HAL
open science

[2-E(CH2CH2)2NCH2C6H4]nBiX3-n (E = O, NMe; X $=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; \mathrm{n}=1-3)$ and $[2-(\mathrm{Me} 2 \mathrm{NCH} 2) \mathrm{C} 6 \mathrm{H} 4] \mathrm{BiBr} 2$ new hypervalent organobismuth(III) compounds

Hans J. Breunig, Mihai G. Nema, Cristian Silvestru, Albert Soran, Richard A.

Varga

To cite this version:

Hans J. Breunig, Mihai G. Nema, Cristian Silvestru, Albert Soran, Richard A. Varga. $[2-\mathrm{E}(\mathrm{CH} 2 \mathrm{CH} 2) 2 \mathrm{NCH} 2 \mathrm{C} 6 \mathrm{H} 4] \mathrm{nBiX} 3-\mathrm{n} \quad(\mathrm{E}=\mathrm{O}, \quad \mathrm{NMe} ; \quad \mathrm{X}=\mathrm{Cl}, \quad \mathrm{Br}, \quad \mathrm{I} ; \mathrm{n}=1-3)$ and $[2-$ (Me2NCH2) C6H4]BiBr2 - new hypervalent organobismuth(III) compounds. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2010, 636 (13-14), pp. 2378. 10.1002/zaac. 201000233 . hal-00599883

HAL Id: hal-00599883

https://hal.science/hal-00599883

Submitted on 11 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Zeitschrift für Anorganische und Allgemeine Chemie

[2-\{E(CH2CH2)2NCH2\}C6H4]nBiX3-n (E = O, NMe; $X=C l$, Br, I; n = 1-3) and [2-(Me2NCH2)C6H4]BiBr2 - new hypervalent organobismuth(III) compounds

Journal:	Zeitschrift für Anorganische und Allgemeine Chemie
Manuscript ID:	zaac.201000233.R1
Wiley - Manuscript type:	Article
Date Submitted by the	02-Jul-2010
Complete List of Authors:	Breunig, Hans J.; Universität Bremen, Institut für Anorganische und Physikalische Chemie Nema, Mihai G.; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering Silvestru, Cristian; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering Soran, Albert; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering Varga, Richard A.; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering
Keywords:	Bismuth, Hypervalent, NMR studies, X-ray diffraction, Supramolecular

[2-\{ $\left.\left.\mathbf{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{\mathrm{n}} \mathrm{BiX}_{3-\mathrm{n}}(\mathrm{E}=\mathbf{O}, \mathrm{NMe} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; \mathbf{n}=\mathbf{1 - 3})$ and [2$\left.\left(\mathrm{Me}_{2} \mathbf{N C H}_{2}\right) \mathrm{C}_{6} \mathbf{H}_{4}\right] \mathrm{BiBr}_{2}$ - new hypervalent organobismuth(III) compounds

Hans J. Breunig, ${ }^{[a]}$ Mihai G. Nema, ${ }^{[b]}$ Cristian Silvestru, ${ }^{[b]}$ Albert Soran, ${ }^{[b]}$ and Richard A. Varga ${ }^{[b]}$

To the Memory of Professor Dr. rer. nat. Herbert Schumann

Keywords: Bismuth; Hypervalent; NMR studies; X-ray diffraction; Supramolecular

The homoleptic [2-\{ $\left.\left.\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}[\mathrm{E}=\mathrm{O}(\mathbf{1})$, MeN (2)], the chlorides $\left[2-\left\{\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}[\mathrm{E}=\mathrm{O}$ (3), $\mathrm{MeN}(4)]$ and the dichloride $\left[2-\left\{\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiCl}_{2}[\mathrm{E}$ $=\mathrm{O}(5), \mathrm{MeN}(6)]$ have been synthesized by reacting the corresponding ortho-lithium derivative with BiCl_{3} in corresponding molar ratios. The dihalides $\left[2-\left\{\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiX}_{2}[\mathrm{X}=$ $\mathrm{Br}, \mathrm{E}=\mathrm{O}(7), \mathrm{MeN}(\mathbf{9}) ; \mathrm{X}=\mathrm{I}, \mathrm{E}=\mathrm{O}(\mathbf{8}), \mathrm{MeN}(\mathbf{1 0})]$ as well as $[2-$ $\left.\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}(\mathbf{1 1})$ were obtained by halide exchange reactions between RBiCl_{2} and excess aqueous solution of KX. The compounds were characterized by multinuclear $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right) \mathrm{NMR}$ and MS. The crystal and molecular structures of $\mathbf{1 - 5}$ and 11 were determined by single-crystal X-ray diffraction. In all compounds the $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right) \mathrm{N}$ atoms are coordinated to Bi. The crystals of $\mathbf{1}$ and $\mathbf{2}$, as well as those of the chlorides $\mathbf{3}$ and $\mathbf{4}$, contain discrete molecules. For $\mathrm{R}_{3} \mathrm{Bi}$ intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interactions of medium strength $[\mathrm{Bi}(1)-\mathrm{N}(1) 3.170(7) \AA$ for 1 and 3.211(5) \AA for 2$]$ result in an overall distorted octahedral $(C, N)_{3} \mathrm{Bi}$ core. In the

Abstract

monochlorides one nitrogen is strongly coordinated to Bi [2.660(11) \AA for 3 and 2.744(14) A for 4] trans to the halogen, while the second one is involved in a weaker intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interaction [3.095(11) \AA for 3 and 3.061(14) \AA for 4] trans to a carbon atom. The overall $(C, N)_{2} \mathrm{BiCl}$ core is distorted square-pyramidal. The crystals of the monohalides 5 and $\mathbf{1 1}$ contain discrete dimer units. The pendant arm nitrogen atom is strongly coordinated [2.548(9) \AA for 5 and 2.485(13) \AA for 11] trans to the bridging halogen, thus resulting in an overall distorted square-pyramidal $(C, N) \mathrm{BiX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ core. The six-membered morpholinyl and piperazinyl rings in $\mathbf{1 - 5}$ adopt the chair conformation which prevents intramolecular coordination of the O or $\mathrm{N}(\mathrm{Me})$ atoms to Bi . Supramolecular architectures based on intermolecular $\mathrm{Bi} \cdots \mathrm{Br}$ interactions, $\mathrm{Cl} \cdots \mathrm{H}$ and $\mathrm{Br} \cdots \mathrm{H}$ contacts are formed in the crystals of $\mathbf{3}, 5$ and 11.

Introduction

The structural chemistry of organobismuth(III) halides reflects the Lewis amphoteric character of this class of compounds. There are Lewis acidic sites at the bismuth atoms and Lewis basic centres at the halogen atoms. For this reason, the compounds tend to form coordination polymers in the solid state, with trans bismuth-halogen bonds and ψ trigonal bipyramidal coordination, which are poorly soluble in non-polar organic solvents, probably owing to the extended intermolecular association between the bismuth and halogen atoms in the solid state. The intermolecular

[^0]interactions involving bismuth play an important role in the construction of supramolecular compounds, e.g. polymeric
chains, and two- and three-dimensional structures [1-10]. In the case of monoorganobismuth(III) dihalides, it was observed that there is a tendency to form oligomers or polymers which involve one or both halogen atoms. Most of these compounds are insoluble in common solvents due to polymeric associations.
Recent developments show that the oligomerization of the organobismuth(III) halides can be overcome at least partially by two strategies. One is the use of bulky substituents which afford isolation of monomeric monohalide species, e.g. [2,4,6-($\left.\left.\mathrm{CF}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right]_{2} \mathrm{BiCl}$ [11], $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{BiCl}$ [12], or [2,6-Mes $\left.{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2} \mathrm{BiCl}$ [13]. Even with such bulky ligands the dihalides usually form at least dimers, e.g. $\left[2,4,6-\mathrm{Ph}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right] \mathrm{BiCl}_{2} \quad[8] \quad[14]$ or [2,6$\left.\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right] \mathrm{BiX}_{2}(\mathrm{X}=\mathrm{Cl}$ [15], Br [16]). Another strategy is to use one pendant arm ligand such as $2-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}$ [9] and 2-($\left.\mathrm{Et}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}$ [17], or "pincer" ligands like 2,6$\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \quad[9,18] \quad$ and $\quad 2,6-$ [$\left.\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ [18]. These ligands protect the bismuth atom not only sterically by increased coordination, but also reduce considerably the Lewis acidity and consequently the tendency for oligomerization. Indeed, the monohalides [2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiX}(\mathrm{X}=\mathrm{Cl}$ [19], Br , I [9]), [2-($\left.\left.\mathrm{Et}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiX} \quad$ [17] and [2,6$\left.\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2} \mathrm{BiCl}$ [20] are monomeric. The corresponding dihalides usually exhibit low solubility in nonpolar solvents and for [2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiCl}_{2}$ a dimer association was described in solid state [9]. Remarkably, the
use of the "pincer" ligands 2,6-($\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ and 2,6$\left[\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ afforded monomeric organobismuth(III) dihalides with a T -shaped CBiX_{2} core ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br} . \mathrm{I}$) $[18,20]$.

With the aim to increase the sterical protection and to study the influence of the nature of the organic groups on the nitrogen of the pendant arm we have used now the bulkier one pendant arm groups 2-[$\left.\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4}$ $(\mathrm{E}=\mathrm{O}, \mathrm{MeN})$, capable to act as (C, N) ligands. In addition, these groups contain additional donor atoms from the morpholinyl or piperazinyl rings, respectively, available for coordination to other metal centers, which might result in interesting homo- and heterometallic species. We report here the syntheses, structures and spectroscopic properties of compounds $\left.\left[2-\left\{\mathrm{E}^{(} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}[\mathrm{E}=\mathrm{O}(\mathbf{1})$, MeN (2)], $\left[2-\left\{\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}[\mathrm{E}=\mathrm{O}(3)$, $\mathrm{MeN}(4)]$ and $\left[2-\left\{\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiX}_{2}[\mathrm{E}=\mathrm{O}, \mathrm{X}$ $=\mathrm{Cl}(\mathbf{5}), \mathrm{Br}(\mathbf{7}), \mathrm{I}(\mathbf{8}) ; \mathrm{E}=\mathrm{MeN}, \mathrm{X}=\mathrm{Cl}(\mathbf{6}), \mathrm{Br}(\mathbf{9}), \mathrm{I}(\mathbf{1 0})]$, as well as $\left[2-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}(\mathbf{1 1})$.

Results and Discussion

The homoleptic triorganobismuthanes $\mathbf{1}$ and $\mathbf{2}$, the diorganobismuth(III) chlorides $\mathbf{3}$ and 4 and organobismuth(III) dichlorides 5 and 6 were obtained by reacting the corresponding organolithium derivative with bismuth trichloride in appropriate molar ratios, in diethyl ether, at low temperature $\left(-78^{\circ} \mathrm{C}\right)$. The dibromides 7, 9 and 11, and the diiodides $\mathbf{8}$ and $\mathbf{1 0}$ were obtained by halide exchange reactions starting from the corresponding organobismuth dichloride in dichloromethane and excess aqueous solution of the appropriate potassium halide. The synthetic pathways are depicted in Scheme 1. All compounds were obtained as crystalline solids in fairly good yields and are stable in solid state for more than two months. The triorganobismuthanes $\mathbf{1}$ and $\mathbf{2}$ and the monochlorides $\mathbf{3}$ and 4 are soluble in common organic solvents, while the dihalides 5-11 are well soluble only in DMSO.

Scheme 1. The preparation of compounds 1-10

The solution behavior of the new compounds $\mathbf{1 - 1 1}$ was investigated by multinuclear (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$) NMR spectroscopy, at room temperature. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances were assigned using 2D NMR experiments, according to the numbering diagram depicted in Scheme 2.

Scheme 2. Numbering scheme for NMR resonance assignments.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1} \mathbf{- 4}$, in CDCl_{3}, exhibit only one set of resonances for the three, respectively two organic groups attached to a metal atom, thus suggesting their equivalence at the NMR time scale. In absence of an intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interaction in solution a fast conformational change of the six-membered morpholinyl and piperazinyl ring, respectively, would result in a pattern of the alkyl region of the ${ }^{1} \mathrm{H}$ spectrum similar with that observed for the free organic ligands 2$\left[\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br} \quad[21] \quad$ and $\left[\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ or the 1,3[$\left.\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ [18]. Indeed, the aliphatic regions of the ${ }^{1} \mathrm{H}$ NMR spectra exhibit only two broad resonance signals for protons $H-8,11$ and $H-9,10$ for $\mathbf{1}$ and $\mathbf{3}$, and one broad resonance for all protons $H-8-11$ for 2 and 4, respectively. This suggests that, at room temperature, the intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interaction in solution is weak enough to allow a fluxional behaviour. The resonance for the $\mathrm{H}-7$ methylene protons in all compounds $\mathbf{1 - 4}$ appears as a singlet.
The dihalides 5, $\mathbf{7}$ and 8, containing the morpholinylbased ligand, as well as the dibromide $\mathbf{9}$, exhibit a different pattern in the ${ }^{1} \mathrm{H}$ NMR spectra at room temperature, i.e. four well separated, multiplet resonances for the methylene protons of the morpholinyl / piperazinyl ring. This behaviour is not so evident for the dichloride 6 and the diiodide 10, containing the pyperazinyl-based ligand, the resonances being in these cases considerably overlapped. The non-equivalence of these protons is consistent with the presence of a strong intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interaction in solution, at room temperature, as found in solid state (see subsequent discussion). Such an interaction will prevent a fluxional process and the conformational change of the sixmembered morpholinyl and piperazinyl ring. A similar behaviour was reported for organoselenium derivatives containing the same pendant arm ligands [22] and the related dihalides $\left[2,6-\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right] \mathrm{BiX}_{2}$ [18]. As a result of the intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interaction the $\mathrm{H}-8,11 \quad\left(\mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{E}\right)$ and $\mathrm{H}-9,10 \quad\left(\mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{E}\right)$ protons became non-equivalent, i.e. pro-cis and pro-trans with respect to the position of the bismuth atom in relation to the morpholinyl / piperazinyl ring (see also ref. 18). Thus, the room-temperature ${ }^{1} \mathrm{H}$ NMR data for these dihalides provided evidences for the presence of the intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interactions in solution, the inversion at the nitrogen atom being frozen at this temperature.
Single crystals suitable for X-ray diffraction were obtained by slow diffusion of n-hexane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for $\mathbf{1 - 4}$, while crystals of the dihalides $\mathbf{5}$ and 11 were obtained from a concentrated solution in DMSO.

The molecular structure of $\mathbf{1}$ is depicted in Figure 1 and selected interatomic distances and angles for both $\mathbf{1}$ and 2 are listed in Table 1 (see Supporting information for the molecular structure of $\mathbf{2}$).

Figure 1. The molecular structure of [2$\left.\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}$ (1) $\left[\left(\right.\right.$ all- $\left.-R_{\mathrm{N}}\right)$ isomer $]$ (thermal ellipsoids are represented at 30% probability level; hydrogen atoms are omitted for clarity).

Table 1. Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for compounds 1 and $\mathbf{2}$ as determined by single-crystal X-ray diffraction.

	$\mathbf{1}^{[a]}$	$\mathbf{2}^{[\mathrm{a}]}$
$\mathrm{Bi}(1)-\mathrm{C}(1)$	$2.258(5)$	$2.252(4)$
$\mathrm{Bi}(1)-\mathrm{N}(1)$	$3.170(7)$	$3.211(5)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.467(7)$	$1.462(6)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.454(7)$	$1.454(6)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.447(7)$	$1.460(6)$
$\mathrm{O}(1)-\mathrm{C}(9)$	$1.399(7)$	
$\mathrm{O}(1)-\mathrm{C}(10)$	$1.394(8)$	$1.442(7)$
$\mathrm{N}(2)-\mathrm{C}(9)$		$1.452(6)$
$\mathrm{N}(2)-\mathrm{C}(10)$		$1.445(7)$
$\mathrm{N}(2)-\mathrm{C}(12)$		$94.25(14)$
		$64.6(1)$
$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{C}(1 \mathrm{a})$	$94.20(17)$	$156.3(1)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{C}(1)$	$65.4(2)$	$77.9(1)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{C}(1 \mathrm{a})$	$157.3(2)$	$117.1(1)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{C}(1 \mathrm{~b})$	$78.2(2)$	
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{N}(1 \mathrm{a})$	$116.5(2)$	$81.9(2)$
$\mathrm{Bi}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$82.9(3)$	

[a] Symmetry equivalent atoms are given by "a" ($1-x+y, 1-x$, z) and "b" ($1-y, x-y, z$).

The crystals of both compounds belong to the $R-3$ rhombohedral system and contain highly symmetric discrete molecules, with no further intermolecular interactions between heavy atoms. In both molecules $\mathbf{1}$ and $\mathbf{2}$ the bismuth atom resides on a 3 -fold axis which relates the three aryl substituents in a propeller-like conformation similar to that found in [2-($\left.\left.\mathrm{R}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}(\mathrm{R}=\mathrm{Me}$ [23], Et [17]). The nitrogen atoms coordinate weakly to bismuth $[\mathrm{Bi}(1)-\mathrm{N}(1)$ $3.170(7) \AA$ for 1 and 3.211(5) \AA for 2, respectively; c.f. the
sum of covalent and van der Waals radii for nitrogen and bismuth; $\Sigma r_{\text {cov }}(\mathrm{Bi}, \mathrm{N}) 2.27 \AA$ and $\Sigma r_{\mathrm{vdW}}(\mathrm{Bi}, \mathrm{N}) 3.94 \AA$ [24] almost trans to a $\mathrm{Bi}-\mathrm{C}$ bond $\left[\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{C}(1 \mathrm{a}) 157.3(2)^{\circ}\right.$ and $156.3(1)^{\circ}$ for $\mathbf{1}$ and 2, respectively]. The $\mathrm{Bi}-\mathrm{N}$ bond lengths are considerably longer than those reported for [2$\left.\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}$ [3.04(2)-3.11(3) \AA] [23], a behaviour which could be attributed to combined electronic and steric effects of the morpholinyl / piperazinyl groups as was found for the related [$\left.2-\left(\mathrm{Et}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}$ [3.214(7) \AA] [17]. The coordination geometry at the bismuth atom, taking into account the intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interactions, is distorted octahedral $\left[(C, N)_{3} \mathrm{Bi}\right.$ core] and the compounds can be described as a hypervalent 14-Bi-6 species $[25,26]$. The morpholinyl and piperazinyl rings exhibit a chair conformation which prevents further intramolecular coordination to the bismuth atoms.
The nonplanarity of the five-membered $\mathrm{BiC}_{3} \mathrm{~N}$ rings induces planar chirality (with the aromatic ring and the nitrogen atom as chiral plane and pilot atom, respectively; isomers given as S_{N} and R_{N}) [27] and the crystals of the triorganobismuthanes $\mathbf{1}$ and 2 contain a 1:1 mixture of all- R_{N} and all- S_{N} isomers (see Supporting information).
The crystals of monochlorides $\mathbf{3}$ and $\mathbf{4}$ contain one independent molecule in the asymmetric unit. The molecular structure of $\mathbf{4}$ is depicted in Figure 2 (see Supporting information for the molecular structure of $\mathbf{3}$) and selected interatomic distances and angles are listed in Table 2.

Figure 2. The molecular structure of [2$\left.\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}$ (4) $\left[\left(R_{\mathrm{N}}, S_{\mathrm{N} 2}, A_{\mathrm{Bi}}\right)\right.$ isomer $]$ (thermal ellipsoids are represented at 30% probability level; hydrogen atoms are omitted for clarity).

The molecules of both $\mathbf{3}$ and $\mathbf{4}$ show similar characteristics with respect to the coordination pattern of the nitrogen atoms, i.e. one nitrogen atom is strongly coordinated to the bismuth atom $[\mathrm{Bi}(1)-\mathrm{N}(1) 2.660(11) \AA$ for $3,2.744(14) \AA$ for 4] trans to the chlorine atom, while the second nitrogen atom displays a weaker interaction $[\mathrm{Bi}(1)-\mathrm{N}(2) 3.095(11) \AA$ for 3, and $\operatorname{Bi}(1)-N(3) 3.061(14) \AA$ for 4] with its vector almost trans to a carbon atom. The interatomic distance for the $\mathrm{N} \rightarrow \mathrm{Bi}$ interaction trans to the halogen atom in $\mathbf{3}$ and $\mathbf{4}$

Table 2. Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for compounds 3 and $\mathbf{4}$ as determined by single-crystal X-ray diffraction. ${ }^{[a]}$

	$\mathbf{3}$	$\mathbf{4}$
$\operatorname{Bi}(1)-\mathrm{C}(1)$	$2.233(13)$	$2.250(16)$
$\operatorname{Bi}(1)-\mathrm{X}(1)$	$2.279(12)$	$2.235(16)$

$\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$2.623(4)$	$2.733(3)$
$\mathrm{Bi}(1)-\mathrm{N}(1)$	$2.660(11)$	$2.744(14)$
$\mathrm{Bi}(1)-\mathrm{X}(2)$	$3.095(11)$	$3.061(14)$
$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{X}(1)$	$91.3(5)$	$94.7(6)$
$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$90.6(4)$	$92.5(4)$
$\mathrm{X}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$93.5(3)$	$90.6(4)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{C}(1)$	$70.4(4)$	$69.3(5)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{X}(1)$	$88.2(4)$	$98.1(5)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$161.0(2)$	$160.3(3)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{X}(2)$	$110.2(3)$	$115.7(4)$
$\mathrm{X}(2)-\mathrm{Bi}(1)-\mathrm{C}(1)$	$155.0(4)$	$162.7(5)$
$\mathrm{X}(2)-\mathrm{Bi}(1)-\mathrm{X}(1)$	$63.9(4)$	$68.5(5)$
$\mathrm{X}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(1)$	$87.4(2)$	$83.9(3)$
$\mathrm{Bi}(1)-\mathrm{N}(1)-\mathrm{C}(7)$		
$\mathrm{Bi}(1)-\mathrm{X}(2)-\mathrm{X}(3)$	$100.0(7)$	$92.9(10)$

[a] $\mathrm{X}(1), \mathrm{X}(2)$ and $\mathrm{X}(3)$ are $\mathrm{C}(12), \mathrm{N}(2)$ and $\mathrm{C}(18)$ for $\mathbf{3}$, and $\mathrm{C}(13)$, $\mathrm{N}(3)$ and $\mathrm{C}(19)$ for 4.
is longer than in $\left[2-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}$ [2.570(5) \AA] [19], but close to that observed for the ethyl analogue [2$\left.\left(\mathrm{Et}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl} \quad[2.645(6)$ A] [17]. The $\mathrm{N} \rightarrow \mathrm{Bi}$ interaction trans to the carbon atom is considerably shorter than in the related triorganobismuthanes (see Table 1), but of the same magnitude as in $\left[2-\left(\mathrm{R}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}$ [3.047(5) \AA for $\mathrm{R}=\mathrm{Me}$ [19]; 3.056(7) \AA for $\mathrm{R}=\mathrm{Et}[17]]$. The overall molecular structures of the monochlorides 3 and 4 are thus very similar to those reported for the related [2$\left.\left(\mathrm{R}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}$ and, taking into account both intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interactions per metal atom, the coordination geometry features distorted square-pyramidal $\left[(C, N)_{2} \mathrm{BiCl}\right.$ cores; hypervalent $12-\mathrm{Bi}-5$ species $\left.[25,26]\right]$, with an aromatic carbon atom in apical position. The deviations of the bond angles at the metal atom from the ideal values are mainly due to the constraints imposed by the coordinated nitrogen atoms.
The bismuth-chlorine bond lengths are different in $\mathbf{3}$ [2.623(4) \AA] and 4 [2.733(3) \AA], but in the range observed for related compounds, e.g. $\left[2-\left(\mathrm{R}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}$ [2.667(2) \AA for $\mathrm{R}=\mathrm{Me}$ [19]; 2.602(2) \AA for $\mathrm{R}=\mathrm{Et}$ [17]) or [2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{BiCl}$ [2.700(2) \AA §́] [28]. The elongation of the $\mathrm{Bi}-\mathrm{Cl}$ bond in these hypervalent species with respect to the values observed in tricoordinated monochlorides, e.g. $\left[2,4,6-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{2}\right]_{2} \mathrm{BiCl}[2.463(3) \AA]$ [11], is apparently a consequence of the coordination of the amino group trans to the halogen atom.
The molecules of $\mathbf{3}$ and $\mathbf{4}$ contain two five-membered $\mathrm{BiC}_{3} \mathrm{~N}$ rings folded along the $\mathrm{Bi} \cdots \mathrm{C}_{\text {methylene }}$ axis, with the nitrogen atom lying out of the best plane defined by the residual BiC_{3} fragment. This induces planar chirality [27]. Moreover, chirality at the bismuth atom is also induced, at least in solid state, since the same organic groups attached to the metal become non-equivalent as result of the intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interactions: the aryl moiety of one ligand is placed in the apical position of the square pyramidal $(C, N)_{2} \mathrm{BiCl}$ core and its nitrogen atom is coordinated in the basal plane trans the Bi-C bond established by the other pendant arm organic group, which, subsequently, has both its carbon atom attached to the metal and its nitrogen atom in the basal plane, coordinated trans to the chlorine atom. This "chelate-induced" chirality [29] at
the Bi atom in the square pyramidal environment can be described in term of C_{Bi} and A_{Bi} isomers [30]. Indeed, the crystals of $\mathbf{3}$ and $\mathbf{4}$ contain a $1: 1$ mixture of $\left(R_{\mathrm{N} 1}, S_{\mathrm{N} 2}, C_{\mathrm{Bi}}\right) /$ $\left(S_{\mathrm{N} 1}, R_{\mathrm{N} 2}, A_{\mathrm{Bi}}\right)$-3 isomers and ($\left.S_{\mathrm{N} 1}, R_{\mathrm{N} 2}, C_{\mathrm{Bi}}\right) /\left(R_{\mathrm{N} 1}, S_{\mathrm{N} 2}, A_{\mathrm{Bi}}\right)-4$ isomers (with respect to the two chelate rings at a metal atom), respectively.
The structures of the dihalides $\mathbf{5}$ and $\mathbf{1 1}$ are depicted in Figures 3 and 4. Relevant interatomic distances and angles are listed in Table 3.

Figure 3. Dimer association between $\left(S_{\mathrm{N} 1}, A_{\mathrm{Bi1}}\right)$ and $\left(R_{\mathrm{N} 1}, C_{\mathrm{Bi1}},\right)$ isomers in the crystal of $\left[2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiCl}_{2}$ (5) (thermal ellipsoids are represented at 30% probability level; hydrogen atoms are omitted for clarity).

Figure 4. Dimer association between ($R_{\mathrm{N} 1}, A_{\mathrm{Bil}}$) and ($S_{\mathrm{N}_{1}}, C_{\mathrm{Bi1}}$) isomers in the crystal of $\left[2-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}$ (11) (thermal ellipsoids are represented at 30% probability level; hydrogen atoms are omitted for clarity).

Table 3. Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for compounds 5 and $\mathbf{1 1}$ as determined by single-crystal X-ray diffraction. ${ }^{[a]}$

	$\mathbf{5}^{[\mathrm{b}]}$	$\mathbf{1 1}^{[\mathrm{b}]}$
$\operatorname{Bi}(1)-\mathrm{C}(1)$	$2.209(12)$	$2.214(15)$
$\operatorname{Bi}(1)-\mathrm{X}(1)$	$2.720(3)$	$2.9378(18)$

$\mathrm{Bi}(1)-\mathrm{X}(2)$	$2.527(4)$	$2.720(2)$
$\mathrm{Bi}(1)-\mathrm{N}(1)$	$2.548(9)$	$2.485(13)$
$\mathrm{Bi}(1)-\mathrm{X}\left(1^{\prime}\right)$	$3.021(4)$	$3.0695(19)$
$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{X}(1)$	$91.4(3)$	$89.2(4)$
$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{X}(2)$	$92.4(3)$	$89.2(4)$
$\mathrm{X}(1)-\mathrm{Bi}(1)-\mathrm{X}(2)$	$90.91(12)$	$92.97(6)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{C}(1)$	$73.5(4)$	$74.2(5)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{X}(1)$	$164.0(2)$	$160.7(3)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{X}(2)$	$84.6(2)$	$96.5(3)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{X}\left(1^{\prime}\right)$	$101.1(2)$	$85.6(3)$
$\mathrm{X}\left(1^{\prime}\right)-\mathrm{Bi}(1)-\mathrm{C}(1)$	$84.7(3)$	$87.3(4)$
$\mathrm{X}\left(1^{\prime}\right)-\mathrm{Bi}(1)-\mathrm{X}(1)$	$82.29(10)$	$83.78(5)$
$\mathrm{X}\left(1^{\prime}\right)-\mathrm{Bi}(1)-\mathrm{X}(2)$	$172.55(12)$	$175.26(6)$
$\mathrm{Bi}(1)-\mathrm{N}(1)-\mathrm{C}(7)$		
	$103.7(7)$	$104.4(9)$

| $\mathrm{Bi}(1)-\mathrm{X}(1)-\mathrm{Bi}\left(1^{\prime}\right) \quad 97.71(10) \quad 96.22(5)$ |
| :--- | :--- |

[a] $\mathrm{X}(1), \mathrm{X}(2)$ and $\mathrm{X}\left(1^{\prime}\right)$ are $\mathrm{Cl}(1), \mathrm{Cl}(2)$ and $\mathrm{Cl}\left(1^{\prime}\right)$ for $5, \mathrm{Br}(1)$, $\operatorname{Br}(2)$ and $\operatorname{Br}\left(1^{\prime}\right)$ for 11 . [b] Symmetry equivalent atoms are given by "prime": $(-x, 1-y,-z)$ for $\mathbf{5}$, and ($1-x,-y, 2-z$) for 11.

The crystals of both compounds consist of centrosymmetric dimers in which $\left(S_{\mathrm{N} 1}, A_{\mathrm{Bi} 1}\right)$ - and $\left(R_{\mathrm{N} 1^{\prime}}, C_{\mathrm{Bil}}{ }^{\prime}\right)$-5 isomers and ($R_{\mathrm{N} 1}, A_{\mathrm{Bi1}}$)- and ($\left.S_{\mathrm{N} 1^{\prime}}, C_{\mathrm{Bi} 1}\right)$-11 isomers, respectively, are connected through bridging halogen atoms. Similar dimers were reported for the related [2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiX}{ }_{2}(\mathrm{X}=\mathrm{Cl}$ [9], I [19]). The nitrogen of the pendant arm is strongly coordinated to the metal $[\mathrm{N}(1)-\mathrm{Bi}(1) 2.548(9) \AA$ for $\mathbf{5}$ and 2.485(13) for 11] in trans to the bridging halogen atom. The main difference resides in the extent of asymmetry of the $\mathrm{Bi}-\mathrm{X}-\mathrm{Bi}$ bridges, larger for the dichloride $5\left[\mathrm{Bi}(1)-\mathrm{Cl}(1) 2.720(3) \AA, \mathrm{Bi}\left(1^{\prime}\right)-\mathrm{Cl}(1)\right.$ $3.021(4) \AA]$ than for the dibromide $11[\operatorname{Bi}(1)-\operatorname{Br}(1)$ $\left.2.9378(18) \AA, \operatorname{Bi}\left(1^{\prime}\right)-\operatorname{Br}(1) 3.0695(19) \AA\right]$. As expected, the $\mathrm{Bi}-\mathrm{X}$ bonds in the planar $\mathrm{Bi}_{2} \mathrm{X}_{2}$ fragment are considerably longer than the terminal bismuth-halogen bond $[\mathrm{Bi}(1)-\mathrm{Cl}(2)$ $2.527(4) \AA$ for 5 and $\operatorname{Bi}(1)-\operatorname{Br}(2) 2.720(2)$ for 11, respectively]. The geometry at bismuth is best described as distorted square-based pyramidal with the aryl group in the apical position and the three chlorides and the nitrogen atom of the amine arm in the basal plane $\left[(C, N) \mathrm{BiX}_{3}\right.$ cores; hypervalent $12-\mathrm{Bi}-5$ species [25,26$]$].
A closer check of the crystal packing revealed that for the triorganobismuthanes $\mathbf{1}$ and $\mathbf{2}$ and the monochloride $\mathbf{4}$ there are no intermolecular interactions. By contrast, for the monochloride $\mathbf{3}$ there are weak intermolecular $\mathrm{Cl} \cdots \mathrm{H}$ contacts close to the sum of corresponding van der Waals radii $\left[\sum r_{\mathrm{vdW}}(\mathrm{Cl}, \mathrm{H})\right.$ ca. $3.0 \AA$] [24], which result in supramolecular architectures. Ribbon-like polymers of $\left(R_{\mathrm{N} 1}, S_{\mathrm{N} 2}, C_{\mathrm{Bi}}\right)-\mathbf{3}$ and $\left(S_{\mathrm{N} 1}, R_{\mathrm{N} 2}, A_{\mathrm{Bi}}\right)-\mathbf{3}$ isomers, respectively, are established through weak $\mathrm{Cl} \cdots \mathrm{H}_{\text {aryl }}[\mathrm{Cl}(1) \cdots \mathrm{H}(15 \mathrm{~b}) 2.93 \AA]$ and $\mathrm{Cl} \cdots \mathrm{H}_{\text {morpholinyl }}[\mathrm{Cl}(1) \cdots \mathrm{H}(10 \mathrm{Aa}) 2.95 \AA \mathrm{~A}]$ contacts. Additional weak $\mathrm{Cl} \cdots \mathrm{H}_{\text {morpholinyl }}[\mathrm{Cl}(1) \cdots \mathrm{H}(19 \mathrm{Bb}$ ') $2.99 \AA$ A $]$ contacts between parallel polymers extended along the a axis result in a waved layer. No further contacts are established between the layers (see Supporting information).

As described previously for the related [2$\left.\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiX}_{2}(\mathrm{X}=\mathrm{Cl}$ [9], I [19]), in the crystals of 11 the dimer units are further associated through weaker $\operatorname{Bi}(1) \cdots \operatorname{Br}\left(2\right.$ 'a) interactions $\left[3.778(5) \AA\right.$; c.f. $\Sigma r_{\mathrm{vdW}}(\mathrm{Bi}, \mathrm{Br})$ Table 4. X-ray crystallographic data for 1-5 and $\mathbf{1 1}$.
$4.35 \AA$ A [24] into a ribbon-like polymer along the a axis. If these interactions are considered, the overall Bi coordination geometry in $\mathbf{1 1}$ is distorted octahedral (Figure 5). Further weak inter-chain $\mathrm{Br} \cdots \mathrm{H}$ contacts result in a 3D architecture (see Supporting information). By contrast, the metal atoms in the dimer of $\mathbf{5}$ are better sterically protected and no association through $\mathrm{Bi} \cdots \mathrm{Cl}$ interactions were observed. However, quite strong $\mathrm{Cl} \cdots \mathrm{H}_{\text {aryl }}[\mathrm{Cl}(2) \cdots \mathrm{H}(4 \mathrm{~b}) 2.74 \AA]$ interactions result in a layer structure, each dimer unit being connected to four other dimer fragments (Figure 6).

Figure 5. Ribbon-like polymer in the crystal of [2$\left.\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}(\mathbf{1 1)}$ [symmetry equivalent atoms ($1-x$, $-y$, $2-z),(-x,-y, 2-z)$ and $(1+x, y, z)$ are given by 'prime', "prime a" and 'b"', respectively].

Figure 6. View along a axis of a fragment from the layer of dimers in the crystal of $\left[2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiCl}_{2}(5)$ [symmetry equivalent atoms $(-x, 1-y,-z),(-x, 0.5+y, 0.5-z),(x, 1.5-y,-$ $0.5+z),(x, 0.5-y,-0.5+z)$ and $(-x,-0.5+y, 0.5-z)$ are given by '"prime", 'pprime a", 'b', "c" and '"prime d", respectively].

Conclusions

New bismuth compounds of the types [2$\left.\left\{\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}$,
[2-
$\left.\left\{\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}$ and
$\left.\left\{\mathrm{E}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiX}_{2}(\mathrm{E}=\mathrm{O}, \mathrm{MeN} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, as well as $\left[2-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}$ were prepared and their structures were investigated both in solution and in

	1	2	3	4	5	11
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{BiN}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{BiN}_{6}$	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BiClN}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{BiClN}_{4}$	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Bi}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{Bi}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2}$
Crystal system	Rhombohedral	Rhombohedral	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic
Space group	R-3	R-3	Pbca	$P 2_{1} / c$	Pbca	$P 2{ }_{1} / c$
a / \AA	19.067(2)	20.978(3)	9.397(2)	10.6424(10)	9.590(4)	9.1651(14)
b / \AA	19.067(2)	20.978(3)	21.146(4)	9.5919(9)	14.568(6)	8.3800(12)
c / \AA	14.530(3)	14.310(4)	22.313(4)	25.132(2)	19.042(8)	16.569(3)
$\alpha /{ }^{\circ}$	90	90	90	90	90	90
$\beta{ }^{\circ}$	90	90	90	102.016(2)	90	100.078(3)
$\gamma 1{ }^{\circ}$	120	120	90	90	90	90
Volume / \AA^{3}	4574.8(12)	5453.6(19)	4433.8(15)	2509.3(4)	2660(2)	1253.0(3)
Z	6	6	8	4	4	2
Density (calcd.) $/ \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.607	1.419	1.788	1.649	2.278	2.666
Crystal size / mm ${ }^{3}$	$0.46 \times 0.45 \times 0.34$	$\begin{aligned} & 0.35 \times 0.28 \times \\ & 0.26 \end{aligned}$	$0.70 \times 0.60 \times 0.50$	$0.30 \times 0.29 \times 0.20$	$\begin{aligned} & 0.20 \times 0.18 \mathrm{x} \\ & 0.14 \end{aligned}$	$\begin{aligned} & 0.27 \times 0.11 \mathrm{x} \\ & 0.10 \end{aligned}$
Data collection temperature $/ \mathrm{K}$	297(2)	297(2)	173(2)	297(2)	297(2)	297(2)
Theta range $/^{\circ}$	1.87-25.50	2.66-25.00	2.54-25.00	1.96-25.00	2.14-25.00	2.26-25.00
No. reflections collected	14874	13195	4943	17555	17929	6345
Independent reflections	$\begin{aligned} & 1868[R(\text { int })= \\ & 0.0604] \end{aligned}$	$\begin{aligned} & 2134[R(\text { int })= \\ & 0.0539] \end{aligned}$	$\begin{aligned} & 3857[R(\text { int })= \\ & 0.0444] \end{aligned}$	$\begin{aligned} & 4416[R(\text { int })= \\ & 0.0743] \end{aligned}$	$\begin{aligned} & 2348[R(\text { int })= \\ & 0.0834] \end{aligned}$	$\begin{aligned} & 2190[R(\text { int })= \\ & 0.0684] \end{aligned}$
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0348, w R_{2} \\ & =0.0650 \end{aligned}$	$\begin{aligned} & R_{1}=0.0287, w R_{2} \\ & =0.0617 \end{aligned}$	$\begin{aligned} & R_{1}=0.0577, w R_{2}= \\ & 0.1277 \end{aligned}$	$\begin{aligned} & R_{1}=0.0846, w R_{2}= \\ & 0.2063 \end{aligned}$	$\begin{aligned} & R_{1}=0.0614, w R_{2} \\ & =0.0938 \end{aligned}$	$\begin{aligned} & R_{1}=0.0637 \\ & w R_{2}=0.1147 \end{aligned}$
Largest difference peak and hole (e \AA^{-3})	2.111 and -1.969	$\begin{aligned} & 0.622 \text { and }- \\ & 2.223 \\ & \hline \end{aligned}$	1.390 and -2.103	3.657 and -2.831	$\begin{aligned} & 1.380 \text { and }- \\ & 2.604 \end{aligned}$	$\begin{aligned} & 2.648 \text { and - } \\ & 2.433 \end{aligned}$

solid state. In all compounds intramolecular $\mathrm{N} \rightarrow \mathrm{Bi}$ interactions of different strength are established, resulting in $(C, N)_{3} \mathrm{Bi}$ core for triorganobismuthanes, $(C, N)_{2} \mathrm{BiCl}$ for diorganobismuth(III) chlorides, and (C, N) BiX_{3} for dimeric organobismuth(III) dihalides. The room temperature ${ }^{1} \mathrm{H}$ NMR spectra provided evidence for the presence of internal nitrogen-bismuth coordination in solution for the dihalides, as observed in solid state. The bulkiness of the morpholinyl or piperazinyl substituents appears to not be sufficient to avoid the oligomerization of the organobismuth(III) dihalides. These new organobismuth(III) compounds are useful as starting materials for the preparation of further compounds and their potential use as ligands in transition metal coordination chemistry in order to obtain heterometallic species is under investigation.

Experimental Section

All reactions were carried out under argon using standard Schlenk techniques under an atmosphere of argon. Solvents were dried by standard procedures and were freshly distilled prior to use. Bismuth(III) trichloride, N, N-dimethylbenzylamine, N methylpiperazine, morpholine and butyllithium (15% in n-hexane) were commercially available. The other starting materials were prepared according to literature methods: 2$\left[\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br} \quad[21]$, 2[$\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}$] $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ [31], [2-($\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}$]Li [32], and $\left[2-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiCl}_{2}$ [19].

Room temperature ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NMR spectra were recorded in dried $\mathrm{CDCl}_{3}(\mathbf{1}-\mathbf{4})$ or $\mathrm{DMSO}-d_{6}(\mathbf{5}-\mathbf{1 1})$, on Bruker Avance 300, Bruker Avance DPX 200 or Bruker Avance WB 360 instruments. The chemical shifts are reported in ppm relative to the residual peak of the solvent (ref. $\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H} 7.26,{ }^{13} \mathrm{C} 77.0 \mathrm{ppm}$; DMSO- d_{5} : $\left.{ }^{1} \mathrm{H} 2.50,{ }^{13} \mathrm{C} 39.43 \mathrm{ppm}\right)$. The NMR spectra were processed using
the MestReC and MestReNova software [33]. Mass spectra were recorded with Finnigan MAT 8200 instrument and were processed using the MASPEC II software [34].

The details of the crystal structure determination and refinement for compounds $\mathbf{1 - 5}$ and $\mathbf{1 1}$ are given in Table 4. Data were collected on Bruker SMART APEX (1, 2, 4, 5, 11) and Siemens P4 (3) diffractometers, using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). For this purpose the crystals were attached with epoxy glue on cryoloops and the data were collected at room temperature (297 K) and 173 K (cooled under a nitrogen stream), respectively. The structures were refined with anisotropic thermal parameters. The hydrogen atoms were refined with a riding model and a mutual isotropic thermal parameter. For structure solving and refinement the software package SHELX-97 was used [35]. The drawings were created with the Diamond program [36].

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 778940-778945. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax.: + 44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk].

Synthesis of [2-\{ $\left.\left.\mathrm{O}_{(}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}(\mathbf{1})$

A solution of n-BuLi in n-hexane ($14.64 \mathrm{~mL} 1.6 \mathrm{M}, 23.43 \mathrm{mmol}$) was added dropwise to a stirred solution of 2$\left[\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(6.0 \mathrm{~g}, 23.43 \mathrm{mmol})$ in 100 mL anhydrous n-hexane, at room temperature, under argon. The reaction mixture was stirred for 2 h . Evaporation of the solvent gave $\left[2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Li}$ as a white compound. To the solid product suspended in 100 mL anhydrous diethyl ether was added, at $-78^{\circ} \mathrm{C}$, a solution of $\mathrm{BiCl}_{3}(2.45 \mathrm{~g}, 7.79 \mathrm{mmol})$ in 50 mL diethyl ether. The reaction temperature was maintained at $-78{ }^{\circ} \mathrm{C}$ for 2 h , following which the reaction mixture was allowed to warm
slowly to ambient temperature. After being stirred for additional 12 h , the reaction mixture was filtered and the solvent was evaporated in vacuum to give 1 as a white-grey solid ($4.09 \mathrm{~g}, 71 \%$ yield). M.p.: $239{ }^{\circ} \mathrm{C}$. Anal. calcd. (found) for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{BiN}_{3} \mathrm{O}_{3}$: C 53.73 (53.94) \%; H 5.74 (5.65) \%; N 5.70 (5.59) \%. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 300 MHz): $\delta 2.26$ (s,br, $12 \mathrm{H}, \mathrm{H}-8,11$), 3.00 ($\mathrm{s}, \mathrm{br}, 12 \mathrm{H}, \mathrm{H}-9,10$), $3.58(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, H-7), 7.08\left(\mathrm{t}, 3 \mathrm{H}, H-5,{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right), 7.21(\mathrm{t}, 3 \mathrm{H}$, $\left.H-4,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.26\left(\mathrm{~d}, 3 \mathrm{H}, H-3,{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right), 7.64(\mathrm{~d}, 3 \mathrm{H}$, $H-6,{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 53.42(\mathrm{~s}, C-$ 8,11), 66.23 (s, $C-9,10$), 67.90 (s, $C-7$), 126.73 (s, $C-4$), 129.67 (s , $C-5$), 129.99 ($\mathrm{s}, C-3$), 139.81 (s, $C-6$), 142.90 (s, $C-2$), 163.53 (s, C-1). MS-EI $70 \mathrm{eV}\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 736 (5) $[M]^{+}, 561$ (100) $\left[\mathrm{R}_{2} \mathrm{Bi}\right]^{+}, 209$ (5) $\left[\mathrm{Bi}^{+}, 176\right.$ (20) $[\mathrm{R}]^{+}[\mathrm{R}=2-$ $\left.\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Synthesis of [2-\{ $\left.\left.\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3} \mathrm{Bi}$ (2)

A solution of n-BuLi in n-hexane ($5.66 \mathrm{~mL} 1.6 \mathrm{M}, 9.18 \mathrm{mmol}$) was added dropwise to a stirred solution of 2$\left[\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(2.47 \mathrm{~g}, 9.18 \mathrm{mmol})$ in 100 mL anhydrous n-hexane, at room temperature, under argon. After 30 minutes a white precipitate was formed. The reaction mixture was stirred for 4 h . Evaporation of the solvent gave [2$\left.\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Li}$ as a white compound. To the suspension of the solid product in 100 mL anhydrous diethyl ether was added, at $-78{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{BiCl}_{3}(0.95 \mathrm{~g}, 3.02 \mathrm{mmol})$ in 50 mL diethyl ether. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then allowed to reach room temperature and filtered through a glass frit under argon atmosphere. The solution was evaporated under vacuum to give 2 as a white solid ($1.0 \mathrm{~g}, 43 \%$ yield). M.p.: $205{ }^{\circ} \mathrm{C}$. Anal. calcd. (found) for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{BiN}_{6}$: C 55.66 (55.96) $\%$; H 6.62 (6.44) \%; N 10.82 (10.94) \%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): δ 1.95 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{NCH}_{3}$), 2.30 ($\mathrm{s}, \mathrm{br}, 24 \mathrm{H}, H-8-11$), 3.58 ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, H-7$), $7.06\left(\mathrm{t}, 3 \mathrm{H}, H-5,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.19\left(\mathrm{t}, 3 \mathrm{H}, H-4,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right)$, $7.24(\mathrm{~m}, 3 \mathrm{H}, H-3), 7.71\left(\mathrm{~d}, 3 \mathrm{H}, H-6,{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right): \delta 45.93\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 53.01(\mathrm{~s}, \mathrm{C}-9,10), 54.20(\mathrm{~s}$, $C-8,11$), 67.57 (s, $C-7$), 126.42 (s, $C-4$), 129.49 ($\mathrm{s}, C-5$), 129.53 (s , $C-3$), 139.96 (s, $C-6$), 143.66 (s, $C-2$), 164.32 (s, $C-1$). MS-EI 70 $\mathrm{eV}\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 587 (100) $\left[\mathrm{R}_{2} \mathrm{Bi}\right]^{+}, 398$ (10) $[\mathrm{RBi}]^{+}$, 209 (11) $[\mathrm{Bi}]^{+}, 189(28)[\mathrm{R}]^{+}\left[\mathrm{R}=2-\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Synthesis of $\left[2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{BiCl}$ (3)

A suspension of $\left[2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Li}$ [obtained from n BuLi in n-hexane ($14.65 \mathrm{~mL} 1.6 \mathrm{M}, 23.43 \mathrm{mmol}$) and 2$\left.\left[\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(6.0 \mathrm{~g}, 23.43 \mathrm{mmol})\right]$ in 100 mL anhydrous diethyl ether was added dropwise, at $-78{ }^{\circ} \mathrm{C}$, to a solution of $\mathrm{BiCl}_{3}(3.69 \mathrm{~g}, 11.71 \mathrm{mmol})$ in 50 mL diethyl ether. The reaction mixture was allowed to reach room temperature over night and then filtered through a glass frit. The white solid retained on the frit was extracted with $2 \times 50 \mathrm{~mL}$ of chloroform and evaporation of the clear solution gave $\mathbf{3}$ as a fade yellowish solid $\left(4.61 \mathrm{~g}, 66 \%\right.$ yield). M.p.: $195{ }^{\circ} \mathrm{C}$. Anal. calcd. (found) for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BiClN}_{2} \mathrm{O}_{2}$: C 44.27 (44.11) \%; H 4.73 (4.75) \%; N 4.69 (4.66) \%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 2.55$ (s,br, 8H, $\mathrm{H}-8,11$), 3.68 (s, 4H, H-7), 3.79 (s,br, 8H, H-9,10), 7.41 (m, 4H, H-4,5), $7.52\left(\mathrm{~d}, 2 \mathrm{H}, H-3,{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 8.57\left(\mathrm{~d}, 2 \mathrm{H}, H-6,{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 53.88(\mathrm{~s}, C-8,11), 66.95(\mathrm{~s}, C-$ 9,10), 67.74 (s, $C-7$), 128.44 (s, $C-4$), 130.31 ($\mathrm{s}, C-3$), 131.52 (s, C 5), 140.46 (s, $C-6$), 144.21 (s, $C-2$), 181.57 (s, $C-1$). MS-EI 70 eV $\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 561 (100) $[\mathrm{M}-\mathrm{Cl}]^{+}, 420$ (20) $[\mathrm{M}-\mathrm{R}]^{+}$, 385 (19) $\left[\mathrm{RBi}^{+}, 209\right.$ (28) $[\mathrm{Bi}]^{+}, 176$ (80) $[\mathrm{R}]^{+}[\mathrm{R}=2-$ $\left.\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

A suspension of [2- $\left.\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Li}$ [obtained from n - BuLi in n-hexane ($5.66 \mathrm{~mL} 1.6 \mathrm{M}, 9.18 \mathrm{mmol}$) and 2 $\left.\left[\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(2.47 \mathrm{~g}, 9.18 \mathrm{mmol})\right]$ in 100 mL anhydrous diethyl ether was added dropwise, at $-78{ }^{\circ} \mathrm{C}$, to a solution of $\mathrm{BiCl}_{3}(1.42 \mathrm{~g}, 4.57 \mathrm{mmol})$ in 50 mL diethyl ether. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then 12 h to reach the room temperature. It was filtered under argon atmosphere and the solution was evaporated under vacuum to give 4 as a whiteyellow solid ($2.33 \mathrm{~g}, 82 \%$ yield). M.p.: $179{ }^{\circ} \mathrm{C}$. Anal. calcd. (found) for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{BiClN}_{4}$: C 46.27 (46.72) \%; H 5.50 (5.72) \%; N 8.99 (9.26) \%. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): ~ \delta 2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 2.56 (s,br, 16H, H-8-11), 3.69 (s,br, 4H, H-7), 7.39 (m, 4H, $H-4,5$), $7.51\left(\mathrm{~d}, 2 \mathrm{H}, H-3,{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right), 8.65(\mathrm{~d}, \mathrm{br}, 2 \mathrm{H}, H-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right): \delta 46.01\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 53.61(\mathrm{~s}, C-9,10), 55.14(\mathrm{~s}$, $C-8,11$), 67.23 ($\mathrm{s}, C-7$), 128.25 (s, $C-4$), 130.09 (s, $C-3$), 131.41 (s , $C-5$), 141.32 (s, C-6), 144.89 (s, $C-2$), 178.93 (s, $C-1$). MS-EI 70 $\mathrm{eV}\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 586 (8) $[\mathrm{M}-\mathrm{Cl}]^{+}, 432$ (27) $[\mathrm{M}-\mathrm{R}]^{+}$, 209 (11) $\left[\mathrm{Bi}^{+}, 189(30)[\mathrm{R}]^{+}\left[\mathrm{R}=2-\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]\right.$.

Synthesis of $\left.\left[2-\left\{\mathrm{O}_{(} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiCl}_{2}(5)$

A suspension of $\left[2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Li}$ [obtained from n BuLi in n-hexane ($7.32 \mathrm{~mL} 1.6 \mathrm{M}, 11.71 \mathrm{mmol}$) and 2$\left.\left[\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(3.0 \mathrm{~g}, 11.71 \mathrm{mmol})\right]$ in 60 mL anhydrous diethyl ether was added dropwise, at $-78{ }^{\circ} \mathrm{C}$, to a solution of $\mathrm{BiCl}_{3}(3.69 \mathrm{~g}, 11.71 \mathrm{mmol})$ in 30 mL diethyl ether. The reaction mixture was stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$, then allowed to reach room temperature and filtered through a glass frit. The white solid retained on the frit was washed with 25 mL of n-hexane, then dried to give 5 as a white solid ($3.99 \mathrm{~g}, 75 \%$ yield). M.p.: $145{ }^{\circ} \mathrm{C}$ (dec.). Anal. calcd. (found) for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BiCl}_{2} \mathrm{NO}: ~ \mathrm{C} 28.97$ (28.67) \%; H 3.09 (3.48) \%; N 3.07 (3.03) \%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $360 \mathrm{MHz}): \delta 2.58\left[\mathrm{t}, 2 \mathrm{H}, H_{\text {pro-trans }}-8,11,{ }^{2} J_{\mathrm{HH}} \approx{ }^{3} J_{\mathrm{HH}}=11.7 \mathrm{~Hz}\right]$, $3.26\left[\mathrm{~d}, 2 \mathrm{H}, H_{\text {procis }}-8,11,{ }^{2} J_{\mathrm{HH}}=12.1 \mathrm{~Hz}\right], 3.67\left[\mathrm{t}, 2 \mathrm{H}, H_{\text {pro-trans }}{ }^{-}\right.$ $\left.9,10,{ }^{2} J_{\mathrm{HH}} \approx{ }^{3} J_{\mathrm{HH}}=11 \mathrm{~Hz}\right], 3.79\left[\mathrm{~d}, 2 \mathrm{H}, H_{\mathrm{procis}}-9,10,{ }^{2} J_{\mathrm{HH}}=12.2\right.$ $\mathrm{Hz}], 4.27(\mathrm{~s}, 2 \mathrm{H}, H-7), 7.41\left(\mathrm{t}, 1 \mathrm{H}, H-4,{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 7.67(\mathrm{t}, 1 \mathrm{H}$, $\left.H-5,{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 7.81\left(\mathrm{~d}, 1 \mathrm{H}, H-3,{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 9.16(\mathrm{~d}, 1 \mathrm{H}$, $H-6,{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 50.3 \mathrm{MHz}$): $\delta 53.76(\mathrm{~s}$, $C-8,11$), 66.91 (s, $C-9,10$), 68.10 (s, $C-7$), 127.77 (s, $C-4$), 129.73 (s, $C-3$), 131.08 (s, $C-5$), 139.51 (s, $C-6$), 148.38 (s, $C-2$), 211.47 (s, $C-1)$. MS-EI $70 \mathrm{eV}\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 455 (20) $[M]^{+}, 420$ (60) $[\mathrm{M}-\mathrm{Cl}]^{+}, 209$ (24) $\left[\mathrm{Bi}^{+}, 176\right.$ (38) $[\mathrm{R}]^{+}[\mathrm{R}=2-$ $\left.\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Synthesis of [2-\{ $\mathrm{MeN}^{\left.\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiCl}_{2}(6)}$

A suspension of [2-\{ $\left.\left.\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Li}$ [obtained from n-BuLi in n-hexane ($12.50 \mathrm{~mL} 1.6 \mathrm{M}, 20 \mathrm{mmol}$) and 2$\left.\left[\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(5.38 \mathrm{~g}, 20 \mathrm{mmol})\right]$ in 50 mL anhydrous diethyl ether was added dropwise with stirring, at -78 ${ }^{\circ} \mathrm{C}$, to a solution of $\mathrm{BiCl}_{3}(6.31 \mathrm{~g}, 20 \mathrm{mmol})$ in 40 mL diethyl ether. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then over night to reach room temperature. It was filtered and the remaining white residue was washed with $25 \mathrm{~mL} n$-hexane and dried under vacuum to give $\mathbf{8}$ as a white solid ($8.44 \mathrm{~g}, 90 \%$ yield). M.p.: $195{ }^{\circ} \mathrm{C}$ (dec). Anal. calcd. (found) for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BiCl}_{2} \mathrm{~N}_{2}$: C 30.72 (30.36) \%; H 3.65 (3.72) $\%$; N 5.97 (5.56) $\%$. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 360 \mathrm{MHz}$): $\delta 2.68$ ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.41 (br, $8 \mathrm{H}, \mathrm{H}-8-11$), 4.27 (s, 2H, H-7), 7.42 (t, $\left.1 \mathrm{H}, H-4,{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 7.69\left(\mathrm{t}, 1 \mathrm{H}, H-5,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.83(\mathrm{~d}$, $\left.1 \mathrm{H}, H-3,{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 9.18\left(\mathrm{~d}, 1 \mathrm{H}, H-6,{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 50.3 \mathrm{MHz}$): $\delta 42.14\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 50.42(\mathrm{~s}, C-9,10)$, 52.57 (s, $C-8,11$), 66.54 (s, $C-7$), 127.48 (s, $C-4$), 129.82 (s, $C-3$), 131.22 (s, $C-5$), 139.35 (s, $C-6$), 147.54 (s, $C-2$), 214.61 (s, $C-1$). MS-EI $70 \mathrm{eV}\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 434 (30) [M-Cl] ${ }^{+}, 398$
(10) $\left[\mathrm{RBi}^{+}, 209\right.$ (26) $\left[\mathrm{Bi}^{+}, 189\right.$ (18) $[\mathrm{R}]^{+} \quad[\mathrm{R}=2-$ $\left.\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Synthesis of [2-\{ $\left.\left.\mathrm{O}_{(}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}$ (7)

A suspension of $5(0.50 \mathrm{~g}, 1.09 \mathrm{mmol})$ in 50 mL methylene chloride was vigorously stirred for 24 h with a solution of KBr ($0.39 \mathrm{~g}, 3.28 \mathrm{mmol}$) in 25 mL distilled water. The reaction mixture was filtered off, the colorless organic phase was removed with a syringe and the aqueous phase was washed with methylene chloride ($2 \times 25 \mathrm{~mL}$). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuum to give $\mathbf{6}$ as a white powder ($0.26 \mathrm{~g}, 45 \%$ yield). M.p.: $112{ }^{\circ} \mathrm{C}$ (dec.). Anal. calcd. (found) for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BiBr}_{2} \mathrm{NO}: \mathrm{C} 24.24$ (24.41) \%; H 2.59 (2.13) \%; N $2.57(2.22) \% .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 200 \mathrm{MHz}$): $\delta 2.73[\mathrm{t}, 2 \mathrm{H}$, $\left.H_{\text {pro-trans }}-8,11,{ }^{2} J_{\mathrm{HH}} \approx{ }^{3} J_{\mathrm{HH}}=11.6 \mathrm{~Hz}\right], 3.19\left[\mathrm{~d}, 2 \mathrm{H}, H_{\text {pro-cis }}-8,11\right.$, $\left.{ }^{2} J_{\mathrm{HH}}=12.0 \mathrm{~Hz}\right], 3.67\left[\mathrm{t}, 2 \mathrm{H}, H_{\text {pro-trans }}-9,10,{ }^{2} J_{\mathrm{HH}} \approx{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz}\right]$, $3.82\left[\mathrm{~d}, 2 \mathrm{H}, H_{\text {procisis }}-9,10,{ }^{2} J_{\mathrm{HH}}=11.6 \mathrm{~Hz}\right], 4.34(\mathrm{~s}, 2 \mathrm{H}, H-7), 7.51(\mathrm{t}$, $\left.1 \mathrm{H}, H-4,{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right), 7.73\left(\mathrm{t}, 1 \mathrm{H}, H-5,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.94(\mathrm{~d}$, $\left.1 \mathrm{H}, H-3,{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 9.42\left(\mathrm{~d}, 1 \mathrm{H}, H-6,{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 50.3 \mathrm{MHz}$): $\delta 53.74$ (s, $C-8,11$), 66.37 (s, C 9,10), 68.32 (s, $C-7$), 128.13 (s, $C-4$), 129.94 ($\mathrm{s}, C-3$), 131.53 (s, C 5), 141.00 (s, $C-6$), 149.06 (s, $C-2$), 209.08 (s, $C-1$). MS-EI 70 eV $\left(200^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}\left(\right.$ rel. int. \%), 466 (100) $[\mathrm{M}-\mathrm{Br}]^{+}, 385$ (19) [RBi] ${ }^{+}, 209$ (40) $[\mathrm{Bi}]^{+}, 176(22)[\mathrm{R}]^{+}\left[\mathrm{R}=2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Synthesis of $\left[2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiI}_{2}$ (8)

Compound $\mathbf{8}$ was prepared similar to 7 , from a suspension of $\mathbf{5}$ $(0.50 \mathrm{~g}, 1.09 \mathrm{mmol})$ in 50 mL methylene chloride and a solution of KI ($0.54 \mathrm{~g}, 3.28 \mathrm{mmol}$) in 25 mL distilled water, as a yellow powder ($0.45 \mathrm{~g}, 65 \%$ yield). M.p.: $101^{\circ} \mathrm{C}$ (dec.). Anal. calcd. (found) for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BiI}_{2} \mathrm{NO}: \mathrm{C} 20.67$ (20.51) \%; H 2.21 (2.24) $\%$; N 2.19 (1.86) \%. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 200 \mathrm{MHz}$): $\delta 2.76$ [t, $2 \mathrm{H}, H_{\text {pro- }}$ $\left.{ }_{\text {trans }}-8,11,{ }^{2} J_{\mathrm{HH}} \approx{ }^{3} J_{\mathrm{HH}}=10.2 \mathrm{~Hz}\right], 3.25\left[\mathrm{~d}, 2 \mathrm{H}, H_{\text {pro-cis }}-8,11,{ }^{2} J_{\mathrm{HH}}=\right.$ $12.8 \mathrm{~Hz}], 3.65\left[\mathrm{t}, 2 \mathrm{H}, H_{\text {pro-trans }}-9,10,{ }^{2} J_{\mathrm{HH}} \approx^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right], 3.83$ [d, $\left.2 \mathrm{H}, H_{\mathrm{procis}}-9,10,{ }^{2} J_{\mathrm{HH}}=11.5 \mathrm{~Hz}\right], 4.38(\mathrm{~s}, 2 \mathrm{H}, H-7), 7.57(\mathrm{t}, 1 \mathrm{H}, H-$ $\left.4,{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right), 7.68\left(\mathrm{t}, 1 \mathrm{H}, H-5,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.93\left(\mathrm{~d}, 1 \mathrm{H}, H_{-}\right.$ $\left.3,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 9.73\left(\mathrm{~d}, 1 \mathrm{H}, H-6,{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ (DMSO- $d_{6}, 50.3 \mathrm{MHz}$): $\delta 54.36$ (s, $C-8,11$), 66.49 (s, $C-9,10$), 69.10 (s, $C-7$), 128.08 (s, $C-4$), 129.74 (s, $C-3$), 132.19 (s, $C-5$), 145.34 (s, $C-6$), 149.38 (s, $C-2$), 198.2 (s, C-1). MS-EI 70 eV (200 $\left.{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 512 (100) $[\mathrm{M}-\mathrm{I}]^{+}, 385$ (22) $[\mathrm{RBi}]^{+}, 209$ (24) $\left[\mathrm{Bi}^{+}, 176(22)[\mathrm{R}]^{+}\left[\mathrm{R}=2-\left\{\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]\right.$.

Synthesis of [$\left.2-\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}$ (9)

A suspension of $6(0.50 \mathrm{~g}, 1.06 \mathrm{mmol})$ in 50 mL methylene chloride was vigorously stirred for 24 h with a solution of KBr ($0.38 \mathrm{~g}, 3.19 \mathrm{mmol}$) in 25 mL distilled water. The reaction mixture was filtered off and the precipitate was dried in vacuum to give compound 9 as a white powder $\left(0.38 \mathrm{~g}, 65 \%\right.$ yield). M.p.: $205^{\circ} \mathrm{C}$ (dec.). Anal. calcd. (found) for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BiCl}_{2} \mathrm{~N}_{2}$: C 25.83 (25.36) \%; H 3.07 (3.12) \%; N 5.02 (5.26) \%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, 200 $\mathrm{MHz}): \delta 2.60\left(\mathrm{~s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.75\left[\mathrm{t}, 2 \mathrm{H}, H_{\text {pro-trans }}-8,11,{ }^{2} J_{\mathrm{HH}} \approx\right.$ $\left.{ }^{3} J_{\mathrm{HH}}=12.4 \mathrm{~Hz}\right], 2.97\left[\mathrm{t}, 2 \mathrm{H}, H_{\text {pro-trans }}-9,10,{ }^{2} J_{\mathrm{HH}} \approx{ }^{3} J_{\mathrm{HH}}=11.8 \mathrm{~Hz}\right]$, $3.23\left[\mathrm{~d}, 2 \mathrm{H}, H_{\text {pro-cis }}-9,10,{ }^{2} J_{\mathrm{HH}}=11.6 \mathrm{~Hz}\right], 3.43\left[\mathrm{~d}, 2 \mathrm{H}, H_{\text {pro-cis }}-8,11\right.$, $\left.{ }^{2} J_{\mathrm{HH}}=12.3 \mathrm{~Hz}\right], 4.34(\mathrm{~s}, 2 \mathrm{H}, H-7), 7.48\left(\mathrm{t}, 1 \mathrm{H}, H-4,{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right)$, $7.71\left(\mathrm{t}, 1 \mathrm{H}, H-5,{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 7.91\left(\mathrm{~d}, 1 \mathrm{H}, H-3,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right)$, $9.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 50.3 \mathrm{MHz}$): $\delta 42.56\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 51.19(\mathrm{~s}, C-9,10), 52.84(\mathrm{~s}, C-8,11), 67.01(\mathrm{~s}, C-$ 7), 127.67 ($\mathrm{s}, C-4$), 129.82 ($\mathrm{s}, C-3$), 131.70 ($\mathrm{s}, C-5$), 141.70 ($\mathrm{s}, C-6$), 141.70 (s, C-2), 208.09 (s, $C-1$). MS-EI $70 \mathrm{eV}\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}(\mathrm{rel}$.
int. \%), 558 (20) $[\mathrm{M}]^{+}, 477$ (100) $[\mathrm{M}-\mathrm{Br}]^{+}, 268$ (22) $[\mathrm{RBr}]^{+}, 209$ (44) $[\mathrm{Bi}]^{+}, 189(21)[\mathrm{R}]^{+}\left[\mathrm{R}=2-\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Synthesis of [2-\{ $\mathrm{MeN}^{\left.\left.\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiI}_{2} \text { (10) }\right) ~(1)}$

Compound $\mathbf{1 0}$ was prepared similar to 9 , from a suspension of $\mathbf{6}$ $(0.50 \mathrm{~g}, 1.06 \mathrm{mmol})$ in 50 mL methylene chloride and a solution of KI $(0.53 \mathrm{~g}, 3.19 \mathrm{mmol})$ in 25 mL distilled water, as an orange powder $\left(0.54 \mathrm{~g}, 78 \%\right.$ yield). M.p.: $156{ }^{\circ} \mathrm{C}$ (dec.). Anal. calcd. (found) for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BiI}_{2} \mathrm{~N}_{2}$: C 22.10 (21.87) \%; H 2.63 (2.42) \%; N 4.30 (4.06) \%. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 200 \mathrm{MHz}$): $\delta 2.80(\mathrm{~s}, \mathrm{br}, 3 \mathrm{H}$, NCH_{3}), 3.32 (br, 8H, H-8-11), 4.34 (s, 2H, H-7), 7.55 (t, 1H, H-4, $\left.{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right), 7.70\left(\mathrm{t}, 1 \mathrm{H}, H-5,{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 7.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3$, ${ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}$), $9.68(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, H-6) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 50.3$ $\mathrm{MHz}): \delta 41.99\left(\mathrm{~s}, \mathrm{~N}_{2} \mathrm{H}_{3}\right), 51.20(\mathrm{~s}, C-9,10), 52.65$ (s, $C-8,11$), 67.60 (s,br, $C-7$), 127.70 (s, $C-4$), 129.86 (s, $C-3$), 132.10 (s, $C-5$), 144.14 (s,br, $C-6$), 148.02 (s, $C-2$) (the resonance for the $C-1$ atom was not observed). MS-EI $70 \mathrm{eV}\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 525 (58) $[\mathrm{M}-\mathrm{I}]^{+}, 398$ (10) $\left[\mathrm{RBi}^{+}, 209\right.$ (37) $[\mathrm{Bi}]^{+}, 189$ (38) $[\mathrm{R}]^{+}[\mathrm{R}=2-$ $\left.\left\{\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Synthesis of [2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}$ (11)

Compound $\mathbf{1 1}$ was prepared similar to $\mathbf{9}$, from a suspension of [2$\left.\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiCl}_{2}(1.0 \mathrm{~g}, 2.41 \mathrm{mmol})$ in 50 mL methylene chloride and a solution of $\operatorname{KBr}(0.86 \mathrm{~g}, 7.23$ mmoles $)$ in 25 mL distilled water, as a white powder ($0.64 \mathrm{~g}, 53 \%$ yield). M.p.: $240^{\circ} \mathrm{C}$. Anal. calcd. (found) for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{BiBr}_{2} \mathrm{~N}$: C 21.49 (21.18) \%; H 2.40 (2.46) \%; N 2.78 (2.42) \%. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 200 \mathrm{MHz}$): $\delta 2.70$ (s, 6H, NCH_{3}), $4.39(\mathrm{~s}, 2 \mathrm{H}, H-7), 7.49\left(\mathrm{t}, 1 \mathrm{H}, H-4,{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right)$, $7.71\left(\mathrm{t}, 1 \mathrm{H}, H-5,{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.84\left(\mathrm{~d}, 1 \mathrm{H}, H-3,{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right)$, $9.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 50.3 \mathrm{MHz}$): $\delta 46.02\left(\mathrm{~s}, \mathrm{~N}_{2} \mathrm{H}_{3}\right), 69.07(\mathrm{~s}, C-7), 127.98(\mathrm{~s}, C-4), 129.52(\mathrm{~s}, C-3)$, 131.13 (s, $C-5$), 140.41 (s, $C-6$), 151.09 (s, $C-2$), 213.25 (s, $C-1$). MS-EI $70 \mathrm{eV}\left(200{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}$ (rel. int. \%), 503 (2) $\left[\mathrm{M}^{+}, 422\right.$ (100) $[\mathrm{M}-\mathrm{Br}]^{+}, 288$ (7) $\left[\mathrm{RBi}^{+}, 209\right.$ (22) $\left[\mathrm{Bi}^{+}, 134\right.$ (42) $[\mathrm{R}]^{+}[\mathrm{R}=2-$ $\left.\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]$.

Supporting Information (see footnote on the first page of this article): X-ray crystallographic data in CIF format for $\mathbf{1 - 5}$ and 11, figures representing the molecular structure of compounds $\mathbf{2}$ and $\mathbf{3}$, optical isomers of $\mathbf{1 - 5}$ and $\mathbf{1 1}$, supramolecular architectures in the crystals of compounds $\mathbf{3}, \mathbf{5}$ and $\mathbf{1 1}$.

Acknowledgement

Financial support from National University Research Council (CNCSIS, Romania; Research Project No. PNII-ID 2052/2009) is greatly appreciated. We also thank Deutsche Forschungsgemeinschaft and DAAD for financial support and Universität Bremen for providing research facilities during research stays of M.G.N. and C.S. The support provided by the NATIONAL CENTER FOR X-RAY DIFFRACTION (BabesBolyai University, Cluj-Napoca, Romania) for the solid state structure determinations is highly acknowledged.
[1] K. H. Whitmire, J. C. Hutchison, A. L. McKnight, C. M. Jones, J. Chem. Soc., Chem. Commun., 1992, 1021-1022.
[2] W. Frank, J. Schneider, S. Müller-Becker, J. Chem. Soc., Chem. Commun., 1993, 799-800.
[3] S. Wang, D. B. Mitzi, G. A. Landrum, H. Genin, R. Hoffmann, J. Am. Chem. Soc., 1997, 119, 724-732.
[4] C. Silvestru, H. J. Breunig, H. Althaus, Chem. Rev., 1999, 99, 3277-3327.
[5] I. Haiduc, F. T. Edelman, Supramolecular Organometallic Chemistry, Wiley-VCH, Weinheim, 1999.
[6] H. Suzuki, Y. Matano (Eds.), Organobismuth Chemistry, Elsevier Science B.V., Amsterdam, 2001.
[7] Y. Uchiyama, N. Kano, T. Kawashima, Organometallics, 2001, 20, 2440-2442.
[8] M. Mehring, Coord. Chem. Rev., 2007, 251, 974-1006.
[9] H. J. Breunig, L. Königsmann, E. Lork, N. Philipp, M. Nema, C. Silvestru, A. Soran, R. A. Varga, R. Wagner, Dalton Trans., 2008, 1831-1842, and references cited therein.
[10] A. Fridrichová, T. Svoboda, R. Jambor, Z. Padĕlková, A. Růžička, M. Erben, R. Jirásko, L. Dostál, Organometallics, 2009, 28, 5522-5528.
[11] K. H. Whitmire, D. Labahn, H. W. Roesky, M. Noltemeyer, G. M. Sheldrick, J. Organomet. Chem., 1991, 402, 55-66.
[12] H. Althaus, H. J. Breunig, R. Rösler, E. Lork, Organometallics, 1999, 18, 328-331.
[13] N. J. Hardman, B. Twamley, P. P. Power, Angew. Chem., Int. Ed. Engl., 2000, 39, 2771-2773.
[14] E. V. Avtomonov, X.-W. Li, J. Lorberth, J. Organomet. Chem., 1997, 530, 71-74.
[15] B. Twamley, C. D. Sofield, M. M. Olmstead, P. P. Power, J. Am. Chem. Chem., 1999, 121, 3357-3367.
[16] H. J. Breunig, N. Haddad, E. Lork, M. Mehring, C. Mügge, C. Nolde, C. I. Raț, M. Schürmann, Organometallics, 2009, 28, 1202-1211.
[17] A. Soran, H. J. Breunig, V. Lippolis, M. Arca, C. Silvestru, J. Organomet. Chem., 2010, 695, 850-862.
[18] A. Soran, H. J. Breunig, V. Lippolis, M. Arca, C. Silvestru, Dalton Trans., 2009, 77-84.
[19] C. J. Carmalt, A. H. Cowley, R. D. Culp, R. A. Jones, S. Kamepalli, N. C. Norman, Inorg. Chem., 1997, 36, 27702776.
[20] A. P. Soran, C. Silvestru, H. J. Breunig, G. Balázs, J. C. Green, Organometallics, 2007, 26, 1196-1203.
[21] A. G. Avent, P. B. Hitchcock, G. J. Leigh, M. Togrou, J. Organomet. Chem., 2003, 669, 87-100.
[22] M. Kulcsar, A. Beleaga, C. Silvestru, A. Nicolescu, C. Deleanu, C. Todasca, A. Silvestru, Dalton Trans., 2007, 2187-2196.
[23] S. Kamepalli, C. J. Carmalt, R. D. Culp, A. H. Cowley, R. A. Jones, Inorg. Chem., 1996, 35, 6179-6183.
[24] J. Emsley, Die Elemente, Walter de Gruyter, Berlin, 1994.
[25] K. Akiba (Ed.), Chemistry of Hypervalent Compounds, Wiley-VCH, New York, 1999.
[26] The N-X-L nomenclature system has been previously described: N valence shell electrons about a central atom X with L ligands. C. W. Perkins, J. C. Martin, A. J. Arduengo III, W. Lau, A. Alegria, J. K. Kochi, J. Am. Chem. Soc., 1980, 102, 7753-7759.
[27] J. Rigauy, S. P. Klesney (Eds.), Nomenclature of Organic Chemistry - The Blue Book, Pergamon Press, Oxford, 1979.
[28] H. Suzuki, T. Murafuji, Y. Matano, N. Azuma, J. Chem. Soc. Perkin Trans. 1, 1993, 2969-2973.
[29] D. Copolovici, V. R. Bojan, C. I. Raț, A. Silvestru, H. J. Breunig, C. Silvestru, Dalton Trans., 2010, DOI: 10.1039/c003318a.
[30] N. G. Connelly, T. Damhus, R. M. Hartshorn, A. T. Hutton (Eds.), Nomenclature of Inorganic Chemistry - IUPAC Recommendations 2005, RSC Publishing, Cambridge, 2005.
[31] N. B. Mehta, J. Z. Strelitz, J. Org. Chem., 1962, 27, 44124418.
[32] A. Meller, H. Hoppe, W. Maringgele, A. Haase, M. Noltemeyer, Organometallics, 1998, 17, 123-124.
[33] MestReC and MestReNova, Mestrelab Research S.L., A Coruña 15706, Santiago de Compostela.
[34] MASPEC II Data System, Mass Spectrometry Services Ltd., M25 9WB Manchester.
[35] G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112122.
[36] DIAMOND - Visual Crystal Structure Information System, Crystal Impact, Postfach 1251, 53002 Bonn, Germany, 2001.

Received: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

Entry for the Table of Contents

Hans J. Breunig,* Mihai G. Nema, Cristian Silvestru,* Albert Soran and Richard A. Varga Page No. - Page No.
[2-\{E($\left.\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}\right\} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{\mathrm{n}} \mathrm{BiX}_{3-\mathrm{n}}(\mathrm{E}=\mathrm{O}, \mathrm{NMe} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; \mathrm{n}=$ 1-3) and [2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{BiBr}_{2}$ - new hypervalent organobismuth(III) compounds

$71 \times 65 \mathrm{~mm}(600 \times 600$ DPI)

$46 \times 42 \mathrm{~mm}(600 \times 600$ DPI)

$143 \times 100 \mathrm{~mm}(600 \times 600$ DPI)

$133 \times 106 \mathrm{~mm}(600 \times 600$ DPI)

$130 \times 46 \mathrm{~mm}(600 \times 600$ DPI $)$

$124 \times 103 \mathrm{~mm}(600 \times 600 \mathrm{DPI})$

[^0]: * Prof. Dr. Hans J. Breunig, Prof. Dr. Cristian Silvestru Fax: (+49) 421-218 62809; (+40) 264-590 818
 E-Mail: hbreunig@uni-bremen.de; cristi@chem.ubbcluj.ro
 [a] Institut für Anorganische und Physikalische Chemie Universität Bremen
 Postfach 330 440, D-28334 Bremen, Germany
 [b] Facultatea de Chimie si Inginerie Chimica Universitatea Babes-Bolyai
 RO-400028 Cluj-Napoca, Romania
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/zaac.201000xxx or from the author.

