Crystal structures of the metal diborides ReB2, RuB2, and OsB2 from neutron powder diffraction

Barbara Albert

- To cite this version:

Barbara Albert. Crystal structures of the metal diborides ReB2, RuB2, and OsB2 from neutron powder diffraction. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2010, 636 (9-10), pp.1783. 10.1002/zaac. 201000101 . hal-00599863

HAL Id: hal-00599863

https://hal.science/hal-00599863

Submitted on 11 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Zeitschrift für Anorganische und Allgemeine Chemie

Crystal structures of the metal diborides ReB2, RuB2, and OsB2 from neutron powder diffraction

Journal:	Zeitschrift für Anorganische und Allgemeine Chemie
Manuscript ID:	zaac.201000101.R1
Wiley - Manuscript type:	Article
Date Submitted by the	
Author:	18-May-2010
Complete List of Authors:	Albert, Barbara; Universitaet Darmstadt, Eduard-Zintl-Inst. fueÂ』 r Anorg. und Physikal. Chemie
Keywords:	Boron, neutron diffraction, Osmium, Rhenium, Ruthenium

Crystal structures of the metal diborides $\mathrm{ReB}_{2}, \mathrm{RuB}_{2}$, and OsB_{2} from neutron powder diffraction
Michael Frotscher, ${ }^{\text {a }}$ Markus Hölzel, ${ }^{\text {b }}$ Barbara Albert ${ }^{\text {a }}{ }^{*}$
${ }^{\text {a }}$ Darmstadt/Deutschland, Eduard Zintl-Institut für Anorganische und Physikalische Chemie, Fachbereich Chemie der Technischen Universität
${ }^{\mathrm{b}}$ Darmstadt/Deutschland, Fachbereich Material- und Geowissenschaften der Technischen Universität
Dedicated to Bernd Harbrecht on the occasion of his 60th birthday
Received ...
*Prof. Dr. Barbara Albert
Technische Universität Darmstadt
Petersenstr. 18
D-64287 Darmstadt
Fax: (+49) 6151-16-6029
Email: albert@ac.chemie.tu-darmstadt.de

Abstract

Owing to the very small scattering power of the light element, the crystal structures of metal borides that contain heavy metal atoms are difficult to determine unambiguously from X-ray diffraction data only. Using neutron diffraction methods and applying them to isotopically enriched ${ }^{11} \mathrm{~B}$ boride powders, the crystal structures of $\operatorname{ReB}_{2}, \mathrm{RuB}_{2}$, and OsB_{2} were re-determined and analysed with respect to the boron atom arrangement. In accordance with the findings from X-ray diffraction experiments, the structures exhibit corrugated boron atom layers of conjugated six-rings, either seat-like $\left(\operatorname{ReB}_{2}\right)$ or boat-like $\left(\mathrm{RuB}_{2}, \mathrm{OsB}_{2}\right) . \mathrm{ReB}_{2}$ crystallizes in the hexagonal crystal system, space group $P 6_{3} / \mathrm{mmc}$ (no. 194, $a=290.05$ (1) $\mathrm{pm}, c=747.72(1) \mathrm{pm}) ; \mathrm{OsB}_{2}$ and RuB_{2} are isostructural and crystallize orthorhombically, space group Pmmn (no. 59, $a=464.479(5) \mathrm{pm}, b=286.515(3) \mathrm{pm}, c=404.560(6) \mathrm{pm}$ $\left.\left(\mathrm{RuB}_{2}\right) ; a=468.408(5) \mathrm{pm}, b=287.255(3) \mathrm{pm}, c=407.693(6) \mathrm{pm}\left(\mathrm{OsB}_{2}\right)\right)$. Boron-boron distances vary between 181.7 and 189.9 pm. For RuB_{2} and OsB_{2}, shortest metal-boron distances range from 217.2 to 217.3 pm , indicating a covalent interaction between metal and boron, compared to 222.7 pm for ReB_{2}. Metal-metal distances are between 286.5 pm and 302.2 pm . All three compounds have been described as very hard or incompressible materials.

Keywords

Boron, neutron diffraction, osmium, rhenium, ruthenium

Introduction

The structures of ruthenium, osmium and rhenium diboride have been known since 1962, when Aronsson et al. [1] and Roof and Kempter [2] described RuB_{2} and OsB_{2}, while La Placa and Post published the structure of ReB_{2} [3], which had formerly been falsely assigned (" $\mathrm{ReB}_{3}{ }_{3}$) [4]. The $\mathrm{MB}_{2}(\mathrm{M}=\mathrm{Re}, \mathrm{Ru}, \mathrm{Os})$ structures were determined by single-crystal X-ray diffraction. It was not until very recently that these compounds raised fresh interest and were described as super-hard or ultra-incompressible [5-14]. RuB_{2} and OsB_{2} are known to become superconducting at $\mathrm{T}_{\mathrm{C}}=1.7 \mathrm{~K}[15](\mathrm{Ru})$ and 2.1 $\mathrm{K}[16]$ (Os). Several first principle studies were undertaken to analyse the anisotropic hardness of $\mathrm{OsB}_{2}, \mathrm{RuB}_{2}$, and ReB_{2} [17-26]. However, no up-to-date structural data and especially no accurate boron atom positions became available. Only very recently did Zogal et al. publish new single crystal X-ray data on one of the three compounds under discussion, ReB_{2} [27]. Boride structures that consist of heavy metal atoms next to light boron atoms are difficult to be solved unambiguously from Xray diffraction data. Neutron diffraction methods have now been applied to isotopically enriched ${ }^{11} \mathrm{~B}$ boride powders to re-determine the crystal structures of $\mathrm{ReB}_{2}, \mathrm{RuB}_{2}$, and OsB_{2}, special attention being paid to the boron atom arrangement. To our knowledge, this is the first time neutron diffraction has been applied to these metal diborides. We will discuss the different layer structures of diborides in the light of the new findings.

Results and discussion

Mono-phase samples of $\operatorname{ReB}_{2}, \mathrm{RuB}_{2}$ and OsB_{2} were obtained from melting the elements at 2500-2600 $\mathrm{K}(1 \mathrm{~h})$ under argon in an induction furnace. After ball-milling, the powders were subjected to laboratory X-ray data collection ($\mathrm{Co} \mathrm{K} \alpha_{1}$ radiation) and neutron powder diffractometry at the SPODI beam-line of the FRM2 reactor (Garching, Germany). Rietveld
refinements (Programme GSAS [28] were performed by using data from the literature [1, 3] as starting models. Both X-ray and neutron data sets for all three samples were refined separately. The refinement results are comprised in tables 1-4. The structures proved to be essentially identical to earlier published models, with small deviations in the boron atom arrangement.

Table 1 Structure determination and crystallographic data for ReB_{2}

ReB_{2}	X-ray	Neutron
Temperature/K		293(2)
Crystal system;		hexagonal;
space group		$\mathrm{P6}_{3} / \mathrm{mmc}$ (No. 194)
Lattice parameters		
$a, b / \mathrm{pm}$	290.059(2)	290.05(1)
c / pm	747.745(6)	747.72(1)
V / \AA^{3}	54.482(0)	54.48(1)
Calculated density/ $\mathrm{g} \cdot \mathrm{~cm}^{-3}$	12.669	12.671
2θ range $/{ }^{\circ}$	$25<2 \theta<110$	$20<2 \theta<152$
No. reflections	17 measured	35 measured
Structure parameters		

a) Maximum residual electron density is found at the origin of the cell, but residual neutron scattering is very low at that position.

Table 2 Structure determination and crystallographic data for RuB_{2}

RuB_{2}	X-ray	Neutron
Temperature/K		293(2)
Crystal system;		orthorhombic;
space group		Pmmn (No. 59)
Lattice parameters		
a / pm	464.569(5)	464.479(5)
b / pm	286.559(3)	286.515(3)
c / pm	404.605(6)	404.560(6)
V / \AA^{3}	53.863(1)	53.839(1)

Table 3 Structure determination and crystallographic data for OsB_{2}

OsB_{2}	X-ray	Neutron
Temperature/K	$293(2)$	
Crystal system;	orthorhombic;	
space group	Pmmn (No. 59)	
Lattice parameters		
$a /$ pm	$468.450(6)$	$468.408(5)$
b / pm	$287.372(4)$	$287.255(3)$
c / pm	$407.742(6)$	$407.693(6)$

V/ \AA^{3}	$54.890(1)$	$54.856(1)$
Calculated density/		
g.cm ${ }^{-3}$	12.816	12.826
2θ range/ ${ }^{\circ}$		
No. reflections	$15<2 \theta<110$	$15<2 \theta<152$
Structure parameters	9 refined	77 measured
		10 refined
$\rho_{\text {min./max. }}$	$-2.18 / 2.28$	-
Residuals	$\mathrm{R}_{\mathrm{p}}: 0.0616 ; \mathrm{R}_{\mathrm{wp}}: 0.0737 ;$	$\mathrm{R}_{\mathrm{p}}: 0.0411 ; \mathrm{R}_{\mathrm{wp}}: 0.0551 ;$
	$\chi^{2}: 1.857$	$\chi^{2}: 11.95$

Table 4 Positional and displacement parameters of atoms in $\mathrm{ReB}_{2}, \mathrm{RuB}_{2}, \mathrm{OsB}_{2} . U_{\text {iso }}$ values $\left(/ \mathrm{pm}^{2}\right)$ are defined as one third of track of the orthogonalized tensor U_{ij}. Figures in brackets are standard deviations that refer to the last digit.

ReB_{2}					
Atom	Wyckoff site	X	y	z	$U_{\text {iso }}$ or $U_{11}, U_{22}, U_{33}, U_{12}, U_{13}, U_{23}$
Re	2 c	$1 / 3$	$2 / 3$	$1 / 4$	$0.0039(2), 0.0039(2), 0.0038(3), 0.0019(1), 0,0$
B	4 f	$1 / 3$	$2 / 3$	$0.54783(8)$	$0.0005(2)$
RuB_{2}					
Ru	2 a	$1 / 4$	$1 / 4$	$0.1505(5)$	$0.0185(4), 0.0243(5), 0.0392(7), 0,0,0$
B	4 f	$0.0544(2)$	$1 / 4$	$0.6385(3)$	$0.0161(2)$
OsB_{2}					
Os	2 a	$1 / 4$	$1 / 4$	$0.1545(3)$	$0.0251(4), 0.0326(5), 0.0296(5), 0,0,0$
B	4 f	$0.0557(2)$	$1 / 4$	$0.6325(4)$	$0.016(2)$

ReB_{2} (Fig. 1) is characterized by alternating layers of metal atoms and boron atoms, the latter forming condensed six-rings in chair-like conformation. Each boron atom has three B neighbours at distances of 182.10(5) (182(2) pm in [27]). Re has eight B neighbours, all of them at distances between 222 pm and 226 pm . The coordination polyhedron of Re could be described as a trigonal prism of boron atoms with both triangular faces capped with additional boron atoms. The shortest Re-B distances are 222.70(6) pm (2x) (vs. 222(2) pm in [27]). The metal atom arrangement can be de derived from a hexagonal close packing, with each Re atom coordinated by six Re neighbours within the planar layer (Re-Re distances are 290.058(1) pm vs. 289.82 pm in [27]) and an AB stacking sequence of these metal atom layers perpendicular to the c axis.

Figure 1. Crystal Structure of ReB_{2} (light grey: boron atoms, dark grey: metal atoms, Programme DIAMOND [30]).

The ReB_{2} structure is comparable to that of AlB_{2} with its planar six-ring sheets of boron atoms and planar metal atom layers, although the latter exhibits a metal atom arrangement that has a stacking sequence of AA . The AlB_{2} structure type is known for diborides of $\mathrm{Mg}, \mathrm{Al}, \mathrm{Y}$, Mo, W and many others. There are further modifications of MoB_{2} and WB_{2}, better known as $\mathrm{W}_{2} \mathrm{~B}_{4}$ and $\mathrm{Mo}_{2} \mathrm{~B}_{4}$ [29], which are even more similar to ReB_{2}. Their crystal structures again consist of alternating layers of metal and boron atoms, hence the boron atom layers are alternating planar (as in AlB_{2}) or corrugated (as in ReB_{2}).
OsB_{2} and RuB_{2} are isostructural to each other (Fig. 2). Here, both the layers of metal atoms and those of the boron atoms are undulated. The boron-atom sheets consist of boat-like sixrings, again conjugated. The metal atom arrangement is that of corrugated hexagonal sheets, stacking sequence AA perpendicular to the c axis. Each metal atom has two plus four metal atom neighbours within the layer.

Figure 2. Crystal Structures of OsB_{2} and RuB_{2} (light grey: boron atoms, dark grey: metal atoms, Programme DIAMOND [30]).

For OsB_{2}, short Os-B distances have been described to be essential for the mechanical properties. Here, we observed values between 217.2 (2) pm and 229.3 (3) pm, compared to a range of 215.6-231.8 pm according to [1]. Again, like in ReB_{2}, each metal atom has eight B neighbours, but the coordination polyhedron formed is different from that in the rhenium compound. Each Os atom is surrounded by $2+4+2$ boron atoms, forming an irregular polyhedron which resembles to a distorted trigonal trapezohedron. Within the corrugated boron atom layer, we found the two B-B distances larger than previously described. For OsB_{2} they are $182.0(2) \mathrm{pm}$ and 189.9 (2) pm (2x) vs. 179.9 pm and 187.8 pm according to [1]. For RuB_{2}, they had been described as 177.4 and 190.2 pm ; neutron diffraction data now led to values of 181.7(2) pm and 188.8(2) pm (2x).

Conclusions

For the first time, the crystal structures of $\mathrm{ReB}_{2}, \mathrm{RuB}_{2}$ and OsB_{2} have been investigated using neutron diffraction, resulting in an accurate localization of the boron atoms.

Experimental

Synthesis

Pure crystalline boron powder (Chemotrade, $>99 \%{ }^{11}$ B-enriched for neutron diffraction) was mixed with rhenium (Degussa, 99.9%), osmium (American Elements, 99.99%), or ruthenium (W.C. Heraeus) powder in stoichiometric ratios and pressed into pellets using a hydraulic press. All samples were prepared in an induction furnace using a combination of an inner reaction crucible (hexagonal boron nitride) and an outer inductive coupling crucible (glassy carbon) under purified argon by melting the starting materials at temperatures of $c .2600 \mathrm{~K}$ $\left(\mathrm{ReB}_{2}\right)$ and $c .2500 \mathrm{~K}\left(\mathrm{OsB}_{2}, \mathrm{RuB}_{2}\right)$ for one hour. Samples were then ground down in an electric ball mill using tungsten carbide grinding cups and balls.
X-ray and neutron powder diffraction

Powder diffraction data were collected at room temperature, first with a powder diffractometer (STOE Stadi P, linear PSD) with $\mathrm{CoK} \alpha_{1}$ radiation (Ge monochromator, $\lambda=$ 1.7889 A., flat plate sample holder, transmission geometry), then at a neutron source (FRM-II Garching, SPODI beamline, $\mathrm{Ge}(551)$ monochromator, ${ }^{3} \mathrm{He}$ counter, $\lambda=154.81 \mathrm{pm}\left(\mathrm{ReB}_{2}\right)$ or $154.82 \mathrm{pm}\left(\mathrm{OsB}_{2} / \mathrm{RuB}_{2}\right)$, cylindrical vanadium container, diameter 8 mm$)$. For Rietveld refinements of the neutron data, zero point, scale factor and background of the neutron patterns were refined using a shifted Chebyshev function with twelve parameters for the background. The pseudovoigt function with four parameters was used to fit the profile. The positions of all atoms and their displacement parameters were refined simultaneously together with the lattice parameters and without constraints. The displacement parameters of the metal atoms were refined anisotropically, those of the boron atoms were refined isotropically. The absorption coefficient was set to $2.5379 \mathrm{~cm}^{-1}\left(1 \%{ }^{11} \mathrm{~B}\right)$. It is important to note, that the χ^{2} values are too high. We believe that the reason for this is a non-perfect absorption correction. Le Bail fits (without structure information) of the data did not result in better residuals,
indicating that the structure determination is correct, despite the unsatisfying χ^{2} values.

Figure 3. Traces of the neutron powder patterns of $\mathrm{ReB}_{2}, \mathrm{RuB}_{2}$, and OsB_{2} (+: observed, --: calculated, bottom: difference curve). Intensities (y axis) are given in arbitrary units.

Further details of the structure determination can be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldhafen (FAX (+49)7247-808-666, email: crysdata@fiz-karlsruhe.de; http://www.fiz-karlsruhe.de/obtaining_ crystal_structure_data.html quoting CSD-421522 (ReB_{2}), CSD-421524 (RuB_{2}) and CSD$421523\left(\mathrm{OsB}_{2}\right)$.

Acknowledgement. We thank Dr. Anatoliy Senyshyn (Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Garching, Deutschland) for the neutron diffraction measurements.

References

[1] a) B. Aronsson, E. Stenberg, J. Aselius, Nature 1962, 195, 377. b) B. Aronsson, Acta Chem. Scand. 1963, 17, 2036.
[2] R. B. Roof, C. P. Kempter, J. Chem. Phys. 1962, 37, 1473.
[3] S. La Placa, B. Post, Acta Crystallogr. 1962, 15, 97.
[4] B. Aronsson, E. Stenberg, J. Aselius, Acta Chem. Scand. 1960, 14, 733.
[5] H.-Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J.-M. Yang, S. H. Tolbert, R. B. Kaner, Science 2007, 316, 436.
[6] H.-Y. Chung, M. B. Weinberger, J.-M. Yang, S. H. Tolbert, R. B. Kaner, Appl. Phys. Lett. 2008, 92, 261904.
[7] R. W. Cumberland, M. B. Weinberger, J. J. Gilman, S. M. Clark, S. H. Tolbert, R. B. Kaner, J. Am. Chem. Soc. 2005, 127, 7264.
[8] M. B. Weinberger, J.B. Levine, H.-Y. Chung, R. W. Cumberland, H. I. Rasool, J.-M. Yang, R.B. Kaner, S. H. Tolbert, Chem. Mater. 2009, 21, 1915.
[9] J. B. Levine, S. H. Tolbert, R. B. Kaner, Adv. Funct. Mat. 2009, 19, 3519.
[10] J. B. Levine, S. L. Nguyen, H. I. Rasool, J. A. Wright, S. E. Brown, R. B. Kaner, , J. Am. Chem. Soc. 2008, 130, 16953.
[11] J. V. Rau, A. Latini, A. Generosi, V. Rossi Albertini, D. Ferro, R. Teghil, S. M. Barinov, , Acta Material. 2009, 57, 637.
[12] M. Koehler, V. Keppens, B. C. Sales, R. Jin, D. Mandrus, J. Phys. D: Appl. Phys. 2009, 42, 095414.
[13] R. H. Wentorf, R. C. DeVries, R.C., Bundy, F.P., Science 1980, 208, 873.
[14] Q. Gu, G. Krauss, W. Steurer, W., Adv. Mater. 2008, 20, 3620.
[15] J. M. Vandenberg, B. T. Matthias, E. Corenzwit, H. Barz, Mat. Res. Bull. 1975, 10, 889.
[16] Y. Singh, A. Niazi, M. D. Vannette, R. Prozorov, D. C. Johnston, Phys. Rev. B. 2007, 76, 214510.
[17] M. Hebbache, L. Stuparevic, D. Zivkovic, Solid State Comm. 2006, 139, 227.
[18] J. Yang, H. Sun, C. Chen, J. Am. Chem. Soc. 2008, 130, 7200.
[19] S. Chiodo, H. J. Gotsis, N. Russo, E. Silicia, Chem. Phys. Lett. 2006, 425, 311.
[20] J. Wang, Y.-J. Wang, J. Appl. Phys. 2009, 105, 083539.
[21] P. Lazar, X.-Q. Chen, R. Podloucky, R., Phys. Rev. B. 2009, 80, 012103.
[22] A. Simunek, Phys. Rev. B., 2009, 80, 060103.
[23] S. Aydin, M. Simsek, Phys. Rev. B. 2009, 80, 134107.
[24] W. Zhou, H. Wu, T. Yildirim, Phys. Rev. B. 2007, 76, 184113.
[25] F. Peng, Q. Liu, H. Fu, X. Yang, Solid State Comm. 2009, 149, 56.
[26] Y.-Q. Wang, L.-F. Yuan, J.-L. Yang, Chin. Phys. Lett. 2008, 25, 3036.
[27] O. Zogal, Z. Fojud, P. Herzig, A. Pietraszko, A. B. Lyashchenko, S. Jurga, V. N. Paderno, J. Appl. Phys. 2009, 106, 033514.
[28] a) A. C. Larson, R. B. von Dreele, „General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748, 1994; b) B. H. Toby, J. Appl. Cryst. 2001, 34, 210.
[29] M. Frotscher, W. Klein, J. Bauer, C.-M. Fang, J.-F. Halet, A. Senyshyn, C. Baehtz, B. Albert, Z. Anorg. Allg. Chem. 2007, 633, 2626-2630.
[30] K. Brandenburg, H. Putz, Program DIAMOND v.2.1e, Crystal Impact GBr., 2001.

Page 18 of 20

