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Abstract—In the theory of belief functions, many measures the theory of belief functions [2], [7], [8], [21]. However,
of uncertainty have been introduced. However, it is not alwgis the domain of definition of the bba does not allow an ideal

easy to understand what these measures really try to represeé  afinition of measure of uncertainty. Moreover, behind the
In this paper, we re-interpret some measures of uncertaintyin ¢ f tainty. diff t nofi hidd
the theory of belief functions. We present some interests ah erm of uncertainty, difierent notions are hidadaen.

drawbacks of the existing measures. On these observationse In the section I, we present different kinds of measures
introduce a measure of contradiction. Therefore, we presersome  of uncertainty given in the state of art, we discuss them and

degrees of non-specificity and Bayesianity of a mass. We proge give our definitions of some terms concerning the uncestaint

a degree of specificity based on the distance between a masslan |, saction 111, we introduce a measure of contradiction and
its most specific associated mass. We also show how to use th%. it W’ introd imole d f tainty @ th
degree of specificity to measure the specificity of a fusion fte. ISCUSS It. VV& Introduce simple degrees or uncertainty

lllustrations on simple examples are given. section IV, and propose a degree of specificity in the section
Keywords: Belief function, uncertainty measures, speci- V. We show how this degree of specificity can be used to
ficity, conflict. measure the specificity of a combination rule.

|, INTRODUCTION Il. MEASURES OF UNCERTAINTY ON BELIEF FUNCTIONS

: : L In the framework of the belief functions, several functions
The theory of belief functions was first introduced by u{we call thembelief function} are in one to one correspon-

in order to represent some imprecise probabilities wipper _ ) .

and lower probabilities Then [15] proposed a mathematicaPIence with the bbabel, pl andq. From these be|.|ef fungtm_ns,

theory of evidence we can define several measures of uncertainty. Klir in [8]
' distinguishes two kinds of uncertainty: the non-specificit

and the discord. Hence, we recall hereafter the main belief

Let © be a frame of discernment. Basic belief assignment . o .
functions, and some non-specificity and discord measures.

(bba)m is the mapping from elements of the powerz@tonto

[0,1] such that: A. Belief functions
Z, m(X) = 1. 1) Hence, the credibility and plausibility functions represe
Xe2© respectively a minimal and maximal belief. Theedibility

The axiomm(@) = 0 is often used, but not mandatory. Afunction is given from a bba for alk € G® by:

focal elementX is an element oR® such thatm(X) # 0..

The difference of a bba with a probability is th(e Bjomain of bel(X) = Z m(Y). 2)
definition. A bba is defined on the power@& and not only YeX. Y20
on ©. In the powerset, each element is not equivalent in terfiie plausibility is given from a bba for allX € G® by:
of precision. Indeed}; € © is more precise thafy Uf, € 2°.

In the case of the DSmT introduced in [17], the bba are pl(X) = Z
defined on an extension of the powerset: the hyper powerset
noted D®, formed by the closure 0® by union and inter- Thecommonalityfunction is also another belief function given
section. The problem of signification of each focal element by:

m(Y). 3)
YeG®,YNX#£D

the same as i”®. For instancef; € O is less precise than
6, N6 € D®. In the rest of the paper, we will noe® for a(X) = Z m(Y). (4)
either2® or D°. YEGO,YDX

In order to try to quantify the measure of uncertainty sucfhese functions allow an implicit model of imprecise and
as in the set theory [5] or in the theory of probabilitiesincertain data. However, these functions are monotonic by
[16], some measures have been proposed and discussethdtusion:bel andpl are increasing, and is decreasing. This



is the reason why the most of time we use a probability to také), but that is more complicated and we will later show how
a decision. The most used projection into probability sabbsp we can define a specificity degree.
is the pignistic probability transformation introduced (3] The most non-specific bba’s for both equations (6) and (7)

and given by: are the total ignorance bba given by the categorical/bba:
XY m(©) = 1. We haveNS(m) = log,(|©]) and S(m) = ﬁ
betP(X) = Z v m(Y), (5) This categorical bba is clearly the most non-specific for us.
YEGO,Y£0 Y] However, the most specific bba’s are the Bayesian bba’s. The

. - . only focal elements of a Bayesian bba are the simple elements
where|X| is the cardinality ofX, in the case of the DSmT of ©. On these kinds of bban we haveNS(m) — 0 and

that is the number of disjoint elements corresponding in tlge(m) — 1. For example, we take the three Bayesian bba's

Venn diagram. : - i
From this probability, we can use the measure of uncertainqﬁﬁned ond = {01, 02,05} by:

given in the theory of probabilities such as the Shannon my(01) = my(62) = my(03) =1/3, (8)
entropy [16], but we loose the interest of the belief funtsio ma(61) = ma(62) = 1/2, ma(3) = 0, 9)
and the information given on the subsets of the discernment
space@. m3(91) = 1, m3(92) = m3(93) = O (10)

o We obtain the same non-specificity and specificity for these
B. Non-specificity three bba’s.

The non-specificity in the classical set theory is the impre- That hurts our intuition; indeed, we intuitively expect tha
cision of the sets. Such as in [14], we define in the theory tife bbam; is the most specific and the; is the less specific.
belief functions, the non-specificity related to vagueresd We will define a degree of specificity according to a most
non-specificity. specific bba that we will introduce.

Definition  The non-specificity in the theory of belief .

: - 2 . C. Discord
functions quantifies how a bba is imprecise. ] ) ) ] .
The non-specificity of a subseX is defined by Hartley Different kinds of discord have been defined as extensions

[5] by log, (| X|). This measure was generalized by [2] in thér belief functions of the Shannon entropy, given for the

theory of belief functions by: probabilities. Some discord measures have been propasad fr
plausibility, credibility or pignistic probability:
NS(m) = m(X)logy (| X1). (6)
Xecg,:xzw ’ E(m) = - Z m(X)logy (pl(X)), (11)

XeG®
That is a weighted sum of the non-specificity, and the weights

are gi\(en by th_e basic b_elief iX. Ramer in [13] ha_s_ s_hoyvn C(m) = — Z m(X)log,(bel (X)), (12)
that it is the unique possible measure of non-specificityhan t
theory of belief functions under some assumptions such as
f])é?nr:;(?itzrg,tiggfjnlwty, sub-additivity, continuity, bramag and D(m) = — Z m(X)logy(betP (X)), (13)

If the measure of the non-specificity on a bba is low, we can i
consider the bba is specific. Yager in [21] defined a spegificitith £(m) < D(m) < C(m). We can also give the Shanon

XeGe

XeGe

measure such as: entropy on the pignistic probability:
B m(X) — ) betP(X)log,(betP(X)). (14)
Sm)y= > X (7) o
XeG®, X#(

o . Other measures have been proposed, [8] has shown that these
Both definitions corresponded to an accumulation of Reasures can be resumed by:

function of the basic belief assignment on the focal elesent

Unlike the classical set theory, we must take into accouat th — > m(X)logy(1 — Conyp (X)), (15)

bba in order to quantify (to weight) the belief of the impseri Xege

focal elements. The imprecision of a focal element can @fhere Con is called a conflict measure of the bha on

course be given by the cardinality of the element. X. However, in our point of view that is not a conflict
First of all, we must be able to compare the non-specificiyuch presented in [20], but a contradiction. We give the both

(or specificity) between several bba’s, event if these baees following definitions:

not defined on the same discernment space. That is not th®efinition A contradictionin the theory of belief functions

case with the equations (6) and (7). The non-specificity ef tiyuantifies how a bban contradicts itself.

equation (6) takes its values [f,log,(|O|)]. The specificity  Definition (C1) Theconflictin the theory of belief functions

of the equation (7) can have values[i‘%—l, 1]. We will show can be defined by the contradiction between 2 or more bba'’s.

how we can easily define a degree of non-specificitjoin]. In order to measure the conflict in the theory of belief

We could also define a degree of specificity from the equatifunctions, it was usual to use the masksgiven by the



conjunctive combination rule on the empty set. This rule ishereD is an G9! x G1®! matrix based on Jaccard distance
given by two basic belief assignments, andms and for all whose elements are:

O py-
X € G® by: 1LifA=B =0,
me(X) = Z m1(A)ma(B) == (m1 ®m2)(X). (16) D(A,B) = (22)
ANB=X AN 5| VA, B € G°
k = m.(0) can also be interpreted as a non-expected solution. [AuB|” .

In [21], Yager proposed another conflict measure from the . . .
[21] ger prop However, this measure istatal conflictmeasure. In order

value ofk given by —log,(1 — k). . . .
Howeve?, - ogservegé(in [9])’ the weight of conflict giver}_e define a contradiction measure we keep the same spirit.

by k£ (and all the functions ok) is not a conflict measure Irst, (tjh?. cogtrad;tr:]tlog_otf an elgrr:eh’t W'tt?] resg;ct tg a bba
between the basic belief assignments. Indeed this valuewfﬁ'esree meX afl ‘} 'Sé‘gceis tﬁe\,\Ns:tr; o?ical bbﬂ; X
completely dependant of the conjunctive rule and this ruf¥ mx(X) =1, X € ' 9 :

is non-idempotent - the combination of identical basic dfeli Contr, (X) = d(m, mx), (23)
assignments leads generally to a positive valuekofTo

highlight this behavior, we defined in [12] thauto-conflict where the distance can also be the Jousselme distance on the
which quantifies the intrinsic conflict of a bba. The autohpa's. The contradiction of a bba is then defined as a weighted

conflict of ordern for one expert is given by: contradiction of all the element& of the considered space
5
an = <i6—91 m) (©). (7) Contr,, =c¢ Z m(X)d(m,mx), (24)
The auto-conflict is a kind of measure of the contradiction, XeGe

but depends on the order. We studied its behavior in [11].\ynere ¢ is a normalized constant which depends on the
Therefore we need to define a measure of contradictig;j‘g\C
i

] - ) | e of distance used and on the cardinality of the frame of
independent on the order. This measure is presented in ernment in order to obtain values|in 1] as shown in the
next section Il

following illustration.
IIl. A CONTRADICTION MEASURE

The definition of the conflict (C1) involves firstly to measuré" lllustration
it on the bba’s space and secondly that if the opinions of two Here the value: in the equation (24) is equal to 2. First we
experts are far from each other, we consider that they areniote that for all categorical bbasy, the contradiction given
conflict. That suggests a notion of distance. That is theoreasyy the equation (23) give€ontr,,, (Y) = 0 and the contra-
why in [11], we give a definition of the measure of conflictliction given by the equation (24) brings al€ontr,,, = 0.
between experts assertions through a distance between ttinsidering the bban,(f;) = 0.5 and m;(f2) = 0.5, we
respective bba’s. The conflict measure betweeexperts is haveContr,,, = 1. That is the maximum of the contradiction,
defined by: hence the contraction of a bba takes its valuefin].

Conf(1,2) = d(mq,ma). (18)

. . Figure 1. Bayesian bba’s
We defined the conflict measure between one expand the 9 Y

other M — 1 experts by:
1 3 ml: ‘
Conf(i, &) = M1 Z lConf(z,j), (19)
J=11#j
where€ = {1,..., M} is the set of experts in conflict with
Another definition is given by: mo: 0916
Conf(i, M) = d(m;, 731), (20) '

wheremy; is the bba of the artificial expert representing the

combined opinions of all the experts &except. Taking the Bayesian bba given by (61) = 0.6, my(6;) =
We use the distance defined in [6], which is for us the mogt3  andmn,(6s) = 0.1. We obtain:

appropriate, but other distances are possible. See [4] for a

comparison of distances in the theory of belief functionssT Contr,,, (1) =~ 0.36,
distance is defined for two basic belief assignmentisand Contr,,, (f2) =~ 0.66,
my on G© by:

Contry,,(03) =~ 0.79

1
d(ma,me) = \/5(”‘1 —my)TD(m; —my), (21)  The contradiction forn, is Contr,,, = 0.9849.



Figure 2. Non-dogmatic bba equation (6) by:

log, (| X1)
Sns(m) = . G;Xﬂ)m(X)m 5)
- €Ge,
— Z m(X)log e (|X]).
0.6

XeGe, X£0

Therefore, this degree takes its values ifitol] for all bba’s
m, independently of the size of discernment. We still have
dns(me) = 1, wheremg is the categorical bba giving the

Takems ({61,062, 05}) = 0.6, m3(62) = 0.3, andms (03) = o4 ignorance. Moreover, we obtaiiks(m) = 0 for all
0.1; the masses are the same thagp, but the highest one is Bayesian bba’s

on© = {01,062, 65} instead off,. We obtain: From the definition of the degree of non-specificity, we can

Contrm, ({#1,02,05}) ~ 0.28, propose a degree of specificity such as:
Contrp, (2) =~ 0.56, bpm) = 1- Y m(X)llogz(lgl)
Contrp, (03) ~ 0.71 XeGo, X0 0g,(/0]) (26)
The contradiction forms is Contr,,, = 0.8092. We can see = 1- > mX)loge(X]).
that the contradiction is lowest thanks to the distancentaki XeG®, X#£0
into account the imprecision @. As we observe already the degree of non-specificity given
by the equation (26) does not really measure the specificity
Figure 3. Focal elements of cardinality 2 but the Bayesianity of the considered bba. This degree ialequ
to 1 for Bayesian bba’s and not one for other bba’s.
Definition TheBayesianityin the theory of belief functions
qguantify how far a bban is from a probability.
We illustrate these degrees in the next subsection.
my a A. lllustration
In order to illustrate and discuss the previous introduced
degrees we take some examples given in the table I. The
Q bba’'s are defined oR® where ® = {0;,6,,603}. We only
consider here non-Bayesian bba's, else the values are still

given hereinbefore.
We can observe for a given sum of basic belief on the
If we consider now the same mass values but cingletons of® the Bayesianity degree can change according
focal elements of cardinality 2ma({61,02}) = 0.6, to the basic belief on the other focal elemgnts. For example,
ma(01,05) = 0.3, andma(6s, 05) = 0.1. We obtain: the degrees are the same fog andms, but different form.
For the bbam,, note that the sum of the basic beliefs on the
singletons is equal to the basic belief on the ignorancehim t

Contry,, ({01,62}) =~ 0.29, case the Bayesianity degree is exactly 0.5. That is conform t
Contry,, ({#1,03}) ~ 0.53, the intuitive signification of the Bayesianity. If we loak; and
Contr,, ({05.0 ~ 065 mg, We first note that there is no bz?\su:_ belief on the singletons.
ontry,, ({02, 0s}) As a consequence, the Bayesianity is weaker. Moreover, the
The contradiction fom, is Contr,,, = 0.80. bbams is naturally more Bayesian thang because of the

basic belief ono.

Fewer of focal elements there are, smaller the contradictio We must add that these degrees are dependent on the
of the bba will be, and more the focal elements are precisgrdinality of the frame of discernment for non Bayesiandba
higher the contradiction of the bba will be. Indeed, if we consider the given bba with © = {61, 65,65},
the degreedp = 0.75. Now if we consider the same bba
with © = {6,02,0s,0,} (no beliefs are given od,), the

We have seen in the section Il that the measure noBayesianity degree i§z = 0.80. The larger is the frame, the
specificity given by the equation (6) take its values in a spatarger becomes the Bayesianity degree.
dependent on the size of the discernment sgacildeed, the
measure of non-specificity takes its valueg(nlog,(|©])]. V. DEGREE OF SPECIFICITY

In order to compare some non-specificity measures in anln the previous section, we showed the importance to con-
absolute space, we define a degree of non-specificity from sider a degree instead of a measure. Moreover, the measures

IV. DEGREES OF UNCERTAINTY



Table |
EVALUATION OF BAYESIANITY ON EXAMPLES

m—my . These both termgx anday are equal, because: x

andmy are isospecific and so according to the equat{@f)

mi ma ms3 mq ms me me

01 0.4 0.3 0.1 | 03 0 0 0
02 0.1 01| 03 | 01 0 0 0
03 0.1 01| 01 | 01 0 0 0
0LU62 | 03 03 | 05 0 0.6 0.6 0
01 U063 0.1 0.2 0 0 0.4 0 0
02 U 03 0 0 0 0 0 0 0
e 0 0 0 0.5 0 0.4 1
B 0.75| 0.68 | 0.68 | 0.5 | 0.37 | 0.23 0
ONS 0.25| 032| 0.32| 05 | 0.63 | 0.77 1

of specificity and non-specificity given by the equations (7)
and (6) give the same values for every Bayesian bba'’s as seen
on the examples of the section II.

We introduce here a degree of specificity based on compar-
ison with the bba the most specific. This degree of specificity First
is given by:

ds(m) =1—d(m,ms), (27)

wherem; is the bba the most specific associatedrtoand

d is a distance defined ont6, 1]. Here we also choose the
Jousselme distance, the most appropriated on the bba's,spac
with values ontd0, 1]. This distance is dependent on the size
of the space>®, we have to compare the degrees of specificity
for bba’s defined from the same space. Accordingly, the main
problem is to define the bba the most specific associated to
m.

A. The most specific bba

In the theory of belief functions, several partial orders
have been proposed in order to compare the bba’s [3]. These
partial ordering are generally based on the comparisons of
their plausibilities or their communalities, specially ander
to find the least-committed bba. However, comparing bba’s
with plausibilities or communality can be complex and witho
unigue solution.

The problem to find the most specific bba associated to a bba
m does not need to use a partial ordering. We limit the specific
bba’s to the categorical bba'six (X) = 1 where X € G®©
and we will use the following axiom and proposition:

Axiom For two categorical bba’snx andmy, mx is more
specific thanmy if and only if | X| < |Y.

In case of equality, the both bba’s a@smspecific

Proposition If we consider two isospecific bba/s x and
my, the Jousselme distance between every/bband m x is
equal to the Jousselme distance betweeand my:

VYm, d(m,mx) = d(m, my) (28)

D(Z,X) = D(Z,Y) VZ € G®. Thereforem(X) = m(Y),
that proves the proposition O
We definethe most specific bbar, associated to a bba
m as a categorical bba as followsis(Xnax) = 1 where
Xmax € G°.
Therefore, the matter is now how to fidd,,... We propose
two approaches:

First approach, Bayesian case

If m is a Bayesian bba we defing,,., such as:

Xmax = arg max(m(X), X e @) (29)

If there exist manyX,,., (i.e. having the same
maximal bba and giving many isospecific bba’s),
we can take any of them. Indeed, according to the
previous proposition, the degree of specificityrof
will be the same withm, given by either X, .«
satisfying (29).

approach, non-Bayesian case

If m is a non-Bayesian bba, we can defilg,,, in
a similar way such as:
m(X)

Xmax argmax( |X| ’
In fact, this equation generalizes the equation (29).
However, in this case we can also have sev&tal
not giving isospecific bba’s. Therefore, we choose
one of the more specific bbag. believing in the
element with the smallest cardinality. Note also that
we keep the terms of Yager from the equation (7).

Xe G°, X%@). (30)

Second approach

Another way in the case of non-Bayesian bbais

to transformm into a Bayesian bba, thanks to one of
the probability transformation such as the pignistic
probability. Afterwards, we can apply the previous
Bayesian case. With this approach, the most specific
bba associated to a bba is always a categorical
bba such asms(Xmax) = 1 where X,,.x € © and

not in G°.

B. lllustration

In order to illustrate this degree of specificity we give some
examples. The table Il gives the degree of specificity for
some Bayesian bba's. The smallest degree of specificity of
a Bayesian bba is obtained for the uniform distributiomn ),
and the largest degree of specificity is of course obtain for
categorical bbarfs).

The degree of specificity increases when the differences
between the mass of the largest singleton and the masses

of other singletons are getting biggeis(ms) < ds(m4) <

if and only if m(X) = m(Y).

Proof The proof is obvious considering the equatig2s)
and (22). As the both bba’'s:w x andmy- are categoric there is
only one non null term in the difference of vectots-mx and

ds(ms) < ds(mg). In the case when one has three disjoint
singletons and the largest mass of one of them is 0.4%9{pn

the minimum degree of specificity is reached when the masses
of 6, andf3 are getting further from the mass éf (mg). If



Table I

ILLUSTRATION OF THE DEGREE OF SPECIFICITY ONBAYESIAN BBA. special proprieties wanted for an application. We also psed

to study the comportment of the rules on generated bba’s
[12]. However, no real measures have been used to evaluate
the combination rules. Hereafter, we only show how we can
use the degree of specificity to evaluate and compare the
combination rules in the theory of belief functions. A coetpl
study could then be done for example on generated bba's.
We recall here the used combination rules, see [10] for their
description.

The Dempster ruleis the normalized conjunctive combi-
nation rule of the equation (16) given for two basic belief

01 02 03 ds

mi 1/3 1/3 1/3 0.423
mo | 0.4 0.4 0.2 0.471
m3 | 0.45| 0.45 | 0.10 | 0.493
myg | 0.45| 0.40 | 0.15 | 0.508
ms | 0.45 0.3 0.25 | 0.523
me | 0.45| 0.275| 0.275 | 0.524
m7 | 0.6 0.3 0.1 0.639

ms | 1 0 0 ! assignmentsn; andm, and for all X € G®, X # 0 by:
1
mps(X) = — > mi(A)ma(B). (35)
two singletons have the same maximal mass, bigger this mass ANB=X

is and bigger is the degree of specificityi(m2) < dg(ms). where k is either m.(0) or the sum of the masses of the
In the case of non-Bayesian bba, we first take a simpitements of) equivalence class fab®.

example: The Yager ruletransfers the global conflict on the total
m1(91) = 06, mia (91 U 92) = 04 (31) IgnoranCGGZ . o
6,) = 0.5, 61 U6s) = 0.5. 32 me(X) it X €27\ {0,0}
ma(61) ma (61 U 62) B2 () = ma(@)+m@) i X=6 (36)
For these two bba'sn; and ms, both proposed approaches 0 if X=10

give the same most specific bba, . We optamés(ml) . The disjunctive combination rule is given for two basic
0.7172 anddg(me) = 0.6465. Thereforeyn, is more specific belief assignmentsz; andms and for all X € GO by:

than my. Remark that these degrees are the same if we '
consider the bba’s defined @ff? and2®:, with ©, = {6;, 6} mpis(X) = Z my (A)ma(B). (37)
and O3 = {61,02,03}. If we now consider Bayesian bba AUB=X

mg(01) = ms3(02) = 0.5, the associated degree of specificityhe pubois and Prade rule is given for two basic belief
is ds(ms) = 0.5. As expected by intuitionn. is more specific assignmentsn, andm. and for all X € G®, X # 0 by:
thanms.

We consider now the following bba: mpp(X) = Y mi(A)ma(B)+ Y mi(A)ma(B). (38)
ANB=X AUB=X
m4(91) = 06, mq (91 U 92 U 93) =04. (33) ANB=0

The most specific bba is alsoy,, and we haveis (i) = = the peR rule is given for two basic belief assignments
0.6734. This degree of specificity is naturally smaller thar&r'de and for all X € G©, X # () by:

ds(mq) because of the mass 0.4 on a more imprecise foca

element. mpcr(X) = me(X) +
Let's now consider the following example: ( mi(X)*ma(Y) | ma(X)*m (Y))
mi(X)+ma(Y) ' me(X)+mi(Y))  (39)

m5(91 U 92) =0.7, m5(91 U 93) =0.3. (34) YeG®,

We do not obtain the same most specific bba with both Xov=0

proposed approaches: the first one will give the categoricalThe principle is very simple: compute the degree of speci-
bbamg, s, and the second oney,. Hence, the first degreeficity of the bba’s you want combine, then calculate the degre
of specificity is ds(ms) = 0.755 and the second one isof specificity obtained on the bba after the chosen comluinati
ds(ms) = 0.111. We note that the second approach producesle. The degree of specificity can be compared to the degrees
naturally some smaller degrees of specificity. of specificity of the combined bba’s.
o o o In the following example given in the table Ill we com-

C. Application to measure the specificity of a combinatida rupine two Bayesian bba’s with the discernment frafie=

We propose in this section to use the proposed degree{6f, 6., 65}. Both bba’'s are very contradictory. The values
specificity in order to measure the quality of the result adre rounded up. The first approach gives the same degree of
a combination rule in the theory of belief functions. Indeedpecificity than the second one except for the rules,, mpp
many combination rules have been developed to merge #redmy. We observe that the smallest degree of specificity is
bba’s [10], [19]. The choice of one of them is not alwaysbtained for the conjunctive rule because of the accunuilate
obvious. For a special application, we can compare the prmass on the empty set not considered in the calculus of the
duced results of several rules, or try to choose accorditigeto degree. The highest degree of specificity is reached for the



Table Il Table IV
DEGREES OF SPECIFICITY FOR COMBINATION RULES OBAYESIAN BBA’S. DEGREES OF SPECIFICITY FOR COMBINATION RULES ON NOIBAYESIAN

BBA’S.
mi ma2 Mc mps my MDis mpp MPCR
0 0 0 | 076 o 0 0 0 0
mi ma2 Mc mps my MDis mpp MpCR
) 06 | 02 | 012] 050 | 0.12| o012 | 012 | 043
! 0 0 0 |o047] o 0 0 0 0

02 0.1 0.6 | 0.06 | 0.25 | 0.06 0.06 0.06 | 0.37

01 0.4 0.2 0.2 | 0377 0.2 0.08 0.2 0.39
03 0.3 0.2 | 0.06 | 0.25 | 0.06 0.06 0.06 | 0.20

02 0.1 0.3 | 0.17 | 0.321| 0.17 0.03 0.17 0.28

91U6,] 0 0 0 0 0 038 | 038 | O
9; | 03 | 01 | 012 0226] 012 003 | 012 | 0.24
91 U6;] 0 0 0 0 0 018 | 018 | o0
ool o 5 5 . 5 520 T o201 o 91U0] 02 | 01 | 004 | 0076 | 0.04| 031 | 018 | 0.06
2 5 3 5 5 5 R '0 '0 5 91U6; O 0 0 0 0 0.1 0.1 0
: 02 U0s] 0 02| o 0 0 0.18 0.1 | 0.03
ms 1-| me, | mo, | me, | M, | Mo | Mo U, Mo u0| ™o, S) 0 0.1 0 0 0.47 0.27 0.13 0
ms 2-] Moy | Moy | Moy | Moy | Moy 10, 10 10 ms 1- | m m m m m m m m
55 1- | 0.639 | 0.655|0.176 | 0.567 |0.857 | 0.619 | 0.619 | 0.497 > b1 82 b1 b1 81 | 76,06, b1 b1
ms 2- | mg, | mg, | Mo, me, me, mg, me, mg,

ds 2- | 0.639 | 0.655[0.176 | 0.567 [0.457 | 0.478 0.478 | 0.497

6s 1- | 0.553 | 0.522|0.336 | 0.488 [0.389 | 0.609 0.428 | 0.497
ds 2- |0.553 | 0.522|0.336 | 0.488 [0.389 | 0.456 0.428 | 0.497

Yager rule, for the same reason. That is the only rule given a
degree of specificity superior % (m;) and tods(mz). The

N functions) with oneself. We distinguish the contradictemd
second approach shows well the loss of specificity

| q havi s with tl?ﬁe conflict that is the contradiction between 2 or more hba’s
rules mp;s, my and mpp having a cautious comportmenty . iniroduce a measure of contradiction for a bba based on

With Fhe _example, the degree of §pecjficity obtained by thgo weighted average of the conflict between the bba and the
combination rules are almost all inferior ;(m,) and to categorical bba’s of the focal elements

ds(m2), because the bba’s are very conflicting. If the degreesr, o previous proposed specificity or non-specificity mea-

of zpecmcny gf th(;a rule Su;h asps and:"‘PCﬁ al;f) SUPETIOT g res are not defined on the same space. Therefore that is
to ds(1m1) and t0ds(ms), that means that the bba’s are Ot it to compare them. That is the reason why we propose

In Cor,'ﬂ'Ct' _ . ) the use of degree of uncertainty. Moreover these measures gi
( tl)_letlsvcon5|der now a simple non-Bayesian example iGmne counter-intuitive results on Bayesian bba’s. We pepo
able IV.

a degree of specificity based on the distance between a mass
and its most specific associated mass that we introduce. This
most specific associated mass can be obtained by two ways and
give the nearest categorical bba for a given bba. We propose

also to use the degree of specificity in order to measure the
ma: 01 specificity of a fusion rule. That is a tool to compare and
1 0.4 0.2 S . .
: evaluate the several combination rules given in the thebry o

belief functions.

Figure 4. Two non-Bayesian bba’s
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