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Abstract

In this paper, a natural extension of the Lempel-Ziv complexity for several finite-
time sequences, defined on finite size alphabets is proposed. Some results on the
defined joint Lempel-Ziv complexity are given, as well as properties in connection
with the Lempel-Ziv complexity of the individual sequences. Also, some links with
Shannon entropies are exhibited and, by analogy, some derived quantities are pro-
posed. Lastly, the potential use of the extended complexities for data analysis is
illustrated on random boolean networks and on a proposed multidimensional exten-
sion of the minority game.
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1 Introduction

Many physical, biological or financial signals result from the dynamics of great
dimensional systems. As an example, in biology, the cells of the cardiac tissue
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exchange ions with the extracellular field by a nonlinear reaction, and with the
connected cells by (linear) diffusion. Hence, electric waves propagate on the
tissue, and the electrocardiogram (ECG) is the electric field produced by the
propagation and measured by an electrode. Another example can be found
in the collective actions of the genes, generating the production of proteins
in certain quantities. In finance, one can take the example of the variation
in the price of an asset, resulting from the collective action of the buyers and
sellers. In all these examples, the challenge is to describe or extract meaningful
information from the data [1,2], to characterize, to detect or to classify different
pathologies [3–10], etc.

Due to the complex origin of the signals, researchers generally use tools from
either information theory or from dynamic nonlinear processes. The goal is to
characterize as well as possible the degree of organization of the measured sig-
nals. The first approach is statistical, and the tools generally employed are en-
tropies [4,6,11–13] (or “approximate entropies” or multi-resolution entropies),
correlation measures [3], spectral analysis [14], etc. The second approach is
based on the fact that the underlying mechanisms producing the measured
signals are generally deterministic and nonlinear. This is clear in the exam-
ple of ECG, even if measurements may be corrupted by noise. The nonlinear
tools generally employed to study the signals come from chaos theory such as
Lyapunov exponents or dimensions (fractal, etc.) [1,5,9]. Other tools often em-
ployed come from the concept of complexity in the sense of Kolmogorov, more
particularly Lempel-Ziv complexity [2,8,10,15–18]. Several complexity mea-
sures for data analysis have already been proposed as presented in [11] and
in the references therein. However, in spite of the terminology, the approach
is generally more likely statistical. In this paper, we will focus on Lempel-
Ziv complexity. The motivation for this is that the data generally studied
in biomedical engineering have a nonlinear and deterministic origin. Further-
more, tools such as Lyapunov exponents are difficult to evaluate 1 and require
long time-computation. In contrast, the Lempel-Ziv complexity contains the
notion of complexity in the deterministic sense (Kolmogorov sense) as well as
in a statistical sense (Shannon sense), and can be computed with a low cost.
In the literature, this tool is generally employed to analyze mono-dimensional
signals. In this paper we show that contrary to what has been previously
claimed [8], this tool can be used for multidimensional signals. The goal is to
use the natural extension of the Lempel-Ziv complexity to characterize the
“regularity” of a system using several signals.

Section 2 recalls the basics on Lempel-Ziv complexity (LZC). Section 3 then
shows how the LZC can naturally be extended for multidimensional sequences.

1 reconstruction of the phase space, with several estimations to determine the em-
bedding dimension and the optimal delay; then, estimation of the whole Lyapunov
spectrum or just of some exponents (positive, max. . . )
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In this section we will give some properties of multidimensional LZC in con-
nection with “marginal” LZCs. Some parallels and differences with Shannon
entropy will be exhibited. In section 4 we will illustrate how the extended LZC
can capture the spatiotemporal organization of the signal delivered by a mul-
tidimensional nonlinear and nonlinearly coupled system. The illustration will
be done for two particular binary systems: random boolean networks and an
extension of the minority game. Finally, section 5 will give some conclusions
and perspectives.

2 Basics on the Lempel-Ziv complexity

Consider a sequence (or a word) S = s1 . . . sn of length n where each letter si

is taken from an alphabet A of finite size α. Kolmogorov in 1965 defined the
complexity of such a sequence as the size of the smallest binary program that
can produce this sequence [19]. The complexity in the sense of Kolmogorov
seems very general and computer-dependent. It was shown that even if a Kol-
mogorov complexity can be defined up to a constant, the evaluation of such a
complexity in a finite time is not guaranteed [19]. Several years later, in their
seminal work [20], A. Lempel and J. Ziv proposed to define a complexity in
the sense of Kolmogorov, but limiting their definition to programs based on
two operations: recursive copy and paste operations. They defined two fun-
damental notions to evaluate the Lempel-Ziv complexity (LZC): production
and reproduction operations. As in the original paper, we will denote SQ the
concatenation of two words S and Q, �(S) the length of a sequence S, S(i, j)
the sub-sequence sisi+1 . . . sj of S and π the operation suppressing the last
letter of a sequence, i.e. Sπ = S(1, �(S) − 1).

Reproduction: An extension R = SQ of a sequence S is said reproducible
from S if the sequence Q is in the vocabulary of SQπ, i.e. if Q is a sub-sequence
of SQπ. As an example, for S = 101 and Q = 010, R = SQ = 101010 is a
reproducible extension of S since q1 = s2 = r2, q2 = s3 = r3 and q3 = q1 = r4

previously copied, and Q is a sub-sequence of SQπ = 10101. In other words,
SQ can be reproduced from S by recursive copy and paste operations. As
in the initial paper, we will denote the reproduction by S −→ R and the
index p ≤ �(S) such that Q = R(p, �(Q) + p − 1) is called the pointer for the
reproduction S −→ R.

Production: A non-empty sequence S is said to be producible from a prefix
S(1, j) if S(1, j) −→ Sπ and j < �(S). From the previous example, it can be
seen that S = 101 produces SQ = 101010 since S can reproduce SQπ = 10101.
But S also produces T = 101011 while S does not reproduce this sequence.
The difference between reproduction and production is that in production the
last letter can come from a supplementary copy-paste but can also be “new”.
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We will denote production S(1, j) =⇒ S and S(1, j) is called a basis of S.

To understand how a program can build a sequence using these two operations,
consider a given word S. An index h2 can be found such that s1 =⇒ S(1, h2).
h2 = 2 always works, and if s2 = s1 one can also choose h2 = 3. If s2 = s1

and s3 = s2, then h2 = 4 also works; and so on. Then, there is an in-
dex h3 so that S(1, h2) =⇒ S(1, h3). And so on. Thus, S can be built as
s1 = S(1, h1) =⇒ S(1, h2) =⇒ S(1, h3) · · · =⇒ S(1, hm) = S [20]. The process
Hi(S) = S(1, h1)S(h1 + 1, h2) . . . S(hm−1 + 1, hm) is called the history of the
production and the sub-sequences S(hi−1 + 1, hi) are called the components
of the process. The size of the process is then defined as the number of com-
ponents of the process, i.e. cHi(S) = hm. Following the idea of Kolmogorov,
Lempel and Ziv sought the shortest production possible process. Hence they
defined a complexity in the sense of Lempel-Ziv as

c(S) = min
Hi∈{histories of S}

cHi(S) (1)

This quantity is not precisely a complexity since it does not give directly the
program and its size that can produce S, but c(S) is directly linked to the size
of such a program. As an illustration of LZC, for the sequence S = 0100100100
the process 0 =⇒ 01 =⇒ 0100 =⇒ 0100100 =⇒ 010010010 =⇒ 0100100100
is of size 6 while the minimal process 0 =⇒ 01 =⇒ 0100 =⇒ 0100100100
is only of size 4. In this example, it can be seen that in the minimal pro-
cess each S(1, hi+1), except the last one, cannot be reproduced but only pro-
duced by S(1, hi). In [20], Lempel and Ziv defined as exhaustive components
S(hi−1 + 1, hi) all the components that can be produced but not reproduced
by S(1, hi−1) and a history of a process is said to be exhaustive if all the
components are exhaustive, except possibly the last one. Then, they showed
that an exhaustive history is unique and that the number of components of
the exhaustive history is precisely the LZC [20]. This last remark led to algo-
rithms to evaluate the LZC of a sequence (see e.g. [21]). With the procedure
to evaluate the LZC, it can be seen that if the length of each component,
each pointer and the last letter of each component are stored, the complete
sequence can easily be retrieved 2 .

In conclusion, the LZC contains the notion of complexity in the sense of Kol-
mogorov. Furthermore, if the sequence S(n) = s1 . . . sn is random and if the

source is stationary and ergodic it can be shown that limn→+∞ c(S(n))
log(n)

n
=

H(S) where H(S) is the entropy rate of the source [19,20]: this result says
that the LZC also contains a notion of “average information quantity” in the
Shannon sense.

2 Notice that it is the idea used in many well known compression algorithms, such
as “gzip”. Other parsing schemes also exist [22], leading to several variants of com-
pression algorithms.
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Since the LZC tries to capture a degree of redundancy, or patterns that are
similar in a sequence, this tool seems interesting for the analysis of sequences
that appear complex but that may hide some simple underlying behaviors.
In this way, the LZC has been proposed to analyze chaotic sequences [21].
Furthermore, since the LZC can also be viewed as an estimation of Shannon
entropy, it seems that it can also be used for non deterministic signals. This
tool seems to bridge the two above- mentioned approaches. However, although
the LZC has already been employed for data analysis [8,10,15–18], it was only
used for scalar sequences. In the next section, we will show that the LZC is
in fact also naturally defined for vectorial sequences and thus can be applied
for multidimensional data analysis. Furthermore we will draw a parallel with
Shannon entropy, pointing out some similarities, but also some differences.

3 Multidimensional Lempel-Ziv complexity

As far as we know, the first attempt to use the LZC for spatiotemporal data
analysis was made by Kaspar and Schuster [21]. In their paper, they proposed
to analyze spatiotemporal signals defined on a finite size alphabet by comput-
ing a spatial LZC at each time t, i.e. for N sequences xi(t), i = 0, . . . , N − 1,
c(t) = c(x0(t) . . . xN−1(t)). Then, with their approach, the time evolution of
the spatial complexity c(t) can be analyzed to deduce a spatiotemporal behav-
ior. As an example, if the spatial LZC decreases with time, it can be concluded
that the signal/system tends to be more and more organized. However, such
an approach remains only spatial, and the temporal links are omitted. To
better understand this fact, if the signal has only two components (e.g. from
two sensors), by definition the spatial LZC remains constant and equal to 2
at each time t. Hence, the evolution of the spatial LZC fails in describing the
spatiotemporal behavior of the signal: in this example the spatial dimension
is not large enough.

A more natural approach is to extend directly the LZC for vectorial data.
This can be done naturally by extending the alphabet. To this aim, con-
sider k sequences Xi = xi,1 . . . xi,n for i = 0, . . . , k − 1, where the letters
are respectively in the alphabets A0, . . . ,Ak−1 of respective sizes α0, . . . , αk−1.
Consider now the sequence Z = z1 . . . zn, defined on the extended alphabet
B = A0 × · · · × Ak−1 of size α0 . . . αk−1, where the components are the k-
uplets zj = (x0,j , . . . , xk−1,j). Notice that Z is a sequence of n k-uplets and
not a sequence of k × n letters: sequence Z does not result from a letter mix-
ing approach. Since the equality relation holds for k-uplets, the production
and reproduction operations defined by Lempel and Ziv hold for k-uplets.
As a conclusion, all the work of Lempel and Ziv remains valid for vectorial
sequences, although not explicitly spelled out in their paper [20]. But once
again, it is important to notice that for vectorial sequences the alphabet has

5



no scalar elements but only k-uplet elements. Hence, we can define what we
will call the joint Lempel-Ziv complexity of sequences X0, . . . , Xk−1 by

c(X0, . . . , Xk−1) = c(Z) (2)

Furthermore, if the alphabets are the same and are of the form A = {0, . . . , α−
1}, we can also define a sequence Z = z1 . . . zn considering that each zj has the
xi,j as α-ary decomposition, i.e. zj =

∑k−1
i=0 xi,jα

i. Defining joint LZC of the Xi

as that of Z is exactly similar to the previous definition. The last assumption
is not restrictive since bijections can be found from the Ak to a subset of A of
size αk to achieve such a case, provided that α ≥ maxk αk. Moreover, using
this approach, the algorithm proposed in [21] to evaluate the LZC can still
be used, comparing scalars. With this definition, the LZC of multidimensional
signals can then be viewed as a joint LZC and analyzed regarding the LZC of
its components. The first property of the joint LZC is its obvious symmetry
by permutation of the Xj:

Property 1 The joint LZC is invariant by any permutation σ of {0, . . . , k −
1}, i.e.

c(X0, . . . , Xk−1) = c(Xσ(0), . . . , Xσ(k−1)) (3)

PROOF. Consider the exhaustive history of the vectorial sequence Z =
z1 . . . zn where zj = (x0,j , . . . , xk−1,j), i.e. EZ(Z) = Z(1, h1) . . . Z(hm−1 +
1, hm). Hence, whatever i = 2, . . . , m, we have both Z(1, hi−1) =⇒ Z(1, hi) and
Z(1, hi−1) �−→Z(1, hi). Thus, for any i, let us denote pi the pointer pi ≤ hi−1

such that both Z(hi−1 + 1, hi − 1) = Z(pi, pi + hi − hi−1 − 2) and zhi
�=

zpi+hi−hi−1−1. Furthermore, for any qi ≤ hi−1, Z(hi−1 + 1, hi) �= Z(qi, qi + hi −
hi−1 −1). The direct consequence is for all j, Xj(hi−1 +1, hi−1) = Xj(pi, pi +
hi − hi−1 − 2) and (x0,hi

, . . . , xk−1,hi
) �= (x0,pi+hi−hi−1−1, . . . , xk−1,pi+hi−hi−1−1).

Furthermore, whatever qi ≤ hi−1 there is at least one jqi
∈ {0, . . . , k − 1} so

that Xjqi
(hi−1 + 1, hi) �= Xjqi

(qi, qi + hi − hi−1 − 1). The equality between the
subsequences and the inequality between the k-uplets remain unchanged by
any permutation σ in {0, . . . , k−1} and the inequality between the sequences
holds with σ(jqi

), that finishes the proof. �

Due to this property, the joint LZC is uniquely defined. Note that a definition
using a sample mixing approach would destroy this symmetry (e.g. X0 = 00001
and X1 = 10100 leads to c(X0, X1) = c(X1, X0) = 4 �= c(x0,1x1,1 . . . x0,5x1,5) =
c(0100010010) = 5 �= c(x1,1x0,1 . . . x1,5x0,5) = c(1000100001) = 4). Further-
more, by a sample mixing approach, one can feel that the temporal links of a
sequence will be less well captured than by using this natural approach.
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Since the joint LZC is simply an LZC as defined by Lempel and Ziv, it possesses
all the properties of the LZC given in [20]. The first of them is the asymptotic
link with Shannon entropy:

Property 2 Consider k random sequences X0, . . . , Xk−1 that are jointly sta-
tionary and ergodic. Hence

lim
n→+∞ c(X0, . . . , Xk−1)

log(n)

n
= H(X0, . . . , Xk−1) (4)

where H(X0, . . . , Xk−1) is the joint entropy rate of the sequences.

PROOF. Consider the sequence Z = z1 . . . zn where zj =
(x0,j , . . . , xk−1,j) Since the Xi are jointly stationary and er-
godic, Z is stationary and ergodic. On the extended alphabet,
from [20], limn c(Z) log(n)

n
= H(Z) = limn

E[− log(Pr[z1,...,zn])]
n

. Since
Pr[z1, . . . , zn] = Pr[x0,1, . . . , xk−1,1, . . . , x0,n, . . . , xk−1,n] we obtain that
H(Z) = H(X0, . . . , Xk−1) that finishes the proof. �

This complexity clearly exhibits the fact that both spatial and temporal rela-
tions are captured by the joint LZC, at least statistically and asymptotically.

Notice now that in the LZC sense, a multidimensional signal is obviously more
complex than each single component. This can be summarized as follows.

Property 3 The joint LZC of k sequences X0, . . . , Xk−1 is greater than or
equal to the LZC of each component, that reads

c(X0, . . . , Xk−1) ≥ max(c(X0), . . . , c(Xk−1)) (5)

PROOF. Consider sequence Z of the k-uplets (x0,j , . . . , xk−1,j) and its ex-
haustive history EZ(Z) = Z(1, h1) . . . Z(hm−1 +1, hm). Since for all i we have
Z(1, hi−1) =⇒ Z(1, hi), obviously for all j, Xj(1, hi−1) =⇒ Xj(1, hi). As a
consequence EZ(Xj) is also a production process of Xj . Using the definition
of the LZC, c(Xj) ≤ cEZ

(Xj) = c(Z). �

This property, as well as the previous one, are shared with the Shannon en-
tropies.

Notice that Z(1, hi−1) �−→Z(1, hi) does not imply the same property for all Xj ;
this property holds at least for one of the Xj. Hence, the exhaustive history of
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Z is not necessarily exhaustive for the Xj and it can even be not exhaustive
for any Xj. The consequence is that the equality says nothing more in terms of
links between the joint sequence and the marginal one. The following property
give some links in particular cases.

Property 4 Consider X and Y two sequences defined in alphabets Ax and
Ay respectively. If there is a bijection σ from Ax to Ay such that yi = σ(xi)
for all i = 1, . . . , n, then

c(X, Y ) = c(X) = c(Y ) (6)

A particular case is

c(X, X) = c(X) (7)

The reciprocal property is false.

PROOF. Consider first the exhaustive history of X, EX(X) =
X(1, h1) . . . X(hm−1 + 1, hm). Since X(1, hi−1) =⇒ X(1, hi) and
X(1, hi−1) �−→X(1, hi), there is a pointer pi ≤ hi−1 such that
X(hi−1 + 1, hi − 1) = X(pi, pi + hi − hi−1 − 2), that xhi

�= xpi+hi−hi−1−1

and whatever qi ≤ hi−1, X(hi−1 + 1, hi) �= X(qi, qi + hi − hi−1 − 1). Clearly
(σ(xhi−1+1), . . . , σ(xhi−1)) = (σ(xpi

), . . . , σ(xpi+hi−hi−1−2)) and the bijectivity
of function σ yields that σ(xhi

) �= σ(xpi+hi−hi−1−1) and that whatever
qi ≤ hi−1, (σ(xhi−1+1), . . . , σ(xhi

)) �= (σ(xqi
), . . . , σ(xqi+hi−hi−1−1)). As a con-

clusion, EX(Y ) is an exhaustive history of Y and then clearly c(X) = c(Y ).
Now, consider Z of components zj = (xj , yj). We immediately obtain that
Z(hi−1 + 1, hi − 1) = Z(pi, pi + hi − hi−1 − 2), that zhi

�= zpi+hi−hi−1−1 and
that whatever qi ≤ hi−1, Z(hi−1 + 1, hi) �= Z(qi, qi + hi − hi−1 − 2). As a
consequence, EX(Z) is also an exhaustive history of Z, that finishes the
proof. Concerning non reciprocity, consider the example of two binary strings,
X = 010010 and Y = 011011. We obtain c(X) = c(Y ) = c(X, Y ) but Y
cannot be predicted through X with a bijection from {0, 1} to itself. �

This property can naturally be extended for more than two sequences. Fur-
thermore, this property is similar to that of Shannon entropy. Indeed, for two
random sources X and Y , if and only if Pr[Y |X ] = 1 (i.e. Y completely de-
termined by X), then H(X, Y ) = H(X). But contrary to Shannon entropy,
c(X) = c(X, Y ) does not imply that X is completely determined by Y . Be-
cause of the non reciprocity of this property for the LZC, some care will have
to be taken in the results of the joint LZC analysis, when an analogy is made
with Shannon entropy.

To go farther with the analogy between Shannon entropy and LZC, one can
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define conditional LZC (CLZC) and informational LZC (ILZC) by




c(Y |X) = c(X, Y ) − c(X)

Ic(X; Y ) = c(X) + c(Y ) − c(X, Y ) = c(X) − c(X|Y ) = c(Y ) − c(Y |X)

(8)
and so on for higher order informational LZC (as for the Shannon entropies
[23]). Since the joint LZC and the marginal LZC tend to the joint and marginal
Shannon entropies for stationary ergodic sequences, this holds for the condi-
tional LZC and for informational LZC, respectively toward conditional entropy
and mutual information. Furthermore, property 3 leads to the positivity of the
conditional complexity as for the conditional Shannon entropy.

In many classification problems or source separation problems, the Kullback-
Leibler divergence, and particularly mutual information, is used as a sepa-
ration criterion. In a certain sense, mutual information can be understood
as a distance between the joint density of two sequences and independent
sequences sharing the same marginal densities. Using the LZC, by analogy
with the Shannon entropy, Ic can be expected to be understood as a diver-
gence between two sequences. However, the ILZC Ic can be negative, e.g.
X = 00100100100 and Y = 01010100000 leads to Ic(X, Y ) = −1. This non-
property of non-negativity is another difference with mutual information in
the Shannon sense. Furthermore, the non-reciprocal of property 4 and the
non existence of triangular inequality does not permit to build a metric with
ρ = c(X|Y ) + c(Y |X) as can be done, in a certain sense, with Shannon
entropy (see [19]), e.g. X = 00110, Y = 01000 and Z = 01010 leads to
4 = ρ(X, Z) > ρ(X, Y ) + ρ(Y, Z) = 1 + 1 = 2.

The LZC tool seems interesting in itself for the analysis of complicated multi-
dimensional data (biomedical, economic,. . . ), since it makes a kind of bridge
between nonlinear tools for deterministic data analysis and information theory
tools. However, this bridge is not complete because of the limited analogies
with Shannon entropy. As a conclusion, even if this tool is interesting in itself
to characterize or to classify signals, the results obtained need to be interpreted
with great caution .

4 Data analysis using the joint LZC

In this section, the use of the joint LZC and the informational LZC (ILZC) for
data analysis will be illustrated on two examples. The first example illustrates
how the joint LZC can capture a spatiotemporal degree of organization of
a random boolean network (RBN), while the second example will show the
interest of using ILZC on a proposed multidimensional variant of the minority
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game (MG). The RBN as well as the MG produce boolean signals, and can
be naturally studied by LZCs.

4.1 Illustration on a random boolean network

An RBN, also called Kauffman network, is given by N binary automata, where
each element or cell i is spatially connected to K other cells; K is called the
connectivity of the network [24]. Then, the temporal evolution is given by
maps fi : {0, 1}K → {0, 1} such that xi(t + 1) = fi(xi1(t), . . . , xiK (t)). The
connections of the cells are directional, i.e. one of the il can be equal to j
even if jm �= i whatever m. The initial state (x0(1), . . . , xN−1(1)) is randomly
chosen in {0, 1}N where 1 (resp. 0) is drawn with probability p (resp. 1 − p).
The maps fi are also randomly drawn from all the 22K

possible functions
{0, 1}K × {0, 1} with the same probability p to draw 1. In other words, the
value of fi(0, . . . , 0) is drawn in {0, 1}, . . . , the value of fi(1, . . . , 1) is drawn in
{0, 1}, for all the i. This is done to initialize the process, and once built, these
functions remain unchanged during the time-evolution of the process. Hence,
for a given choice of map, a specific network is considered. The probability p is
called the bias of the network [24]. It is shown in [24,25] that, according to the
values of (p, K), the behavior of the network can produce order or disorder.
Furthermore, it is shown that the network can be controlled by freezing at
each time t, F (t)γN cells, where γ is the maximum proportion of cells that
can be frozen and where F (t) ∈ [0 ; 1] is a control function. The cells that
can be frozen are randomly chosen, but this choice is time-independent. Here
again, at the beginning of the process, the cells that will be potentially frozen
are randomly chosen and this choice remains unchanged during the evolution
of the process. The γNF (t) cells that are frozen are the first γNF (t) cells
that were drawn. Furthermore, the frozen states are randomly chosen in the
initialization of the process and remain the same during all the process. As a
conclusion, even if there are random choices in the network, all the random
variables are drawn in the initialization, thus the spatiotemporal evolution is
clearly deterministic.

This RBN has been proposed as a description of discrete genetic network
models. In this model, the two possible states for the gene represent if the
transcription process is active (e.g. state 1) or not (e.g. state 0). Hence, the
control has been proposed for the modeling of external forcing (biological
rhythms, etc.). More information about the RBN can be found in [24,25] and
in the references therein.

First of all, in [24,25] it is shown that according to the values of K and p, the
network can exhibit an ordered behavior, or a more complex one, akin to a sort
of spatiotemporal chaos. More rigorously, since the number of states for the
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cells is finite and equals 2N , the behavior must be periodic with a period less
or equal to 2N . The chaos-like behavior is possible, analyzing the RBN during
a time sufficiently small compared to 2N . In particular, it is shown that when
K < Kc = 1

2p(1−p)
the system exhibits order and when K > Kc it exhibits

chaos-like behavior. Here, we have chosen to analyze such a coupled oscillator,
in order to use the joint LZC. Thus, we have built an RBN, for different
values of p and K, and for different realizations of maps (i.e. several specific
networks), initial conditions, etc. For each vectorial signal (i.e. one realization
for the set (p, K)), the joint LZC of the N oscillators is computed and is
denoted c(p, K). Figure 1 represents, then, the average LZC 〈c(p, K)〉 over the
realizations. This figure clearly shows that under the critical curve K = 1

2p(1−p)
,

the mean joint LZC is low, corresponding to a quite spatiotemporally regular
signal, while the mean joint LZC is high over the critical curve. This result
exhibits that the joint LZC is able to capture the degree of organization of such
a coupled system, at least on average. Furthermore, since the signal cannot be
rigorously chaotic, an approach using a Lyapunov exponent seems not rigorous
for the analysis of an RBN, even if it is possible by analogy with continuous
systems as shown in [24,26]. As is concluded for chaotic signals in [21], the LZC
can capture similar information to a Lyapunov exponent, but its evaluation
has a lower cost than that of a Lyapunov exponent. Here, we illustrate that
this holds for the joint LZC previously presented.

The second illustration concerns a controlled RBN. An RBN was generated,
with a free evolution in the beginning, then the RBN is controlled during
a finite time and with a periodic control function, and there is again a free
evolution. To analyze the spatiotemporal complexity of this system, we have
first evaluated at each time a spatial LZC as proposed by Kaspar and Schuster
[21] for spatiotemporal analysis. This spatial LZC is compared with the LZC
evaluated on a sliding window of Nw samples (sliding step of 1 sample) for
the first and the middle cells, i.e. at each time t the LZCs c(x1(t − Nw +
1) . . . x1(t)) and c(x(N+1)/2(t − Nw + 1) . . . x(N+1)/2(t)) (e.g. for N odd) are
computed. Lastly the joint LZC on the sliding window was evaluated, i.e.
at each time t the joint LZC c(x(t − Nw + 1) . . . x(t)) is computed, where
x(t) is the N -uplet (x1(t), . . . , xN(t))). The results are depicted in figure 2. In
these figures it can be seen that, for this example, the spatial LZC does not
capture the spatiotemporally organized area in the RBN. One can also see
that the 1-dimensional LZC is sometimes able to capture the more organized
area, when the periodic behavior concerns the chosen cell for the analysis.
However, the analyzed cell can also have a periodic behavior during the non-
controlled period, that does not reflect the spatiotemporally non-organized
area. Lastly, the joint LZC is clearly able to detect the organized period and
to differentiate it from the non-organized areas. In particular, the behavior
of the joint LZC reflects the controlled function. Since this joint LZC takes
simultaneously into account all the cells, during the non-controlled period, its
value is large, reflecting the globally non-organized area. Figure 2 also depicts
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the averaged spatial LZC and the averaged joint LZC (sliding window) over
500 realizations of the controlled RBN. It can be seen in these figures that
on average while the spatial LZC does not capture the controlled area, the
joint LZC does. This is due to the fact that for each realization, the frozen
cells are not the same and the spatial links vary from one realization to the
other. Since the RBN is only spatially analyzed, the temporal periodicities
cannot be captured by the spatial LZC. Some regularities can be captured
only when the frozen cells present regularities in their spatial choices, but on
average there are not regularities. Hence on average, the spatial LZC cannot
exhibit low values when the RBN is more organized. In contrast, since the
joint LZC takes into account simultaneously all the cells, on average it can
clearly distinguish the organized period: in each realization, even if there is not
necessarily spatial periodic behavior, the N -uplet has a periodically organized
behavior in time. The mean marginal LZCs are not pictured here, but they
exhibit the same kind of behavior as the joint LZC. Indeed, since during the
control a given cell can exhibit periodic behavior for some realizations and not
for others, by averaging over the realizations the non time-periodic LZC (or
periodic but not linked to that of the control) are smoothed, resulting in a
periodic mean marginal LZC. During the free evolution, the marginal LZC is
also smoothed by averaging over the realizations. However, since for the joint
LZC the RBN is globally taken into account, during the control the regularity
of the RBN is better captured, the effect is more pronounced for the average
joint LZC than for each marginal LZC.

4.2 Illustration on the minority game

The minority game consists of N agents where each agent i makes a binary
decision ai(t) ∈ {0, 1} at time t. The goal for each agent is to be in the
minority, i.e. agent i is in the minority if the number of agents taking the same
decision ai(t) is less than N

2
[27–29]. Let us denote by µ(t) the decision of the

minority of agents at time t. To make a decision, each agent looks at the m
previous minorities (µ(t−m), . . . , µ(t−1)) where m is the memory of the game.
Each agent possesses a look up table of s functions fk : {0, 1}m −→ {0, 1}
called strategies. There are 22m

possible strategies and each agent has the
same number s of strategies fik , i = 0, . . . , N − 1, k = 0, . . . , s− 1. The ik are
generally different from one agent to another, but some strategies can possibly
be shared by several agents. A gain Gik is attached to each strategy fik . At
each time, the gains of all the strategies that would have led to being in the
minority are increased by 1, i.e. at time t, if fik(µ(t−m), . . . , µ(t−1)) = µ(t),
Gik is increased by 1 point. Hence, at each time, to make its decision, agent
i looks at all the strategies at his disposal and chooses the one which has
the greatest gain, i.e. il = Argmaxik Gik . The decision of agent i is then
ai(t) = fil(µ(t − m), . . . , µ(t − 1)). If for agent i several strategies shared
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the same maximal gain over the Gik , k = 0, . . . , s − 1, the chosen strategy
is randomly (uniformly) chosen over these optimal strategies. To initiate the
game, one only has to randomly choose the s strategies of each agent, to
randomly choose an action ai(0) for each agent, and an initial memory string
(µ(−m), . . . , µ(−1)). This game is often used for social, biological, ecological or
financial modeling, etc (see [2,27–31] and ref. therein). The game can be easily
understood in the case of financial modeling. Say that decision 0 corresponds
to buying an asset, and 1 to selling an asset. It is clear that a player prefers
to sell an asset while the majority buys this asset, and vice-versa. Several
variants have been proposed. For example, a strategy may be rewarded by
taking into account the “quality” of the minorities. It was shown that the
behavior of such a game can be characterized by the number L1(t) of agents
choosing 1 at each time. In particular the (time-averaged) variance σ2

1 of L1,
known as volatility in finance, has been shown to be a good characteristic of
the behavior of the MG [27,29,30]. It characterizes the total waste of the game.
This variance decreases as m increases until a critical size mc of the memory
m, and increases to attain the same variance as that of a game with agents
playing completely randomly (symmetric phase for m < mc, and then phase
transition and symmetry breaking [30]). However, it was emphasized that this
characterization is insensitive to the introduction in the game of agents playing
with a random history [2]. In this variant of the game, where a proportion of
agents play using the real history, and the other agents play using a random
history, the behavior of σ2

1 remains unchanged as the proportion of “random
agents” increases. Rajkovic showed in [2] that the Lempel-Ziv complexity of
the minority sequence c(µ) shows the opposite behavior to volatility, with
the same critical size of memory, for MG. But as the proportion of agents
playing with a random history increases, c(µ) exhibits the modified nature of
the game. Intuitively, this is due to the fact that if all the agents play with a
random history, there is no time-organization in the game.

A multidimensional extension of the game has been proposed in [32] using a
three-level structure. It consists of several MG in parallel, but where a con-
nection is made through the payoffs of the strategies, by taking into account
the minorities of the whole game. Here, to show how a multidimensional LZC
can be used in the MG, we first propose the following simpler multidimen-
sional variant of the game. We consider N players playing with Na assets. For
asset j, agent i makes a decision using the m last minorities of asset j, but
also taking into account the ma last minorities of K other assets. K will be
called the connectivity of the multidimensional minority game (MMG). The
K connections ki,j,0, . . . ki,j,K−1 ∈ {0, . . . , Na − 1} of agent i and variable j are
randomly chosen in the initiation of the game and an asset can possibly be
connected to itself (in this case there is an index l so that ki,j,l = j). Then
at any time t, the decision of agent i for the asset j is made using the data
(µj(t − m), . . . , µj(t − 1), µki,j,0

(t − ma), . . . , µki,j,0
(t − 1), . . . , µki,j,K−1

(t − 1)).
For K = 0, it is as if Na MG were played independently, but for K �= 0,
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there are clearly spatiotemporal links. As for the standard MG, for each asset
the agents possess s strategies in the functions {0, 1}m+Kma −→ {0, 1}. Each
strategy for each asset and of each agent possesses a gain that evolves in time
(one point won for a good strategy, 0 otherwise).

In our illustrations, the MMG is composed of N = 101 agents, playing on
Na = 5 assets, with s = 2 strategies for each agent and each asset. An addi-
tional memory ma = 1 and ma = 2 for each connected asset is considered, and
the time duration of the game is 10000 samples. Figure 3 depicts the normal-

ized volatility
σ2
1

N
, as a function of the memory m, considering only the first

asset of the MMG, in the case of an additional connecting memory ma = 1
and ma = 2; Figure 4 describes the normalized LZC of the minority sequence
for the first asset c(µ0)

log2(T )
T

; Figure 5 represents the normalized LZC of the

minority sequence for the first asset c(µ0)
log2(T )

T
; the normalized joint LZC of

all the assets c(µ0, . . . , µNa−1)
log2(T )

T
is plotted figure 6 for ma = 1 and ma = 2;

Lastly, the behavior of the normalized informational LZC of the first two as-
sets Ic(µ0, µ1)

log2(T )
T

and of all the assets Ic(µ0, . . . , µNa−1)
log2(T )

T
is given in

figure 7. In these figures, the solid line with stars represents the result given by
a totally random game. For K = 0, since the first asset comes from a standard

MG, the behavior of
σ2
1

N
is that described in [27,29]. As shown in [2] the LZC

c(µ0) shows the opposite behavior, leading to an equivalent characterization
of the game. c(µ0, µ1) has also the same behavior. In this case, ma does not
change the behavior of the curves, since with no connection this additional
memory is not taken into account. As K increases, the volatility exhibits a
behavior that is increasingly similar to that of a totally random game. Since
the volatility is similar for the five games, the curve would have the same shape
on average over the assets. Although this average variable still represents the
total waste of the game, it is not efficient to capture the self-organization
hidden in this MMG. The LZC of the first asset, c(µ0), leads to the same
conclusion, as well as the joint LZC of the first two assets, c(µ0, µ1), and the
joint LZC of all the assets, c(µ0, . . . , µNa−1). Furthermore these characteristics
seem insensitive to the additional memory ma. However, some fluctuations of
the LZCs as a function of m can be seen in these curves. Since the joint LZCs
and the marginal ones have the same shape, this suggests that the combina-
tion of marginal and joint LZC can reveal the self-organized characteristic of
the proposed MMG. Figure 7 depicts the two particular combinations repre-
sented by the informational LZC: Ic(µ0, µ1) = c(µ0) + c(µ1) − c(µ0, µ1) and
Ic(µ0, . . . , µNa−1) =

∑Na
l=1(−1)l+1 ∑

i1<...<il c(µi1, . . . , µil) (see [23] for the anal-
ogy with Shannon entropy). In both cases, it is clear that the behavior of
the ILZC is far from that of a random game. Moreover, some differences can
clearly be seen for different values of connectivity K. In conclusion, the ILZC
can clearly reveal the self-organized behavior of the proposed MMG. Since the
purpose of the paper is not to study in detail this MMG, no further analyzis
is given here. However, it will be interesting to investigate if some critical
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memory sizes in this MMG, taking into account both m and ma or not, would
be exhibited through the ILZC, as is the case for the LZC of a standard MG
with the memory m [30].

5 Discussion

The Lempel-Ziv complexity has long been known and has been extensively
used in the compression domain. However, this tool is not so extensively em-
ployed for data analysis. Recent studies present this tool as a potential tool
for both analyzing biomedical sequences [10,16–18] and signals from complex
systems such as the minority game [2]. In this paper we show that the LZC
can naturally be understood for vectorial sequences, and then used to analyze
multidimensional signals. We propose, then, derived quantities such as infor-
mational LZC, by analogy with Shannon entropy, and we have shown that
these derived quantities can also be used for data analysis. Notice, however,
that the use of the LZCs seems interesting for the analysis of signals which
are naturally coded on a finite size alphabet. It is the case for random boolean
networks or for the different variants of the minority game. For real world
signals, one can envisage analyzing DNA sequences that are naturally coded
on an alphabet of size 4. But it seems at present more difficult to use this
tool for continuous-state signals such as ECG, even if some attempts have
already been made. In the latter case, a crucial point is the quantification of
the signals: static or dynamic quantization [11]? How many levels of quan-
tization [11]? Very often, empirical rules have been chosen [10,18], but the
choice may have consequences on the LZC of the quantized signals. Working
on these points seems very challenging. Another challenge would be also to in-
vestigate links between signals of different natures, such as electrocardiograms,
electromyograms (etc.) via the joint LZC or derived quantities.
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