r ≥ 0. If
there exists an (i, r)-bounded partial cover C of ⟨V, x0⟩ s.t. C ∣= '∣i , then there
exists a tree-shaped (i, r)-bounded partial cover C′ of ⟨V, x0⟩ with C

′ ∣= '∣i and

∣C′∣ ≤ (2∥V∥+Prc(')r∣'∣
∨
)(k+∣'∣∧+Prm('))d for some constant d (independent of

V, x0, k, ', i, and r).

Proof. As in (Rackoff, 1978, Lemma 4.5) we identify and remove loops (called
i-loops) in (an unfolding of) C before reintroducing them in a controlled manner
in order to maintain both the satisfaction of Presburger formulæ on paths and
the existence of some j-antecedent for every introduced !-value. These two
points are specific to our problem.

To this end, we decompose the unfolding of C into a tree of individual seg-
ments where no ! values are introduced. Figure 2 illustrates this decomposition
on a partial cover of the VAS of Figure 1 which models the non-regularity for-
mula (11). The model is decomposed into three segments �1, �2, and �3, along
with Presburger constraints inherited from EF modalities (dashed above) and
j-antecedency relations (dashed below).

We find and remove i-loops in each segment individually. Both j-antecedency
relations and the Presburger formulæ in modalities are used as Presburger con-
straints on the number of times each i-loop should appear. The bounds of
Papadimitriou (1981) on the size of solutions for linear constraints result in a
small number of i-loops having to be reintroduced in order to yield C′. Details
follow.
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⟨1, 0, 1⟩ ⟨2, 1, 0⟩ ⟨2, 0, 0⟩ ⟨1, 0, 1⟩ ⟨0, 0, 2⟩ ⟨1, !, 1⟩ ⟨1, !, 1⟩a c b b a c

⊤

x1 ≥ 0 ∧ x2 > 0 ∧ x3 ≥ 0

x1 ≥ 0 ∧ x2 < 0 ∧ x3 ≥ 0

�1 �2 �3

Figure 2: Decomposition of a model for (11).

Decomposition by EF Formulæ. The PrECTL≥(F) fragment clearly en-
joys a finite tree model property, in the sense that any k-admissible partial cover
C that models a PrECTL≥(F) formula ' can be “unfolded” into a tree-shaped
one.

Formally, since

EF (' ∨ '
′) ≡ (EF ') ∨ (EF '

′) , (27)

we can put any PrECTL≥(F) formula ' into disjunctive normal form, by pulling
all disjunctions to the front, i.e. ' ≡

⋁

m 'm where each 'm is disjunction-free.
Then by definition C ∣= ' iff there exists m s.t. C ∣= 'm, thus we can restrict our
attention to disjunction-free formulæ. The unfolding then consists roughly in
associating subterms of ' with states of C and choosing intermediate states for
paths verifying EF '

′ formulæ. The latter formulæ decompose C′ into ≤ ∣'∣∨
segments s

w
−→ s′ in C where s ∣= EF '

′ thanks to PA ∣=  (Δw) and s′ ∣= '′.

Example A.10. Consider the CCG C given in Figure 1 and formula 'unreg

given in (11). We have

'unreg ≡
⋁

I ⊆ {1, . . . , k}
I ∕= ∅

⋁

I⊆J⊆{1,...,k}

EF

⎛

⎝

⋀

j∈J

�(j) ≥ ! ∧ EF I,J
⊤

⎞

⎠ (28)

and we can select a subformula satisfied by C (with I = J = {2}):

'′
unreg

def
= EF (�(2) ≥ ! ∧ EFx1≥0∧x2<0∧x3≥0⊤) . (29)

In turn, we can unfold C into the partial cover displayed in Figure 2. The
decomposition of this model by EF subformulæ results in the two segments
displayed on top with their respective Presburger constraints.

Decomposition by Antecedents. First observe that there are

J ≤ k∣'∣∧ (30)

pairs (s, a) with a j-antecedent s′ in the unfolding of C, because once introduced
an !-value cannot disappear. All in all, this unfolding is split into

M
def
= 2J + ∣'∣

∨
≤ 2k∣'∣

∧
+ ∣'∣

∨
≤ (2k + 1)∣'∣

∨
(31)

segments �1, . . . , �M defined by various extremal points:
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1. the ≤ ∣'∣
∨
+1 states s, s′ witnessing the satisfaction of EF '

′ subformulæ
of ', i.e. with s ∣= EF '

′ thanks to PA ∣=  (Δw) and s′ ∣= '′, and

2. the ≤ 2J different states s′ and s′′ corresponding to j-antecedency rela-
tions of form s′

w
−→ s

a
−→ s′′.

No !-value is introduced within a segment before its last transition.
Let s′

w
−→ s

a
−→ s′′ be the path witnessing that s′ is a j-antecedent of (s, a).

We capture this relationship with a QFP formula  j
z
defined for any z in ℕ

k
!

and j ≤ k by

 j
z
(x1, . . . , xk)

def
= xj > 0 ∧

⋀

1 ≤ l ≤ k
z(l) < !

xl ≥ 0 . (32)

Indeed, PA ∣=  jℓ(s′′)(Δw ⋅ a) is then a characterization of j-antecedency. Note

that the sequence w ⋅ a might span over several consecutive segments �p for
1 ≤ p ≤M .

Example A.11. Continuing with the example of Figure 2, an !-value is in-
troduced in the 6th state with the 1st and 4th states as possible 2-antecedents,

where  2
⟨0,0,2⟩(x1, x2, x3)

def
= (x1 ≥ 0 ∧ x2 > 0 ∧ x3 ≥ 0), and in each case with

PA ∣=  2
⟨0,0,2⟩(Δacbba) =  2

⟨0,0,2⟩(Δba) =  2
⟨0,0,2⟩(⟨0, 1, 0⟩). Choosing arbitrar-

ily the 4th state as antecedent, we obtain a decomposition into three segments
�1, �2, and �3.

The constraints on the segments are then

∙ PA ∣= ⊤(Δacbba) (corresponding to the constraint on top of the �1�2
segment),

∙ PA ∣=  2
⟨0,0,2⟩(Δba) (corresponding to the constraint below the �2 seg-

ment), and

∙ PA ∣=  {2}(Δc) (corresponding to the constraint above the �3 segment,
where  {2}(x1, x2, x3) is defined in (12) as x1 ≥ 0 ∧ x2 < 0 ∧ x3 ≥ 0).

i-Loops Removal. Next, let up be the transition label in (ℤk)∗ of each seg-
ment �p, 1 ≤ p ≤M . We apply the decomposition technique of (Rackoff, 1978,
Lemma 4.5) to each up: call a factor v of up an i-loop if Δv(j) = 0 for each
1 ≤ j ≤ i and Δv′(j) ∕= 0 for some 1 ≤ j ≤ k for any proper factor v′ of v, i.e.
no proper factor of v is an i-loop. Considering again the example of Figure 2,
the sequence acb between the 1st and 4th states is both a 3-loop and a 2-loop,
but not a 1-loop because the factor c between the 2nd and 3rd states is a 1-loop.

Rackoff’s technique decomposes up into a path u′p and a number of i-loops

(vn)n in (ℤk)∗ s.t. ∣u′p∣ ≤ (rk + 1)2 and

Δup = Δu′p +
∑

n

yn ⋅Δvn (33)

for some constants (yn)n each corresponding to the number of times the i-
loop vn is removed. In addition, the set of projections on the first i places of
vectors along u′p is the same as that of up, which garantees that i-loops can be
reintroduced freely.
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Each i-loop vn obtained this way has length at most ri ≤ rk, thus each

coordinate Δvn(j) has absolute value at most amax
def
= 2∥V∥rk, thus there are

at most N
def
= (2(2∥V∥rk) + 1)k i-loops with different effects. Identifying i-loops

having the same effect, we see that (33) only needs N different yn, while the

effect Δu′p is of absolute value at most bmax
def
= 2∥V∥(rk+1)2 on every coordinate.

Reintroducing i-Loops. In order to obtain a partial cover C′ that models
', we merely need to ensure that both the j-antecedent relations and the Pres-
burger constraints on paths are preserved. Indeed, finite values on the first i
coordinates are preserved by i-loop removal, thus the only difficulty is to ensure
that !-values and Presburger constraints are also preserved, so that we obtain
a partial cover and preserve constraints of form �(j) ≥ !.

We reintroduce i-loops: each of the J j-antecedency constraints translates
into verifying a Presburger constraint PA ∣=  jℓ(s′′)(

∑

p∈P Δup) and each of the

∣'∣
∨
modal subterms EF '

′ into a Presburger constraint PA ∣=  (
∑

p∈P Δup),
each time for some set P of consecutive indices corresponding to the span of the
j-antecedent relation or path verifying  , and we need to enforce the conjunc-
tion of all these J + ∣'∣∨ constraints. Therefore, we obtain a system of linear
constraints in

n
def
= (J + ∣'∣∨) ⋅N + Prm(') (34)

≤ (k∣'∣∧ + ∣'∣∨) ⋅N + Prm(')

≤ (k + 1)∣'∣∨ ⋅N + Prm(')

= (k + 1)∣'∣
∨
(2(2∥V∥rk) + 1)k + Prm(')

integer variables (telling how many times each i-loop should be reintroduced)—
the Prm(') term is needed to account for divisibility relations � ≡p �

′ in QFP
formulæ—and

m
def
= J ⋅ k + Prm(') ≤ k2∣'∣

∧
+ Prm(') (35)

constraints, with variable coefficients ≤ amax ⋅ 2
Prc(') in absolute value, and

constant coefficients ≤M ⋅bmax+2Prc(') ≤ (2k+1)∣'∣
∨
bmax+2Prc(') in absolute

value. By the results of (Papadimitriou, 1981) (see also (Seshia and Bryant,
2005, Theorem 2)), we deduce a bound of

(n+ 1 +m)(1 + (2k + 1)∣'∣
∨
bmax + 2Prc('))(m(amax + 2Prc(')))2m+3

≤ (2∥V∥+Prc(')r∣'∣∨)
(k+∣'∣∧+Prm('))c (36)

for some constant c on the solutions of this system, i.e. on the number of times
each i-loop should be repeated. Multiplying (36) by the maximal length rk of
an i-loop and adding the sum M(rk +1)2 of the lengths of the u′p segments, we

end up with a bound of (2∥V∥+Prc(')r∣'∣
∨
)(k+∣'∣∧+Prm('))d for some constant d

on the length of the new partial cover C′.
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A.7 Proof of Lemma 4.4

We prove Lemma 4.4 for a refined version of g that takes formula size into
account. Given V ⊆ (ℤ!)

k, a k-coverability formula ', and some 0 ≤ i < k, let

g(0)
def
= (2∥V∥+Prc(') ⋅ ∣V∣ ⋅ ∣'∣

∨
)(k+∣'∣∧+Prm('))d

g(i+ 1)
def
=
(

2∥V∥+Prc(') ⋅ (2∥V∥g(i) + 2∥'∥) ⋅ ∣'∣
∨

)(k+∣'∣∧+Prm('))d

+ 1 + g(i)

where d is the constant of Lemma 4.3.

Lemma A.12. Let ⟨V, x0⟩ be a k-VAS and ' = EF'′ be an eventually increasing
k-formula. Let C be an i-admissible partial cover of ⟨V, x0⟩ with C ∣= '∣i . Then
there exists a tree-shaped i-admissible partial cover C′ of ⟨V, x0⟩ s.t. C

′ ∣= '∣i

and ∣C′∣ ≤ g(i).

Proof. The proof follows in part (Rackoff, 1978, Lemma 4.6 & 4.7) and is by
induction on i.

Base Case i = 0. The only requisite of '∣0 are Presburger constraints on
paths and proper introduction of !-values. As in the proof of Lemma 4.3, we
decompose a model of '∣0 into M segments, each labeled by some up, 1 ≤ p ≤

M , with Δup =
∑∣V∣
n=1 ynan for some (yn)n where V = {a1, . . . , a∣V∣}. The j-

antecedent constraints and Presburger constraints result in m linear constraints
as in (35) over

n
def
= (J + ∣'∣∨) ⋅ ∣V∣+ Prm(') ≤ (k + 1)∣'∣∨ ∣V∣+ Prm(') (37)

variables with coefficients at most amax
def
= 2∥V∥+Prc(') in absolute value and con-

stants at most bmax
def
= 2Prc('), thus by (Papadimitriou, 1981) we can construct

a model C′ of size at most

(n+1+m)(1+bmax)(mamax)
2m+3 ≤ (2∥V∥+Prc(')⋅∣V∣⋅∣'∣∨)

(k+∣'∣∧+Prm('))d = g(0)

for the constant d of Lemma 4.3.

Induction Step for i + 1. Let '∣i+1
= EF'′ with '′ an increasing formula.

We assume wlog. C to be tree-shaped, with an initial path of form sinit →
∗ s0

s.t. s0 ∣= '′. Set

r
def
= 2∥V∥g(i) + 2∥'∥ , (38)

which a high enough value to ensure any model of size g(i) will be unable to
decrease a coordinate holding r below the maximal finite constant c appearing
in a �(j) ≥ c subformula of '∣i+1

. Two cases arise:

If 퓒 is (i + 1, r)-bounded then by Lemma 4.3 it is of length at most

(2∥V∥+Prc(')r∣'∣∨)
(k+∣'∣∧+Prm('))d = g(i+ 1) .

Otherwise there exists some state s′ in C with r ≤ ℓ(s′)(j) < ! for some j;
wlog. we assume this to occur only in j = i+ 1.
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Consider the leaves s1, . . . , sn of C. Since '′ is increasing, ℓ(sl) ≥ ℓ(s)
for all 1 ≤ l ≤ n. By monotonicity, this means that we can “replay” the
entire submodel rooted in s0 from any of the leaves s1, . . . , sn, i.e. fire the
same sequences of transitions and introduce (if necessary) !-values at the
same points. By performing this operation sequentially on s1, then on
s12 (the leaf corresponding to s2 in the replay started in s1), then on s23
(the leaf corresponding to s13 in the replay from s12, where s

1
3 is the leaf

corresponding to s3 in the replay from s1), . . . , we end with a copy of the
submodel rooted at sn−1

n s.t. sn−1
n ∣= '′, and sinit →

∗ s0 →
∗ s1 →

∗ s12 →
∗

s23 →
∗ ⋅ ⋅ ⋅ sn−1

n , i.e. we have constructed a model C1 of '∣i+1
, which is also

an (i+ 1)-admissible partial cover of ⟨V, x0⟩.

There are two immediate but crucial properties of C1:

1. there exists now a first state s′ with r ≤ ℓ(s′)(j) < ! reachable from
sinit, and it appears somewhere in the segment sinit →

∗ sn−1
n ;

2. any !-value that appeared in any of the leaves s1, . . . , sn is now
introduced during the prefix sinit →

∗ sn−1
n and its j-antecedency

relation also points inside this prefix.

Because of these two properties, we can identify j-antecedency relations
that “cross” the s′ boundary inside the sinit →

∗ sn−1
n prefix. By mono-

tonicity, we can also “replay” the pumping segment (called wa in (1)) and
introduce the !-value on the second instance only; doing so for all the j-
antecedency relations that span over s′ (in their order of appearance after
s′) allows to split the prefix sinit →

∗ sn−1
n into two segments sinit →

∗ s′

and s′ →∗ sn−1
n with no j-antecedency relations crossing over s′. Call C2

this new model of '∣i+1
.

We now treat the prefix sinit →
∗ s′ and the suffix s′ →∗ sn−1

n with the
submodel rooted at sn−1

n separately:

∙ the prefix sinit →
∗ s′ can in turn be split into sinit →

∗ s
a
−→ s′ with

a in V and s the last state with ℓ(s)(j) < r or ℓ(j) = ! for all
1 ≤ j ≤ i + 1. The segment sinit →

∗ s is (i + 1, r)-bounded and
verifies the (i+ 1)-formula

'′′ def
= EF

i+1
⋀

j=1

(�(j) ≥ ℓ(s)(j)) ∧
⋀

j∣ℓ(s)(j)=!

(�(j) ≥ !) . (39)

By Lemma 4.3 we can replace sinit →
∗ s by another prefix also veri-

fying '′′ of size at most

(2∥V∥r)k
d

(40)

By monotonicity, continuing this model of '′′ with a and the suffix
we obtain a model of '∣i+1

.

∙ the suffix s′ →∗ sn−1
n along with the submodel rooted at sn−1

n is
in particular an i-admissible model of '∣i for the generalized k-VAS
⟨V, ℓ(s)⟩. By induction hypothesis we can replace it with a model
of size g(i). Since ℓ(s)(i + 1) ≥ r, this new model is also (i + 1)-
admissible and models '

i+1 , as no value on the (i+ 1)th coordinate
can drop below the largest constant in '.
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All in all, we have constructed a model C′ of size at most

(2∥V∥r)k
d

+ 1 + g(i) =
(

2∥V∥(2∥V∥g(i) + 2∥'∥)
)kd

≤ g(i+ 1) .

A.8 Proof of Theorem 4.5

Theorem A.13 (Complexity of VAS model checking). The VAS model-checking
problem for eiPrECTL≥(F) formulæ is ExpSpace-complete.

Proof. The hardness result already holds for place coverability and is due to
Lipton (Cardoza et al., 1976). We only need to prove the upper bounds.

Thanks to Lemma 4.4, we know that if a coverability formula ' has a model,
then it has one of size is bounded by

g(k) ≤ (2∥V∥+∥'∥+Prc(')∣V∣∣'∣
∨
)2

kd′ log2(k+∣'∣∧+Prm('))

(41)

for some constant d′ independent of V and '. We use a non-deterministic
algorithm, that guesses and checks a witness on the fly up to length g(k) in
space O((∥V∥+ ∥'∥+Prc(') + log2 ∣V∣+ log2 ∣'∣∨) ⋅ (k+ ∣'∣∧ +Prm(')) ⋅ 2kd

′

),
which is polynomial for fixed k and exponential otherwise. Note that the size
of the formula ' only influences this bound polynomially.

B Additional Comments

B.1 Extensions of PrECTL≥(U)

We consider in this section the PrECTL≥(G) fragment, and a variant of PrECTL≥(U)
with “until” refined by two QFP formulæ.

“Globally” Modalities. We use the natural semantics of G as a dual modal-
ity of F:

s ∣= EG ' iff ∃� = s0
a1−→ s1

a2−→ ⋅ ⋅ ⋅ ∈ Paths(s),

∀n ≤ ∣�∣, PA ∣=  (Δa1 ⋅ ⋅ ⋅ an) implies sn ∣= ' .

This EG modality is not very useful with our partial cover semantics, because
we have no control on the length of paths (it often suffices to “cut” a branch
in order to satisfy a EG modality). However, if we look at satisfaction on a
particular partial cover, things change:

Proposition B.1 (Undecidability of CCG Model-Checking). Let S = ⟨V, x0⟩
be a k-VAS and ' a k-formula of PrECTL≥(G). It is undecidable whether
C(S) ∣= '.

Proof sketch. We reduce an instance ⟨ℳ⟩ of the halting problem in 2-counter
deterministic Minsky machines to an instance ⟨S, '⟩ of the CCG model-checking
problem. The construction of S is classical, using nondeterminism to simulate
“q: if c = 0 then goto q′ else c← c− 1; goto q′′” instructions. This VAS allows
many incorrect runs in addition to a single honest run that corresponds to the
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unique run ofℳ. The task of ' is thus to filter out dishonest runs in C(S) and
only leave the honest one, and also to test whether the honest run halts. Let

'
def
= EG ¬honest∨halt

⊥ . (42)

A run � = s0
a1−→ s1

a2−→ ⋅ ⋅ ⋅ satisfying ' has to continuously ensure that
PA ∕∣=  ¬honest∨halt(Δa1 ⋅ ⋅ ⋅ an). As should be clear from its name,  ¬honest∨halt

holds if the run is dishonest or halts, so that C(S) ∣= ' iffℳ does not halt.
Assuming S to be a (2∣Q∣+ 2)-VAS coding the states ofℳ in its first 2∣Q∣

coordinates and the two counters in the last two coordinates, and coordinate
q ∈ Qt to denote that an “if branch” has just been chosen (which should imply
that the counter cq holds zero), this can be checked by defining

 ¬honest∨halt
def
=

2
⋁

c=1

x2∣Q∣+c < 0 (negative counter value)

∨
⋁

q∈Qt

xq ≥ 1 ∧ xcq > 0 (“if branch” when cq ∕= 0)

∨ x2qf ≥ 1 . (halt state)

Observe that this proof does not hold if we consider any k-admissible partial
cover instead of the CCG: the cover could simply stop in the initial state and
verify ' even ifℳ did halt.

“Until” Modalities with Two Presburger Formulæ. The semantics of
EG lead rather naturally to an extension of PrCTL≥(U) where we also control
what happens along the way of the “until”:

s ∣= E(' U , ′ '′) iff ∃� = s0
a1−→ s1

a2−→ ⋅ ⋅ ⋅ ∈ Paths(s), ∃n ≤ ∣�∣,

PA ∣=  ′(Δa1 ⋅ ⋅ ⋅ an), sn ∣= '′, and

∀m < n, PA ∣=  (Δa1 ⋅ ⋅ ⋅ am) implies sm ∣= ' .

The “until” modality of the paper can then defined as E(' U '
′)

def
= E(' U⊤, '

′).
Let us call the resulting existential fragment PrECTL≥(U2); it is easily seen to
have an undecidable VAS model-checking problem:

Proposition B.2. The VAS model-checking problem for PrECTL≥(U2) is un-
decidable.

Proof sketch. As in the proof sketch for Proposition B.1, we reduce from the
halting problem of deterministic 2-counter Minsky machines. In fact we keep
the same construction for the VAS S and only slightly modify the formula:

'
def
= E(⊥ U ¬honest, halt

⊤) . (43)

We leave the definition of  ¬honest and  halt to the reader’s imagination, and
conclude with the fact that S ∣= ' iffℳ halts.
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B.2 More Coverability-Like Properties

We present in this section a few more properties of vector addition systems
testable in ExpSpace. We already gave eiPrECTL≥(F) formulæ for coverabil-
ity, boundedness, place boundedness, and regularity in (8)–(11). We found
more examples considered by Yen (1992, Section 4), Atig and Habermehl (2009,
Section 6.1), and Demri (2010, Section 3.3).

1. Nondeterminism is a variant of coverability and asks whether two different
transitions a and a′ can be fired simultaneously. Define the vector of
ℕ
k xa by xa(j) = −a(j) if a(j) < 0 and xa(j) = 0 otherwise, and take

the (pointwise) least upper bound xa ⊔ xa′ : nondeterminism reduces to
coverability of xa ⊔ xa′ for some a ∕= a′:

'nondet
def
= EF

⋁

a ∕=a′∈V

k
⋀

j=1

�(j) ≥ (xa ⊔ xa′)(j) . (44)

2. Repeated control-state reachability (Habermehl, 1997) is used to model-
check !-regular properties. Using an encoding of the set of states Q using
⌈log2Q⌉ additional counters and an extra counter at index t incremented
with every transition, this property is a form of repeated coverability for
some vector x, and captured by

'rep-cov,x
def
= EF

⎛

⎝(

k
⋀

j=1

�(j) ≥ xj) ∧ EF rep-cov
⊤

⎞

⎠ (45)

where

 rep-cov(x1, . . . , xk)
def
= xt > 0 ∧

⋀

j ∕=t

xj ≥ 0 . (46)

Indeed, if there exists an infinite run in R(S) where x is covered infinitely
often, we can consider the infinite sequence x0, x1, . . . of configurations ≥ x

in this run; by Dickson’s Lemma there exists two indices i1 < i2 in this
sequence s.t. xi1 ≤ xi2 thus the corresponding factor between i1 and i2 in
the run verifies the  rep-cov condition. Conversely, if 'rep-cov,x holds, then
there exists a run covering x infinitely often by monotonicity.

3. Simultaneous unboundedness (Demri, 2010) tests whether a subset I of
{1, . . . , k} can be simultaneously unbounded. This is very simply captured
by

'sunb,I
def
= EF

⋀

j∈I

�(j) ≥ ! . (47)

4. Trace boundedness (Chambart et al., 2011) checks whether the language of
a VAS is a bounded language according to Ginsburg and Spanier (1964)’s
definition. Trace unboundedness can be checked by

'tunb
def
= EF

⋁

a ∕=b∈V

⋁

I⊆{1,...,k}

⋀

j∈I

�(j) ≥ !

∧ (EXaEF I,a
⊤) ∧ (EXbEF I,b

⊤) (48)
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where EXa was defined in the proof of Proposition 3.1, and  I,a is defined
for all a in ℤ

k and I ⊆ {1, . . . , k} by

 I,a(x1, . . . , xk)
def
=
⋀

j /∈I

xj ≥ −a(j) . (49)

It checks for the existence of two loops in the coverability graph, starting
with two different initial transitions on a and b (see (Chambart et al.,
2011, Proposition 4)).

Demri also shows that there is a LogSpace reduction of the strong promptness
detection problem to the complement of the simultaneous unboundedness prob-
lem (Demri, 2010, Lemma 3.4); in the same way, reversal-boundedness (Finkel
and Sangnier, 2008) reduces to place boundedness.

It is worth noting that in all our examples the various parameters on formula
sizes remained small: ∣'∣

∨
≤ 5, ∣'∣

∧
≤ 2, ∥'∥ ≤ ∥V∥, Prc(') ≤ ∥V∥, and

Prm(') ≤ k.
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