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Redefining performance evaluation tools for

real-time QRS complex classification systems
Philippe Ravier∗, Fréd́eric Leclerc, Cedric Dumez-Viou, and Guy Lamarque

Abstract

In a heartbeat classification procedure, the detection of QRS complex waveforms is necessary. In many studies,

this heartbeat extraction function is not considered: the inputs of the classifier are assumed to be correctly identified.

This paper aims to redefine classical performance evaluation tools in entire QRS complex classification systems and

to evaluate the effects induced by QRS detection errors on the performance of a heartbeat classification processing

(normal vs abnormal). Performance statistics are given and discussed considering the MIT/BIH database records

that are replayed on a real-time classification system composed of the classical detector proposed by Hamilton &

Tompkins, followed by a neural network classifier. This study shows that a classification accuracy of 96.72% falls to

94.90% when a drop of 1.78% error rate is introduced in the detector quality. This corresponds an increase of about

50% bad classifications.

Index Terms

QRS complex detection, heartbeat recognition, neural network, classification, hardware implementation.

I. I NTRODUCTION

The problem of heartbeat classification has been widely explored in the literature [1]-[8]. However, real-time

classification systems often necessitate the detection of QRS complex shapes before any classification procedure.

In such classification systems, classical performance evaluation tools become irrelevant since the detection errors

are not taken into account in the classification statistics.In this paper, we therefore propose to:

• redefine the classical performance evaluation tools takingthe entire classification system into consideration;

• experimentally discuss the influence of the detection stageon classification results;

• give material for finding the best compromise between the quality of the detector, the quality of the classifier

and the computational time in real-time classification systems.
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45067 Orĺeans Cedex, France (e-mail: philippe.ravier@univ-orleans.fr;cedric.dumez-viou@obs-nancay.fr; guy.lamarque@univ-orleans.fr).

F. Leclerc is with the Laboratory of Electronics, Signals and Images, University of Orleans, BP 6744, 45067 Orléans Cedex, France (e-mail:
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In order to achieve these goals, we implemented a simple real-time classification system on an electronic board.

The proposed system is composed of a QRS complex extractor (detection part) followed by a normal or abnormal

peak recognition step (classification part). Abnormal beats are opposed to normal beats according to their QRS

waveform shapes.

For instance, a normal/abnormal classification system may be useful for Holter monitoring where only the critical

parts as well as the cardiac history (i.e. peak to peak intervals) are of medical interest. It is not worth recording

the healthy electrocardiographic (ECG) samples. The amount of data can therefore be drastically reduced and the

entire breakdown will be shorter since the physician will devote his expertise to the critical parts of the ECG signal,

while also taking into account the peak to peak intervals of the entire monitoring.

Several algorithms have been proposed in the literature forthe detection and classification of ECG beats. Since

our system has to be embedded with real-time processing constraints, the computation cost must be low. Various

approaches (wavelets [9], [10], filter banks [11], neural networks [12]) have been investigated to improve the quality

of the detectors. However, the gain obtained is generally offset by the greater complexity of the algorithms, involving

higher computational costs. It is the reason why the well known Hamilton & Tompkins [13], [14] detector has been

chosen here. Similarly, many methods have been investigated for the classification part (neural networks [1]-[3],

fuzzy theory [3], [5], support vector machine [4], higher order spectral techniques [6], hidden Markov models [7],

. . . ). A neural network approach has been adopted in this study because its parallel processing implementation is

well adapted to real-time constraints. Finally, we tested the system on the MIT-BIH database [15] since this database

is commonly used for performance evaluations of detection or classification algorithms.

The paper is organized as follows. The classification systemis introduced in the second part. Such a system

leads to the redefinition of the performance evaluation tools in the third part. These new tools are tested on real

data in the fourth part, considering real-time classification of the MIT/BIH recordings. Discussion and conclusion

finish the article.

II. N ORMAL /ABNORMAL REAL -TIME BEAT CLASSIFICATION SYSTEM

After digitizing the analog ECG signal through a 16 bits Analog to Digital Converter (ADC) using a 360 Hz

sampling rate, the algorithmic part is divided into two mainfunctions (Fig. 1):

• the ECG beat extractor that detects QRS complex waveforms and extracts ECG waveform patterns after they

have been normalized and centered about the fiducial point. Two versions of the Hamilton and Tompkins

detector have been real-time implemented [13], [14]: the first one includes the search back procedure (SB+)

and the second one does not (SB-).

• the neural network classifier that is fed by Fourier coefficients of the ECG waveform patterns provided by

the previous stage. The classifier is a multilayer perceptron (MLP) [16] with 16 input nodes (16 first absolute

values of the 128 Fourier samples excluding the DC component), 4 neurons in the hidden layer and one

output neuron. Each neuron labeled 1 to 5 has four inputs and one output with the classical associated

sigmoidal activation functionyj(n) = 1

1+e
−vj(n)+θj

, wheren is the number of QRS pattern to be classified
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and j the neuron number. The valuevj(n) is the net internal activity level of neuronj and equalsvj(n) =
∑4

i=1
wjixji(n), for j = 1 to 4 andv5(n) =

∑4

i=1
w5iyi(n). The outputS(n) = y5(n) is compared to a

thresholdη = 0.5 to make the decision. The weightswji and biasθj are computed with the software SNNS [17]:

w1i = {7.62, 2.98,−11.06, 1.57}, w2i = {8.08, 1.71, 3.31,−0.5}, w3i = {−4.4, 24.86, 4.74, 8.58}, w4i =

{4.56, 4.6, 19.86, 4.89}, w5i = {−8.85,−29.81, 11.14, 10.56} and θj = {2.15,−5.45,−3.16,−1.61, 7.21}.

The two output classes separate the normal beats (expert annotations ’N’ and ’A’) from the abnormal beats

(expert annotations ’L’, ’R’, ’B’, ’a’, ’J’, ’S’, ’V’, ’r’, ’ F’, ’e’, ’j’, ’n’, ’E’, ’/’, ’f’, ’Q’ and ’?’).

The detector is implemented on a Digital Signal Processor (DSP TMS320VC5402, Texas Instruments). The pre-

processing of the input delivered to the neural network is also computed on the DSP. The neural network is parallel

processed on a Field Programmable Gate Array architecture (FPGA XC2S200, Xilinx).

III. R EDEFINING PERFORMANCE EVALUATION TOOLS

Heartbeat detection consists in discriminating at any timea QRS complex from the noise. In fact, this detection

problem may be formulated as a binary classification problem, in which the two classes are the noise and the QRS

complex. The same statistical tools will therefore be used to evaluate the performances of both classifiers: the QRS

complex/noise classifier and the normal/abnormal beat classifier. However, the statistics for the noise class will not

be defined since they provide no useful information.

A. SensitivityS and positive predictivityP+

Making the decision within theith class may be true or false. Each right decision incrementstrue numbers

whereas each erroneous decision increments false numbers in the following statistics: the True Positive number

(TPi) stands for the right classification number among the patterns belonging to theith class; the False Positive

number (FPi) is the number of patterns that were found to be in theith class while they did not belong to this

class; the False Negative number (FNi) is the number of patterns that were not found to be in theith class while

they belonged to this class. Note that, with only the two classes{Normal, Abnormal}, the following relations hold:

FPNormal = FNAbnormal andFPAbnormal = FNNormal.

The comparison of classification performance is carried outfrom the values given by the sensitivityS and the

positive predictivityP+. Classically, sensitivity is the percentage of patterns truly assigned to the classi among

all the patterns really belonging to this class (expert decision). Positive predictivity (also named specificity) is the

percentage of patterns truly assigned to the classi among all the patterns assigned to this class by the classifier

(machine decision). These statistics quantify each kind oferror in the decision making sinceS involvesFN and

P+ involves FP . Considering the single detector or the single classifier, these definitions clearly hold. However,

they are no longer valid when considering the global classifier composed of both the classifier and the detector

where detection errors must be taken into account.

In particular, the detection errors lead to a number of classified beats that may be different from the number of

beats presented at the input of the global classifier. This difference is due to the erroneousFNQRS and FPQRS
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decisions. TheFNQRS are the number of beats which have not been detected at the first stage. These beats will

thus never be classified. However, these beats are known to beeither normal or abnormal beats so theFNQRS

number may be broken down asFNQRS = FNQRSNormal
+ FNQRSAbnormal

(medical expertise separation). On

the other hand, theFPQRS number introduces new false QRS beats. Since these waveforms are detected, they

will be classified as normal (FPQRSNormal
) or abnormal (FPQRSAbnormal

) while they do not belong to either of

these classes. So the false alarm detection rate may be broken down asFPQRS = FPQRSNormal
+FPQRSAbnormal

(machine separation). The sensitivityS and the positive predictivityP+ are then redefined by introducing the

detection errors as:

Si =
TPi

TPi + FNi + FNQRSi

; P+

i =
TPi

TPi + FPi + FPQRSi

(1)

for the classesi = Normal, Abnormal.

RegardingSi, all the beats classified by the experts as belonging to the classi may become correctly classified

(incrementing the numberTPi), or become classified in the other class (incrementing the numberFNi) or even

lost forever (incrementing the numberFNQRSi
). RegardingP+

i , all the beats classified by the machine to the class

i may come from correctly classified beats (incrementing the numberTPi), from misclassified beats (incrementing

the numberFPi) or from the false alarm beats generated by the detector (incrementing the numberFPQRSi
).

B. Total classification accuracyTCA

The quality of the beat classification machine is classically evaluated through the Total Classification Accuracy

(TCA) which corresponds to the fraction of good classifications among the number of beats to be classified.

Regarding the global classification machine, theTCA is not sufficiently pertinent since it does not take into

account the false alarms generated by the detector. For example, if the classification machine is characterized by a

100%TCA rate (estimated with no detection errors), the physician will have total confidence in the classification

task even if theFPQRS attains a high level. In that case, when these non existing beats are classified as abnormal

beats, the machine will alert the physician without any reason. Similarly, a 100%TCA rate combined with a high

level FNQRS could lead to a dramatic situation because of a lack of complexes analyses. For all these reasons,

the TCA must be redefined in order to take into account not only the quality of the classifier but also the quality

of the detector.

For the physician, the classification system is a black box characterized by an estimatedTCA which needs

to reflect the observations. In order to retrieve confidence in the TCA, we propose a novel definition of this

performance evaluation tool. Let us callTCE = 1 − TCA the Total Classification Error rate expressed as:

TCE =
FPNormal + FPAbnormal + FPQRS + FNQRS

NNormal + NAbnormal

(2)

The false alarm numberFPQRS really stands for non-classifications. Since the classification is binary, all the

FPQRS beats could be considered as misclassifications. Let us now consider the missed detectionsFNQRS . If all

these beats could be correctly detected, the worst case thatcould occur would be a misclassification of all these
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beats. So theFPQRS + FNQRS beats are included in theTCE definition that describes the worst case. Finally,

the TCA is computed as the complementary value of theTCE.

These redefined statistics have been used to characterize the real-time classification process of 23 free records of

the MIT/BIH database. In order to evaluate the influence of the detection stage on the classification performance,

the results for three detectors are presented (table I): thedetector is perfect (the beats are actually extracted by

the cardiologist’s expertise); the detector makes erroneous decisions at the mean rate of 0.85% (result for the

single detector when the search back rule is implemented, label SB+); the detector makes twice as many erroneous

decisions at the mean rate of 1.78% (result for the single detector when no search back rule is implemented, label

SB-).

IV. D ISCUSSION

From the results presented in table I, it can be seen that our system shows coherent performance values in

comparison with other single detectors or classifiers [8], [9], [11]. In fact, the only objective performance comparison

that can be made is with the detector proposed by Hamilton andTompkins. Our results (0.85% detection error rate)

slightly differ from those presented in [14] (0.52%) because not all the refinements suggested in [14] have been

implemented, in order to optimize the computation time.

A. General comments on the results

For those records where the proportion of a given class with respect to the other class is highly unbalanced, the

results in percentage ofS andP+ are clearly not significant. This explains that specificity and positive predictivity

may vary from the extreme percentages 0% to 100% or even NaN (Not a Number). This is the case for the files

100, 101, 103, 107, 209, 214 (see tables I and II where the number of expert beats in the normal or abnormal

class is less than or equal to 2). Our system presents highP+ values with around 96% of the classified beats

that are correctly assigned. ConcerningS, from a medical point of view, a highSAbnormal rate is preferable to a

high SNormal rate since the alarms are triggered on abnormal events. Our classifier shows the opposite tendency

(94.02%vs 98.14%). However, at aSAbnormal = 94.02% rate, the clinician will have at his disposal a sufficient

number of abnormal beats for his expertise.

The Search Back method is a rule of reduced threshold backward detection that is triggered whenever no beat

is detected during more than 150% of the previous 8 beat-to-beat intervals median elapsed time [14]. The analysis

of the evolution of theTCA according to the quality of the detector (Table II) shows theefficiency of the search

back rule for a few records: 106, 201, 210, 213, 214 and more particularly 208 (whereFNQRS decreases from

462 to 46). Overall, the Search Back method strongly decreases theFNQRS number (821 to 182 counts) while

increasing theFPQRS number (223 to 314 counts) at the same time. The influence of these detection errors on the

quality of classification is discussed in the next section.
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B. Influence of the detection errors on theS and P+ statistics

The quality of detection globally seems to have no influence concerning normal beats: the 1.78% detection error

rate induced by the SB- detector - with respect to a perfect detector - does not really changeSNormal andP+

Normal

(Table I).

On the contrary, concerning abnormal beats, the drop affecting the sensitivity becomes serious when working

with imperfect detectors. The observed difference of 4.12%betweenSNormal andSAbnormal with a perfect detector

now drops to 8.74% when the SB- detector is used. At a reduced scale, the observed difference of 0.49% between

P+

Normal andP+

Abnormal becomes 0.98% with the SB- detector. This bad news concerning the statistics for abnormal

beats may be significant and suggests that the quality of detection should not be neglected within a classification

procedure.

C. Influence of the detection errors on theTCA statistics

A coherent behavior of theTCA with respect to the quality of the detector is observed on average in table I: the

TCA decreases with the deterioration of the detection performances. An error rate of 1.78% at the first detection

stage produces a loss of 1.82% in theTCA ratio (Table I). However, this ratio may individually lose about 16%

(record 208) or even gain about 0.7% (record 200).

In particular, the biggest deterioration is shown in record208 with an increase from 46 (SB+) to 462 (SB-) in

the FNQRS number (table II). The result is a marked decrease in the classification ratio fromTCA(SB+) = 93.13%

to TCA(SB-) = 79%. Note that theFNQRS number is mainly due to the contribution of abnormal beats. Indeed, the

FNQRSAbnormal
number at the denominator ofSAbnormal makes sensitivity dramatically decrease from 91.96%

(ideal detector) to 58.00% (detector with SB- procedure) whereas minor changes are observed in the other cases

for S andP+. Thus the importance of having a good detection stage is onceagain demonstrated.

In average, this study shows that a classification accuracy of 96.72% falls to 94.90% (table I) when a drop of

1.78% error rate is introduced in the detector quality. Thus, for quite good classifiers, particular care must be taken

with the quality of the first detection stage since this increases the number of bad classifications by about 50%. In

this case, it is worth trying to improve the detection algorithm, provided the real-time constraint is fulfilled.

V. CONCLUSION

In this paper, we have redefined the performance evaluation tools for characterizing a complete classifier, which

consists of a detector followed by a single classifier. The detection errors are introduced in these new definitions,

providing more coherent statistics for the clinician. These new statistics increase safety since they now provide

reliable lower limits for the performance values. We experimentally tested these new tools on the MIT/BIH database

with a dedicated real-time hardware and software architecture.

The proposed tools can be applied considering other kinds ofalgorithms and architectures. The comparison

between various implementation configurations therefore becomes objective.
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Even if an exhaustive comparative study is not presented in this paper, the results obtained are quite significant.

Indeed, the MIT/BIH database presents a great diversity of pathologies, exhibiting a good panel of QRS waveforms

morphologies. The results show that the detection stage hasa reduced influence concerning the sensitivity for normal

beats and the positive predictivity for normal/abnormal beats. This suggests that the classification system may be

improved by investigating the classification stage. Nevertheless, care must be taken with the detector stage that may

deteriorate the total classification error rate by about 50%, considering a drop of 1.78% error rate in the detection

quality. In conclusion, the higher the performance of the classifier, the greater the impact of the detector.
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L IST OF FIGURES

1 Normal/abnormal beat classification: the ECG beat extraction function is compounded in the first two

blocks; the neural based classification function is compounded in the last two blocks. . . . . . . . . . 9
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Fig. 1. Normal/abnormal beat classification: the ECG beat extraction function is compounded in the first two blocks; the neural based

classification function is compounded in the last two blocks.
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TABLE I

EVOLUTION OF THE CLASSIFIER PERFORMANCE(Si , P
+

i
AND TCA) WITH THE QUALITY OF THE DETECTOR AT THE INPUT STAGE: 0%, 0.85% (LABELED SB+), 1.78% (LABELED SB-)

DETECTION ERRORS. FOR THOSE RECORDS WHERETPi = FNi = 0 (RESP. TPi = FPi = 0), Si (RESP. P
+

i
) IS ASSIGNED TONAN (NOT A NUMBER) BECAUSE ITS DENOMINATOR IS ZERO.

Sensitivity (%) Positive Predictivity (%) TCA (%)

File Normal Abnormal Normal Abnormal

# S S(SB+) S(SB-) S S(SB+) S(SB-) P+ P
+
(SB+) P

+
(SB-) P+ P

+
(SB+) P

+
(SB-) T T(SB+) T(SB-)

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

101 99.36 99.19 99.36 100.0 33.33 33.33 100.0 100.0 100.0 14.29 4.55 5.26 99.36 98.77 98.93

102 7.07 5.05 5.05 99.95 99.95 99.95 87.50 83.33 83.33 95.78 95.69 95.69 95.75 95.66 95.66

103 100.0 100.0 100.0 NaN 0.00 0.00 100.0 100.0 100.0 NaN NaN NaN 100.0 99.95 99.81

104 82.82 86.42 87.04 94.19 92.69 92.60 52.94 48.95 50.36 98.58 93.33 94.99 93.36 86.67 88.38

105 90.58 90.96 90.44 50.00 40.32 33.87 99.00 98.83 98.65 8.81 7.76 6.65 89.85 86.74 86.70

106 99.93 99.87 99.87 79.42 76.92 63.08 93.37 92.79 93.02 99.76 99.50 99.39 94.67 93.98 90.43

107 NaN NaN NaN 99.86 99.86 99.77 0.00 0.00 0.00 100.0 100.0 100.0 99.86 99.81 99.72

118 1.04 1.04 1.04 99.31 99.22 99.22 6.25 5.26 5.26 95.80 95.67 95.67 95.17 94.91 94.91

119 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

200 96.84 97.29 97.52 83.70 84.20 85.40 92.71 92.89 93.56 92.52 92.33 93.40 92.66 92.54 93.35

201 99.40 100.0 100.0 84.42 71.84 60.19 97.16 96.61 96.84 96.30 100.0 100.0 97.04 95.57 93.73

202 99.48 99.57 99.57 66.67 60.00 35.00 99.38 99.48 99.48 70.27 72.73 60.87 98.88 98.83 98.36

205 99.92 100.0 100.0 81.71 78.57 77.38 99.42 99.42 99.46 97.10 100.0 100.0 99.36 99.32 99.28

208 97.54 98.10 98.09 91.96 88.24 58.00 93.36 92.91 92.78 97.00 96.89 95.47 94.95 93.13 79.00

209 99.73 99.67 99.63 100.0 100.0 100.0 100.0 100.0 100.0 11.11 8.33 7.69 99.73 99.63 99.60

210 97.48 97.89 97.93 68.72 63.64 50.87 97.08 97.09 97.21 71.89 71.36 69.23 95.02 94.45 93.62

212 98.16 97.72 98.16 99.07 99.07 99.12 98.16 98.26 98.37 99.07 98.85 99.07 98.76 98.62 98.80

213 99.96 100.0 100.0 57.44 57.00 53.41 91.46 91.42 91.36 99.70 100.0 100.0 92.31 92.25 91.60

214 NaN NaN NaN 93.68 90.58 89.78 0.00 0.00 0.00 100.0 99.85 99.90 93.67 90.44 89.60

215 99.94 99.94 99.94 81.21 77.58 76.97 99.04 98.89 98.89 98.53 97.71 97.69 99.02 98.81 98.78

217 100.0 99.59 99.59 98.07 98.01 97.81 86.52 87.10 86.79 100.0 99.84 99.90 98.28 98.10 97.92

219 99.86 99.86 99.95 84.62 84.62 74.63 99.52 99.52 99.52 94.83 94.83 98.04 99.40 99.40 99.16

all 98.14 98.27 98.27 94.02 92.73 89.53 96.88 96.56 96.58 96.39 95.41 95.60 96.72 95.89 94.90
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TABLE II

BEAT-BY-BEAT, RECORD-BY-RECORD TESTING RESULTS OF THE EXPERIMENT. RESULTS FOR THE REAL-TIME CLASSIFICATION MACHINE: THE DETECTION STAGE(LABELS SB+ AND SB-), THE

SINGLE CLASSIFICATION STAGE AND THE GLOBAL CLASSIFICATIONMACHINE (LABELS SB+ AND SB-)

Expert counts QRS Detector(single) Classifier (single) Classifier SB+(global) Classifier SB-(global)

File (# beats) SB+ SB- Normal Abnormal Normal Abnormal Normal Abnormal

# Normal Abnorm FP FN FP FN TP FP TP FP TP FP TP FP TP FP TP FP

100 2271 1 0 0 0 0 2271 0 1 0 2271 0 1 0 2271 0 1 0

101 1863 2 6 2 6 2 1851 0 2 12 1847 0 1 15 1850 0 1 12

102 99 2088 0 0 0 0 7 1 2087 92 5 1 2087 94 5 1 2087 94

103 2084 0 0 1 0 4 2084 0 0 0 2083 0 0 0 2080 0 0 0

104 163 2065 124 13 85 18 135 120 1946 28 140 138 1916 22 141 135 1914 21

105 2526 46 77 17 61 16 2288 23 23 238 2283 20 25 227 2270 25 21 240

106 1507 520 0 3 0 79 1506 107 413 1 1505 117 400 2 1505 113 328 2

107 0 2136 1 1 1 3 0 3 2134 0 0 2 2134 0 0 2 2132 0

118 96 2182 4 0 4 0 1 15 2167 95 1 17 2165 95 1 17 2165 95

119 1543 444 0 0 0 0 1543 0 444 0 1543 0 444 0 1543 0 444 0

200 1773 828 15 4 8 4 1717 135 693 56 1724 127 698 48 1728 117 708 44

201 1654 308 0 29 0 69 1644 48 260 10 1654 58 222 0 1654 54 186 0

202 2097 39 0 5 0 15 2086 13 26 11 2087 11 24 9 2087 11 14 9

203 2529 451 57 30 34 48 935 70 381 1594 906 75 358 1611 895 75 343 1619

205 2574 82 0 3 0 5 2572 15 67 2 2572 15 66 0 2572 14 65 0

208 1585 1368 11 46 10 462 1547 110 1259 39 1546 116 1215 30 1542 118 801 30

209 3004 1 1 0 1 0 2996 0 1 8 2994 0 1 10 2993 0 1 11

210 2422 227 12 17 6 49 2362 71 156 61 2367 67 147 51 2369 64 117 50

212 923 1825 0 1 0 1 906 17 1808 17 901 16 1809 21 905 15 1810 17

213 2666 585 0 2 0 21 2665 249 336 1 2665 250 334 0 2665 252 313 0

214 0 2260 3 4 4 9 0 143 2118 0 0 209 2047 0 0 222 2030 0

215 3198 165 1 1 1 2 3196 31 134 2 3196 36 128 2 3196 36 127 2

217 244 1964 2 3 2 7 244 38 1926 0 243 36 1925 1 243 36 1921 1

219 2089 65 0 0 0 7 2086 10 55 3 2086 10 55 3 2086 10 50 1

tot 38910 19652 314 182 223 821 36642 1219 18437 2270 36619 1321 18202 2241 36601 1317 17579 2248
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