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The pharmacokinetics of propofol are relatively well-described in the pediatric population.

Recent work has confirmed the validity of allometric scaling for predicting propofol disposition across different species and for describing pediatric ontogenesis. In the first year of life, allometric models require adjustment to reflect ontogeny of maturation.

Pharmacodynamic data for propofol in children are scarcer, due to practical difficulties of data collection and the limitations of currently available depth of anesthesia monitors for pediatric use. Hence, questions relating to the comparative sensitivity of children to propofol, and differences in time to peak effect relative to adults, remain unanswered. K eo half-lives have been determined for pediatric kinetic models using time to peak effect techniques but are not currently incorporated into commercially available target controlled infusion pumps. Propofol injection pain remains a clinical problem, despite availability of propofol emulsions with a reduced free propofol concentration.

Pediatric pharmacokinetics

The pharmacokinetics of propofol are relatively well-described in children, having been investigated in healthy children [START_REF] Marsh | Pharmacokinetic model driven infusion of propofol in children[END_REF][START_REF] Saint-Maurice | Pharmacokinetics of propofol in young children after a single dose[END_REF][START_REF] Raoof | Propofol pharmacokinetics in children with biliary atresia[END_REF][START_REF] Jones | Pharmacokinetics of propofol in children[END_REF][START_REF] Kataria | The pharmacokinetics of propofol in children using three different data analysis approaches[END_REF], children with biliary atresia [START_REF] Raoof | Propofol pharmacokinetics in children with biliary atresia[END_REF], small children suffering from burns [START_REF] Murat | Pharmacokinetics of propofol after a single dose in children aged 1-3 years with minor burns. Comparison of three data analysis approaches[END_REF], critically ill ventilated [START_REF] Reed | A pharmacokinetically based propofol dosing strategy for sedation of the critically ill, mechanically ventilated pediatric patient[END_REF][START_REF] Rigby-Jones | Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit[END_REF] and non-ventilated children [START_REF] Peeters | Propofol pharmacokinetics and pharmacodynamics for depth of sedation in nonventilated infants after major craniofacial surgery[END_REF] and neonates [START_REF] Allegaert | Inter-individual variability in propofol pharmacokinetics in preterm and term neonates[END_REF][START_REF] Allegaert | Maturational pharmacokinetics of single intravenous bolus of propofol[END_REF]. Propofol disposition is generally best described by a 3-compartment mamillary model, with a rapidly equilibrating central compartment, a second larger peripheral compartment and a third, very large peripheral compartment. Propofol pharmacokinetics are altered in children, compared to adults. Comparative analyses have demonstrated that on a per kilogram body weight basis, children demonstrate increased clearance and larger volumes of distribution relative to adults. In particular, the volume of the central compartment is much greater than in adults [START_REF] Schuttler | Population pharmacokinetics of propofol: a multicenter study[END_REF]. Consequently, children require higher induction and maintenance doses than adults to achieve the same propofol blood concentration.

The influence of the larger central compartment volume in children can be explored using pharmacokinetic simulation. Figure 1 compares the concentration versus time profile resulting from a one hour propofol infusion (4mg kg -1 hr -1 ) administered to an adult (Diprifusor kinetics [START_REF] Marsh | Pharmacokinetic model driven infusion of propofol in children[END_REF][START_REF] Gepts | Disposition of propofol administered as constant rate intravenous infusions in humans[END_REF]) or to a 20kg child (Kataria kinetics (5)). The larger central compartment volume in children results in markedly reduced propofol plasma concentrations, relative to the adult.

Disentangling covariate effects

The evaluation of drug disposition in heterogeneous patients groups, such as those encountered in the pediatric ICU, can be complicated by the presence of confounding factors. How can one separate the influences that critical illness may have on pharmacokinetics, from the affects of body size and maturity? Body size and age are usually well correlated in pediatric populations. Allometric scaling is a useful and wellsupported [START_REF] Anderson | Population clinical pharmacology of children: modelling covariate effects[END_REF] approach to disentangle body size effects from other correlated covariables, such as age, in pediatric populations. Allometric scaling relates body mass to metabolic rate (and hence, to drug clearance) using Kleiber's Law. In 1932, Kleiber demonstrated that basal metabolic rate was proportional to body mass raised to the power 0.75, and that this relationship applied to animals ranging in size from a mouse to a whale [START_REF] Kleiber | Body size and metabolism[END_REF]. When deriving pharmacokinetic data from pediatric populations, if weight is selected as a initial covariate and the three-quarter power relationship applied a priori (to clearance parameters; volume parameters are scaled to the power of 1), this allows the influence of secondary covariates, which may be correlated to weight e.g. age, to be examined [START_REF] Anderson | Mechanistic basis of using body size and maturation to predict clearance in humans[END_REF]. Knibbe and colleagues explored the application of allometric scaling to propofol pharmacokinetic parameters obtained from rats, children (aged from 1 to 5 years) and adults [START_REF] Knibbe | Allometric relationships between the pharmacokinetics of propofol in rats, children and adults[END_REF]. This work demonstrated the validity of the allometric approach for predicting drug disposition across different species and for describing within-species ontogenesis, Figure 2.

A recent publication by the same group has focused on defining the human body weight range for which allometric scaling can accurately be applied to predict propofol clearance [START_REF] Peeters | Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixedexponent allometric model[END_REF]. Allometric scaling alone could accurately predict propofol clearance in children older than 2 years. However, adjustment of the model to reflect maturation was required to predict clearance in children younger than 24 months, a demonstration that simple allometric scaling reveals, but does not account for, age-related differences in pharmacokinetics.

Propofol in neonates

The work of Allegaert and colleagues in recent years has done much to inform propofol disposition and metabolism in term and pre-term neonates. Allegaert described markedly reduced clearance in a group of nine neonates (4-25 days postnatal age) after bolus injection of propofol [START_REF] Allegaert | Maturational pharmacokinetics of single intravenous bolus of propofol[END_REF]. After appropriate allometric scaling to 70kg to allow comparison, the clearance value was approximately 32%, and the volume of distribution at steady-state was approximately 44% of the corresponding values previously reported in infants . Scaled propofol clearance rates approach adult values within the first three months to one year of life [START_REF] Murat | Pharmacokinetics of propofol after a single dose in children aged 1-3 years with minor burns. Comparison of three data analysis approaches[END_REF][START_REF] Shangguan | Pharmacokinetics of a single bolus of propofol in chinese children of different ages[END_REF], mirroring ontogenic development of hepatic enzyme systems [START_REF] Alcorn | Ontogeny of hepatic and renal systemic clearance pathways in infants: part I[END_REF].

For infants and older children, the inclusion of body weight alone as a model covariate accounts for much of the observed inter-individual variability in propofol pharmacokinetics [START_REF] Kataria | The pharmacokinetics of propofol in children using three different data analysis approaches[END_REF][START_REF] Rigby-Jones | Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit[END_REF][START_REF] Peeters | Propofol pharmacokinetics and pharmacodynamics for depth of sedation in nonventilated infants after major craniofacial surgery[END_REF][START_REF] Shangguan | Pharmacokinetics of a single bolus of propofol in chinese children of different ages[END_REF]. Allegaert has demonstrated that for neonates post-menstrual and post-natal age as markers of maturity, rather than body weight, were the most influential factors, with the youngest babies having the smallest clearance values. Anderson (21) further explored this finding, combining Allegaert's neonatal clearance data with clearance values derived from older children [START_REF] Kataria | The pharmacokinetics of propofol in children using three different data analysis approaches[END_REF][START_REF] Murat | Pharmacokinetics of propofol after a single dose in children aged 1-3 years with minor burns. Comparison of three data analysis approaches[END_REF] and adults [START_REF] Gepts | Disposition of propofol administered as constant rate intravenous infusions in humans[END_REF][START_REF] Schnider | The influence of age on propofol pharmacodynamics[END_REF][START_REF] Struys | Influence of administration rate on propofol plasma-effect site equilibration[END_REF]. A sigmoid E max model was then applied to describe the maturation profile, Figure 3. In this analysis, the maturation half-time was calculated as 44 weeks. Anderson highlights the need for additional study of propofol disposition in infants to fully characterise the maturation profile in the first two years of life. Propofol infusion syndrome (PRIS) was first described in the literature in 1992 [START_REF] Parke | Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports[END_REF]. Shortly after, the syndrome was defined by Bray and colleagues as a sudden onset of treatmentresistant bradycardia leading to asystole, combined with at least one of the following symptoms; lipaemic plasma, clinically enlarged or fat infiltrated liver, metabolic acidosis or rhabdomylosis [START_REF] Bray | Propofol infusion syndrome in children[END_REF]. The syndrome was associated with long duration (more than 48 hours), high dose (more than 4 mg kg -1 hr -1 ) propofol infusions in children under 12 years old. In 2001, reports of the same propofol-related syndrome occurring in adult ICU patients [START_REF] Cremer | Long-term propofol infusion and cardiac failure in adult head-injured patients[END_REF] led to the UK Commission on Human Medicines (then Commission on Safety of Medicines) to recommend that propofol infusion rates for sedation did not exceed 4 mg kg -1 hr -1 [START_REF] Mca/Csm | Long term, high dose propofol (Diprivan) infusion[END_REF]. In the following year, the same committee announced the contraindication of propofol for the sedation of critically ill children [START_REF] Mca/Csm | Clarification: Propofol (Diprivan) infusion contraindication[END_REF].

Eight years later, what have we learned about PRIS? We know that it is a real phenomenon, with the consistency of clinical reports of the syndrome, the dose-dependency and the temporal association to propofol administration cited as reasons to strongly support a causal relationship [START_REF] Fudickar | Propofol infusion syndrome: update of clinical manifestation and pathophysiology[END_REF]. Plausible mechanisms have been suggested supporting the implication of the lipid component of currently availably propofol formulations in the pathology of the syndrome [START_REF] Wolf | Impaired fatty acid oxidation in propofol infusion syndrome[END_REF][START_REF] Withington | A case of propofol toxicity: further evidence for a causal mechanism[END_REF]. Whether a lipid-free propofol formulation, such as fospropofol, would decrease the risk of PRIS, or avoid it entirely, is as yet unknown. However, the potential for direct toxicity related to propofol itself, rather than the vehicle, would remain [START_REF] Schenkman | Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy[END_REF].

In recent years, use of propofol sedation in critically ill children in the UK has been extremely limited in line with current recommendations [START_REF] Jenkins | Current United Kingdom sedation practice in pediatric intensive care[END_REF]. The knowledge base regarding the disposition of propofol in the critical care population is hence based on studies carried out prior to the 2002 contraindication. Reed and colleagues were first to study propofol disposition in a critically ill pediatric population, ranging from neonates to age 15 years [START_REF] Reed | A pharmacokinetically based propofol dosing strategy for sedation of the critically ill, mechanically ventilated pediatric patient[END_REF].

They concluded that the pharmacokinetics were not dissimilar to studies of healthy children but described substantial inter-patient variability that could not be attributed to age or other demographic effects. Rigby-Jones et al [START_REF] Rigby-Jones | Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit[END_REF] clearance values were reported to be twice as high as those previously described in paediatric intensive care unit (PICU) patients [START_REF] Rigby-Jones | Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit[END_REF], emphasising the impact that mechanical ventilation and cardiac bypass have on propofol elimination during post-operative sedation.

Pediatric Propofol Target Controlled Infusion (TCI)

There are at least two pediatric pharmacokinetic models for propofol available for use in commercially available TCI pumps; the Paedfusor [START_REF] Absalom | Accuracy of the 'Paedfusor' in children undergoing cardiac surgery or catheterization[END_REF][START_REF] Absalom | Paedfusor' pharmacokinetic data set[END_REF] and the Kataria kinetic set [START_REF] Kataria | The pharmacokinetics of propofol in children using three different data analysis approaches[END_REF]. [START_REF] Absalom | Accuracy of the 'Paedfusor' in children undergoing cardiac surgery or catheterization[END_REF]. In this small study, the Paedfusor model's predictive performance was well within acceptable limits for clinical use.

A formal prospective analysis of the predictive performance of the Kataria model in children has not been published to date. However, a study by Rigouzzo and colleagues involved TCI administration of propofol to children (aged 6 to 13 years) using the Kataria model. Blood samples for propofol plasma assay were collected [START_REF] Rigouzzo | The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults[END_REF]. It was reported that measured concentrations of propofol were consistently higher than those predicted by the Kataria model, and that the margin of error increased with increasing propofol concentration.

The original analyses leading to the derivation of the Kataria and Paedfusor models were based on pharmacokinetic data only. However, values for K e0 , the blood-brain equilibration rate constant have been retrospectively generated for both models using the Time to Peak effect (t peak ) (37) technique [START_REF] Munoz | Estimation of the plasma effect site equilibration rate constant (ke0) of propofol in children using the time to peak effect: comparison with adults[END_REF]. T peak is a model-independent pharmacodynamic parameter that can be used to calculate a K e0 value for a given pharmacokinetic set, after administration of a sub-maximal dose. The K e0 value derived is one that accurately predicts t peak [START_REF] Minto | Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics[END_REF]. Muñoz's analysis revealed that the peak effect of propofol in children (132s) occurs far later than in adults (80s). The explanation offered for this finding is that, relative to adults (Schnider model), simulations using the pediatric model demonstrate a much The experimentally derived t peak value of 132s extrapolated to a K e0 value for the Kataria model of 0.41min -1 and for the Paedfusor model, 0.91min -1 . However, current commercially available TCI devices incorporating the Kataria and Paedfusor models do not include K e0 i.e. plasma is the target of the infusion, rather than the effect site, thus depriving pediatric populations from the superior control offered by effect site targeting systems [START_REF] Wakeling | Targeting effect compartment or central compartment concentration of propofol: what predicts loss of consciousness?[END_REF][START_REF] Struys | Comparison of plasma compartment versus two methods for effect compartment--controlled target-controlled infusion for propofol[END_REF][START_REF] Mortier | Effect site modelling and its application in TCI[END_REF].

Pediatric Pharmacodynamics (PD)

Whilst the pharmacokinetics of propofol in the pediatric population are reasonably welldescribed, there is a relative paucity of pharmacodynamic data [START_REF] Peeters | Propofol pharmacokinetics and pharmacodynamics for depth of sedation in nonventilated infants after major craniofacial surgery[END_REF][START_REF] Munoz | Estimation of the plasma effect site equilibration rate constant (ke0) of propofol in children using the time to peak effect: comparison with adults[END_REF][START_REF] Cortinez | Pharmacodynamics of propofol in children and adults: comparison based on the auditory evoked potentials index[END_REF].

Limitations of Pediatric PD studies

Undertaking pharmacodynamic studies can be very difficult in children and particularly so in intensive care medicine. In a "real life" scenario, rather than a controlled volunteer study in adults, it is often difficult or impossible to obtain data describing a full drug concentration versus effect profile. This is required for adequately quantifying hysteresis and hence, the derivation of K e0 . Arterial blood, the gold-standard matrix for sampling during PK-PD studies of rapidly acting drug compounds, is highly unlikely to be available for children outside of critical care. The insertion of a peripheral arterial line in children purely for research purposes is classified as high risk and cannot be justified [START_REF] Hull | Guidelines for the ethical conduct of medical research in children[END_REF], further, arterial line insertion is typically done after induction of anesthesia and the opportunity to populate the rising phase of the hysteresis loop is lost. The use of venous blood sampling during pediatric pharmacodynamic studies of intravenous sedative-hypnotics presents a limitation that can in part be overcome by careful study design, such as the incorporation of equilibration stages to accompanying changes in infusion rate. This stabilises arterial and venous blood concentrations and minimises arterio-venous differences as far as possible.

The use of intermittent pharmacodynamic markers, such as sedation scores, can also make it more difficult to capture rapidly changing drug effects. However, for extended continuous infusion studies, COMFORT scores (44) can provide useful information and have been successfully utilised as pharmacodynamic markers for the development of complex but clinically informative models of propofol pharmacodynamics [START_REF] Peeters | Propofol pharmacokinetics and pharmacodynamics for depth of sedation in nonventilated infants after major craniofacial surgery[END_REF]. Other limitations of Additionally, researchers are unlikely to be able to study single drug effects in children.

Hence, there is a need for pragmatism regarding the concomitant administration of other drugs with sedating effects when evaluating propofol pharmacodynamics, such as maintaining opioids infusions at a constant rate, so adjunct drug contribution to pharmacodynamic effects are at least unchanging after a period of equilibration [START_REF] Murray | Electroencephalograph variables, drug concentrations and sedation scores in children emerging from propofol infusion anaesthesia[END_REF]. In another strategy to deal with multiple drug effects, Jeleazcov and colleagues assumed additive interactions between propofol and co-administered opioids to derive pharmacodynamic parameter values for each drug based on their combined sedative effect, when measured using bispectral index (BIS) [START_REF] Jeleazcov | Pharmacodynamic modelling of the bispectral index response to propofol-based anaesthesia during general surgery in children[END_REF]. They studied 59 children aged from 1 to 16 years undergoing general surgery. A two-stage pharmacodynamic analysis revealed an age-dependency of the K e0 value for propofol, with K e0 decreasing with increasing age. T peak , however, showed a trend of increasing with age. These findings may reflect true agedependent differences in propofol pharmacodynamics. Cortinez and colleagues have suggested that children may be more sensitive to propofol than adults, based on higher calculated CE 50 values in adults than in children (3 to 11 years), resulting from a study examining auditory evoked potentials (AEP) following a sub-maximal bolus propofol dose [START_REF] Cortinez | Pharmacodynamics of propofol in children and adults: comparison based on the auditory evoked potentials index[END_REF]. However, a second study by the same group which determined propofol effect site concentrations at BIS value = 50 in adults and in children aged 3 to 11 did not demonstrate significant differences in propofol requirements [START_REF] Munoz | Effect site concentrations of propofol producing hypnosis in children and adults: comparison using the bispectral index[END_REF]. In contrast, Rigouzzo et al suggested that children may be less sensitive than adults to propofol. In their study of 45 children (6 to 13 years) and 45 adults anaesthetised with TCI propofol, children demonstrated higher measured and predicted propofol plasma concentrations at a BIS value of 50 than the adult patients [START_REF] Rigouzzo | The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults[END_REF]. Conflicting results from such studies may be in part related to the choice of depth of anesthesia monitor, and differences in the pharmacokinetic models used to administer propofol and/or predict effect site concentrations.

Recently, a second smaller study by Rigouzzo and colleagues attempted to identify the best model for describing propofol PK-PD in pre-pubertal children [START_REF] Rigouzzo | Pharmacokinetic-pharmacodynamic modeling of propofol in children[END_REF]. Propofol was administered to pre-pubertal children (n=16, 6-12 years) by TCI using the Kataria model ( 5), and to adults and post-pubertal children (n=13, 13-35 years) using the Schnider model [START_REF] Schnider | The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers[END_REF].

BIS was used as an effect measure. The recorded BIS data from the pre-pubertal group was then compared to predicted propofol concentrations generated using several pharmacokinetic models; the Kataria model used to administer propofol but also the Marsh (1), Schuttler [START_REF] Schuttler | Population pharmacokinetics of propofol: a multicenter study[END_REF] and Schnider models, to evaluate which model best described the data.

BIS data from the post-pubertal/adult cohort was compared to predicted concentrations generated by the Schnider model only. The analysis revealed that the pre-pubertal BIS versus predicted propofol concentration was best described by the adult Schnider model so in a second stage of the analysis, the two cohorts were pooled so that the influence of puberty on propofol pharmacodynamic parameter estimates could be examined. The authors hypothesise that the lack of early sampling in the studies that led to the derivation of the paediatric models tested, may explain their perceived weakness at describing the initial phase of propofol distribution kinetics, and hence, the effect on BIS. Additionally, the Schnider model is unique among those explored in Rigouzzo's analysis in that both age and lean body mass are included as covariates, thus allowing a more precise tailoring of individual predicted propofol concentrations. Analysis of the pooled data from both cohorts using the Schnider model revealed that pubertal status was a significant pharmacodynamic model covariate with both K eO and Ce 50 varying between children and adults. The typical value of Ce 50 was around 20% higher in children than in adults. Tpeak was subsequently derived and found to be significantly shorter in children at 0.71 min [0.37-1.64] median

[range] versus 1.73 [1.4-2.68] min in adults. This is in contrast to the findings by Munoz [START_REF] Munoz | Estimation of the plasma effect site equilibration rate constant (ke0) of propofol in children using the time to peak effect: comparison with adults[END_REF], which the authors suggest may relate to differences in effect measure (BIS versus AEP) and methodological differences, including the use of different pharmacokinetic models. The shorter T peak in younger children supports the findings of Jeleacov and colleagues [START_REF] Jeleazcov | Pharmacodynamic modelling of the bispectral index response to propofol-based anaesthesia during general surgery in children[END_REF].

Propofol, BIS & Children

The technology of BIS monitoring is based on an algorithm developed from adults, hence its usefulness as a measure of anaesthetic depth in children, and particularly in infants, has long been questioned [START_REF] Watcha | Investigations of the bispectral index monitor in pediatric anesthesia: first things first[END_REF]. Subsequent studies evaluating the relationship between the bispectral index and established sedation measures such as the Observer's Assessment of Alertness/Sedation (OAA/S) and the University of Michigan Sedation Scale (UMSS) have provided evidence that BIS monitoring can be a useful measure of intravenous sedation in children older than 2 years (51) [START_REF] Overly | Bispectral analysis during pediatric procedural sedation[END_REF]. Currently, evidence to suggest that any of the alternative depth of anesthesia monitors is more or less suitable than BIS for use in children is limited [START_REF] Davidson | Monitoring the anaesthetic depth in children -an update[END_REF][START_REF] Wallenborn | Comparative evaluation of Bispectral Index and Narcotrend Index in children below 5 years of age[END_REF][START_REF] Klockars | Spectral entropy as a measure of hypnosis in children[END_REF].

Prospective BIS monitoring of children (n=12, 1-12 years) in PICU was performed to investigate the incidence of over-sedation and periods of potential awareness during [START_REF] Tobias | Bispectral index monitoring during the administration of neuromuscular blocking agents in the pediatric intensive care unit patient[END_REF]. Children were sedated with either midazolam or propofol infusions, with supplemental doses of midazolam, fentanyl or morphine provided if additional sedation was deemed necessary, based on physiological parameters. The BIS monitor was concealed from clinical staff. During the 476 hours of sedation studied, over-sedation (BIS<50) occurred 35% of the time, and under-sedation (periods of potential awareness, BIS>71) comprised 8% of the time. Over-sedation was more likely to occur in patients sedated with propofol, than with midazolam (p<0.0001. There are several limitations to this study, not least the small cohort and the assumption that BIS is a 'gold standard' measure of sedation in the patients studied. However, the study results suggest the need for a larger prospective trial to establish the benefit of BIS-titrated sedation in pediatric patients during the use of neuromuscular blocking agents.

Recently, Tirel and colleagues (57) used TCI propofol to evaluate the relationship between age and BIS values, in a group of children aged from 3 to 15 years. Target propofol plasma concentrations were held at 6, 4 and 2µg mL -1 during periods without surgical stimulation to allow collection of BIS and raw EEG. In this study, there was no statistically significant difference in BIS values at 4 and 6µg mL -1 . BIS values at 2µg mL -1 were significantly different to those achieved at the higher target concentrations but were also correlated with the age of the children (r 2 =0.66), with the highest BIS values being recorded in the youngest children. Tirel et al suggest this may reflect a true pharmacodynamic difference between younger and older children, or could be influenced by the underlying pharmacokinetics. The Kataria model used for TCI does not include age as a covariate after it was demonstrated that its inclusion only marginally improved the model.

Park et al [START_REF] Park | Changes of bispectral index during recovery from general anesthesia with 2% propofol and remifentanil in children[END_REF] investigated the relationship between BIS values and predicted plasma propofol concentrations in 30 children aged from 2 to 7 years during emergence from anesthesia. The Marsh model was used to administer TCI propofol [START_REF] Marsh | Pharmacokinetic model driven infusion of propofol in children[END_REF]. On completion of surgery, the target propofol concentration was reduced from 3µg mL -1 in 0.2µg mL -1 steps and BIS values were recorded. The authors concluded that BIS was correlated with predicted propofol concentration during emergence from anesthesia but that the correlation was weaker than that observed with an adult population. Additionally, there was substantial interindividual variability in the recorded BIS values at each predicted concentration.

These studies suggest caution when using BIS to titrate propofol infusions in children and demonstrate a lack of sensitivity of the BIS system to discriminate at deep sedation levels in children. 

Pain on injection

Whilst propofol injection pain is highly unpleasant for adults, it becomes a real clinical problem when the drug is administered to children. Injection pain causes severe distress to the patient and often to an accompanying parent. Children are more susceptible to propofol induced pain than adults, with younger children likely to experience more severe pain than older children [START_REF] Cameron | The minimum effective dose of lignocaine to prevent injection pain due to propofol in children[END_REF].

The addition of adjuvant drugs has been explored, with ketamine (60), lidocaine [START_REF] Cameron | The minimum effective dose of lignocaine to prevent injection pain due to propofol in children[END_REF] and thiopental [START_REF] Cheng | Injection pain with propofol: the effectiveness of thiopentone on induction[END_REF] all demonstrating some efficacy at reducing injection pain. It has been argued that if the use of adjuvant drugs for the reduction of propofol injection pain is to be recommended, their use must be evaluated from a medical risk-benefit perspective [START_REF] Akeson | Pain on injection of propofol -why bother?[END_REF] .

Propofol injection pain may be related to the concentration of free propofol in the formulation [START_REF] Klement | Pain on injection of propofol: effects of concentration and diluent[END_REF] and direct dilution of propofol prior to administration has been reported to reduce the incidence of injection pain in children [START_REF] Soltesz | Effect of a 0.5% dilution of propofol on pain on injection during induction of anesthesia in children[END_REF]. The free propofol concentration is reduced in medium chain triglyceride (MCT)/long chain triglyceride (LCT) mixtures, relative to formulations containing only LCT [START_REF] Yamakage | Changes in concentrations of free propofol by modification of the solution[END_REF]. Theoretically, this should lead to a reduction in injection pain. However, in practice, there have been contradictory findings in adults relating to the proposed reduction in pain [START_REF] Sundarathiti | A comparison of propofol-LCT with propofol-LCT/MCT on pain of injection[END_REF][START_REF] Burimsittichai | Pain on injection of propofol: propofol LCT vs propofol MCT/LCT with or without lidocaine pretreatment[END_REF][START_REF] Allford | Discomfort on injection: a comparison between two formulations of propofol[END_REF][START_REF] Suzuki | Propofol formulated with long-/medium-chain triglycerides reduces the pain of injection by target controlled infusion[END_REF][START_REF] Kinoshita | The injection pain of propofol with different emulsion[END_REF]. Certainly, MCT-LCT propofol is associated with pain in children when injected without an adjunct drug. Nyman and colleagues injected either a plain solution of 3mg/kg MCT-LCT propofol or LCT propofol with added lidocaine (1mL of 1%) randomly to a group of 83 children (2-18 years). The incidence of injection pain was higher with the MCT-LCT group (66.6%) than in the LCT-propofol/lidocaine group (39.0%) [START_REF] Nyman | Propofol injection pain in children: a prospective randomized double-blind trial of a new propofol formulation versus propofol with added lidocaine[END_REF]. A recent study of 84 children aged from 5 to 15 years reported no difference in the incidence or severity of pain when either pre-mixed lidocaine (1mL of 2%) and either a long chain triglyceride (LCT) propofol emulsion combination, a MCT/LCT propofol emulsion (20mL of 1%) combination were injected [START_REF] Varghese | Does the newer preparation of propofol, an emulsion of medium/long chain triglycerides cause less injection pain in children when premixed with lignocaine?[END_REF]. This indicates that in pediatric clinical practice, there may be little difference in the experience of injection pain with different propofol emulsions. There is, however, good evidence for the effectiveness lidocaine (1mL of 1%) combined with 10mL of a medium chain triglyceride (MCT) propofol formation for eliminating injection pain in pre-school children [START_REF] Rochette | Avoiding propofol injection pain in children: a prospective, randomized, double-blinded, placebo-controlled study[END_REF]. 

Conclusion

This review has sought to identify current gaps in the knowledge base of propofol use in the pediatric population, in particular, aspects relating to drug disposition and pharmacodynamic effect. Updated information on issues that impact on day-to-day clinical practice, such as injection pain and PRIS were also considered.

There are comprehensive data describing propofol disposition across the pediatric age range, as a result of much needed research in the neonatal population in recent years. In addition, based on demonstration of the applicability and limitations of allometric scaling, there is now better understanding of the mechanisms and predictability of changes in propofol pharmacokinetics from birth to maturity.

Given the practical restrictions described, and the continued lack of a gold-standard depth of anesthesia monitor for children, it is not surprising that much remains to be elucidated regarding the pharmacodynamics of propofol in the pediatric population. Indeed, the knowledge base relating to adult propofol pharmacodynamics has its own limitations, with genuine disagreement about the most appropriate values for time to peak effect and t 1/2 k eO (74,[START_REF] Absalom | Pharmacokinetic models for propofol--defining and illuminating the devil in the detail[END_REF]. 
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  described altered kinetics in very small babies (due to increased peripheral distribution volume) and reduced metabolic clearance in children recovering from cardiac surgery, both findings leading to prolonged propofol elimination times, see Figure2. Body weight was the most influential model covariate and although a broad age range was studied (1 week to 12 years), no additional influence of age could be supported. In a non-ventilated, post-neurosurgical pediatric population[START_REF] Peeters | Propofol pharmacokinetics and pharmacodynamics for depth of sedation in nonventilated infants after major craniofacial surgery[END_REF] propofol

The

  Kataria model is based on data from 53 healthy children, ranging in age from three to 11 years. Mean post-dose sampling duration was 214 minutes (range 52 to 811). The Paedfusor pharmacokinetic set was derived as a preliminary model (presumably based on pediatric data only) by Schuttler and Ihmsen during their development of a pharmacokinetic model based on pooled data from both adults and children (12). In Schuttler's analysis, pediatric data comprised 96 children aged from two to 11 years, including the patient population on which Kataria's model was based (5) and data from two further pediatric studies (1, 2). The Paedfusor model was prospectively validated in 29 children (1 to 15 years) undergoing cardiac surgery or cardiac catheterisation procedures

  initial decline in plasma propofol concentrations, Figure4. As the post-bolus t peak is the consequence of both decreasing plasma concentration and increasing effect site concentration, this is a plausible mechanism.

8 sedation

 8 scoring as a pharmacodynamic marker are inter-and intra-observer variance and the impact that stimulation required as part of a scoring system may have on the underlying depth of sedation.
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Figure 1 Simulation

 1 Figure 1Simulation of the concentration versus time profile resulting from a one hour propofol infusion (4mg kg -1 hr -1 ) administered to a 20kg child, using three different pharmacokinetic models. Diprifusor kinetics (adult)(1, 13), Kataria (pediatric)[START_REF] Kataria | The pharmacokinetics of propofol in children using three different data analysis approaches[END_REF] and Rigby-Jones (pediatric, post-cardiac surgery)[START_REF] Rigby-Jones | Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit[END_REF]. The Diprifusor kinetics are linearly weight-scaled, hence the predicted profile shown would apply to any given body weight, adult or child.

Figure 2 Evidence

 2 Figure 2 Evidence for applicability of allometric scaling of propofol pharmacokinetic parameters. Plots show clearance (upper left), intercompartmental clearance (upper right), volume of the central compartment (lower left) and volume of the peripheral compartment (lower right) of propofol versus body weight in rats (bolus injection), children (post-cardiac surgery, 6 hr infusion) and adults (post-CABG, 5 hr infusion). Figure from Knibbe et al (17).

Figure 3 Propofol

 3 Figure 3Propofol clearance rates, scaled to 70kg, derived from neonates, children and adults. The solid line describes the maturation process as a sigmoid E max function of post-menstrual age.Allegaert[START_REF] Allegaert | Inter-individual variability in propofol pharmacokinetics in preterm and term neonates[END_REF] hypothesises that the influence of post-natal age (PNA) on clearance reflects ontogeny of glucuronidation activity during the first week of postnatal life. Figurefrom

Figure 4 The

 4 Figure 4The unit disposition function of plasma versus time profile simulation with the Schnider model (adults)[START_REF] Schnider | The influence of age on propofol pharmacodynamics[END_REF] and both the Kataria and Paedfusor models. A shallower decline in plasma concentration, and a larger variability related to patient age, is observed with the pediatric models. Figure from Munoz et al[START_REF] Munoz | Estimation of the plasma effect site equilibration rate constant (ke0) of propofol in children using the time to peak effect: comparison with adults[END_REF].