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Redefining performance evaluation tools for

real-time QRS complex classification systems

Philippe Raviet, Fréecéric Leclerc, Cedric Dumez-Viou, and Guy Lamarque

Abstract

In a heartbeat classification procedure, the detection of QRS complefamans is necessary. In many studies,
this heartbeat extraction function is not considered: the inputs of thefidasse assumed to be correctly identified.
This paper aims to redefine classical performance evaluation tools ie €6 complex classification systems and
to evaluate the effects induced by QRS detection errors on the perfoentdira heartbeat classification processing
(normal vs abnormal). Performance statistics are given and discussed congidee MIT/BIH database records
that are replayed on a real-time classification system composed of ttsicaladetector proposed by Hamilton &
Tompkins, followed by a neural network classifier. This study showsatdassification accuracy of 96.72% falls to
94.90% when a drop of 1.78% error rate is introduced in the detectditygUdis corresponds an increase of about
50% bad classifications.

Index Terms

QRS complex detection, heartbeat recognition, neural network, ctasiifi, hardware implementation.

I. INTRODUCTION

The problem of heartbeat classification has been widelyoegglin the literature [1]-[8]. However, real-time
classification systems often necessitate the detectionR# Qomplex shapes before any classification procedure.
In such classification systems, classical performanceuatiah tools become irrelevant since the detection errors

are not taken into account in the classification statistitghis paper, we therefore propose to:

« redefine the classical performance evaluation tools taltiegentire classification system into consideration;
o experimentally discuss the influence of the detection stagelassification results;
« give material for finding the best compromise between thditguaf the detector, the quality of the classifier

and the computational time in real-time classification eyst.
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In order to achieve these goals, we implemented a simpletireal classification system on an electronic board.
The proposed system is composed of a QRS complex extraat@cfibn part) followed by a normal or abnormal
peak recognition step (classification part). Abnormal $eae opposed to normal beats according to their QRS
waveform shapes.

For instance, a normal/abnormal classification system reayskeful for Holter monitoring where only the critical
parts as well as the cardiac historye( peak to peak intervals) are of medical interest. It is nottlveecording
the healthy electrocardiographic (ECG) samples. The aimofudata can therefore be drastically reduced and the
entire breakdown will be shorter since the physician willate his expertise to the critical parts of the ECG signal,
while also taking into account the peak to peak intervalshefentire monitoring.

Several algorithms have been proposed in the literatur¢hiidetection and classification of ECG beats. Since
our system has to be embedded with real-time processingraons, the computation cost must be low. Various
approaches (wavelets [9], [10], filter banks [11], neurdlwoeks [12]) have been investigated to improve the quality
of the detectors. However, the gain obtained is generalfebby the greater complexity of the algorithms, involving
higher computational costs. It is the reason why the wellkmdlamilton & Tompkins [13], [14] detector has been
chosen here. Similarly, many methods have been investigatethe classification part (neural networks [1]-[3],
fuzzy theory [3], [5], support vector machine [4], higheder spectral techniques [6], hidden Markov models [7],
...). A neural network approach has been adopted in thisydtedause its parallel processing implementation is
well adapted to real-time constraints. Finally, we testexigystem on the MIT-BIH database [15] since this database

is commonly used for performance evaluations of detectiodlassification algorithms.

The paper is organized as follows. The classification systeimtroduced in the second part. Such a system
leads to the redefinition of the performance evaluationst@olthe third part. These new tools are tested on real
data in the fourth part, considering real-time classifawatf the MIT/BIH recordings. Discussion and conclusion

finish the article.

II. NORMAL/ABNORMAL REAL-TIME BEAT CLASSIFICATION SYSTEM

After digitizing the analog ECG signal through a 16 bits Aoalto Digital Converter (ADC) using a 360 Hz
sampling rate, the algorithmic part is divided into two méinctions (Fig. 1):

o the ECG beat extractor that detects QRS complex waveformieginacts ECG waveform patterns after they
have been normalized and centered about the fiducial poimb. Viersions of the Hamilton and Tompkins
detector have been real-time implemented [13], [14]: th&t fine includes the search back procedure (SB+)
and the second one does not (SB-).

« the neural network classifier that is fed by Fourier coeffitseof the ECG waveform patterns provided by
the previous stage. The classifier is a multilayer percepfkdlP) [16] with 16 input nodes (16 first absolute
values of the 128 Fourier samples excluding the DC compdndnheurons in the hidden layer and one
output neuron. Each neuron labeled 1 to 5 has four inputs amed cmtput with the classical associated

sigmoidal activation functiory;(n) = W wheren is the number of QRS pattern to be classified
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and j the neuron number. The valug(n) is the net internal activity level of neuronand equalsy;(n) =
S wjixji(n), for j = 1 to 4 andvs(n) = S, wsiys(n). The outputS(n) = ys(n) is compared to a
threshold) = 0.5 to make the decision. The weights; and biag); are computed with the software SNNS [17]:
wy; = {7.62,2.98,—11.06,1.57}, we; = {8.08,1.71,3.31,—0.5}, ws; = {—4.4,24.86,4.74,8.58}, wy; =
{4.56,4.6,19.86,4.89}, ws; = {—8.85,—29.81,11.14,10.56} and§; = {2.15, —5.45, —3.16, —1.61,7.21}.
The two output classes separate the normal beats (expestagions 'N’ and 'A) from the abnormal beats
(expert annotations 'L, 'R’, 'B’, 'a’, '3, 'S, V', r, " F, e}, ’'n’, ’E, 7, P, 'Q and '?Y).
The detector is implemented on a Digital Signal Process@RIOMS320VC5402, Texas Instruments). The pre-
processing of the input delivered to the neural network$s abmputed on the DSP. The neural network is parallel
processed on a Field Programmable Gate Array architechR&A XC2S200, Xilinx).

I1l. REDEFINING PERFORMANCE EVALUATION TOOLS

Heartbeat detection consists in discriminating at any @r@RS complex from the noise. In fact, this detection
problem may be formulated as a binary classification problanwhich the two classes are the noise and the QRS
complex. The same statistical tools will therefore be ugeevaluate the performances of both classifiers: the QRS
complex/noise classifier and the normal/abnormal beasifi@s However, the statistics for the noise class will not

be defined since they provide no useful information.

A. SensitivityS and positive predictivityP™

Making the decision within theth class may be true or false. Each right decision incremeots numbers
whereas each erroneous decision increments false nhumbéehe ifollowing statistics: the True Positive number
(T'P;) stands for the right classification number among the padtéelonging to théth class; the False Positive
number ¢ P;) is the number of patterns that were found to be in dfreclass while they did not belong to this
class; the False Negative numbét/y;) is the number of patterns that were not found to be initheclass while
they belonged to this class. Note that, with only the twos#agNormal, Abnorma}, the following relations hold:
FPNormal = FNabnormar @0d FPapnormat = FNNormal-

The comparison of classification performance is carriedfarh the values given by the sensitivity and the
positive predictivity PT. Classically, sensitivity is the percentage of pattermdytassigned to the clagsamong
all the patterns really belonging to this class (expert €len). Positive predictivity (also named specificity) i th
percentage of patterns truly assigned to the claamong all the patterns assigned to this class by the classifie
(machine decision). These statistics quantify each kindrodr in the decision making sincg involves FN and
P+ involves F P. Considering the single detector or the single classiffersé definitions clearly hold. However,
they are no longer valid when considering the global classifomposed of both the classifier and the detector
where detection errors must be taken into account.

In particular, the detection errors lead to a number of diaslsbeats that may be different from the number of

beats presented at the input of the global classifier. Tlisrdnce is due to the erroneolSNgrs and FPors
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decisions. TheF'NgRrs are the number of beats which have not been detected at thetéige. These beats will
thus never be classified. However, these beats are known #itler normal or abnormal beats so th&Vgrs

number may be broken down @&Ngrs = FNgRgs,,....., + FNgrs,,. .. ., (medical expertise separation). On
the other hand, thé’Pyrs number introduces new false QRS beats. Since these wawefarendetected, they
will be classified as normalH{Pgrs,,,...,) or abnormal £Pgrs,, ) while they do not belong to either of
these classes. So the false alarm detection rate may benbdoken asF' Pors = FPgrs,,,,.., + FPQRS 4y, 000m

(machine separation). The sensitivify and the positive predictivity®™ are then redefined by introducing the

detection errors as:
TP, " TP;

Si: ;P- = 1
T]D,;+FN7;+FNQR51, ¢ TPi+FPL'+FPQRSI_ ()

for the classes = Normal, Abnormal.

Regardings;, all the beats classified by the experts as belonging to #scimay become correctly classified
(incrementing the numbér P;), or become classified in the other class (incrementing thaber F'NV;) or even
lost forever (incrementing the numb&N rs,). RegardingP;", all the beats classified by the machine to the class
¢ may come from correctly classified beats (incrementing thalver? P;), from misclassified beats (incrementing

the numberF'P;) or from the false alarm beats generated by the detectorefimenting the numbeF P rs,).

B. Total classification accuracy'C' A

The quality of the beat classification machine is classicallaluated through the Total Classification Accuracy
(TCA) which corresponds to the fraction of good classifimasi among the number of beats to be classified.
Regarding the global classification machine, th€'A is not sufficiently pertinent since it does not take into
account the false alarms generated by the detector. Forpeaihthe classification machine is characterized by a
100%T'C A rate (estimated with no detection errors), the physicidhhaive total confidence in the classification
task even if thel" Porg attains a high level. In that case, when these non existiaistare classified as abnormal
beats, the machine will alert the physician without any ceasimilarly, a 100%'C A rate combined with a high
level FNgRrs could lead to a dramatic situation because of a lack of coxepl@nalyses. For all these reasons,
the TC' A must be redefined in order to take into account not only thditguaf the classifier but also the quality
of the detector.

For the physician, the classification system is a black bcradterized by an estimateédC' A which needs
to reflect the observations. In order to retrieve confidemceéhe TC' A, we propose a novel definition of this
performance evaluation tool. Let us cdlCE =1 — TC A the Total Classification Error rate expressed as:

FPNormal + F'Pavnormal + FPgrs + FNgRs
NNormal + NAbnarmal

TCE = )

The false alarm numbeF Pyrg really stands for non-classifications. Since the classifinais binary, all the
FPgRrs beats could be considered as misclassifications. Let us nogider the missed detectiof&Vgrs. If all

these beats could be correctly detected, the worst casedbdt occur would be a misclassification of all these
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beats. So th&"Pors + F'Ngrs beats are included in thHEC'E definition that describes the worst case. Finally,
the TC' A is computed as the complementary value of TRéE.

These redefined statistics have been used to charactegizeahtime classification process of 23 free records of
the MIT/BIH database. In order to evaluate the influence efdbtection stage on the classification performance,
the results for three detectors are presented (table I)déhbector is perfect (the beats are actually extracted by
the cardiologist’'s expertise); the detector makes errosedecisions at the mean rate of 0.85% (result for the
single detector when the search back rule is implementbed] BB+); the detector makes twice as many erroneous
decisions at the mean rate of 1.78% (result for the singleati@t when no search back rule is implemented, label
SB-).

IV. DISCUSSION

From the results presented in table I, it can be seen that ygiera shows coherent performance values in
comparison with other single detectors or classifiers @],[[L1]. In fact, the only objective performance companiso
that can be made is with the detector proposed by HamiltonTantpkins. Our results (0.85% detection error rate)
slightly differ from those presented in [14] (0.52%) becaumt all the refinements suggested in [14] have been

implemented, in order to optimize the computation time.

A. General comments on the results

For those records where the proportion of a given class wibpect to the other class is highly unbalanced, the
results in percentage of and P+ are clearly not significant. This explains that specificityl gositive predictivity
may vary from the extreme percentages 0% to 100% or even NaX gNNumber). This is the case for the files
100, 101, 103, 107, 209, 214 (see tables | and Il where the aumibexpert beats in the normal or abnormal
class is less than or equal to 2). Our system presents Righvalues with around 96% of the classified beats
that are correctly assigned. Concernitigfrom a medical point of view, a high' apnorma rate is preferable to a
high Syo-ma; rate since the alarms are triggered on abnormal events. I@ssifier shows the opposite tendency
(94.02%vs 98.14%). However, at & spnormar = 94.02% rate, the clinician will have at his disposal a sufficient
number of abnormal beats for his expertise.

The Search Back method is a rule of reduced threshold badkdetection that is triggered whenever no beat
is detected during more than 150% of the previous 8 beatat-imtervals median elapsed time [14]. The analysis
of the evolution of theél'C' A according to the quality of the detector (Table IlI) shows éfffeciency of the search
back rule for a few records: 106, 201, 210, 213, 214 and mortcpkarly 208 (whereF'Ngrs decreases from
462 to 46). Overall, the Search Back method strongly deeseéise F'Ngrs number (821 to 182 counts) while
increasing the’ Py rs number (223 to 314 counts) at the same time. The influenceesktdetection errors on the

quality of classification is discussed in the next section.
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B. Influence of the detection errors on teand P+ statistics

The quality of detection globally seems to have no influerm@cerning normal beats: the 1.78% detection error
rate induced by the SB- detector - with respect to a perfaetctier - does not really chang®y,,-mq; and Pj\;
(Table 1).

On the contrary, concerning abnormal beats, the drop affpche sensitivity becomes serious when working

ormal

with imperfect detectors. The observed difference of 4.1#%weenSy ormar 8NAS Apnormar With @ perfect detector
now drops to 8.74% when the SB- detector is used. At a reducad,ghe observed difference of 0.49% between
P]-\‘/_O'r”mal andPanormal

beats may be significant and suggests that the quality ottifzmeshould not be neglected within a classification

becomes 0.98% with the SB- detector. This bad news congethistatistics for abnormal

procedure.

C. Influence of the detection errors on thi& A statistics

A coherent behavior of th&'C' A with respect to the quality of the detector is observed omagesin table I: the
TC A decreases with the deterioration of the detection perfoo@s An error rate of 1.78% at the first detection
stage produces a loss of 1.82% in the' A ratio (Table 1). However, this ratio may individually losbaut 16%
(record 208) or even gain about 0.7% (record 200).

In particular, the biggest deterioration is shown in rec@@8 with an increase from 46 (SB+) to 462 (SB-) in
the FNgrg number (table I1). The result is a marked decrease in thesifilgetion ratio fromI'C' A g,y = 93.13%
to TC' Ase, = 79%. Note that theF" Ngrs number is mainly due to the contribution of abnormal beatdeéd, the
FNgrs,,,... ., humber at the denominator &f4p,..rmar Makes sensitivity dramatically decrease from 91.96%
(ideal detector) to 58.00% (detector with SB- proceduregmebs minor changes are observed in the other cases
for S and P*. Thus the importance of having a good detection stage is agaa demonstrated.

In average, this study shows that a classification accurb®6d2% falls to 94.90% (table 1) when a drop of
1.78% error rate is introduced in the detector quality. THoisquite good classifiers, particular care must be taken
with the quality of the first detection stage since this iases the number of bad classifications by about 50%. In

this case, it is worth trying to improve the detection altfor, provided the real-time constraint is fulfilled.

V. CONCLUSION

In this paper, we have redefined the performance evaluatiols for characterizing a complete classifier, which
consists of a detector followed by a single classifier. Thieat®sn errors are introduced in these new definitions,
providing more coherent statistics for the clinician. Tdhe®gw statistics increase safety since they now provide
reliable lower limits for the performance values. We expemtally tested these new tools on the MIT/BIH database
with a dedicated real-time hardware and software architect

The proposed tools can be applied considering other kindalgdrithms and architectures. The comparison

between various implementation configurations theref@@olmes objective.
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Even if an exhaustive comparative study is not presentetisnpaper, the results obtained are quite significant.
Indeed, the MIT/BIH database presents a great diversityatiglogies, exhibiting a good panel of QRS waveforms
morphologies. The results show that the detection staga heduced influence concerning the sensitivity for normal
beats and the positive predictivity for normal/abnormahtbe This suggests that the classification system may be
improved by investigating the classification stage. Néwadess, care must be taken with the detector stage that may
deteriorate the total classification error rate by about 568fsidering a drop of 1.78% error rate in the detection

quality. In conclusion, the higher the performance of tressifier, the greater the impact of the detector.
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Fig. 1. Normal/abnormal beat classification: the ECG beataetitn function is compounded in the first two blocks; the atlrased
classification function is compounded in the last two blocks.
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TABLE |
EVOLUTION OF THE CLASSIFIER PERFORMANCKES;, P;r AND T'C A) WITH THE QUALITY OF THE DETECTOR AT THE INPUT STAGE 0%, 0.85% (ABELED SB+), 1.78% (ABELED SB-)

DETECTION ERRORS FOR THOSE RECORDS WHERH'P; = F'N; = 0 (RESRT'P; = F'P; = 0), S; (RESR Pj’) 1S ASSIGNED TONAN (NOT A NUMBER) BECAUSE ITS DENOMINATOR IS ZERO

Sensitivity (%) Positive Predictivity (%) TCA (%)
File Normal Abnormal Normal Abnormal
# S ‘ Sisey | Sesey S ‘ Sisey) | Sisey pt ‘ Py | Pdey | PT ‘ Pdsy | Pésy T ‘ Tiseyy | Tissy

100 || 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 || 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 || 100.0 | 100.0 | 100.0
101 || 99.36 | 99.19 | 99.36 | 100.0 | 33.33 | 33.33 || 100.0 | 100.0 | 100.0 | 14.29 | 4.55 | 5.26 || 99.36 | 98.77 | 98.93
102 7.07 5.05 | 5.05 | 99.95| 99.95| 99.95 || 87.50 | 83.33 | 83.33 | 95.78 | 95.69 | 95.69 || 95.75 | 95.66 | 95.66
103 || 100.0 | 100.0 | 100.0 | NaN 0.00 | 0.00 || 100.0 | 100.0 | 100.0 | NaN | NaN | NaN 100.0 | 99.95 | 99.81
104 || 82.82 | 86.42 | 87.04 | 94.19 | 92.69 | 92.60 || 52.94 | 48.95 | 50.36 | 98.58 | 93.33 | 94.99 || 93.36 | 86.67 | 88.38
105 || 90.58 | 90.96 | 90.44 | 50.00 | 40.32 | 33.87 || 99.00 | 98.83 | 98.65 | 8.81 7.76 6.65 || 89.85| 86.74 | 86.70
106 || 99.93 | 99.87 | 99.87 | 79.42 | 76.92 | 63.08 || 93.37 | 92.79 | 93.02 | 99.76 | 99.50 | 99.39 || 94.67 | 93.98 | 90.43
107 NaN | NaN NaN | 99.86 | 99.86 | 99.77 || 0.00 | 0.00 | 0.00 | 100.0 | 100.0 | 100.0 || 99.86 | 99.81 | 99.72
118 1.04 | 1.04 | 1.04 | 99.31 | 99.22 | 99.22 || 6.25 | 5.26 | 5.26 | 95.80 | 95.67 | 95.67 || 95.17 | 94.91 | 94.91
119 || 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 || 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 || 100.0 | 100.0 | 100.0
200 || 96.84 | 97.29 | 97.52 | 83.70 | 84.20 | 85.40 || 92.71 | 92.89 | 93.56 | 92.52 | 92.33 | 93.40 || 92.66 | 92.54 | 93.35
201 || 99.40 | 100.0 | 100.0 | 84.42 | 71.84 | 60.19 || 97.16 | 96.61 | 96.84 | 96.30 | 100.0 | 100.0 || 97.04 | 95.57 | 93.73
202 || 99.48 | 99.57 | 99.57 | 66.67 | 60.00 | 35.00 || 99.38 | 99.48 | 99.48 | 70.27 | 72.73 | 60.87 || 98.88 | 98.83 | 98.36
205 || 99.92 | 100.0 | 100.0 | 81.71 | 78.57 | 77.38 || 99.42 | 99.42 | 99.46 | 97.10 | 100.0 | 100.0 || 99.36 | 99.32 | 99.28
208 || 97.54 | 98.10 | 98.09 | 91.96 | 88.24 | 58.00 || 93.36 | 92.91 | 92.78 | 97.00 | 96.89 | 95.47 || 94.95 | 93.13 | 79.00
209 || 99.73 | 99.67 | 99.63 | 100.0 | 100.0 | 100.0 || 100.0 | 100.0 | 100.0 | 11.11 | 8.33 7.69 || 99.73 | 99.63 | 99.60
210 || 97.48 | 97.89 | 97.93 | 68.72 | 63.64 | 50.87 || 97.08 | 97.09 | 97.21 | 71.89 | 71.36 | 69.23 || 95.02 | 94.45 | 93.62
212 || 98.16 | 97.72 | 98.16 | 99.07 | 99.07 | 99.12 || 98.16 | 98.26 | 98.37 | 99.07 | 98.85 | 99.07 || 98.76 | 98.62 | 98.80
213 || 99.96 | 100.0 | 100.0 | 57.44 | 57.00 | 53.41 || 91.46 | 91.42 | 91.36 | 99.70 | 100.0 | 100.0 || 92.31 | 92.25 | 91.60
214 NaN | NaN NaN | 93.68 | 90.58 | 89.78 || 0.00 | 0.00 | 0.00 | 100.0 | 99.85 | 99.90 || 93.67 | 90.44 | 89.60
215 || 99.94 | 99.94 | 99.94 | 81.21 | 77.58 | 76.97 || 99.04 | 98.89 | 98.89 | 98.53 | 97.71 | 97.69 || 99.02 | 98.81 | 98.78
217 || 100.0 | 99.59 | 99.59 | 98.07 | 98.01 | 97.81 || 86.52 | 87.10 | 86.79 | 100.0 | 99.84 | 99.90 || 98.28 | 98.10 | 97.92
219 || 99.86 | 99.86 | 99.95 | 84.62 | 84.62 | 74.63 || 99.52 | 99.52 | 99.52 | 94.83 | 94.83 | 98.04 || 99.40 | 99.40 | 99.16
all 98.14 | 98.27 | 98.27 | 94.02 | 92.73 | 89.53 || 96.88 | 96.56 | 96.58 | 96.39 | 95.41 | 95.60 || 96.72 | 95.89 | 94.90
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TABLE Il
BEAT-BY-BEAT, RECORD-BY-RECORD TESTING RESULTS OF THE EXPERIMENTRESULTS FOR THE REALTIME CLASSIFICATION MACHINE: THE DETECTION STAGE(LABELS SB+AND SB-), THE

SINGLE CLASSIFICATION STAGE AND THE GLOBAL CLASSIFICATIONMACHINE (LABELS SB+AND SB-)

Expert counts QRS Detector(single) Classifier (single) Classifier SB+(global) Classifier SB-(global)

File (# beats) SB+ SB- Normal Abnormal Normal Abnormal Normal Abnormal
# Normal | Abnorm || FP | FN | FP | FN TP FP TP FP TP FP TP FP TP FP TP FP

100 2271 1 0 0 0 0 2271 0 1 0 2271 0 1 0 2271 0 1 0
101 1863 2 6 2 2 1851 0 2 12 1847 0 1 15 1850 0 1 12
102 99 2088 0 0 0 7 1 2087 92 5 1 2087 94 5 1 2087 94
103 2084 0 0 1 4 2084 0 0 0 2083 0 0 0 2080 0 0 0
104 163 2065 124 | 13 85 18 135 120 1946 28 140 138 1916 22 141 135 1914 21
105 2526 46 77 17 61 16 2288 23 23 238 2283 20 25 227 2270 25 21 240
106 1507 520 3 0 79 1506 | 107 413 1 1505 | 117 400 2 1505 | 113 328 2
107 0 2136 1 1 0 3 2134 0 0 2 2134 0 0 2 2132 0
118 96 2182 4 0 4 1 15 2167 95 1 17 2165 95 1 17 2165 95
119 1543 444 0 0 0 1543 0 444 0 1543 0 444 0 1543 0 444 0
200 1773 828 15 4 8 1717 | 135 693 56 1724 | 127 698 48 1728 | 117 708 44
201 1654 308 0 29 0 69 1644 48 260 10 1654 58 222 0 1654 54 186 0
202 2097 39 0 5 0 15 2086 13 26 11 2087 11 24 9 2087 11 14 9
203 2529 451 57 30 34 48 935 70 381 1594 906 75 358 1611 895 75 343 1619
205 2574 82 0 3 0 5 2572 15 67 2 2572 15 66 0 2572 14 65 0
208 1585 1368 11 46 10 | 462 1547 | 110 1259 39 1546 | 116 1215 30 1542 | 118 801 30
209 3004 1 1 0 1 0 2996 0 1 8 2994 0 1 10 2993 0 1 11
210 2422 227 12 17 6 49 2362 71 156 61 2367 67 147 51 2369 64 117 50
212 923 1825 0 1 0 1 906 17 1808 17 901 16 1809 21 905 15 1810 17
213 2666 585 0 2 0 21 2665 | 249 336 1 2665 | 250 334 0 2665 | 252 313 0
214 0 2260 3 4 4 0 143 2118 0 0 209 2047 0 0 222 2030 0
215 3198 165 1 1 1 3196 31 134 2 3196 36 128 2 3196 36 127 2
217 244 1964 2 3 2 244 38 1926 0 243 36 1925 1 243 36 1921 1
219 2089 65 0 0 0 2086 10 55 3 2086 10 55 3 2086 10 50 1

tot 38910 19652 || 314 | 182 | 223 | 821 || 36642 | 1219 | 18437 | 2270 || 36619 | 1321 | 18202 | 2241 || 36601 | 1317 | 17579 | 2248
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