

Concerted SN2 mechanism for the hydrolysis of acid chlorides. Comparison of reactivities calculated by the density functional theory with experimental data

Ferenc Ruff, Ödön Farkas

► To cite this version:

Ferenc Ruff, Ödön Farkas. Concerted SN2 mechanism for the hydrolysis of acid chlorides. Comparison of reactivities calculated by the density functional theory with experimental data. Journal of Physical Organic Chemistry, 2010, 24 (6), pp.480. 10.1002/poc.1790. hal-00599807

HAL Id: hal-00599807 https://hal.science/hal-00599807

Submitted on 11 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal of Physical Organic Chemistry

Concerted SN2 mechanism for the hydrolysis of acid chlorides. Comparison of reactivities calculated by the density functional theory with experimental data

Journal:	Journal of Physical Organic Chemistry
Manuscript ID:	POC-10-0079.R2
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	19-Jul-2010
Complete List of Authors:	Ruff, Ferenc; L.Eötvös University, Organic Chemistry Farkas, Ödön; L.Eötvös University, Department of Organic Chemistryí
Keywords:	nucleophilic substitution , acid chlorides, substituent effect, solvent effect, DFT calculations
	·

Concerted S_N2 mechanism for the hydrolysis of acid chlorides. Comparisons of reactivities calculated by the density functional theory with experimental data

Ferenc Ruff^{*[a]} and Ödön Farkas^[a]

Abstract DFT computations have been performed in acetone and water solvents in order to investigate the mechanism of hydrolysis of acid chlorides. Acetyl chloride and chloroacetyl chloride hydrolyze via concerted, one-step $S_N 2$ mechanism, with the attack of water at the sp² hybridized carbon atom of the C=O group, and the transition state (TS) has distorted tetrahedral geometry. Solvent molecules act as general base and general acid catalysts. The TS of chloroacetyl chloride is tighter and less polar than the TS of acetyl chloride. The structure of the S_N2 TS for the hydrolysis of benzoyl chlorides changes with the substituents and the solvent. Tight and loose TSs are formed for substrates bearing electron withdrawing (e-w) and electron donating (e-d) groups, respectively. In acetone, only the e-w effect of the substituents increase the reactivity of the substrates, and the change of the structure of the TSs with the substituents is small. In water, polar and very loose TSs are formed in the reactions of benzoyl chlorides bearing e-d substituents, and the rate enhancing effect of both e-d and ew groups can be computed at higher level of theory. Calculated reactivities and the changes of the structure of the TSs with substituents and solvent are in accordance with the results of kinetic studies. In S_N^2 nucleophilic substitutions late/early TSs are formed if the attacking reagent is poorer/better nucleophile than the leaving group, and loose/tight TSs are formed for substrates bearing e-d/e-w substituents and in protic/aprotic solvents.

Supporting information may be found in the online version of this article

Keywords: nucleophilic substitution; acid chlorides; substituent effect; solvent effect; DFT calculations

* Correspondence to: F. Ruff, Department of Organic Chemistry, Institute of Chemistry, L. Eötvös University P. O. Box 32, H-1518 Budapest 112, Hungary.

E-mail: <u>ruff@chem.elte.hu</u>

[a] F. Ruff, Ö. Farkas, Department of Organic Chemistry, Institute of Chemistry, L. Eötvös University P. O. Box 32, H-1518 Budapest 112, Hungary.

INTRODUCTION

Nucleophilic substitutions at the carbonyl group are considered to proceed via the tetrahedral mechanism.^[1-4] The nucleophile (Nu) is supposed to attack the substrate (**1**) at the carbonyl group to give an intermediate (**2**), which bears both the nucleophile and the leaving group (L), and the leaving group may split off in the second step of the addition-elimination reaction (Ad-E, Scheme 1). The intermediacy of the tetrahedral species (**2**) was supported by the isotope exchange of the carbonyl oxygen atom (¹⁸O) in hydrolysis reactions,^[5] by isolation of the intermediates^[6,7] and by spectroscopic methods.^[4,8] There is evidence, however, that bimolecular, one-step, S_N2-type reactions can also take place, especially when L is a good leaving group.^[9] In these cases the reaction pass through a transition state (TS **3**), the structure of which has not been investigated thoroughly yet. Unimolecular S_N1-type mechanism, involving acylium ion intermediates (**5**) was also proposed for substrates bearing very good leaving groups, and strongly electron donating R substituents, in protic media.^[2,3,10]

Kinetic studies have been performed on substituent and solvent effects^[2,3,11] to investigate the mechanism of solvolyses of acid chlorides. S_N2, S_N1 and Ad-E mechanisms have been proposed for the reactions, depending on the structure of the substrates and on the media. $S_N 2$ like, approximately concerted bimolecular mechanism has been suggested for the solvolyses of acid chlorides, bearing weakly electron-donating (e-d) or electron-withdrawing (e-w) substituents, in media containing small amount of protic solvent.^[2,3,11-16] S_N1 like pathways, with the dominance of ionization of chloride ion, were considered to occur for compounds bearing very strong e-d groups in strongly polar protic solvents.^[17-19] Competing S_N2 and S_N1 mechanisms were proposed for hydrolyses with increasing contribution of the S_N1 pathway, when the water content of the solvent mixtures increased.^[12,20-25] The mechanism of the hydrolyses of acid chlorides bearing strong e-w groups was considered to change for an Ad-E pathway with rate determining addition step.^[12,16,25-28] Nevertheless, it was also suggested that not the mechanisms but only the structure of the TSs changes with the substituents and solvents.^[29,30] The hydrolysis of acid chlorides was also supposed to occur at the hydrated form of the substrates.^[31-33] Hydrates of acid chlorides could be the intermediates of the oxygen exchange reaction,^[34] too.

Earlier we have performed DFT calculations on aliphatic $S_N 2$ and $S_N 1$ nucleophilic substitutions.^[35-39] The medium effect on reactivity was computed using the polarizable continuum model (PCM) of solvents (see Section Computational methods). The free energy of activation (ΔG^{\ddagger}) values were found to be in reasonably good agreement with the experimentally derived data, calculated from rate constants of kinetic studies, using the

Eyring equation. Activation parameters, computed by quantum chemical methods refer only to the reaction, but experimental data contain also contributions from the rearrangement of the solvent molecules, which proceed during the reaction. The very fast rearrangement of solvent molecules influences, however, mainly the values of the experimentally derived enthalpy (ΔH^{\ddagger}) and entropy of activation (ΔS^{\ddagger}) data, and has only a relatively small effect on ΔG^{\ddagger} . The experimentally derived ΔH^{\ddagger} and ΔS^{\ddagger} values increase/decrease namely, together with the decrease/increase of solvation of the TS, and approximately compensate each others changes according to the equation $\delta \Delta G^{\ddagger} = \delta \Delta H^{\ddagger} - T\delta \Delta S^{\ddagger}$. The rearrangement of the solvent molecules cannot be computed with the applied methods, therefore the computed and experimentally derived ΔH^{\ddagger} and ΔS^{\ddagger} parameters can be different, but the corresponding ΔG^{\ddagger} data are similar to each other, and can be used to validate the mechanism of the reactions.

In this paper we report on DFT computations, performed on hydrolyses of acetyl chloride, chloroacetyl chloride and substituted benzoyl chlorides, at different levels of theory in water and acetone solvents. Explicit water and acetone molecules have also been included to study the participation of solvent molecules in the proton transfer steps. To validate the results, the computed ΔG^{\ddagger} values have been compared with experimental data, derived from second order rate constants of hydrolyses of acid chlorides.

RESULTS AND DISCUSSIONS

Hydrolysis of acetyl chloride

The solvolysis of acetyl chloride (**6a**) has been the subject of kinetic studies for a long time, and bimolecular displacement mechanism has been proposed,^[2,3,11,40,41] which involve loose, tetrahedral TS, with carbocation character and nucleophilic solvation.^[14,15,42,43] Earlier, the rate-determining S_N1 type ionization of the chloride ion of acetyl chloride has also been taken into consideration^[23] because the slopes of the log *k* vs. *Y* plots in acetone-water (m = 0.92)^[41] and dioxane-water mixtures (m = 0.81)^[23] are close to the value of S_N1 nucleophilic substitutions^[44,46] (m = 1). Recent DFT computations,^[47] performed on the methanolysis of protonated acetyl chloride, have led to the conclusion, that the results are consistent with the ionization of CI⁻. It is to be noted, however, that acetyl chloride is not protonated in solvolyses under normal reaction conditions.^[48,49] It has also been suggested that dissociation of the chloride ion may follow the hydration of acetyl chloride,^[23,32,33] though neither the fast^[10,11] nor the slow^[14] prior formation of the hydrate was supported by experimental data.^[42]

In order to find the TS for the hydrolysis of acetyl chloride (6a) we have performed DFT calculations by decreasing stepwise the distance between the C(=O) and $O(H_2)$ atoms of the reactants, and by increasing the distance between the C(=O)...Cl atoms of acetyl chloride. The energy passes through a maximum at the decrease of the distances of the $C^1 \cdots O^2$ atoms in the $S_N 2$ process (6a + 7 \Rightarrow TS 8a, Fig. 1, Scheme 2). On the other hand, the total energy of the system increases steeply till the fission of the $C^1 \cdots Cl^1$ bond at 3.2 Å in the S_N1 process, (6a \Rightarrow TS 9a). The formation of hydrogen bonding between the leaving chlorine and a water molecule in the $6a + 7 \equiv TS \ 10a$ pathway of the S_N1 reaction decreases the total energy but increases the free energy of activation of the dissociation, as compared to the $6a \leftrightarrows TS 9a$ step (Fig. 1, Scheme 2). TSs 8a, 9a and 10a were calculated with optimization; structural parameters are listed in Table 1 and Table S1 in the Supporting Information (SI). Since the total energies (ΔE^{\ddagger}) and the free energy of activation data (ΔG^{\ddagger}) for the acylium ion like TSs **9a** and **10a** $\left[\theta(O^1C^1C^2) \sim 180^\circ\right]$ are higher than those of TS **8a** (Fig. 1), one may conclude that acetyl chloride hydrolyzes via the more favorable $S_N 2$ mechanism. Intrinsic reaction coordinate computations (IRC, see Section Computational Methods) for the backward and forward directions show that TS 8a is converted directly to complexes of reactants and products, respectively (Fig. 2), and no other intermediates should be taken into account.

TS **8a** has distorted tetrahedral geometry and C=O double bond $[Q(O^1) = -0.322 \text{ a.u.}; R(C^1=O^1) = 1.168 \text{ Å}, <math>\theta(O^1C^1C^2) = 137.3^\circ$, $\theta(O^2C^1C^2) = 102.5^\circ$, $\theta(Cl^1C^1C^2) = 97.5^\circ$, $\theta(Cl^1C^1O^2) = 87.8^\circ$, Table 1 and Table S1 in the SI], which is similar to the C=O bond of acetyl chloride [**6a**, $Q(O^1) = -0.360$ a.u.; $R(C^1=O^1) = 1.188$ Å, $\theta(O^1C^1C^2) = 129.2^\circ$]. TS **8a** has one imaginary vibration, which results in the formation of the C¹–O², and the fission of the C¹–Cl¹ bonds. Late TS is formed in the S_N2 hydrolysis of acetyl chloride carried out with one water molecule, because water is poorer nucleophile than the leaving chloride ion. Approximate bond orders $n \sim 0.65$ and 0.35 have been calculated for the C¹…O² and C¹…Cl¹ bonds, respectively, for TS **8a** in acetone and water solvents, using the Pauling equation^[50] (Eqn 1, Items 1-4 in Table 2).

$$R - R_0 = a \ln(n) \tag{1}$$

The *a* coefficient of equation (1) was calculated from the C–Cl and C–O(H₂) distances (R_0) of CH₃COCl (**6a**) and CH₃COOH₂⁺ (**13**, Scheme 3), and from the $R_s(C^1 \cdots Cl^1)$ and $R_s(C^1 \cdots O^2)$ distances of the symmetric TSs **14** and **15** (n = 0.5) of the chlorine and water exchange reactions, respectively. Bond orders were obtained using the corresponding calculated R_r bond distances of TS **8a** (Table 2).

The calculated $R(Cl^1 \cdots H^2)$ distance in TS 8a (Table 1, Scheme 2) refer to a hydrogen bonding between one of the hydrogen atoms of the attacking water molecule and the leaving chlorine. This interaction may modify the structure and the energy of TS 8a, but it is unlikely to occur in hydrolysis reactions in the presence of a great number of water molecules. Therefore TS 8a cannot be considered to be the right model for the TS of the hydrolysis of acetyl chloride. It was supposed earlier^[2,3,10,51] that more than one protic solvent molecule can take part in the solvolyses of acid chlorides, because the rate of reactions showed secondorder dependence on protic solvents.^[15,16,24,25] For this reason we used clusters of solvent molecules (16 - 18), Scheme 4) to study the effect of hydrogen bonding in the hydrolysis of acetyl chloride. TSs 19a and 20a with two and three explicit water molecules were calculated in water ($6a + 16 \leftrightarrows TS$ 19a, $6a + 17 \leftrightarrows TS$ 20a, Scheme 5, Table 1 and Table S1 in the SI). The explicit water molecules increase the nucleophilicity of the attacking water molecule, and help the leaving of the chloride ion with formation of hydrogen bonding. Namely, water molecules may act as nucleophile, as well as general base and general acid catalysts in the reaction. TSs 8a, 19a and 20a are getting earlier, the $C^1 \cdots Cl^1$ bond orders (Items 4-6 in Table 2), the $Q(O^2)$ negative charges and the $R(C^1 \cdots O^2)$ distances increase, the $Q(Cl^1)$ negative charges and the $R(C^1...Cl^1)$ distances decrease for these TSs in the given order (Table 1). The C^1 atom vibrates between O^2 and Cl^1 , and the H^2 atom vibrates between O^2 and O^3 in the transition vectors of TSs 19a and 20a. The H² atom is bonded more strongly to O^2 than to O^3 [cf. the $R(O^2-H^2)$ and $R(O^3-H^2)$ distances in Table 1]. The H⁴ and H⁶ hydrogen atoms are not transferred between the oxygen atoms in the TSs. In solvent mixtures of low water content, molecules of the dipolar aprotic solvent may also participate as hydrogen bond acceptor, instead of the water molecules. Acetone was proposed^[25,52] to act as general base catalyst in hydrolysis reactions of acid chlorides. TS **21a** was computed for the hydrolysis of acetyl chloride in acetone containing only a small amount of water ($6a + 18 \leftrightarrows TS 21a$, Scheme 5). IRC computations for TSs 19a-21a lead also to the complexes of reactants and products, other intermediates need not to be taken into account (Fig S1 and S2 in the SI).

The values of $\Delta G^{\ddagger} = 67$ and 91 kJ mol⁻¹ have been calculated by extrapolation for the hydrolysis of acetyl chloride in water and acetone, at 25 °C, respectively, from the dependence of the rate constants on solvent polarity parameters.^[53-55] The $\Delta G^{\ddagger} = 72.4$, 74.0 and 89.8 kJ mol⁻¹ values, computed at (B3LYP)/6-31G(d) level of theory for TSs **19a** and **20a** in water and for TS **21a** in acetone, respectively, approximate the experimentally derived data well (Scheme 5, Table 1 and Table S7 in the SI). It must be mentioned, however, that the values of the calculated ΔG^{\ddagger} parameters increase with the increasing level of theory, and in

the case of MP2 calculations (Table S7 in the SI), as it was observed earlier^[37,38] for other reactions, too (see also Section Computational Methods).

The hydrolyses of acid chlorides were also supposed^[23,32,33] to proceed through the hydrated substrates, though these intermediates have neither been synthesized nor detected in the reaction mixtures. Acetyl chloride hydrate could be formed if the nucleophilic attack of water on the carbonyl group would be accompanied by a proton transfer towards the oxygen atom of the C=O group. TS 22a has been calculated for this process (Scheme 5), in which two water molecules form a bridge between the attacking water molecule and the carbonyl group.^[56] IRC calculations proved, however, that TSs, like 22a are transformed spontaneously only to the complexes of reactants and products of the hydrolysis ($6a + 17 \leftrightarrows TS 22a \rightarrow 11a + 12 + 12$ 16, Scheme 5, Fig. S2 in the SI), but do not collapse to the complexes of acid chloride hydrates and two water molecules (23a). The H^6 hydrogen atom does not move spontaneously towards the neighboring O^1 carbonyl oxygen atom, and the prior protonation of acetyl chloride can also be excluded because of the very low basicity of the C=O group.^[1,48,49] If one moves the H^6 hydrogen atom arbitrarily, stepwise towards the O^1 carbonyl oxygen atom, the reacting system passes through a barrier, the energy of which is much higher than that of TS 22a (Fig S3 in the SI). Computations also showed, however, that the hydrate complex 23a could decompose through the acetyl chloride hydrate TS (24a) and the complex of protonated acetic acid and chloride ion (25a) to acetic acid and HCl products (11a + 12, Scheme 5, Table S7 in the SI). Nevertheless, we cannot prove that these species participate in hydrolyses of acid chlorides, because complex 23a or acetyl chloride hydrate (TS 24a) are not formed at the nucleophilic attack of water on the C=O group of acetyl chloride.

Hydrolysis of chloroacetyl chloride

Kinetic studies have led to the conclusion that chloroacetyl chloride (**5b**) hydrolyzes via Ad-E pathway, with rate-determining addition step.^[16,25,43] The rate of the reaction showed low sensitivity to solvent ionizing power, and high sensitivity to solvent nucleophilicity,^[43] and higher kinetic solvent isotope effect (KSIE = 2.18) was observed for the reaction of chloroacetyl chloride,^[25,43] than in the case of acetyl chloride^[14] (KSIE = 1.3). The reaction of substrate **5b** exhibits second order kinetics on protic solvents,^[25]

Analogous $S_N 2$ type TSs (**8b**, **19b-22b**) have been calculated for hydrolyses of chloroacetyl chloride (**6b**) as for acetyl chloride (**6a**, Scheme 2 and 5, Table 3 and Tables S2 and S8 in the SI). In TSs **19b-22b**, bearing explicit solvent molecules, the H² atom is strongly bonded to two oxygen atoms (O²…H²…O³), therefore the solute cavity can only be build up using the

Radii=UAHF option (see Section Computational Methods). To be able to compare the results, obtained for hydrolyses of the substrates 6a and 6b, calculations were also performed for TSs 8a and 19a-22a of the hydrolysis of acetyl chloride (6a) with the Radii=UAHF option. Results, computed for TSs 8a and 19a-22a show that the structural parameters change slightly, and energies are about 10 kJ mol⁻¹ higher if the Radii=UAHF option is used for the calculation of the solvent cavity (Tables 1 and 3). IRC calculations on TSs 8b and 19b-22b proved that these TSs are converted directly to the complexes of reactants and products without the formation of tetrahedral intermediates (Fig. 2 and Fig S2 in the SI). The spontaneous transformation of TS 22b to complex 23b and TS 24b (Scheme 5) of chloroacetyl chloride hydrate was also not observed, therefore the participation of complex 23b and TS 24b in the hydrolysis may be ruled out. Though the structures of the computed S_N2 type TSs are similar, the $Q(O^2)$ and $Q(Cl^1)$

negative charges, as well the $R(C^1 \cdots O^2)$ and $R(C^1 \cdots Cl^1)$ distances are smaller, but the $R(O^2 \cdots H^2)$ distance is longer for TSs 19b – 22b of the hydrolysis of chloracetyl chloride, than for TSs 19a - 22a of acetyl chloride (Table 3). Tighter and less polar S_N2 TSs, with weaker ionization of chlorine and stronger nucleophilic attack of water are formed for reactant 6b than for **6a**. According to the stronger nucleophilic attack of water, the fission of the $O^2 \cdots H^2$ bond is also more advanced in TSs 19b - 22b. These conclusions are in accordance with the observed higher KSIE and sensitivity on solvent nucleophilicity, as well on the lower sensitivity on solvent ionizing power of the reaction of chloroacetyl chloride.^[25,43]

 $\Delta G^{\ddagger} = 75.2 \text{ kJ mol}^{-1}$ was derived for the hydrolysis of the reactant **6b** in water by the extrapolation of the rate constants, measured^[57] in acetone water mixtures at -10° C. This is in accordance with the $\Delta G^{\ddagger} = 79.5-83.5$ kJ mol⁻¹ values, computed for TSs **19b**, **20b** and **22b** at (B3LYP)/6-31G(d) level of theory at the same circumstances (Scheme 5, Table 3 and Table S8 in the SI). Results of computations support that the hydrolysis of chloroacetyl chloride proceeds with the same concerted S_N2 mechanism as acetyl chloride, but the structures of the TSs of the reactions are different.

Hydrolysis of benzoyl chlorides

The mechanism of the hydrolysis of benzoyl chlorides was widely investigated by kinetic methods.^[2,3,11,26,51,58] Nevertheless, G3 calculations were also carried out on the stability of acylium ion intermediates in the gas phase,^[42] and homodesmotic stabilization energies were estimated^[59] for reactants and intermediates of the reactions. The pathways of hydrolyses were suggested to depend on the substituents of the aromatic ring and on the solvent.

 S_N1 mechanism, with acylium ion, or solvent separated acylium-chloride ion-pair intermediates were proposed^[17-19,26,60] for the hydrolysis of benzoyl chlorides bearing strong e-d substituents (e.g. 4-MeO). No acylium ion intermediate was found, however, to have sufficiently long lifetime that can be trapped by chloride ion, because no common ion effect was observed.^[26] Competing S_N2 and S_N1 mechanisms were suggested for the reaction of benzoyl chloride and its derivatives, bearing weakly e-d or e-w groups.^[17,20,21,60-62] In highly aqueous media benzoyl chloride was considered to hydrolyze by an S_N1 mechanism, but an S_N2 process was proposed in the 0-30 % water content range.^[20] Benzoyl chlorides with strong e-w groups (e.g. 4-NO₂) were suggested to react via Ad-E pathway,^[13,26,62-65] with the general base catalyzed rate limiting attack of water and little or no bond breaking of the leaving group in the TS, even in highly aqueous media.^[13] Doubtful was, however, if there were an addition intermediate with significant long lifetime on the reaction path.^[26]

We have computed TSs **27** and **28**, bearing the clusters of one water and one acetone molecule (**18**), as well as two water molecules (**16**), respectively, for the S_N2 -type hydrolysis of benzoyl chlorides (**26**) (Scheme 6, Table 4 and Tables S3 and S4 in the SI). IRC calculations, performed on the S_N2 TSs of the 4-MeO (**28b**) and 4-NO₂ (**28m**) derivatives in water at (B3LYP)/6-31G(d) level of theory (Fig. 3) support that the reactions proceed in one-step. TSs are formed directly from the reactants, and transformed to products without the intermediacy of any other species. IRC computations at the higher (B3LYP)/6-311+G(d,p) level of theory were successful only for the 4-NO₂ derivative (**28m**), in the backward direction.

The ΔG^{\ddagger} values, computed for the hydrolyses of benzoyl chlorides in acetone, are plotted against the Hammett σ constants together with the experimentally derived data,^[22] determined in 95 % v/v acetone-water mixture, at 25° (Fig. 4, Table S11 in the SI). The σ substituent constants were used in the correlations, because no through conjugation takes place between the C⁷ atom and the substituents of the benzene ring in the less polar TSs, formed in acetone. The ΔG^{\ddagger} values, computed for TS **28** at (B3LYP)/6-31G(d) level of theory are smaller than the experimental data. However, there is little likelihood of the participation of two water molecules in the TS of the hydrolysis in a media, which contain only very small amount of water. Acetone can also participate as proton acceptor in the reaction,^[25,52] nevertheless, computations can only be performed using the Radii=UAHF option, because the H² atom of the attacking water molecule, is strongly bonded to two oxygen atoms (O² and O³) in TS **27**. The ΔG^{\ddagger} values, computed for TS **27** at (B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory, are higher than the experimentally derived data, and increase with the

Journal of Physical Organic Chemistry

increasing level of theory of calculations (Fig. 4). It must also be taken into consideration, however, that calculations were performed in acetone, while kinetic studies were carried out in the slightly more polar 95 % v/v acetone-water mixture.

In acetone the slopes of the computed and experimentally derived ΔG^{\ddagger} vs. σ plots are very similar (Fig. 4). In moderately polar media, which contain only a small amount of protic solvent, the increasing e-w effect of the substituents increase the reactivity of benzoyl chlorides,^[22,66] and decrease the ΔG^{\ddagger} values. Rate enhancing effect for e-d groups cannot be observed or computed in these solvents. The structures of the tetrahedral TSs 27 change with the substituent of the benzene ring. Tighter and less polar TSs are formed with the increase of the e-w effect of the substituents, as the $Q(Cl^{1})$ negative charge of the leaving chlorine, and the $R(C^7 \cdots Cl^1)$ and $R(C^7 \cdots O^2)$ distances decrease with the increase of the σ substituent constants (Fig. 5, Table 4 and Figs. S4 and S5, Table S4 in the SI). The H² atom moves from O^2 to O^3 atom [cf. the $R(O^2 \cdots H^2)$ and $R(O^3 \cdots H^2)$ distances in Fig. 5], the elongation of H^2 atom becomes greater in the imaginary mode of the TSs bearing e-w substituents. The character of the C=O double bond in the TSs is very similar to that of the benzovl chlorides. the $R(C^7=O^1)$ and $\theta(O^1C^7C^1)$ values change slightly with the increasing e-d effect of the substituents of the TSs (cf. the data in Table 4 and Tables S3 and S4 in the SI). We can confirm therefore that the hydrolysis proceeds via concerted S_N2 mechanism on the C=O group of benzoyl chlorides in dipolar media, which contain only a small amount of water.

TS 28 has been computed for the general base and general acid catalyzed S_N2 type hydrolysis of benzoyl chlorides with cluster of two water molecules (26 + 16 \leftrightarrows TS 28, Scheme 6), at (B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory, using the Radii=UAHF option, in water, at 25° C. The computed ΔG^{\ddagger} values have been plotted against the σ^+ substituent constants (Fig. 6) together with experimentally derived data.^[67,68] The σ^+ substituent constants were used in the correlations because through conjugation takes place in the loose TSs between the positively polarized C⁷ atom and the e-d substituents of the benzene ring. The experimentally derived ΔG^{\ddagger} vs. σ^+ plot is broken at $\sigma^+ \sim 0.35$ (Fig. 6), both e-d and e-w groups decrease the ΔG^{\ddagger} values, and increase the rate of hydrolysis in water, similarly to the results obtained in solvent mixtures containing more than 50 % water.^[21,26,69] Such broken Hammett plots has been explained usually by the change of the mechanism with the substituents.^[70-73] However, the ΔG^{\ddagger} vs. σ^+ plots, computed for the concerted S_N^2 mechanism are also broken (Fig. 6). ΔG^{\ddagger} values obtained at (B3LYP)/6-31G(d) level of theory for compounds with e-w groups agree with the experimental data, but the rate enhancing effect of e-d groups can not be calculated at this medium level of theory. On the other hand, the ΔG^{\ddagger} vs. σ^{+} plot, computed at (B3LYP)/6-311+G(d,p) level of theory for the S_N2 mechanism is very similar to the plot of the experimental data (Fig. 6), in this case e-d substituents also decrease the ΔG^{\ddagger} values. Nevertheless, the ΔG^{\ddagger} values, computed at this higher level of theory are greater than the experimental data, as it was observed for other reactions, too.^[37,38]

The structures of the $S_N 2$ TSs 28 change continuously with the electronic effects of the substituents, the structural parameters vs. σ^+ substituent constants plots (Fig. 7, and Figs. S6 and S7 in the SI) are broken at the same σ^+ values, as in the case of the ΔG^{\ddagger} vs. σ^+ plots (Fig. 6). The computed structure of the TS of the 4-nitro derivative (28m) is tight, the $R(C^7 \cdots Cl^1)$ and $R(C^7 \cdots O^2)$ distances are both the shortest, the H² is moved from O² to O³ atom. The $R(H^4...Cl^1)$ distance is long, because the charge of the Cl¹ atom is small, and the H⁴...Cl¹ hydrogen bonding is weak (Table 4, Fig. 7 and Figs. S6 and S7 in the SI). The elongations of the C^7 and the H^2 atoms are great in the imaginary mode of TS **28m**. The TS of the 4-MeO derivative (28b) is very loose, the $R(C^7 \cdots Cl^1)$ and $R(C^7 \cdots O^2)$ distances are both the longest, the H² atom is close to the O² atom, the $R(H^4...Cl^1)$ distances is the shortest, because the negative charge of the Cl¹ atom is great, and the H⁴...Cl¹ hydrogen bonding is strong (Table 4, Figure 7 and Figures S6 and S7 in the SI). The elongation of the C^7 atom is small and the H^2 atom moves only slightly in the imaginary mode of TS 28b. Considerable changes take place in the structure of the C=O group of the TSs with the substituents in water (Table 4 and Tables S3 and S4 in the SI). The Ar-C=O moiety of the 4-NO₂ derivative (TS **28m**, θ (O¹C⁷C¹) = 129.2°) is similar to that of 4-NO₂-benzyl chloride (**26m**, θ (O¹C⁷C¹) = 126.0) while that of the 4-MeO derivative (TS 28b, $\theta(O^1C^7C^1) = 166.2$) is more similar to an acylium ion $(R(C^{7}O^{1}) \sim 1.12 \text{ Å}, \theta(O^{1}C^{7}C^{1}) \sim 180^{\circ})$. The changes of the structural parameters of the TSs are much greater in water than in acetone (Table 4), and they are compatible with the observed substituent, solvent and isotope effects, investigated by kinetic studies.

CONCLUSIONS

DFT computations support that the hydrolysis of acid chlorides proceed in one step, without the formation of acylium ion or tetrahedral adduct intermediates. The structure of the TSs shows features, typical for concerted S_N2 reactions on the sp² hybridized carbon atom of the C=O group. Late TSs are formed in hydrolyses of acid chlorides, because water is poorer nucleophile than the leaving chloride ion, but the TSs become earlier in the general base catalyzed reactions. The structure of the TSs changes with the substituents and the solvent. Very loose and polar TSs can be formed only in protic solvent, like water, in the presence of

e-d groups, which can also accelerate the substitution reactions under these circumstances. In such media, the weak attack of the water nucleophile is necessary and sufficient to push out the leaving chloride ion, therefore both the formed C…O, and the splitting C…Cl bonds are weak and long. A more advanced attack of the nucleophile is needed for substrates, bearing e-w groups, the C…O, and C…Cl bonds are both relatively short and strong in the TSs of these substrates. E-w substituents accelerate the hydrolysis of acid chlorides in every type of solvents. The formation of hydrogen bonding and the proton transfer are important steps of the reactions. Proton acceptor molecules promote the nucleophilic attack of water; protic solvents help the leaving of chloride ion. The reaction is general base and general acid catalyzed, but the base catalysis is more important than the acid catalysis. The proton splits off from the attacking water molecule in the TS; other proton transfer steps take place afterwards at the formation of the products.

The conclusions, drawn for the mechanism of the hydrolysis of acid chlorides, have been supported by comparing the computed and experimentally derived ΔG^{\ddagger} data and the substituent effect. As we have found earlier,^[37,38] the best agreement between computed and experimentally derived ΔG^{\ddagger} data can be obtained when computations are performed at the medium (B3LYP)/6-31G(d) level of theory. This may happen because errors rise from the applied approximations compensate each other at this medium level of calculation. The agreement between the computed and experimentally derived ΔG^{\ddagger} values, presented in our papers, is similar to those, obtained by combined quantum and molecular mechanical methods.^[74] The substituent effect was evaluated applying the Hammett equation to the ΔG^{\ddagger} data. For compounds, bearing e-w groups, good agreement was obtained between computed and experimentally derived slopes of the Hammett plots both in acetone and in water, at different levels of computations. For the hydrolysis of benzoyl chlorides with e-d substituents, which pass over very loose TSs in water, the computed slope of the ΔG^{\ddagger} vs. σ^{+} plot agree with the experimental data only if calculations have been performed at (B3LYP)/6-311+G(d,p)level of theory, using more diffuse functions. The reason for the break of the ΔG^{\ddagger} vs. σ^{+} plots is that strong e-d through conjugation takes place for derivatives bearing e-d substituents in protic media, which can stabilize the polar TSs.

Summing up the results, obtained in this and in our earlier papers^[35-39] concerning the structure of the TSs in S_N2 nucleophilic substitutions, we can conclude that early TSs are formed if the attacking reagent is better, and late TSs are formed if the attacking reagent is poorer nucleophile than the leaving group. On the other hand, loose TSs are formed if e-d, and

tight TSs are formed if e-w substituents are bonded to the substrates. TSs are looser and more polar in protic than in aprotic solvents.

COMPUTATIONAL METHODS

The geometries of reactants and TSs were fully optimized without symmetry constraints by use of the Gaussian 03 software package^[75] at DFT(B3LYP)/6-31G(d) and DFT(B3LYP)/6-311+G(d,p) levels of theory in acetone and water, at 25° C for the hydrolysis reactants **6a** and **26**, and at –10° C for reactant **6b**. Temperatures are the same as used in the corresponding kinetic studies. The B3LYP functional was found^[76,77] to perform well in investigation of trends in nucleophilic substitutions. The solvent effect was incorporated by applying the polarizable continuum model^[78] in the integral equation formalism^[79,80] (IEF-PCM) of the corresponding solvent. The Radii=UAHF option was used to build up the solute cavity^[75,81] if protons were bonded strongly to two oxygen atoms in the TS. Intrinsic reaction coordinate (IRC) calculations^[82] were performed on the TSs, to check the reaction pathways. Structures were characterized as energy minima or TSs by calculating the harmonic vibrational frequencies, with the use of analytical second derivatives. No or one imaginary frequency was obtained for reactants and TSs, respectively. Selected data for the optimized structures obtained by means of DFT calculations are listed in Tables S1-S4, in the SI.

The sums of the electronic and thermal free energies (*G*) and enthalpies (*H*) and also the entropies of formation (*S*) for reactants and TSs were obtained by the standard procedure in the framework of the harmonic approximation,^[83,84] and are listed together with the calculated total energies (*E*) and value of imaginary frequencies in Tables S5, S6, S9 and S10 in the SI. The computed entropy values, obtained in solutions, agree with the data measured or calculated by application of Benson's rule^[85,86] in the gas phase. As examples, the *S* values of 195, 295 and 288 J mol⁻¹ K⁻¹ were obtained for H₂O (**7**), CH₃COCl (**6a**) and CH₃COOH (**11a**), respectively, by DFT calculations in solution. In comparison, the values of *S* = 189, 295 and 288 J mol⁻¹ K⁻¹ were measured^[87] for compounds **7**, **6a** and **11a**, respectively, and *S* = 297 J mol⁻¹ K⁻¹ was calculated for **11a** on application of Benson's rule.

The $\Delta E^{\ddagger} \Delta G^{\ddagger}$, ΔH^{\ddagger} , ΔS^{\ddagger} activation parameters of the reactions were calculated from the differences in the *E*, *G*, *H* and *S* values of the TSs and reactants (Eqn 2, *P* = *E*, *G*, *H* or *S*).

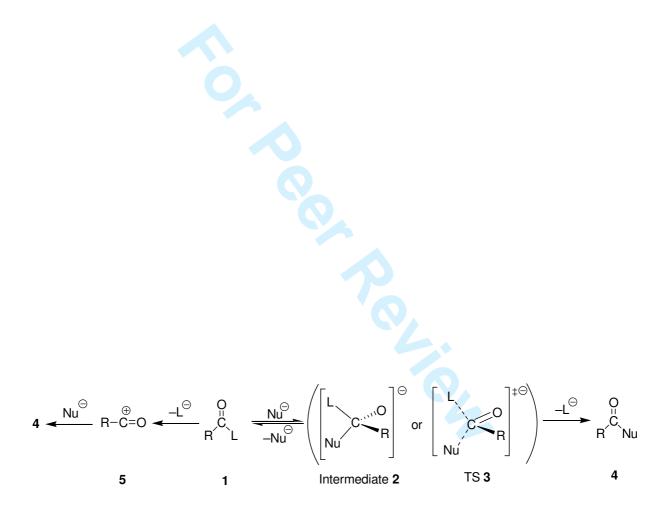
$$\Delta P^{\ddagger} = P_{\rm TS} - \sum P_{\rm R} \tag{2}$$

The generated ΔE^{\ddagger} , ΔG^{\ddagger} and ΔH^{\ddagger} values were multiplied by 2625.5 in order to convert them from atomic into kJ mol⁻¹ units. Experimentally derived activation parameters were calculated from the second order rate constants ($k_2 = k_1/[\text{Nuc}]$) using the Eyring equation.^[48,49] Computed

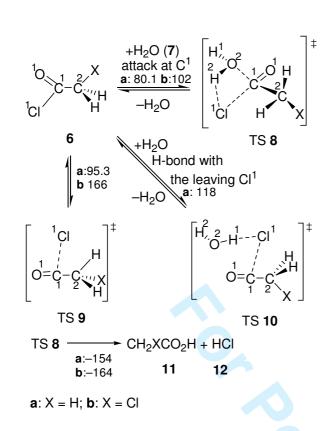
 ΔE^{\ddagger} , ΔG^{\ddagger} and ΔH^{\ddagger} parameters increase with the increasing level of theory of calculations, while the values of ΔS^{\ddagger} are almost independent of it (Table 1 and Tables S7, S8 and S11 in the SI). The ΔG^{\ddagger} data, computed at (B3LYP)/6-31G(d) level of theory agree with the experimental data well.^[37,38] The computed ΔH^{\ddagger} and ΔS^{\ddagger} parameters are close to the experimental data, determined in dipolar media, containing only a few % of protic solvent. E.g. $\Delta H^{\ddagger} = 31.8$ kJ mol⁻¹ and $\Delta S^{\ddagger} = -198$ J mol⁻¹ K⁻¹ were measured^[53,54] for the hydrolysis acetyl chloride (**6a**) in 1.77 % water-acetone mixture, and $\Delta H^{\ddagger} = 36.9$ kJ mol⁻¹ and $\Delta S^{\ddagger} = -177$ J mol⁻¹ K⁻¹ were computed at (B3LYP)/6-31G(d) level of theory, in acetone. In more aqueous media the experimentally derived ΔH^{\ddagger} and ΔS^{\ddagger} parameters^[35,53] increase because of the greater ordering of the solvent, and deviate from computed data to a greater extent.

The computed and experimentally derived activation parameters were correlated with the Hammett substituent constants, as described previously^[35-39] (Eqn 3, P = E, G, H or *S*).

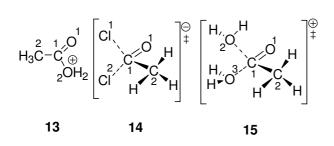
$$\Delta P^{\mp} = \delta \Delta P^{\mp} \sigma + \Delta P_{o}^{\mp} \tag{3}$$

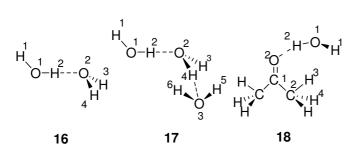

The $\delta\Delta P^{\ddagger}$ reaction constants characterize the effect of substituents on activation parameters, ΔP^{\ddagger} and ΔP_{0}^{\ddagger} are the data of substituted and unsubstituted compounds, respectively. The best agreement can be expected for calculated and experimentally derived $\delta\Delta G^{\ddagger}$ reaction constants. The values of computed $\delta\Delta G^{\ddagger}$ and $\delta\Delta H^{\ddagger}$ are very similar to each other, because the computed ΔS^{\ddagger} data do not depend on the substituents, therefore $\delta\Delta S^{\ddagger} \sim 0$. On the other hand, the experimentally derived $\delta\Delta H^{\ddagger}$ and $\delta\Delta S^{\ddagger}$ reaction constants are influenced by solvation, and $\delta\Delta S^{\ddagger}$ exhibit positive/negative sign if solvation of the TS decrease/increase with the increasing e-w effect and σ constant of the substituent. E.g. $\delta\Delta G^{\ddagger} = -13.2$ kJ mol⁻¹ σ^{-1} , $\delta\Delta H^{\ddagger} = -14.2$ kJ mol⁻¹ σ^{-1} and $\delta\Delta S^{\ddagger} \sim 0$ J mol⁻¹ K⁻¹ σ^{-1} were computed for the hydrolyses of benzoyl chlorides in acetone, at (B3LYP)/6-31G(d) level of theory, and $\delta\Delta G^{\ddagger} = -12.0$ kJ mol⁻¹ σ^{-1} , $\delta\Delta H^{\ddagger} = -$ 23.0 kJ mol⁻¹ σ^{-1} and $\delta\Delta S^{\ddagger} = -39.3$ J mol⁻¹ K⁻¹ σ^{-1} were calculated from rate constants,^[22] measured in 95 % v/v acetone-water mixture, at 25° C. The Hammett σ and σ^{+} constants were taken from the compilation Hans et al.^[48,88] Structural parameter vs. σ or σ^{+} plots were used to demonstrate the changes for the structure of the TSs with the substituents.

SUPPORTING INFORMATION

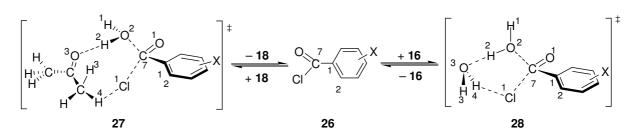

IRC plots, plots of calculated structural data against the substituent constants, selected atomic charges, bond distances and angles, as well as calculated total energies, sums electronic and thermal free energies and enthalpies, entropies of formation and value of imaginary frequencies are listed in the supporting information, which can be found in the online version of this article.

Acknowledgement

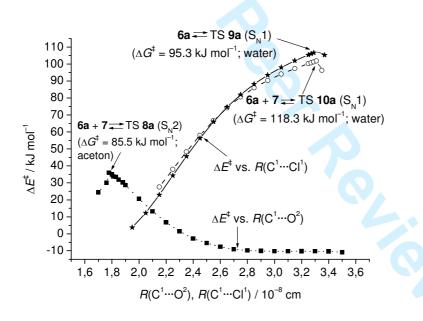

This work was supported by the Hungarian Scientific Research Foundation (OTKA No. K 60889).


Scheme 1. Mechanisms of nucleophilic substitution at carbonyl compounds.

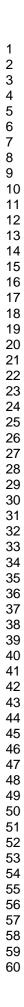
Scheme 2. Mechanisms for hydrolyses of acetyl chloride (**6a**) and chloroacetyl chloride (**6b**), involving one water molecule. Free energies of activation (ΔG^{\ddagger}) for the reaction steps of reactants **6a** and **6b**, in the direction of the neighboring arrow, are given in kJ mol⁻¹ units, as calculated at (B3LYP)/6-31G(d) level of theory, in water at 25° C for compound **6a** and at – 10° C for **6b**.


Scheme 3. Structures of protonated acetic acid and TSs of chlorine and water exchange reactions.

Scheme 4. Clusters of solvent molecules



Scheme 5. Mechanisms for hydrolyses of acetyl chloride (6a) and chloroacetyl chloride (6b), involving explicit solvent molecules. TSs 19-21 are transferred to products (TS 19 \rightarrow 11 + 12 + 7; TS 20 \rightarrow 11 + 12 + 16; TS 21 \rightarrow 11 + 12 + acetone). Free energy of activations (ΔG^{\ddagger}) and changes of free energies (ΔG°) for reaction steps of reactants 6a and 6b in directions of the neighboring arrow are given in kJ mol⁻¹ units, as calculated at (B3LYP)/6-31G(d) level of theory, in water at 25° C for reactant 6a and at -10° C for reactant 6b.



a: X = H; **b**: X = 4-MeO; **c**: X = 4-Me; **d**: X = 3-Me; **e**: X = **4**-F; f: X = 3-MeO; **g**: X = 4-Cl; **h**: X = 3-Cl, i: X = 3-CF₃; j: X = 4-CF₃; **k**: X = 4-CN; l: X = 3-NO₂; **m**: X = 4-NO₂.

Scheme 6. Mechanisms for hydrolyses of benzoyl chlorides (26) with clusters of two water (16) as well with one acetone and one water molecules (18), as calculated at (B3LYP)/6-311+G(d,p) level of theory, using the Radii=UAHF option, in water and acetone, at 25° C. TSs 27 and 28 are converted to products (TS 27 \rightarrow XC₆H₄CO₂H + HCl + acetone; TS 28 \rightarrow XC₆H₄CO₂H + HCl + H₂O).

Figure 1. ΔE^{\ddagger} vs. $R(C^1 \cdots O^2)$ and ΔE^{\ddagger} vs. $R(C^1 \cdots Cl^1)$ plots for the decrease of $C^1 \cdots O^2$ and the increase of $C^1 \cdots Cl^1$ distances in the S_N2 and S_N1 hydrolyses of acetyl chloride (**6a**, Scheme 2), respectively, as calculated at (B3LYP)/6-31G(d) level of theory, in acetone and water, at 25° C. Free energy of activation values (ΔG^{\ddagger}) are given in parentheses.

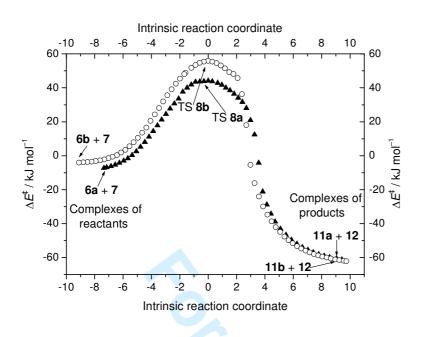
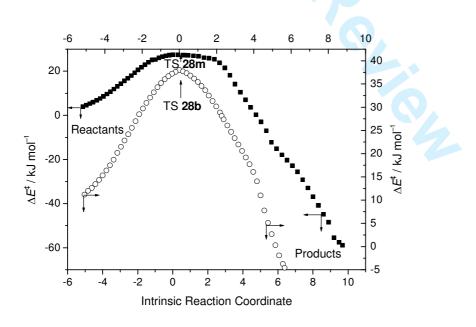
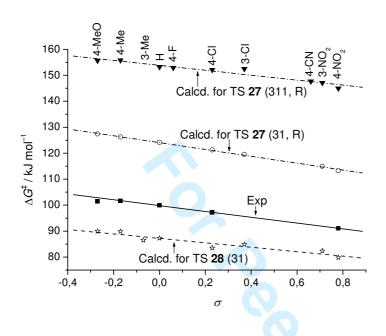




Figure 2. ΔE^{\ddagger} vs. IRC plots for the hydrolysis of acetyl chloride ($6a + 7 \leftrightarrows TS 8a \rightarrow 11a + 12$) and chloroacetyl chloride ($6b + 7 \leftrightarrows TS 8b \rightarrow 11b + 12$) with one water molecule (Scheme 2). IRC calculations were performed at (B3LYP)/6-31G(d) level of theory, using the Radii=UAHF option, in water at 25 and -10° C for TSs 8a and 8b, respectively. ΔE values refer to separated reactants ($\Delta E = 0$).

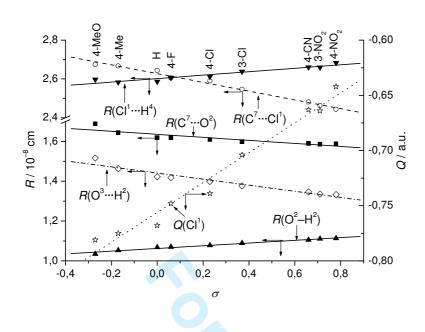


Figure 3. ΔE^{\ddagger} vs. IRC plots for hydrolyses of 4-MeO-C₆H₄COCl (**26b** + **16** \leftrightarrows TS **28b**) and 4-NO₂-C₆H₄COCl (**26m** + **16** \leftrightarrows TS **28m**) with a cluster of two water molecules (Scheme 6).

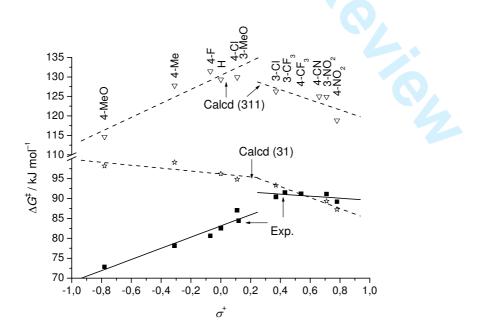

IRC calculations were performed at (B3LYP)/6-31G(d) level of theory, using the Radii=UAHF option, in water at 25° C. ΔE values refer to separated reactants ($\Delta E = 0$).

Figure 4. ΔG^{\ddagger} vs. σ plots for hydrolyses of benzoyl chlorides (**26**, Scheme 6) with the cluster of one water and one acetone (**26** + **18** \leftrightarrows TS **27**) and two water molecules (**26** + **16** \leftrightarrows TS **28**). Calculations were performed for TS **27** at (B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory [marked with (31, R) and (311, R), respectively], using the Radii=UAHF option, and for TS **28** at (B3LYP)/6-31G(d) level of theory, in acetone, at 25° C. Experimental data were measured^[22] in 95% v/v acetone-water mixture at 25° C. [Correlations: TS **27** (31, R), $\Delta G^{\ddagger} = -13.2\sigma + 124.1$ (r = 0.998); TS **27** (311, R), $\Delta G^{\ddagger} = -9.51\sigma + 152.8$ (r = 0.965); TS **28** (31), $\Delta G^{\ddagger} = -8.55\sigma + 87.2$ (r = 0.998); Exp. $\Delta G^{\ddagger} = -12.0\sigma + 97.9$ (r = 0.997)].

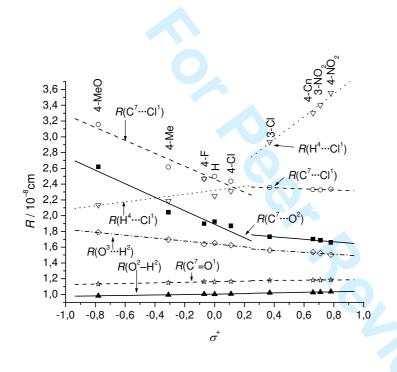


Figure 5. Plots of bond distances (*R*) and charge of chlorine (*Q*) against the Hammett σ constants for TS **27** in the hydrolysis of benzoyl chlorides (Scheme 6), as calculated at (B3LYP)/6-311+G(d,p) level of theory, using the Radii=UAHF option, in acetone, at 25° C. [Correlations: $R(C^7 \cdots O^2) = -0.0760\sigma + 1.636 (r = 0.894)$; $R(C^7 \cdots Cl^1) = -0.226\sigma + 2.628 (r = 0.993)$; $R(O^2 \cdots H^2) = 0.0679\sigma + 1.062 (r = 0.987)$; $R(H^4 \cdots Cl^1) = 0.0892\sigma + 2.601 (r = 0.956)$; $R(O^3 \cdots H^2) = -0.153\sigma + 1.441 (r = 0.965)$; $Q(Cl) = 0.135 \sigma - 0.756 (r = 0.987)$].

Figure 6. ΔG^{\ddagger} vs. σ^{+} plots for hydrolyses of benzoyl chlorides (**26**, Scheme 6). Calculations were performed for TS **28** at (B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory

 [marked with (31) and (311), respectively], using the Radii=UAHF option, in water, at 25° C. Experimental data were determined^[67] in water at 25° C. [Correlations: for compounds with substituents 4-MeO - 4-Cl, $\Delta G^{\ddagger}(31) = -3.66\sigma^{+} + 96.2$ (r = 0.759); $\Delta G^{\ddagger}(311) = 18.0\sigma^{+} + 130.4$ (r = 0.932); $\Delta G^{\ddagger}(\text{Exp}) = 14.0\sigma^{+} + 83.1$ (r = 0.963); for compounds with substituents 3-Cl - 4-NO₂, $\Delta G^{\ddagger}(31) = -13.8\sigma^{+} + 98.5$ (r = 0.983); $\Delta G^{\ddagger}(311) = -13.0\sigma^{+} + 131.9$ (r = 0.700); $\Delta G^{\ddagger}(\text{Exp}) = -2.59\sigma^{+} + 92.1$ (r = 0.492)].

Figure 7. Plots of bond distances (*R*) against the σ^+ constants for TSs **28** in the hydrolyses of benzoyl chlorides (**26**, Scheme 6), as calculated at (B3LYP)/6-311+G(d,p) level of theory, using the Radii=UAHF option, in water, at 25° C. [Correlations for compounds with substituents 4-MeO - 4-Cl; $R(C^7 \cdots O^2) = -0.858 \sigma^+ + 1.891 (r = 0.967)$; $R(C^7 \cdots Cl^1) = -0.821 \sigma^+ + 2.463 (r = 0.970)$; $R(O^2 \cdots H^2) = 0.0273 \sigma^+ + 1.0045 (r = 0.989)$; $R(H^4 \cdots Cl^1) = 0.245 \sigma^+ + 2.321 (r = 0.669)$; $R(O^3 \cdots H^2) = -0.186 \sigma^+ + 1.641 (r = 0.990)$; $R(C^7 \cdots O^1) = 0.0366 \sigma^+ + 1.162 (r = 0.987)$. Correlations for compounds with substituents 3-C1 - 4-NO₂; $R(C^7 \cdots O^2) = -0.157 \sigma^+ + 1.795 (r = 0.933)$; $R(C^7 \cdots Cl^1) = -0.0699 \sigma^+ + 2.381 (r = 0.856)$; $R(O^2 \cdots H^2) = 0.0323 \sigma^+ + 1.008 (r = 0.933)$; $R(H^4 \cdots Cl^1) = 1.45 \sigma^+ + 2.387 (r = 0.991)$; $R(O^3 \cdots H^2) = -0.121 \sigma^+ + 1.608 (r = 0.947)$; $R(C^7 \cdots O^1) = 0.0161 \sigma^+ + 1.172 (r = 0.987)$.]

REFERENCES

- [1] M. B. Smith, J. March, *Advanced Organic Chemistry*, Wiley, New York, (5th. Ed.). 2001.
 pp. 329, 424-428.
- [2] R. J. E. Talbot, *Comprehensive Chemical Kinetics*. (Eds.: C. H. Bamford, C. F. H. Tipper) Elsevier, . vol.10. Chap. 3. pp. 223-257.
- [3] D. P. N. Satchel, R. S. Satchel, *The Chemistry of Carboxylic Acids and Esters*. (Ed. S. Patai), Wiley, New York, **1969**.
- [4] J. P. Guthrie, *Review of Reactive Intermediate Chemistry*, (Eds. M. S. Platz, R. A. Moss, M. Jones, Jr.) Wiley, New York, 2007, pp. 4-20.
- [5] M. L. Bender, H. d'A. Heck, J. Am. Chem. Soc. 1967, 89, 1211-1224.
- [6] G. A. Rogers, T. C. Bruice, J. Am. Chem. Soc. 1974, 96, 2481-2488.
- [7] F. F. Khouri, M. K. Kalaustian, J. Am. Chem. Soc. 1987, 108, 6683-6695.
- [8] B. Capon, M. I. Dosunmu, M. de N. Sanches, Adv. Phys. Org. Chem. 1985, 21, 37-98.
- [9] A. Williams, Acc. Chem. Res. 1989, 22, 387-392.
- [10] D. P. N. Satchel, R. S. Satchel, *The Chemistry of Acid Derivatives, Supplement B*, (Ed. S. Patai) Wiley, New York, **1992**, Vol. 2, Chap. 13, pp. 756-760.
- [11] A. Kivinnen, *The Chemistry of Acyl Halides*. (Ed. S. Patai), Interscience, London. 1972, Chap. 6.
- [12] T. W. Bentley, G. E. Carter, H. C. Harris, J. Chem. Soc., Perkin Trans. 2. 1985, 983-990.
- [13] T. W. Bentley, H. C. Harvis, J. Chem. Soc., Perkin Trans. 2. 1986. 619-624.
- [14] T. W. Bentley, G. Llewellyn, J. M. McAllister, J. Org. Chem. 1996, 61, 7927-7932.
- [15] D. N. Kevill, C. B. Kim, Bull Soc. Chim. Fra. 1988, 383-390.
- [16] D. N. Kevill, C. B. Kim, J. Chem. Soc., Perkin Trans. 2. 1988. 1353-1358.
- [17] T. W. Bentley, I. S. Koo, J. Chem. Soc., Perkin Trans. 2. 1989, 1385-1392.
- [18] D. N. Kevill, M. J. D'Souza, J. Phys. Org. Chem. 2002, 15, 881-888.
- [19] T. W. Bentley, D. N. Ebdon, E.-J. Kim, I. S. Koo, J. Org. Chem. 2005, 70, 1647-1653.
- [20] B. L. Archer, R. F. Hudson, J. Chem. Soc. 1950, 3259-3269.
- [21] R. F. Hudson, J. E. Wardill, J. Chem. Soc. 1950, 1729-1733.
- [22] D. A. Brown, R. F. Hudson, J. Chem. Soc. 1953, 883-887.
- [23] R. F. Hudson, G. E. Moss, J. Chem. Soc. 1962, 5157-5163.
- [24] T. W. Bentley, C. S. Shim, J. Chem. Soc., Perkin Trans. 2. 1993, 1659-1663.

Page 23 of 55

[25] T. W. Bentley, H. C. Harvis, Z. H. Ryu, G. T. Lim, D. D. Sung, S. R. Szajda, J. Org	<i>]</i> .
<i>Chem.</i> 2005 , <i>70</i> , 8963-8970.	

- [26] B. D. Song, W. P. Jencks, J. Am. Chem. Soc. 1989, 111, 8470-8479.
- [27] I. Lee, D. D. Sung, T. S. Uhm, Z. H. Ryu, J. Chem. Soc., Perkin Trans. 2. 1989, 1697-1701.
- [28] M. J. D'Souza, M. E. Boggs, D. N. Kevill, J. Phys. Org. Chem. 2006, 19, 173-178.
- [29] J. M. Briody, D. P. N. Satchell, J. Chem. Soc. 1965, 168-175.
- [30] P. Haberfield, R. B. Trattner, Chem. Commun. 1971. 1481-1482.
- [31] V. Gold, J. Hilton, E. G. Jefferson, J. Chem. Soc. 1954, 2756-2764.
- [32] K. K: Hall, J. Am. Chem. Soc. 1955, 77, 5993-5996.
- [33] A. C. Regan, C. I. F. Watt, J. Phys. Org. Chem. 2007, 20, 180-189.
- [34] C. A. Bunton, T. A. Lewis, D. R. Llewellyn, Chem. Ind. 1954, 1154-1155.
- [35] F. Ruff, Ö. Farkas, J. Org. Chem. 2006, 71, 3409-3416.
- [36] F. Ruff, Ö. Farkas, Á. Kucsman, Eur. J. Org. Chem. 2006, 5570-5580.
- [37] F. Ruff, Ö. Farkas, J. Phys. Org. Chem. 2008, 21, 53-61.
- [38] A. Fábián, F. Ruff, Ö. Farkas, J. Phys. Org. Chem. 2008, 21, 988-996.
- [39] F. Ruff, A Fábián, Ö. Farkas, Á. Kucsman, Eur. J. Org. Chem. 2009, 2102-2111.
- [40] I. Ugi, F. Beck, Chem. Ber. 1961, 94, 1839-1850.
- [41] E. J. Cairns, J. M. Prausnitz, J. Chem. Phys. 1960, 169-175.
- [42] T. W. Bentley, J. Org. Chem. 2008, 73, 6251-6257.
- [43] M. J. D'Souza, Z. H. Ryu, B.-C. Park, D. N. Kevill, Can. J. Chem. 2008, 86, 359-367.
- [44] A. H. Fainberg, S. Winstein, J. Am. Chem. Soc. 1956, 78, 2770-2777.
- [45]. F. Ruff, I. G. Csizmadia, Organic Reactions, Equilibria, Kinetics and Mechanism, Elsevier, Amsterdam, **1994**, pp. 290-291.

[46] E. V. Anslyn, D. A. Dougherty, *Modern Physical Organic Chemistry*, University Science Books, Sausalito, **2006**, p. 461-463.

- [47] J. M. Fox, O. Dmitrenko, L. Liao, R. D. Bach, J. Org. Chem. 2004, 69, 7317-7328.
- [48] The p K_a value of acetyl chloride has not been measured yet, but acid chlorides can only be very weak bases, like other carbonyl compounds (p $K_a < -4$), which are protonated only in very strong acids.^[1,46]
- [49] A. Levy, G. Modena, G. Scorrano, J. Am. Chem. Soc. 1974, 96, 6585-6588.
- [50] L. Pauling, J. Am. Chem. Soc. 1947, 69, 542-553.
- [51] S. L. Johnson, Adv. Phys. Org. Chem. 1967, 5, 237-330.
- [52] T. W. Bentley, R. O. Jones, I. S. Koo, J. Chem. Soc., Perkin Trans. 2. 1994, 753-759.

- [53] Activation parameters for the hydrolysis of acetyl chloride: in 1.77 % v/v water in acetone,^[54] at 24.8 °C, $\Delta G^{\ddagger} = 90.8$ kJ mol⁻¹, $\Delta H^{\ddagger} = 31.8$ kJ mol⁻¹, $\Delta S^{\ddagger} = -198$ J mol⁻¹ K⁻¹; in 10 % v/v water in acetone,^[41] at 25 °C, $\Delta G^{\ddagger} = 84.7$ kJ mol⁻¹; in 25 % v/v water in acetone,^[55] at 25 °C, $\Delta G^{\ddagger} = 79.9$ kJ mol⁻¹, $\Delta H^{\ddagger} = 55.7$ kJ mol⁻¹, $\Delta S^{\ddagger} = -81.3$ J mol⁻¹ K⁻¹. The values $\Delta G^{\ddagger} = 66.8$, 65.6 and 64,7 kJ mol⁻¹ were calculated for water solvent (Y = 3.493),^[47] extrapolating the data of kinetic measurements, obtained in 10-25 % v/v water in acetone at 25 °C [$\Delta G^{\ddagger} = -3,343Y + 78.5$ (r = 1.000)],^[41] in 19.6 75.6 % v/v water in dioxane at 27 °C [log k = 0.821Y + 0.529 (r = 0.999)]^[23] and in 50-90 % v/v water-acetone mixtures, at 0 °C [log k = 0.19Y 0,740(r = 0.999)]^[14] respectively. $\Delta G^{\ddagger} = 67.9$ and 69.1 kJ mol⁻¹ were calculated for TSs **21a** and **22a**, respectively, at (B3LYP)/6-31G(d) level of theory in water, at 0 °C.
- [54] G. Zimmerman, C. Yuan, J. Am. Chem. Soc. 1955, 77, 332-333.
- [55] C. G. Swain, C. B. Scott, J. Am. Chem. Soc. 1953, 75, 246-247.
- [56] Calculations can be performed only at the medium (B3LYP)/6-31G(d) level of theory, because the negative charge of the carbonyl oxygen becomes very small, and no hydrogen bond is formed between C=O group and the water molecule when calculations are carried out at the higher (B3LYP)/6-311+G(d,p) level of theory.
- [57] Extrapolation of the rate constants of kinetic studies^[25] gave $k = 0.35 \text{ s}^{-1}$, $k_2 = 0.00633 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ and $\Delta G^{\ddagger} = 75.2 \text{ kJ mol}^{-1}$ in water, at $-10 \text{ }^{\circ}\text{C}$.
- [58] W. P. Jencks, *Catalysis in Chemistry and Enzimology*, Mc Graw-Hill Book Co.; New York, **1969**. pp. 463-474.
- [59] T. M. Krygowski, M. K. Cyranski, D. D. Sung, B. T. Stephen, J. Phys. Org. Chem. 2004, 17, 699-706.
- [60] K.-T. Liu, H.-I. Chen, J. Chem. Soc., Perkin Trans. 2. 2000, 893-898.
- [61] D. A. Brown, R. F. Hudson, J. Chem. Soc. 1953, 3352-3360.
- [62] T. W. Bentley, H. C. Harris, J. Org. Chem. 1988, 53, 724-728.
- [63] D. N. Kevill, F. D. Foss, J. Am. Chem. Soc. 1969, 91, 5054-5059.
- [64] Z. H. Ryu, S. H. Shin, J. P. Lee, G. T. Lim, T. W. Bentley, J. Chem. Soc., Perkin Trans.2. 2002, 1283-1287.
- [65] T. W. Bentley, R. O. Jones, J. Chem. Soc., Perkin Trans. 2. 1993, 2351-2357.
- [66] G. E. K. Branch, A. C. Nixon, *J. Am. Chem. Soc.* **1936**, *58*, 2499-2504. [In 60 % v/v ether-ethanol, at 25° C; $\Delta G^{\ddagger} = -9.13\sigma + 95.8 \ (r = 0.995)$.]
- [67] J. Bascuas, L. Garcia-Rio, J. R. Leis, Org. Biomolec. Chem. 2004, 2, 1186-1193.

- [68] $\Delta G^{\ddagger} = 72.9, 77.7, 81.0, 87.5$ and 89.8 kJ mol⁻¹ were obtained by polynomial curve fits, for the hydrolyses of 4-MeO,^[13,17] 4-Me,^[13] H,^[20] 4-Cl^[13] and 4-NO₂^[13,62,65] substituted benzoyl chlorides, in water, at 25° C respectively, using the dependence of the ΔG^{\ddagger} data on *Y* solvent polarity parameter^[47] in acetone-water mixtures.
- [69] E. W. Crunden, R. F. Hudson, J. Chem. Soc. 1956, 501-507.
- [70] Broken concave upward log k vs. σ Hammett plots are considered^[71-73] to be diagnostic for change of the mechanism with the substituents. The analogous ΔG^{\ddagger} vs. σ plots are concave downward, like plots in Fig. 6, as their slopes are the opposite of that of the log k vs. σ plots, because the greater the rate of the reaction the smaller the value of ΔG^{\ddagger} .
- [71] Ref. 45, pp.170-177.
- [72] R. A. Y. Jones, *Physical and Mechanistic Organic Chemistry*, Cambridge, University Press, Cambridge, 1984, pp. 43-45.
- [73] Ref 46, pp. 449-453.
- [74] O. Acevedo, W. L. Jorgensen, Acc. Chem. Res. 2010, 43, 142-151, and references therein
- [75] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.; T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Peterson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hartchian, J. B. Cross, C. Adamo, C. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Daprich, A. D. Daniels, M. C. Strain, Ö. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komáromi, R. L. Martin, D. J. Fox, T. Keith, L. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C Gonzalez, J. A. Pople, Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburg, PA, 2003.
- [76] A. P. Bento, M. Sola, F. M. Bickelhaupt, J. Comput. Chem. 2005, 26, 1497-1504.

[77] M. Swart, M. Sola, F. M. Bickelhaupt, J. Comput. Chem. 2007, 28, 1551-1560.

- [78] J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027-2094.
- [79] E. Cancès, B. Mennucci, J. Chem. Phys. 2000, 114, 4744-4745.

- [80] D. M. Chipman, J. Chem. Phys. 2000, 112, 5558-5568.
- [81] V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 1997, 107, 3210-3221.
- [82] C. Gonzales, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154-2161.
- [83] D. A. McQuarrie, J. D. Simon, *Molecular Thermodynamics*, University Science Books, Sausalito, CA, **1999**.
- [84] <u>http://www.gaussian.com/g_whitepap/thermo/thermo.pdf</u>
- [85] S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw. R. Walsh, *Chem. Rev.* **1969**, 69, 279-290.
- [86] S. W. Benson, Thermochemical Kinetics, Wiley, New York, 1976, pp. 19-72.
- [87] CRC Handbook of Chemistry and Physics; Lide, D. R., Ed.; CRC Press: Boca Raton, 1995; Ch. 5-4.
- [88] C. Hansch, H. Leo, R.W. Taft, Chem. Rev. 1991, 91, 165-195.

Table 1. Selected charges (Q, a.u.), atomic distances (R, Å), bond angles (θ , degree) and free energy of activation (ΔG^{\ddagger} , kJ mol⁻¹) for TSs of the hydrolyses of acetyl chloride (**6a**, Schemes 2 and 5), as calculated at (B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory [marked as 6-31 and 6-311, respectively], in water and acetone, at 25° C.

	TS 8a	TS 8a	TS 21a	TS 8a	TS 8a	TS 19a	TS 19a	TS 20a	TS 20a	TS 22a
Level	6-31	6-311	6-31	6-31	6-311	6-31	6-311	6-31	6-311	6-31
Solvent		acetone					water			
$Q(O^1)$	-0.312	-0.088	-0.357	-0.322	-0.103	-0.365	-0.125	-0.362	-0.077	-0.430
$Q(O^2)$	-0.699	-0.349	-0.712	-0.701	-0.324	-0.737	-0.410	-0.755	-0.450	-0.716
Q(Cl)	-0.720	-0.737	-0.690	-0.728	-0.763	-0.601	-0.644	-0.507	-0.607	-0.480
$R(C^1=O^1)$	1.166	1.150	1.179	1.168	1.153	1.180	1.164	1.181	1.158	1.202
$R(C^1 \cdots O^2)$	1.813	1.869	1.718	1.798	1.815	1.816	1.817	1.892	1.906	1.740
$R(C^1 \cdots Cl^1)$	2.526	2.651	2.455	2.505	2.633	2.290	2.434	2.210	2.424	2.156
$R(O^2-H^2)$	0.991	0.983	1.026	0.992	0.989	1.022	1.011	1.024	1.010	1.049
$R(O^3 \cdots H^2)$	-	-	1.593	-	-	1.594	1.602	1.588 ^a	1.614 ^b	1.501 ^c
$R(Cl^1\cdots H)^d$	2.359	2.367	2.845	2.513	2.797	3.137	3.115	2.358	2.265	3.309
$\theta(O^1C^1C^2)$	138.0	141.9	132.8	137.3	140.4	133.2	136.6	133.1	138.8	128.0
ΔG^{\ddagger}	84.5	110.7	89.8	80.1	105.7	72.4	105.9	74.0	115.3	75.4

^a $R(O^3-H^4) = 0.996$ Å, $R(O^4\cdots H^4) = 1.728$ Å, $R(O^4-H^6) = 0.978$ Å.

^b $R(O^3 - H^4) = 0.986 \text{ Å}, R(O^4 - H^4) = 1.750 \text{ Å}, R(O^4 - H^6) = 0.976 \text{ Å}.$

 $^{c}R(O^{3}-H^{4}) = 1.000 \text{ Å}, R(O^{4}\cdots H^{4}) = 1.701 \text{ Å}, R(O^{4}-H^{6}) = 0.979 \text{ Å}, R(O^{1}\cdots H^{6}) = 1.917 \text{ Å}.$

^d Distance of chlorine and the next neighboring H atom of the explicit solvent molecule.

1
$\begin{array}{c}2\\3\\4\\5\\6\\7\\8\\9\\1\\1\\1\\2\\1\\4\\1\\5\\6\\7\\8\\9\\0\\1\\2\\2\\3\\4\\5\\6\\7\\3\\3\\4\\5\\6\\7\\3\\8\end{array}$
4 5
6
7 8
9
10 11
12
13 14
15
16 17
18 10
20
21 22
23
24 25
26
27 28
29
30 31
32
33 34
35
36 37
38 39
40
41 42
43
44 45
46
47 48
49
50 51
52
54
55 56
57
58

Table 2. Calculated bond orders (n) for the TSs, generated in the hydrolysis acet	yl chloride
(Scheme 2 and 5). ^a	

Item	TS	Solvent	Bond	$R_{\rm s}^{\rm b,c}$	$R_{\rm o}^{\rm c,d}$	a^{e}	$R_{\rm r}^{\rm c,f}$	n
1	8a	acetone	СО	2.064 (15a)	1.568 (13a)	-0.7156	1.813 (8a)	0.643
2	8 a	acetone	CCl	2.285 (14a)	1.849 (6a)	-0.6290	2.526 (8a)	0.341
3	8 a	water	CO	2.040 (15a)	1.556 (13a)	-0.6983	1.798 (8a)	0.707
4	8 a	water	CCl	2.301 (14a)	1.850 (6a)	-0.6507	2.505 (8a)	0.365
5	19a	water	CCl	2.301 (14a)	1.850 (6a)	-0.6507	2.290 (19a)	0.509
6	20a	water	CCl	2.301 (14a)	1.850 (6a)	-0.6507	2.210 (20a)	0.575

^a Bond orders were calculated according to Pauling^[50] [Equation (1)]. Atomic distances were calculated at (B3LYP)/6-31G(d) level of theory.

^b Atomic distances (Å) calculated for symmetric TSs (n = 0.5).

^c The numbering of the relating species is given in parentheses.

^d Bond lengths (Å) calculated for reactants.

^e Constants calculated for Equation (1).

^f Atomic distances (Å) calculated for TSs.

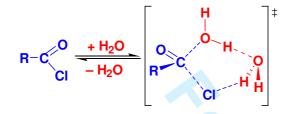
Table 3. Selected charges (Q, a.u.), atomic distances (R, Å), bond angles (θ , degree) and free energy of activation (ΔG^{\ddagger} , kJ mol⁻¹) for TSs of the hydrolyses of acetyl chloride (**6a**) and chloroacetyl chloride (**6b**, Schemes 2 and 5), as calculated at (B3LYP)/6-31G level of theory, using the Radii=UAHF option, in water (for TSs **8**, **19**, **20** and **22**) and in acetone (for TS **21**), at 25° (for reactant **6a**) and -10 °C (for reactant **6b**).

	TS 8a	TS 19a	TS 20a	TS 21a	TS 22a	TS 8b	TS 19b	TS 20b	TS 21b	TS 22b
$Q(O^1)$	-0.306	-0.336	-0.374	-0.396	-0.443	-0.365	-0.368	-0.393	-0.409	-0.476
$Q(O^2)$	-0.700	-0.737	-0.731	-0.662	-0.690	-0.667	-0.708	-0.714	-0.690	-0.689
Q(Cl)	-0.692	-0.616	-0.528	-0.764	-0.530	-0.656	-0.570	-0.474	-0.642	-0.409
$R(C^1=O^1)$	1.165	1.174	1.183	1.187	1.206	1.171	1.183	1.189	1.193	1.217
$R(C^1 \cdots O^2)$	1.839	1.832	1.814	1.536	1.654	1.722	1.706	1.727	1.550	1.617
$R(C^1 \cdots Cl)$	2.549	2.389	2.264	2.661	2.235	2.509	2.324	2.201	2.429	2.107
$R(O^2 \cdots H^2)$	0.995	1.024	1.034	1.084	1.077	1.002	1.056	1.059	1.143	1.133
$R(O^3 \cdots H^2)$	-	1.589	1.550	1.420	1.427	-	1.496	1.471	1.310	1.318
$R(O^3 \cdots H^4)$	-	0.984	0.998 ^a	-	1.005 ^b	-	0.982	1.002 ^c	-	1.015 ^d
R(Cl····H) ^e	2.187	2.271	2.263	2.541	2.874	2.147	2.343	2.332	2.644	3.048
$\theta(O^1C^1C^2)$	138.9	135.6	132.7	131.4	127.5	135.5	131.6	129.1	129.8	124.7
ΔG^{\ddagger}	94.2	84.1	83.4	115.9	89.7	101.0	81.0	83.3	104.3	79.5

^a $R(O^4...H^4) = 1.715 \text{ Å}, R(O^4-H^6) = 0.982 \text{ Å}.$

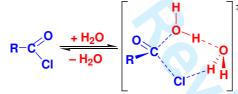
^b $R(O^4 \cdots H^4) = 1.674 \text{ Å}, R(O^4 - H^6) = 0.981 \text{ Å}, R(O^1 \cdots H^6) = 1.892 \text{ Å}.$

^c $R(O^4 \cdots H^4) = 1.686 \text{ Å}, R(O^4 - H^6) = 0.980 \text{ Å}.$


^d $R(O^4 \cdots H^4) = 1.622 \text{ Å}, R(O^4 - H^6) = 0.985 \text{ Å}, R(O^1 \cdots H^6) = 1.850 \text{ Å}.$

^e Distance of chlorine and the next neighboring H atom of the solvent cluster.

Table 4. Selected charges (Q, a.u.) atomic distances (R, Å) and bond angles (degere) for TSs **27** and **28** of the hydrolyses of benzoyl chlorides (X-C₆H₄COCl, **26**, Scheme 6), as calculated at (B3LYP)/6-311+G(d,p) level of theory, using the Radii=UAHF option, in acetone and in water, at 25 °C.


TS		TS 27			TS 28	
solvent		acetone			water	
X	4-MeO	Н	4-NO ₂	4-MeO	Н	4-NO ₂
$Q(O^1)$	-0.148	-0.167	-0.223	0,033	-0.136	-0.241
$Q(O^2)$	-0.332	-0.344	-0.347	-0.670	-0.445	-0.308
$Q(Cl^1)$	-0.775	-0.768	-0.642	-0.898	-0.723	-0.649
$R(C^1=O^1)$	1.173	1.178	1.187	1.133	1,166	1.185
$R(C^1 \cdots O^2)$	1.688	1.619	1.587	2.620	1.924	1.659
$R(C^1 \cdots Cl^1)$	2.674	2.644	2.443	3.157	2.498	2.336
$R(O^2 \cdots H^2)$	1.035	1.068	1.113	0.983	1.003	1.036
$R(O^3 \cdots H^2)$	1.517	1.422	1.333	1.789	1.651	1.505
$R(Cl^1\cdots H^4)$	2.597	2.586	2.683	2.133	2.256	3.556
$\theta(O^1C^7C^1)$	134.8	132.2	128.6	166.2	138.3	129.3

Concerted $S_N 2$ mechanism for the hydrolysis of acid chlorides. Comparisons of reactivities calculated by the density functional theory with experimental data Ferenc Ruff* and Ödön Farkas

 $R = CH_3$, CH_2CI , $X-C_6H_4$; $X = 4-MeO - 4-NO_2$ Solvent: water, acetone Acid chlorides hydrolyze via concerted, general base and general acid catalyzed $S_N 2$ mechanism. The structure of the tetrahedral TS changes with substituents and solvent. Late/early TSs are formed if the attacking reagent is poorer/better nucleophile than the leaving group, and loose/tight TSs are formed for substrates bearing electron-donating /electron-withdrawing substituents.

Acid chlorides hydrolyze via concerted, general base and general acid catalyzed $S_N 2$ mechanism. The structure of the tetrahedral TS changes with substituents and solvent. Late/early TSs are formed if the attacking reagent is poorer/better nucleophile than the leaving group, and loose/tight TSs are formed for substrates bearing electrondonating /electron-withdrawing substituents.

 $R = CH_3, CH_2CI, X-C_6H_4;$ X = 4-MeO - 4-NO₂ Solvent: water, acetone Concerted $S_N 2$ mechanism for the hydrolysis of acid chlorides. Comparisons of reactivities calculated by the density functional theory with experimental data

Ferenc Ruff* and Ödön Farkas

Supporting Information

Concerted $S_N 2$ mechanism for the hydrolysis of acid chlorides. Comparisons of reactivities calculated by the density functional theory with experimental data

Ferenc Ruff* and Ödön Farkas

Contents

ΔE^{\ddagger} vs. IRC and ΔE vs. $R(O^{1} \cdots H^{6})$ plots
Structural parameters vs. σ plots for TSs 27 and 28
Selected structural parameters for species 6 - 28
E, G, H, and S values for species 6 - 28
$\Delta E^{\ddagger}, \Delta G^{\ddagger}, \Delta H^{\ddagger}$ and ΔS^{\ddagger} parameters for hydrolyses

Figures S1-S3 Figures S4 – S7 Tables S1 - S4 Tables S5, S6, S9 and S10 Tables S7, S8 and S11

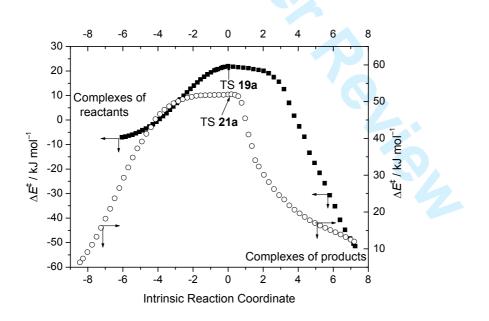


Figure S1. ΔE^{\ddagger} vs. IRC plots for the hydrolysis of acetyl chloride with clusters of two water molecules (**6a** + **16** \leftrightarrows TS **19a** \rightarrow **11a** + **12** + **7**) in water, and with a cluster of one water and one acetone molecule, in acetone (**6a** + **18** \leftrightarrows TS **21a** \rightarrow **11a** + **12** + acetone, Scheme 5). IRC calculations were performed at (B3LYP)/6-31G(d) level of theory, using the Radii=UAHF option. ΔE values refer to the separated reactants ($\Delta E = 0$).

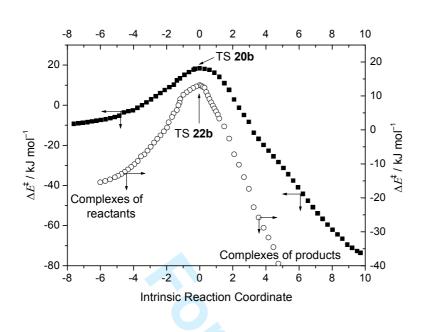


Figure S2. ΔE^{\ddagger} vs. IRC plots for the hydrolysis of chloroacetyl chloride with clusters of three water molecules [**6b** + **17** \leftrightarrows (TS **20b** or TS **22b**) \rightarrow **11b** + **12** + **16**; Scheme 5] in water. IRC calculations were performed at (B3LYP)/6-31G(d) level of theory, using the Radii=UAHF option. ΔE values refer to the separated reactants ($\Delta E = 0$).

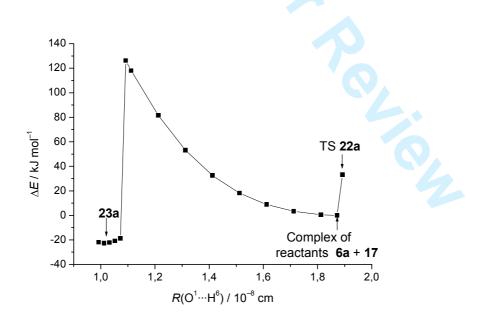


Figure S3. ΔE vs. $R(O^1 \dots H^6)$ plot for the transfer of H⁶ hydrogen to O¹ oxygen atom for the formation of the complex of acetyl chloride hydrate and two water molecules (**23a**) from TS **22a** (Scheme 5). Calculations were performed at (B3LYP)/6-31G(d) level of theory with optimization, using the Radii=UAHF option, decreasing stepwise the $R(O^1 \dots H^6)$ distance. ΔE values refer to the complex of acetyl chloride (**6a**) and cluster of three water molecules (**17**).

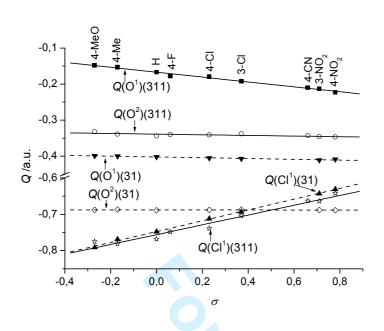


Figure S4. Plots of charges (Q) for TS **27** (Scheme 6) against the Hammett σ constants, as calculated at (B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory [marked as (31) and (311), respectively], using the Radii=UAHF option, in acetone, at 25° C. [Correlations: $Q(O^1)(311) = -0.0679\sigma - 0.167 \ (r = 0.993); \ Q(O^2)(311) = -0.00893\sigma - 0.339 \ (r = 0.759); \ Q(C1^1)(311) = 0.135\sigma - 0.755 \ (r = 0.983); \ Q(O^1)(31) = -0.0109\sigma - 0.402 \ (r = 0.980); \ Q(O^2)(31) = -5.7 \times 10^{-4}\sigma - 0.688 \ (r = 0.288); \ Q(C1^1)(31) = 0.149\sigma - 0.747 \ (r = 0.999)].$

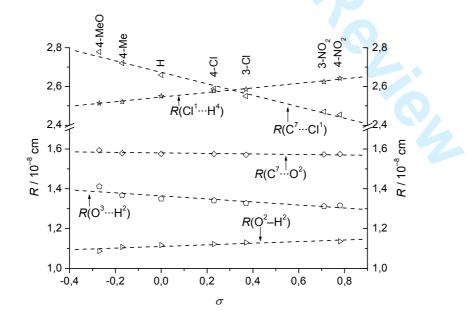


Figure S5. Plots of bond distances for TS **27** (Scheme 6) against the Hammett σ constants, as calculated at (B3LYP)/6-31G(d) level of theory, using the Radii=UAHF option, in acetone, at 25° C. [Correlations: $R(C^7 \cdots C^2) = -0.0133\sigma + 1.580$ (r = 0.730); $R(C^7 \cdots C1^1) = -0.296\sigma +$

2.673 (
$$r = 0.992$$
); $R(O^2 \cdots H^2) = 0.0408\sigma + 1.110$ ($r = 0.904$); $R(H^4 \cdots Cl^1) = 0.118\sigma + 2.545$ ($r = 0.996$); $R(O^3 \cdots H^2) = -0.0762\sigma + 1.364$ ($r = 0.909$).]

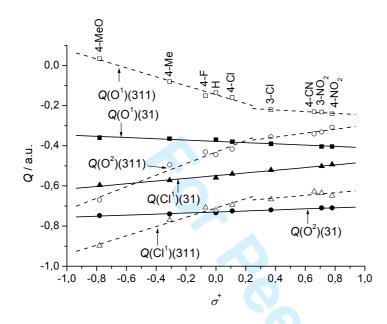


Figure S6. Plots of charges (*Q*) for TS **28** (Scheme 6) against the σ^+ constants, as calculated at (B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory [marked as (31) and (311), respectively], using the Radii=UAHF option, in water, at 25° C. [Correlations for compounds with substituents 4-MeO - 4-Cl; $Q(O^1)(311) = -0.222\sigma^+ -0.145$ (r = 0.986); $Q(O^2)(311) = 0.288\sigma^+ -0.431$ (r = 0.980); $Q(Cl^1)(311) = 0.231\sigma^+ -0.710$ (r = 0.986), and for compounds with substituents 3-Cl - 4-NO₂; $Q(O^1)(311) = -0.0429\sigma^+ -0.204$ (r = 0.945); $Q(O^2)(311) = 0.0982\sigma^+ -0.396$ (r = 0.881); $Q(Cl^1)(311) = 0.0660\sigma^+ -0.686$ (r = 0.691). Correlations for compounds with substituents 4-MeO - 4-NO₂, $Q(O^1)(31) = -0.0314\sigma^+ -0.378$ (r = 0.965); $Q(O^2)(31) = 0.0260\sigma^+ -0.730$ (r = 0.987); $Q(Cl^1)(31) = 0.0672\sigma^+ -0.549$ (r = 0.991).]

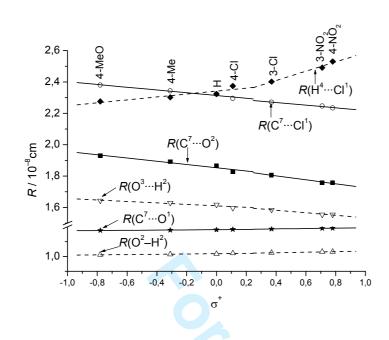
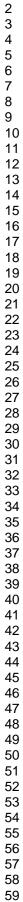
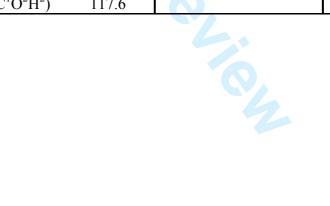



Figure S7. Plots of bond distances for TSs **28** (Scheme 6) against the σ^+ constants, as calculated at (B3LYP)/6-31G(d) level of theory, using the Radii=UAHF option, in water, at 25° C. [Correlations for compounds with substituents 4-MeO - 4-Cl; $R(C^7 \cdots O^2) = -0.104 \sigma^+ + 1.853 (r = 0.962)$; $R(C^7 \cdots Cl^1) = -0.0876 \sigma^+ + 2.314 (r = 0.977)$; $R(O^2 \cdots H^2) = 0.0101 \sigma^+ + 1.019 (r = 0.945)$; $R(H^4 \cdots Cl^1) = 0.0936 \sigma^+ + 2.342 (r = 0.898)$; $R(O^3 \cdots H^2) = -0.0465 \sigma^+ + 1.610 (r = 0.930)$; $R(C^7 \cdots O^1) = 0.00700 \sigma^+ + 1.181 (r = 0.934)$. Correlations for compounds with substituents 3-Cl - 4-NO₂; $R(C^7 \cdots O^2) = -0.127 \sigma^+ + 1.852 (r = 0.987)$; $R(H^4 \cdots Cl^1) = 0.296 \sigma^+ + 2.291 (r = 0.987)$; $R(O^3 \cdots H^2) = -0.0806 \sigma^+ + 1.614 (r = 0.987)$; $R(C^7 \cdots O^1) = 0.0121 \sigma^+ + 1.181 (r = 1.000)$.]

Table S1. Selected net Mulliken atomic charges (Q, a.u.), atomic distances (R, Å), bond and dihedral angels (θ and φ , degree), as calculated at (B3LYP)/6-31G(d) level of theory for the optimized structures in the hydrolysis of acetyl chloride, in water, at 25 °C (Scheme 2 and 5).


8	1				,	, 		,
9	<u>6a</u>	0.260	10a	0.150	15	0.000	18	102.0
10	$Q(O^1)$	-0.360	$Q(O^1)$	-0.159	$Q(O^1)$	-0.296	$\theta(\mathrm{H}^{1}\mathrm{O}^{1}\mathrm{H}^{2})$	103.0
11 12	Q(Cl)	-0.125	$Q(O^2)$	-0.881	$Q(O^2)$	-0.743	$\theta(O^1H^2O^2)$	170.7
13	$\widetilde{Q}(C^1)$	0.343	$Q(Cl^1)$	-0.870	$Q(O^3)$	-0.768	$\theta(O^1O^2C^1)$	112.7
14	$\widetilde{R}(C^1O^1)$	1.188	$\tilde{R}(C^{1}O^{1})$	1.125	$\widetilde{R}(C^1O^1)$	1.159	$\theta(O^2C^1C^2)$	121.8
15	$R(C^{1}Cl^{1})$	1.850	$R(C^1Cl^1)$	3.270	$R(C^1O^2)$	1.945	$\varphi(O^1O^2C^1C^2)$	-0.75
16	$\theta(O^1C^1C^2)$	129.2	$R(Cl^1H^1)$	2.290	$R(C^1O^3)$	2.040	$\varphi(H^{1}O^{1}O^{2}C^{1})$	-89.5
17	$\theta(Cl^1C^1C^2)$	111.7	$R(O^2H^1)$	0.980	$\theta(O^1C^1C^2)$	141.6	$\varphi(O^2C^1C^2H^4)$	-121.4
18 19	$\theta(O^1C^1Cl^1)$	119.1	$\theta(O^1C^1C^2)$	175.2	$\theta(O^2C^1C^2)$	99.8	19a	
20	$\varphi(O^1C^1C^2Cl^1)$	180	$\theta(O^1C^1Cl^1)$	102.3	$\theta(O^3C^1C^2)$	96.88	$Q(O^1)$	-0.365
21	7		θ (Cl ¹ H ¹ O ²)	171.4	$\theta(O^2C^1O^3)$	87.11	$Q(O^2)$	-0.737
22	Q(0)	-0.851	$\varphi(O^1C^1C^2Cl^1)$	179.6	$\varphi(O^1C^1C^2O^2)$	142.8	Q(Cl)	-0.601
23	$Q(\mathrm{H})$	-0.426	$\varphi(O^1C^1Cl^1H^1)$	12.4	$\varphi(O^1C^1C^2O^3)$	-129.1	$R(C^1O^1)$	1.180
24 25	<i>R</i> (OH)	0.977	$\varphi(O^1C^1Cl^1O^2)$	12.1	16		$R(C^1O^2)$	1.816
25 26	θ(HOH)	102.6	11a		$Q(O^1)$	-0.895	$R(C^1Cl^1)$	2.290
27	8a		$Q(O^1)$	-0.516	$\widetilde{Q}(O^2)$	-0.815	$R(O^2H^2)$	1.022
28	$Q(O^1)$	-0.322	$\widetilde{Q}(O^2)$	-0.580	$\widetilde{R}(O^1H^2)$	0.983	$R(O^{3}H^{2})$	1.594
29	$\tilde{Q}(O^2)$	-0.701	$\tilde{R}(C^1O^1)$	1.218	$R(O^2H^2)$	1.847	$R(Cl^1H^4)$	3.137
30 31	$\tilde{Q}(Cl)$	-0.728	$R(C^1O^2)$	1.345	$\theta(H^1O^1H^2)$	103.0	$\theta(O^1C^1C^2)$	133.2
32	$\tilde{Q}(C^1)$	0.543	$R(O^2H)$	0.996	$\theta(O^1H^2O^2)$	179.6	$\theta(O^2C^1C^2)$	101.1
33	$\widetilde{R}(C^1O^1)$	1.168	$\theta(O^1C^1C^2)$	125.3	$\theta(H^2O^2H^4)$	103.7	$\theta(ClC^1C^2)$	110.6
34	$R(C^1O^2)$	1.798	$\theta(O^2C^1C^2)$	111.7	$\varphi(H^1O^1O^2H^4)$	123.1	$\theta(C^1O^2H^2)$	107.3
35	$R(C^1Cl^1)$	2.505	$\theta(C^1O^2H)$	107.7	$\varphi(H^1O^1O^2H^3)$	-129.5	$\theta(O^2H^2O^3)$	175.2
36 37	$R(O^2H^2)$	0.996	12		17		$\varphi(O^1C^1C^2O^2)$	134.3
38	$R(Cl^1H^2)$	2.513	Q(Cl)	-0.330	$Q(O^1)$	-0.901	$\varphi(O^1C^1C^2Cl)$	-132.1
39	$\theta(O^1C^1C^2)$	137.3	$\widetilde{R}(ClH)$	1.320	$\widetilde{Q}(O^2)$	-0.856	20a	
40	$\theta(O^2C^1C^2)$	102.5	13		$\widetilde{Q}(O^3)$	-0.815	$Q(O^1)$	-0.362
41 42	$\theta(C^{l}C^{1}C^{2})$	97.5	$Q(O^1)$	-0.324	$\widetilde{R}(O^1H^2)$	0.986	$\widetilde{Q}(O^2)$	-0.755
43	$\theta(O^2C^1Cl^1)$	87.6	$\tilde{Q}(O^2)$	-0.649	$R(O^2H^2)$	1.813	$\tilde{Q}(Cl)$	-0.507
44	$\theta(O^1C^1Cl^1)$	108.2	$\widetilde{R}(C^1O^1)$	1.172	$R(O^2H^4)$	0.989	$R(C^{1}O^{1})$	1.181
45	$\varphi(O^1C^1C^2O^2)$	143.2	$R(C^1O^2)$	1.556	$R(O^{3}H^{4})$	1.780	$R(C^1O^2)$	1.892
46	$\varphi(O^1C^1C^2Cl)$	-127.5	$\theta(O^1C^1C^2)$	135.8	$\theta(O^1 H^2 O^2)$	179.2	$R(C^1Cl^1)$	2.210
47 48	$\varphi(O^1C^1Cl^1O^2)$	-112.2	$\theta(O^2C^1C^2)$	109.4	$\theta (O^2 H^4 O^3)$	179.4	$R(O^2H^2)$	1.024
49	9a		$\varphi(O^1C^1C^2O^2)$	-175.4	$\theta(H^2O^2H^4)$	104.0	$R(O^{3}H^{2})$	1.588
50	$Q(O^1)$	-0.163	14		$\theta(H^4O^3H^6)$	106.2	$R(Cl^1H^4)$	2.358
51	$\tilde{Q}(Cl)$	-0.903	$Q(O^1)$	-0.331	$\varphi(H^1O^1O^2H^4)$	129.1	$\theta(O^1C^1C^2)$	133.1
52 53	$\widetilde{R}(C^1O^1)$	1.126	$\tilde{Q}(Cl)$	-0.620	$\varphi(H^2O^2O^3H^6)$	-21.7	$\theta(O^2C^1C^2)$	99.3
53 54	$R(C^1Cl^1)$	3.307	$\widetilde{R}(C^1O^1)$	1.176	$\varphi(H^2O^2O^3H^5)$	-130.8	$\theta(ClC^1C^2)$	102.6
55	$\theta(O^1C^1C^2)$	179.9	$R(C^1Cl^1)$	$Q(O^2)$	18		$\theta(C^1O^2H^2)$	105.7
56	$\theta(O^1C^1Cl^1)$	104.4	$\theta(O^1C^1C^2)$	133.5	$Q(O^1)$	-0.865	$\theta(O^2H^2O^3)$	175.8
57	$\varphi(O^1C^1C^2Cl^1)$	-33.1	$\theta(ClC^1C^2)$	100.5	$\tilde{Q}(O^2)$	-0.480	$\varphi(O^1C^1C^2O^2)$	129.4
58 50		-	$\varphi(O^1C^1C^2Cl)$	130.1	$\tilde{R}(O^{1}H^{2})$	0.979	$\varphi(O^1C^1C^2Cl)$	-136.4
59 60			, (= =)		$R(O^2H^2)$	1.917	, (= =,	• •
00					$R(O^2C^1)$	1.227		
							A	

1

Table S1. Continued

21 a		22a		23a		25a	
$Q(O^1)$	-0.357	$\varphi(O^1C^1C^2O^2)$	131.7	$\theta(O^2H^2O^3)$	159.8	$Q(O^1)$	-0.504
$Q(O^2)$	-0.712	$\varphi(O^1C^1C^2Cl)$	-132.6	$\theta(\mathrm{H}^{2}\mathrm{O}^{3}\mathrm{H}^{4})$	94.3	$Q(O^2)$	-0.539
Q(Cl)	-0.690	$\theta(O^1C^1C^2)$	128.0	$\theta(O^{3}H^{4}O^{4})$	165.4	Q(Cl)	-0.937
$R(C^1O^1)$	1.179	$\theta(O^2C^1C^2)$	102.4	$\theta(\mathrm{H}^{4}\mathrm{O}^{4}\mathrm{H}^{6})$	102.9	$R(C^1O^1)$	$Q(O^2)$
$R(C^1O^2)$	1.715	θ (ClC ¹ C ²)	103.3	$\theta(O^4H^6O^1)$	178.0	$R(C^1O^2)$	1.283
$R(C^1Cl^1)$	2.455	$\theta(C^1O^2H^2)$	108.1	24a		$R(C^1Cl^1)$	3.036
$R(O^2H^2)$	1.026	$\theta(O^2H^2O^3)$	176.0	$Q(O^1)$	-0.575	$R(O^1H^1)$	1.007
$R(O^{3}H^{2})$	1.593	23a		$Q(O^2)$	-0.600	$R(O^2H^2)$	1.014
$R(Cl^{1}H^{4})$	2.845	$Q(O^1)$	-0.596	Q(Cl)	-0.267	$\theta(O^1C^1C^2)$	125.1
$\theta(O^1C^1C^2)$	133.9	$Q(O^2)$	-0.621	$\overline{R}(C^{1}O^{1})$	1.362	$\theta(O^2C^1C^2)$	117.0
$\theta(O^2C^1C^2)$	103.9	$Q(O^3)$	-0.841	$R(C^1O^2)$	1.368	$\theta(ClC^1C^2)$	88.67
$\theta(ClC^1C^2)$	97.2	$Q(O^4)$	-0.851	$R(C^{1}Cl^{1})$	1.970	$\theta(H^1O^1C^1)$	115.0
$\theta(C^1O^2H^2)$	109.7	Q(Cl)	-0.269	$R(O^1H^1)$	0.991	$\theta(H^2O^2C^1)$	112.6
$\theta(O^2H^2O^3)$	168.8	$R(C^1O^2)$	1.402	$R(O^2H^2)$	0.990	$\varphi(C^2C^1O^1H^1)$	12.75
$\varphi(O^1C^1C^2O^2)$	144.2	$R(O^2H^2)$	1.910	$\theta(O^1C^1C^2)$	115.5	$\varphi(C^2C^1O^2H^2)$	176.2
$\varphi(O^1C^1C^2Cl)$	-124.1	$R(O^{3}H^{2})$	0.981	$\theta(O^2C^1C^2)$	115.1		
22a		$R(O^{3}H^{4})$	1.734	θ (ClC ¹ C ²)	115.2		
$Q(O^1)$		$R(O^4H^4)$	0.995	$\theta(\mathrm{H}^{1}\mathrm{O}^{1}\mathrm{C}^{1})$	111.0		
$Q(O^2)$	-0.849	$R(O^4H^6)$	1.613	$\theta(H^2O^2C^1)$	110.3		
Q(Cl)	-0.480	$R(O^1H^6)$	1.018	$\varphi(C^2C^1O^1H^1)$	48.3		
$R(C^1O^1)$	1.202	$R(C^{1}O^{1})$	1.336	$\varphi(C^2C^1O^2H^2)$	37.7		
$R(C^1O^2)$	1.740	$R(C^{1}Cl^{1})$	2.661				
$R(C^{1}Cl^{1})$	2.156	$\theta(O_1^1C_1^1C_2^2)$	111.8				
$R(O^2H^2)$	1.049	$\theta(O^2C_1^1C_2^2)$	113.4				
$R(O^{3}H^{2})$	1.501	$\theta(ClC^1C^2)$	105.8				
$R(O^1H^6)$	1.917	$\theta(C^1O^2H^2)$	117.6				

Table S2. Selected net Mulliken atomic charges (Q, a.u.), atomic distances (R, Å), bond and
dihedral angels (θ and φ , degree), as calculated at (B3LYP)/6-31G(d) level of theory using the
Radii=UAHF option, for the optimized strictures in the hydrolysis of chloroacetyl chloride, in
water, at -10 °C (Scheme 2 and 5).

8	6b		16		19b		21b	
9	$Q(O^1)$	-0.341	$\theta(O^1H^2O^2)$	179.9	$\theta(O^2C^1C^2)$	99.8	$\theta(O^2 H^2 O^3)$	163.2
10	Q(Cl)	-0.069	$\theta(\mathrm{H}^{2}\mathrm{O}^{2}\mathrm{H}^{4})$	104.5	$\theta(Cl^1C^1C^2)$	93.3	$\varphi(O^1C^1C^2O^2)$	141.1
11 12	$\mathcal{L}(C^1O^1)$	1.186	$\varphi(\mathrm{H}^{1}\mathrm{O}^{1}\mathrm{O}^{2}\mathrm{H}^{4})$	127.1	$\theta(C^1 O^2 H^2)$	109.4	$\varphi(O^1C^1C^2Cl^1)$	-122.6
12	$R(C^{1}Cl^{1})$	1.827	$\varphi(\mathrm{H}^{1}\mathrm{O}^{1}\mathrm{O}^{2}\mathrm{H}^{3})$	-124.8	$\theta(O^2H^2O^3)$	174.1	$\varphi(O^1C^1C^2Cl^2)$	-39.9
14	$\theta(O^1C^1C^2)$	129.8	φ(<u>Π 0 0 Π</u>) 17	121.0	$\varphi(O^{1}C^{1}C^{2}O^{2})$	135.6	$\varphi(Cl^{1}C^{1}C^{2}Cl^{2})$	82.7
15	$\theta(Cl^{1}C^{1}C^{2})$	109.4	$Q(O^1)$	-0.892	$\varphi(O^{1}C^{1}C^{2}Cl^{1})$	-129.2	φ(ei e e ei) 22b	02.7
16 17	$\varphi(Cl^1C^1C^2Cl^2)$	179.8	$Q(O^2)$	-0.850	$\varphi(O^{1}C^{1}C^{2}Cl^{2})$	-51.5	$Q(O^1)$	-0.476
18	$\frac{\varphi(e_1 e_1 e_2 e_1)}{7}$	177.0	$Q(O^3)$	-0.807	$\varphi(O^2C^1C^2Cl^2)$	177.0	$\tilde{Q}(O^2)$	-0.689
19	<i>Q</i> (O)	-0.841	$R(O^1H^2)$	0.986	$\varphi(Cl^{1}C^{1}C^{2}Cl^{2})$	81.9	$Q(Cl^1)$	-0.409
20	$\widetilde{Q}(\mathrm{H})$	0.420	$R(O^2H^2)$	1.817	20b	01.9	$R(C^1O^1)$	1.217
21 22	$\tilde{R}(OH)$	0.975	$R(O^2H^4)$	0.989	$Q(O^1)$	-0.393	$R(C^1O^2)$	1.617
23	θ (HOH)	102.7	$R(O^{3}H^{4})$	1.781	$\tilde{Q}(O^2)$	-0.840	$R(C^1Cl^1)$	2.107
24	8b		$\theta(O^1H^2O^2)$	179.7	$\tilde{Q}(Cl^{1})$	-0.479	$R(O^2H^2)$	1.133
25	$Q(O^1)$	-0.322	$\theta(O^2H^4O^3)$	178.2	$\tilde{R}(C^{1}O^{1})$	1.189	$R(O^{3}H^{2})$	1.318
26 27	$\tilde{Q}(O^2)$	-0.667	$\theta(H^2O^2H^4)$	102.6	$R(C^1O^2)$	1.727	$R(O^1H^6)$	1.850
28	$\tilde{Q}(Cl)$	-0.656	$\theta(H^4O^3H^6)$	106.5	$R(C^1Cl^1)$	2.201	$\theta(O^1C^1C^2)$	124.7
29	$R(C^{1}O^{1})$	1.171	$\varphi(H^1O^1O^2H^4)$	134.2	$R(O^2H^2)$	1.059	$\theta(O^2C^1C^2)$	101.4
30	$R(C^1O^2)$	1.722	$\varphi(H^2O^2O^3H^6)$	-23.7	$R(O^{3}H^{2})$	1.471	$\theta(Cl^1C^1C^2)$	103.8
31 32	$R(C^1Cl^1)$	2.509	$\varphi(H^2O^2O^3H^5)$	-133.6	$R(Cl^{1}H^{4})$	2.332	$\theta(C^1O^2H^2)$	109.3
33	$R(O^2H^2)$	1.002	18		$\theta(O^1C^1C^2)$	129.8	$\theta(O^2H^2O^3)$	176.1
34	$R(Cl^{1}H^{2})$	2.147	$Q(O^1)$	-0.840	$\theta(O^2C^1C^2)$	113.8	$\varphi(O^1C^1C^2O^2)$	131.0
35	$\theta(O^1C^1C^2)$	135.5	$\tilde{Q}(O^2)$	-0.465	$\theta(Cl^1C^1C^2)$	112.4	$\varphi(O^1C^1C^2Cl^1)$	-131.5
36 37	$\theta(O^2C^1C^2)$	101.5	$R(O^{1}H^{2})$	0.979	$\theta(C^1O^2H^2)$	109.4	$\varphi(O^1C^1C^2Cl^2)$	-51.9
38	$\theta(Cl^1C^1C^2)$	98.7	$R(O^2H^2)$	1.912	$\theta(O^2H^2O^3)$	174.1	$\varphi(Cl^1C^1C^2Cl^2)$	79.6
39	$\varphi(O^1C^1C^2O^2)$	145.6	$R(O^2C^1)$	1.226	$\varphi(O^1C^1C^2O^2)$	131.5	23b	
40	$\varphi(O_1^1C_1^1C_2^2C_1^1)$	-130.4	$\theta(\mathrm{H}^{1}\mathrm{O}^{1}\mathrm{H}^{2})$	103.1	$\varphi(O^1C^1C^2Cl^1)$	-133.3	$Q(O^1)$	-0.597
41 42	$\varphi(O^1C^1C^2Cl^2)$	-42.6	$\theta(O^1H^2O^2)$	168.8	$\varphi(O^1C^1C^2Cl^2)$	-51.4	$Q(O^2)$	-0.618
43	$\varphi(Cl^1C^1C^2Cl^2)$	87.8	$\theta(O^1O^2C^1)$	112.2	$\varphi(O^2C^1C^2Cl^2)$	177.0	$Q(O^3)$	-0.834
44	<u>9b</u>		$\theta(O^2C^1C^2)$	121.9	$\varphi(Cl^1C^1C^2Cl^2)$	81.9	$Q(O^4)$	-0.846
45	$Q(O^1)$	-0.166	$\varphi(O^1O^2C^1C^2)$	-0,079	21b		$Q(Cl^1)$	-0.175
46 47	Q(Cl)	-0.773	$\varphi(H^{1}O^{1}O^{2}C^{1})$	-90.6	$Q(O^1)$	-0.409	$R(C^1O^2)$	1.337
48	$R(C^{1}O^{1})$	1.130	$\varphi(O^2C^1C^2H^4)$	-121.3	$Q(O^2)$	-0.690	$R(O^2H^2)$	1.928
49	$R(C^1Cl^1)$	3.266	19b		$Q(Cl^1)$	-0.642	$R(O^{3}H^{2})$	0.980
50	$\theta(O^1C^1C^2)$	176.2	$Q(O^1)$	-0.368	$\widetilde{R}(C^1O^1)$	1.193	$R(O^{3}H^{4})$	1.735
51 52	$\theta(C^1C^2Cl^1)$	110.0	$Q(O^2)$	-0.708	$R(C^1O^2)$	1.550	$R(O^4H^4)$	0.995
52 53	$\theta(C^1C^2Cl^2)$	85.5	Q(Cl)	-0.570	$R(C^1Cl^1)$	2.429	$R(O^4H^5)$	1.610
54	$\theta(Cl^1C^2Cl^2)$	130.9	$\widetilde{R}(C^1O^1)$	1.183	$R(O^2H^2)$	1.143	$R(O^1H^5)$	1.018
55	<u>16</u>	0.000	$R(C^1O^2)$	1.706	$R(O^{3}H^{2})$	1.310	$R(C^{1}O^{1})$	1.408
56 57	$Q(O^1)$	-0.888	$R(C^{1}Cl^{1})$	2.324	$R(Cl^{1}H^{4})$	2.644	$R(C^1Cl^1)$	1.905
58	$\widetilde{Q}(O^2)$ $\widetilde{R}(O^1 U^2)$	-0.807	$R(O^2H^2)$ $R(O^3H^2)$	1.050	$\frac{\theta(O^1C^1C^2)}{\theta(O^2C^1C^2)}$	129.1	$\frac{\theta(O^1C^1C^2)}{\theta(O^2C^1C^2)}$	111.9
59	$\frac{R(O^{1}H^{2})}{R(O^{2}H^{2})}$	0.982	$\frac{R(O^{3}H^{2})}{R(Cl^{1}H^{4})}$	1.496	$\theta(0^{-}C^{-}C^{-})$ $\theta(C1^{1}C^{1}C^{2})$	105.0 97.2	$\theta(0^{-}C^{-}C^{-})$ $\theta(C1^{1}C^{1}C^{2})$	108.4
60	$\theta(H^1O^1H^2)$	1.852 103.0	$\theta(O^1C^1C^2)$	2.343 131.6	$\theta(C^{1}C^{2}C^{1})$ $\theta(C^{1}O^{2}H^{2})$	97.2 122.2	$\theta(C^{1}C^{2}C^{1})$ $\theta(C^{1}O^{2}H^{2})$	108.2 116.3
	иноп)	103.0		131.0	исоп)	122.2	исоп)	110.3

Table S2. Conti	nued				
23		24b		25b	
$\theta(O^2H^2O^3)$	158.4	$\theta(\mathrm{H}^{1}\mathrm{O}^{1}\mathrm{C}^{1})$	111.2	$\theta(Cl^1C^1C^2)$	106.9
$\theta(O^{3}H^{4}O^{4})$	160.0	$\theta(H^2O^2C^1)$	111.2	$\theta(H^1O^1C^1)$	111.5
$\theta (O^4 H^5 O^1)$	179.6	$\varphi(\mathrm{H}^{1}\mathrm{O}^{1}\mathrm{C}^{1}\mathrm{C}^{2})$	60.6	$\theta(H^2O^2C^1)$	108.8
$\varphi(O^1C^1C^2Cl^2)$	-51.8	$\varphi(H^2O^2C^1C^2)$	23.9	$\varphi(H^1O^1C^1C^2)$	65.2
$\varphi(Cl^1C^1C^2Cl^2)$	65.2	$\varphi(O^{21}C^2Cl^2)$	-177.6	$\varphi(H^2O^2C^1C^2)$	166.9
24b		$\varphi(H^1O^1C^1C^2)$	60.6	$\varphi(O^1C^1C^2Cl^2)$	-119.9
$Q(O^1)$	-0.575	25b		$\varphi(O^2C^1C^2Cl^2)$	116.0
$Q(O^2)$	-0.596	$Q(O^1)$	-0.583	$\varphi(Cl^1C^1C^2Cl^2)$	66.6
$Q(Cl^1)$	-0.178	$Q(O^2)$	-0.573		
$\widetilde{R}(C^1O^1)$	1.366	$Q(Cl^1)$	-0.248		
$R(C^{1}O^{2})$	1.368	$\widetilde{R}(C^1O^1)$	1.361		
$R(C^{1}Cl^{1})$	1.913	$R(C^1O^2)$	1.350		
$R(O^{1}H^{1})$	0.982	$R(C^{1}Cl^{1})$	1.964		
$R(O^2H^2)$	0.987	$R(O^{1}H^{1})$	0.983		
$\theta(O^1C^1C^2)$	115.3	$R(O^2H^2)$	0.991		
$\theta(O^2C^1C^2)$	111.4	$\theta(O^1C^1C^2)$	116.5		
$\theta(Cl^1C^1C^2)$	107.3	$\theta(O^2C^1C^2)$	106.7		

Table S3. Selected net Mulliken atomic charges (Q, a.u.), atomic distances (R, Å), bond and dihedral angels (θ and φ , degree), as calculated at (B3LYP)/6-311+G(d,p) level of theory using the Radii=UAHF option, for the optimized strictures of benzoyl chlorides $(XC_6H_4COCl, 26)$, in water and acetone, at 25°C, respectively (Scheme 6).

26 (water) ^[a]	Н	4-MeO	4-Me	4-C1	3-C1	3-NO ₂	$4-NO_2$						
$Q(O^1)$	-0.168	-0.181	-0.171	-0.162	-0.163	-0.151	-0.144						
$R(C^{7}O^{1})$	1.190	1.192	1.191	1.190	1.190	1.189	1.189						
$R(C^7Cl^1)$	1.843	1.854	1.848	1.837	1.832	1.822	1.822						
$\theta(O^1C^7C^1)$	127.3	128.1	127.6	127.0	126.8	126.2	126.0						
$\theta(Cl^1C^7C^1)$	115.5	115.2	115.3	115.4	115.4	115.5	115.6						
26 $(acetone)^{[a]}$	Н	4-MeO	4-Me	4-C1	3-C1	3-NO ₂	$4-NO_2$						
$Q(O^1)$	-0.147	-0.157	-0.148	-0.140	-0.141	-0.129	-0.124						
$\widetilde{R}(C^{7}O^{1})$	1.189	1.191	1.190	1.189	1.189	1.188	1.188						
$R(C^7Cl^1)$	1.840	1.851	1.845	1.834	1.830	1.820	1.820						
$\theta(O^1C^7C^1)$	126.8	127.5	127.1	126.5	126.3	125.8	125.7						
$\alpha(\alpha)^{1}\alpha^{7}\alpha^{1}$	1150	1150	115.2	115-3	115.3	115.4	115.5						
$\theta(Cl^1C^7C^1)$	115.3	115.0	$\frac{\phi(Cl C C)}{[a] \phi(O^{1}C^{7}C^{1}C^{2}) \sim 180^{\circ}, \phi(ClC^{7}C^{1}C^{2}) \sim 0^{\circ}}$										

Table S4. Selected net Mulliken atomic charges (Q, a.u.), atomic distances (R, Å), bond and dihedral angels (θ and φ , degree), as calculated at (B3LYP)/6-311+G(d,p) level of theory using the Radii=UAHF option, for the optimized strictures of TSs **27** and **28** for hydrolyses of benzoyl chlorides (**26**), in acetone and water, at 25° C (Scheme 6).

27 (in acetone)	Н	4-MeO	4-Me	4-C1	3-C1	3-NO ₂	$4-NO_2$
$Q(O^1)$	-0.167	-0.148	-0.153	-0.174	-0.192	-0.213	-0.223
$\tilde{Q}(O^2)$	-0.344	-0.332	-0.339	-0.341	-0.338	-0.346	-0.347
$Q(Cl^1)$	-0.768	-0.775	-0.771	-0.739	-0.704	-0.664	-0.642
$Q(\mathrm{H}^2)$	0.510	0.475	0.495	0.514	0.513	0.534	0.530
$R(C^7O^1)$	1.178	1.173	1.176	1.180	1.182	1.186	1.187
$R(C^7O^2)$	1.619	1.688	1.644	1.609	1.599	1.586	1.587
$R(O^2H^2)$	1.068	1.035	1.053	1.078	1.089	1.111	1.113
$R(O^{3}H^{2})$	1.422	1.517	1.463	1.399	1.376	1.335	1.333
$R(C^7Cl^1)$	2.644	2.674	2.667	2.590	2.546	2.463	2.443
$R(Cl^{1}H^{4})$	2.586	2.597	2.583	2.612	2.638	2.660	2.683
$\theta(O^1C^7C^1)$	132.2	134.8	133.3	131.3	130.5	128.8	128.6
$\theta(O^2C^7C^1)$	108.8	107.2	108.3	108.9	109.0	109.0	109.2
$\theta(Cl^1C^7C^1)$	95.6	97.1	96.1	95.3	95.1	94.9	94.4
$\theta(O^2H^2O^3)$	170.7	168.4	169.7	170.7	170.8	171.4	171.4
$\varphi(O^1C^7C^1O^2)$	154.6	154.7	154.8	153.9	152.3	149.4	149.1
$\varphi(O^1C^7C^1Cl^1)$	-115.8	-117.9	-116.2	-116.6	-117.1	-118.7	-118.6
$\varphi(O^1C^7C^1C^2)$	170.3	177.8	174.9	172.0	168.2	167.9	163.6
28 (in water)	Н	4-MeO	4-Me	4-Cl	3-Cl	3-NO ₂	$4-NO_2$
$Q(O^1)$	-0.136	0.033	-0.081	-0.159	-0.221	-0.232	-0.241
$\tilde{Q}(O^2)$	-0.445	-0.670	-0.496	-0.417	-0.356	-0.332	-0.308
$Q(Cl^1)$	-0.723	-0.898	-0.770	-0.694	-0.667	-0.635	-0.639
$Q(\mathrm{H}^2)$	0.420	0.385	0.405	0.428	0.475	0.486	0.472
$\frac{Q(\mathrm{H}^2)}{R(\mathrm{C}^7\mathrm{O}^1)}$	0.420 1.160	0.385 1.133	0.405 1.151		0.475 1.178	0.486 1.183	
				0.428			0.472
$\widetilde{R}(C^{7}O^{1})$	1.160	1.133	1.151	0.428 1.165	1.178	1.183	0.472 1.185
$\widetilde{R}(C^{7}O^{1})$ $R(C^{7}O^{2})$	1.160 1.924	1.133 2.620	1.151 2.043	0.428 1.165 1.869	1.178 1.732	1.183 1.688	0.472 1.185 1.659
$ $	1.160 1.924 1.003	1.133 2.620 0.983	1.151 2.043 0.996	0.428 1.165 1.869 1.007	1.178 1.732 1.021	1.183 1.688 1.030	0.472 1.185 1.659 1.036
$ $	1.160 1.924 1.003 1.651	1.133 2.620 0.983 1.789	1.151 2.043 0.996 1.695	0.428 1.165 1.869 1.007 1.625	1.178 1.732 1.021 1.560	1.183 1.688 1.030 1.524	0.472 1.185 1.659 1.036 1.505
	1.160 1.924 1.003 1.651 2.498	1.133 2.620 0.983 1.789 3.157	1.151 2.043 0.996 1.695 2.616	0.428 1.165 1.869 1.007 1.625 2.436	1.178 1.732 1.021 1.560 2.358	1.183 1.688 1.030 1.524 2.325	0.472 1.185 1.659 1.036 1.505 2.336
	1.160 1.924 1.003 1.651 2.498 2.250	1.133 2.620 0.983 1.789 3.157 2.133	1.151 2.043 0.996 1.695 2.616 2.187	0.428 1.165 1.869 1.007 1.625 2.436 2.310	1.178 1.732 1.021 1.560 2.358 2.937	1.183 1.688 1.030 1.524 2.325 2.961	0.472 1.185 1.659 1.036 1.505 2.336 3.556
	1.160 1.924 1.003 1.651 2.498 2.250 138.3	1.133 2.620 0.983 1.789 3.157 2.133 166.3	1.151 2.043 0.996 1.695 2.616 2.187 143.6	0.428 1.165 1.869 1.007 1.625 2.436 2.310 135.8	1.178 1.732 1.021 1.560 2.358 2.937 131.3	1.183 1.688 1.030 1.524 2.325 2.961 129.6	0.472 1.185 1.659 1.036 1.505 2.336 3.556 129.3
	$1.160 \\ 1.924 \\ 1.003 \\ 1.651 \\ 2.498 \\ 2.250 \\ 138.3 \\ 102.9$	$ \begin{array}{r} 1.133\\ 2.620\\ 0.983\\ 1.789\\ 3.157\\ 2.133\\ 166.3\\ 98.0 \end{array} $	1.151 2.043 0.996 1.695 2.616 2.187 143.6 101.4	0.428 1.165 1.869 1.007 1.625 2.436 2.310 135.8 103.4	1.178 1.732 1.021 1.560 2.358 2.937 131.3 105.5	1.183 1.688 1.030 1.524 2.325 2.961 129.6 105.9	$\begin{array}{c} 0.472 \\ 1.185 \\ 1.659 \\ 1.036 \\ 1.505 \\ 2.336 \\ 3.556 \\ 129.3 \\ 106.7 \\ 98.7 \end{array}$
	$1.160 \\ 1.924 \\ 1.003 \\ 1.651 \\ 2.498 \\ 2.250 \\ 138.3 \\ 102.9 \\ 100.2$	1.133 2.620 0.983 1.789 3.157 2.133 166.3 98.0 95.3	1.151 2.043 0.996 1.695 2.616 2.187 143.6 101.4 99.4	0.428 1.165 1.869 1.007 1.625 2.436 2.310 135.8 103.4 100.4	1.178 1.732 1.021 1.560 2.358 2.937 131.3 105.5 100.3	1.183 1.688 1.030 1.524 2.325 2.961 129.6 105.9 99.6	0.472 1.185 1.659 1.036 1.505 2.336 3.556 129.3 106.7
$ \begin{array}{l} R(C^{7}O^{1}) \\ R(C^{7}O^{2}) \\ R(O^{2}H^{2}) \\ R(O^{3}H^{2}) \\ R(C^{7}Cl^{1}) \\ R(Cl^{1}H^{4}) \\ \theta(O^{1}C^{7}C^{1}) \\ \theta(O^{2}C^{7}C^{1}) \\ \theta(Cl^{1}C^{7}C^{1}) \end{array} $	$1.160 \\ 1.924 \\ 1.003 \\ 1.651 \\ 2.498 \\ 2.250 \\ 138.3 \\ 102.9 \\ 100.2 \\ 169.4$	$ \begin{array}{r} 1.133\\ 2.620\\ 0.983\\ 1.789\\ 3.157\\ 2.133\\ 166.3\\ 98.0\\ 95.3\\ 166.3 \end{array} $	1.151 2.043 0.996 1.695 2.616 2.187 143.6 101.4 99.4 168.0	0.428 1.165 1.869 1.007 1.625 2.436 2.310 135.8 103.4 100.4 170.6	1.178 1.732 1.021 1.560 2.358 2.937 131.3 105.5 100.3 174.7	1.183 1.688 1.030 1.524 2.325 2.961 129.6 105.9 99.6 174.4	$\begin{array}{c} 0.472 \\ 1.185 \\ 1.659 \\ 1.036 \\ 1.505 \\ 2.336 \\ 3.556 \\ 129.3 \\ 106.7 \\ 98.7 \\ 172.0 \end{array}$

Table S5. Total energy (*E*, a.u.), sum of electronic and thermal free energy (*G*, a.u.) and enthalpy (*H*, a.u.), entropy of formation (*S*, J mol⁻¹ K⁻¹) and value of imaginary frequency (v, cm⁻¹) for species of the hydrolysis of acetyl chloride (Scheme 2 and 5), as calculated at (B3LYP)/6-31G(d), (B3LYP)/6-311+G(d,p) and MP2/6-31G(d) levels of theory, in water and acetone, at 25 °C.

Com- pound	Solvent	Level of theory	Ε	G	Н	S	v
<u>6</u> a	water	6-31	-613.451193	-613.431853	-613.398351	295.0	-
6a	water	6-311	-613.531076	-613.512294	-613.478769	295.2	-
6a	water	MP2	-612.400991	-612.380497	-612.347208	293.1	-
6a	acetone	6-31	-613.450857	-613.431485	-613.397989	295.0	-
6a	acetone	6-311	-613.530701	-613.511884	-613.478365	295.2	-
6a	acetone	MP2	-612.400688	-612.380176	-612.346887	293.1	-
7	water	6-31	-76.421330	-76.419444	-76.397315	194.9	-
7	water	6-311	-76.472426	-76.470625	-76.448514	194.7	-
7	water	MP2	-76.210391	-76.208335	-76.186204	194.9	-
7	acetone	6-31	-76.420572	-76.418601	-76.396474	194.8	-
7	acetone	6-311	-76.471536	-76.469638	-76.447529	194.7	-
7	acetone	MP2	-76.209563	-76.207425	-76.185296	194.9	-
8a	water	6-31	-689.860334	-689.820796	-689.781892	342.6	-176
8a	water	6-311	-689.980941	-689.942670	-689.903195	347.6	-166
8a	water	MP2	-688.594145	-688.555538	-688.514909	357.8	-254
8a	acetone	6-31	-689.857646	-689.817530	-689.779030	339.0	-194
8a	acetone	6-311	-689.977903	-689.939371	-689.900028	346.5	-187
8a	acetone	MP2	-688.591343	-688.550934	-688.511906	343.7	-237
9a	water	6-31	-613.411011	-613.395543	-613.360703	306.8	-102
10a	water	6-31	-689.836155	-689.804020	-689.758497	400.9	-67
11a	water	6-31	-229.095670	-229.062205		288.2	-
11a	acetone	6-31	-229.094745	-229.061142	-229.028416	288.2	-
12	water	6-31	-460.804893	-460.817235	-460.795994	187.0	-
12	acetone	6-31	-460.804241	-460.816462	-460.795225	187.0	-
13	water	6-31	-229.477333	-229.435289	-229.401485	297.7	-
13	acetone	6-31	-229.471758	-229.429572	-229.395696	298.3	-
14	water	6-31	-1073.810885	-1073.794499	-1073.756439	335.2	-226
14	acetone	6-31	-1073.806260	-1073.789732	-1073.751775	334.2	-217
15	water	6-31	-305.904874	-305.842319	-305.802845	347.6	-151
15	acetone	6-31	-305.899434	-305.836848	-305.797196	349.2	-143
16	water	6-31	-152.851205	-152.832663	-152.800111	286.6	-
16	water	6-311	-152.949117	-152.930772	-152.898194	286.9	-
17	water	6-31	-229.282646	-229.244666	-229.205302	346.6	-
17	water	6-311	-229.426581	-229.391100	-229.348624	374.0	-
18	acetone	6-31	-269.589928	-269.514770	-269.472268	374.3	-
19a	water	6-31	-766.296759	-766.236943	-766.191248	402.4	-190
19a	water	6-311	-766.460568	-766.402740	-766.356092	410.8	-204
20a	water	6-31	-842.730841	-842.648334	-842.597680	446.1	-204
20a	water	6-311	-842.938731	-842.859487	-842.806779	464.2	-225
21a	acetone	6-31	-883.027560	-882.912056	-882.856205	491.8	-129

22a	water	6-31	-842.731528	-842.647794	-842.598659	432.7	-197.6
23a	water	6-31	-842.750152	-842.663627	-842.615326	425.3	-
24a	water	6-31	-689.877404	-689.834085	-689.798526	313.1	-310.2
25a	water	6-31	-689.893104	-689.853079	-689.813372	349.7	-
acetone	acetone	6-31	-193.161640	-193.105914	-193.071338	304.3	-

Table S6. Total energy (*E*, a.u.), sum of electronic and thermal free energy (*G*, a.u.) and enthalpy (*H*, a.u.), entropy of formation (*S*, J mol⁻¹ K⁻¹) and value of imaginary frequency (v, cm⁻¹) for species of the hydrolysis of acetyl chloride (**6a**) and chloroacetyl chloride (**6b**, Scheme 2 and 5), as calculated at (B3LYP)/6-31G(d) level of theory, using the Radii=UAHF option, in water and acetone solvents, at 25 and –10 °C for the reaction of **6a** and **6b**.

Com-	Solvent	T / °C	Е	G	Н	S	v
pound							
6a	water	25	-613.451449	-613.432186	-613.398690	295.0	-
6a	acetone	25	-613.448897	-613.425455	-613.396776	286.3	-
7	water	25	-76.419457	-76.417310	-76.395188	194.8	-
8a	water	25	-689.854101	-689,813592	-689.775472	335.7	-213.
16	water	25	-152.848149	-152.829240	-152.766643	287.1	-
17	water	25	-229.278519	-229.241940	-229.199635	372.5	-
18	acetone	25	-269.584544	-269.508784	-269.466416	373.1	-
19a	water	25	-766.291236	-766.229412	-766.185195	389.4	-187.
20a	water	25	-842.726189	-842.642366	-842.592638	437.9	-191.
21a	acetone	25	-883.013628	-882.896833	-882.842903	474.9	-108.
22a	water	25	-842.724747	-842.639952	-842.591665	425.2	-180.
23a	water	25	-842.746045	-842.658647	-842.610503	423.9	-
6b	water	-10	-1073.039450	-1073.027233	-1072.995790	313.9	-
6b	acetone	-10	-1073.034744	-1073.022050	-1072.990619	313.8	-
7	water	-10	-76.419457	-76.414730	-76.395563	190.6	-
8b	water	-10	-1149.437631	-1149.403222	-1149.368535	346.3	-228.
9b	water	-10	-1072.971525	-1072.963887	-1072.931395	324.4	-153.
11b	water	-10	-688.683884	-688.657354	-688.626643	306.6	-
12	water	-10	-460.799455	-460.808402	-460.790061	183.1	-
16	water	-10	-152.848149	-152.825457	-152.797613	278.0	-
17	water	-10	-229.278519	-229.237044	-229.201106	358.8	-
18	acetone	-10	-269.584544	-269.503885	-269.467967	358.6	-
19b	water	-10	-1225.877747	-1225.821833	-1225.782141	396.2	-179.
20b	water	-10	-1302.310990	-1302.232546	-1302.188121	443.5	-180.
21b	acetone	-10	-1342.597196	-1342.486213	-1342.438356	477.8	-421.
22b	water	-10	-1302.312961	-1302.234002	-1302.191388	425.4	-299.
23b	water	-10	-1302.336228	-1302.254126	-1302.211093	429.6	-
24b	water	-10	-1149.462667	-1149.425465	-1149.392475	329.3	-331.
25b	water	-10	-1149.470243	-1149.432690	-1149.399088	335.3	-
acetone	acetone	-10	-193.162188	-193.102611	-193.073095	294.7	-

Table S7. Changes of the thermodynamic parameters for the reaction steps of the hydrolysis of acetyl chloride (Scheme 2 and 5), as calculated at (B3LYP)/6-31G(d) (6-31), (B3LYP)/6-311+G(d,p) (6-311) and MP2/6-31G(d) (MP2) levels of theory, in water and acetone, at 25 $^{\circ}$ C.

Reaction	Level of theory	Solvent	ΔE kJ mol ⁻¹	ΔG kJ mol ⁻¹	ΔH kJ mol ⁻¹	$\Delta S \ \mathrm{J} \ \mathrm{mol}^{-1} \ \mathrm{K}^{-1}$
6a ≒ TS 9a	6-31	water	105.5	95.3	98.8	11.8
6a + 7 ≒ 10a	6-31	water	90.5	118.3	91.4	-90.4
6a + 7 ≒ TS 8a	6-31	water	32.0	80.1	36.2	-147.3
	6-311	water	59.2	105.7	63.2	-142.3
	MP2	water	45.3	87.4	48.6	-130.3
	6-31	acetone	36.2	85.5	40.6	-150.8
	6-311	acetone	63.9	110.7	67.9	-143.4
	MP2	acetone	49.6	96.3	53.2	-144.3
$\mathrm{TS} \ 8a \to 11a + 12$	6-31	water	-105.6	-154.0	-114.4	132.7
	6-31	acetone	-108.5	-157.7	-117.1	132.6
6a + 16 ≒ TS 19a	6-31	water	14.8	72.4	18.9	-179.3
	6-311	water	51.5	105.9	54.8	-171.3
$\mathrm{TS} \ \mathbf{19a} \rightarrow \mathbf{11a} + 12 + 7$	6-31	water	-66.0	-162.6	-82.8	267.7
6a + 17 ≒ TS 20a	6-31	water	7.87	74.0	15.7	-195.6
	6-311	water	49.7	115.3	54.1	-205.1
$\mathrm{TS} \ \mathbf{20a} \rightarrow \mathbf{11a} + 12 + 16$	6-31	water	-54.9	-167.4	-73.3	315.7
6a + 18 ≒ TS 21a	6-31	acetone	34.7	89.8	36.9	-177.4
TS $21a \rightarrow 11a + 12 + acetone$	6-31	acetone	-86.8	-187.6	-101.8	287.7
6a + 17 ≒ TS 22a	6-31	water	6.07	75.4	13.1	-209.0
$\mathrm{TS}\ 22a \to 11a + 12 + 16$	6-31	water	-50.7	-168.8	-70.7	329.1
23a ≒ TS 24a + 16	6-31	water	56.5	-8.19	43.8	174.7
TS $24a \rightarrow 25a$	6-31	water	-41.2	-49.9	-39.0	36.5
$25a \rightarrow 11a + 12$	6-31	water	-19.6	-69.2	-31.8	125.6

Table S8. Changes of the thermodynamic parameters for the reaction steps of the hydrolyses of acetyl chloride (**6a**) and chloroacetyl chloride (**6b**, Scheme 2 and 5), as calculated at (B3LYP)/6-31G(d) level of theory, using the Radii=UAHF option, in water and acetone, at 25 (for **a**) and -10 °C (for **b**).

Reaction	T / °C	Solvent	ΔE	ΔG	ΔH	ΔS
			kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹	$J \text{ mol}^{-1} \text{ K}^{-1}$
6a + 7 ≒ TS 8a	25	water	44.1	94.3	48.3	-154
6a + 16 ≒ TS 19a	25	water	22.0	84.1	26.6	-193
6a + 17 ≒ TS 20a	25	water	9.92	83.4	14.9	-230
6a + 18 ≒ TS 21a	25	acetone	58.7	115.9	58.3	-193
6a + 17 ≒ TS 22a	25	water	13.7	89.7	17.5	-242
6b ≒ TS 9b	-10	water	178.3	166.3	169.3	10.5
6b + 7 ≒ TS 8b	-10	water	55.9	101.7	60.1	-158
$\mathrm{TS}~8b \to 11b + 12$	-10	water	-120.0	-164.2	-126.5	143
6b + 16 ≒ TS 19b	-10	water	25.9	81.0	20.6	-196
$\mathrm{TS}\; \mathbf{19b} \rightarrow \mathbf{11b} + 12 + 7$	-10	water	-65.8	-154.0	-79.3	284
6b + 17 ≒ TS 20b	-10	water	18.3	83.3	23.0	-229
$\mathrm{TS}\;\mathbf{20b} \rightarrow \mathbf{11b} + 12 + 16$	-10	water	-53.8	-154.0	-68.8	324
6b + 18 ≒ TS 21b	-10	acetone	58.0	104.3	53.1	-194
TS 21b → 11b + 12 + acetone	-10	acetone	-126.9	-215.7	-135.1	307
6b + 17 ≒ TS 22b	-10	water	13.2	79.5	14.5	-247
TS 22b →11b + 12 + 16	-10	water	-48.6	-150.2	-60.2	342
23b ≒ TS 24b + 16	-10	water	66.7	8.41	55.1	177.7
TS $24b \rightarrow 25b$	-10	water	-20.0	-19.0	-17.4	6.12
$25b \rightarrow 11b + 12$	-10	water	-34.4	-86.8	-46.3	154

Table S9. Total energy (*E*, a.u.), sum of electronic and thermal free energy (*G*, a.u.) and enthalpy (*H*, a.u.), entropy of formation (*S*, J mol⁻¹ K⁻¹) and value of imaginary frequency (*v*, cm⁻¹) for species of the hydrolysis of benzoyl chlorides (**26**, Scheme 6) as calculated at (B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory, using the Radii=UAHF option, in acetone, at 25 °C.

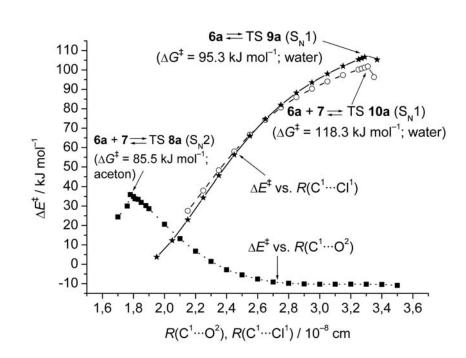
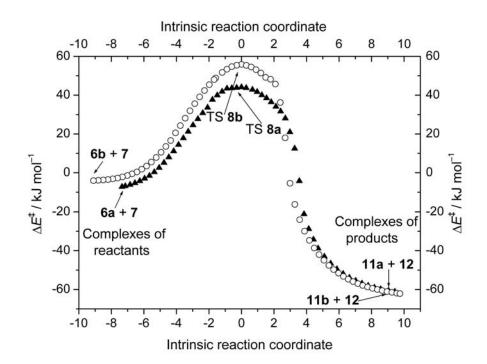
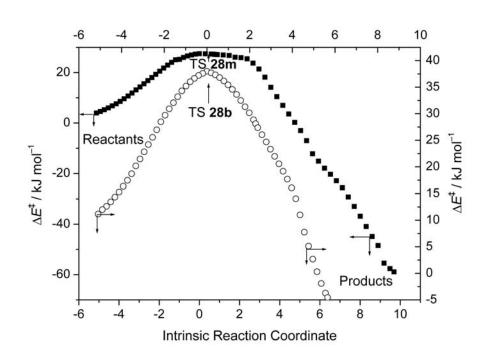
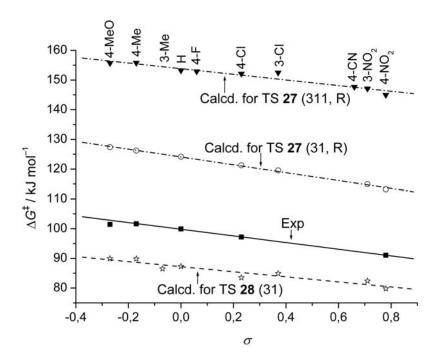

Com-	Х	level of	E	G	Н	S	v
pound		theory					
18	-	6-31	-269.584544	-269.508784	-269.466416	373.1	-
26a	Н	6-31	-805.188293	-805.120220	-805.078781	364.9	-
26b	4-MeO	6-31	-919.715918	-919.618422	-919.571044	417.2	-
26c	4-Me	6-31	-844.507875	-844.415850	-844.369010	412.5	-
26g	4-C1	6-31	-1264.782949	-1264.726817	-1264.681993	394.7	-
26h	3-C1	6-31	-1264.781645	-1264.725542	-1264.680692	394.9	-
261	3-NO ₂	6-31	-1009.686706	-1009.620453	-1009.572250	424.5	-
26m	$4-NO_2$	6-31	-1009.685735	-1009.619726	-1009.571326	426.2	-
27a	Н	6-31	-1074.746132	-1074.581724	-1074.520090	542.7	-180.
27b	4-MeO	6-31	-1189.273030	-1189.078688	-1189.010822	597.6	-80.6
27c	4-Me	6-31	-1114.065411	-1113.876558	-1113.809754	588.3	-138.
27g	4-C1	6-31	-1534.341860	-1534.189424	-1534.124440	572.2	-206.
27h	3-C1	6-31	-1534.340947	-1534.188795	-1534.123709	573.1	-243.
271	3-NO ₂	6-31	-1279.247870	-1279.085457	-1279.017279	600.4	-301.
27m	$4-NO_2$	6-31	-1279.247862	-1279.085383	-1279.017242	600.0	-290.
18	-	6-311	-269.693554	-269.622505	-269.576510	403.3	-
26a	Н	6-311	-805.311427	-805.244238	-805.202619	366.5	-
26b	4-MeO	6-311	-919.873018	-919.776999	-919.729374	419.4	-
26c	4-Me	6-311	-844.640897	-844.549694	-844.503082	410.5	-
26e	4- F	6-311	-904.580135	-904.522558	-904.478882	384.6	-
26g	4-C1	6-311	-1264.933168	-1264.877808	-1264.832811	396.2	-
26h	3-C1	6-311	-1264.931687	-1264.876395	-1264.831367	396.5	-
26k	4-CN	6-311	-897.576113	-897.513214	-897.467016	406.8	-
261	$3-NO_2$	6-311	-1009.871987	-1009.807294	-1009.758548	429.2	-
26m	$4-NO_2$	6-311	-1009.871196	-1009.806740	-1009.757741	431.5	-
27a	Н	6-311	-1074.970681	-1074.808384	-1074.745127	557.0	-102.
27b	4-MeO	6-311	-1189.531723	-1189.340206	-1189.270523	613.6	-102.
27c	4-Me	6-311	-1114.299623	-1114.112861	-1114.044673	600.5	-93.
27e	4- F	6-311	-1174.239768	-1174.086830	-1174.021802	572.6	-109.
27g	4-C1	6-311	-1534.593057	-1534.442378	-1534.376175	583.0	-115.
27h	3-C1	6-311	-1534.591837	-1534.440826	-1534.375265	577.3	-137.
27k	4-CN	6-311	-1167.238052	-1167.079470	-1167.013049	584.9	-180.
271	3-NO ₂	6-311	-1279.534026	-1279.373769	-1279.304794	607.4	-203.
27m	$4-NO_2$	6-311	-1279.534059	-1279.374030	-1279.304864	609.1	-209.

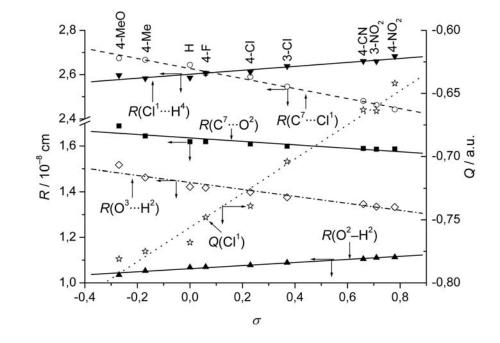
Table S10. Total energy $(E, a.u.)$, sum of electronic and thermal free energy $(G, a.u.)$ and
enthalpy (<i>H</i> , a.u.), entropy of formation (<i>S</i> , J mol ⁻¹ K ⁻¹) and value of imaginary frequency (v ,
cm ⁻¹) for species of the hydrolysis of benzoyl chlorides (26, Scheme 6) as calculated at
(B3LYP)/6-31G(d) and (B3LYP)/6-311+G(d,p) levels of theory, using the Radii=UAHF
option, in water, at 25 °C.

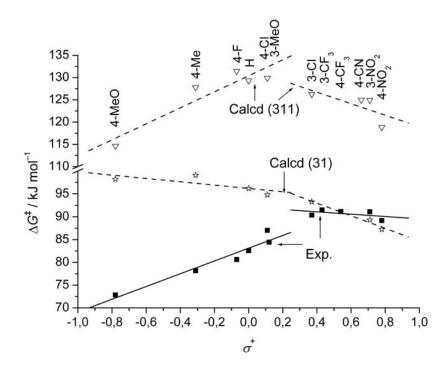

Com-	Х	level of	Ε	G	Н	S	v
pound		theory					
16	-	6-31	-152.848149	-152.829240	-152.796643	287.1	-
26a	Н	6-31	-805.191255	-805.123558	-805.082050	365.5	-
26b	4-MeO	6-31	-919.720354	-919.623408	-919.575953	417.9	-
26c	4-Me	6-31	-844.510952	-844.419312	-844.372468	412.5	-
26g	4-C1	6-31	-1264.786460	-1264.730802	-1264.685892	395.5	-
26h	3-C1	6-31	-1264.785136	-1264.729455	-1264.684559	395.3	-
261	3-NO ₂	6-31	-1009.691332	-1009.625444	-1264.577184	425.0	-
26m	$4-NO_2$	6-31	-1009.690276	-1009.624620	-1009.576173	426.6	-
28a	Н	6-31	-958.026127	-957.916158	-957.863912	460.1	-203.5
28b	4-MeO	6-31	-1072.554029	-1072.415249	-1072.356536	517.0	-203.7
28c	4-Me	6-31	-997.345342	-997.210821	-997.153783	502.3	-203.0
28g	4-C1	6-31	-1417.621693	-1417.523929	-1417.467512	490.9	-203.6
28h	3-C1	6-31	-1417.620962	-1417.523156	-1417.467512	490.0	-201.7
281	$3-NO_2$	6-31	-1162.528359	-1162.420658	-1162.361542	520.6	-193.1
28m	$4-NO_2$	6-31	-1162.527963	-1162.420632	-1162.361208	523.3	-189.3
16	-	6-311	-152.945795	-152.927081	-152.894403	287.8	-
26a	Н	6-311	-805.314832	-805.248092	-805.206413	367.0	-
26b	4-MeO	6-311	-919.878188	-919.782803	-919.735120	419.9	-
26c	4-Me	6-311	-844.644476	-844.553802	-844.507135	410.9	-
26e	4- F	6-311	-904.584389	-904.527398	-904.483643	385.3	-
26g	4-Cl	6-311	-1264.937172	-1264.882347	-1264.837276	396.9	-
26h	3-Cl	6-311	-1264.935663	-1264.880872	-1264.835791	397.0	-
26k	4-CN	6-311	-897.581412	-897.518917	-897.472660	407.3	-
261	$3-NO_2$	6-311	-1009.877499	-1009.813175	-1009.764427	429.3	-
26m	$4-NO_2$	6-311	-1009.876619	-1009.812476	-1009.763527	419.9	-
28a	Н	6-311	-958.233556	-958.125915	-958.072378	471.4	-209.6
28b	4-MeO	6-311	-1072.798664	-1072.666223	-1072.602519	561.0	-17.1
28c	4-Me	6-311	-997.563274	-997.432207	-997.373164	519.9	-181.8
28e	4- F	6-311	-1057.502860	-1057.404411	-1057.349340	485.0	-216.4
28g	4-Cl	6-311	-1417.855794	-1417.759950	-1417.703181	499.9	-219.9
28h	3-Cl	6-311	-1417.854418	-1417.759859	-1417.702165	508.1	-196.6
28k	4-CN	6-311	-1050.501523	-1050.398399	-1050.340471	510.1	-184.0
281	$3-NO_2$	6-311	-1162.797589	-1162.692677	-1162.632275	531.9	-182.9
28m	$4-NO_2$	6-311	-1162.797133	-1162.694292	-1162.631930	549.2	-162.5

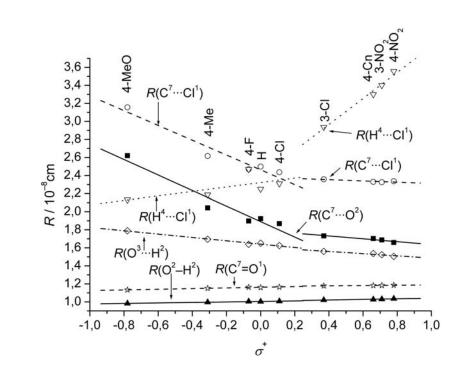
		(26, Sche	eme 6) as	calculated	at (B3LY		the hydrol
							water, at 25
TS	Х	Level	Solvent	ΔE^{\ddagger}	ΔG^{\ddagger}	ΔH^{\ddagger}	ΔS_{1}^{\ddagger}
		of calc.		kJ mol ⁻¹	kJ mol ⁻¹		J mol ⁻¹ K ⁻
27a	Н	6-31	acetone	70.1	124.1	65.9	-195.2
27b	4-MeO	6-31	acetone	72.0	127.4	70.0	-192.7
27c	4-Me	6-31	acetone	70.9	126.2	67.4	-197.3
27g	4-Cl	6-31	acetone	67.3	121.2	62.9	-195.6
27h	3-Cl	6-31	acetone	66.3	119.5	61.4	-194.9
271	$3-NO_2$	6-31	acetone	61.4	114.9	56.1	-197.2
27m	$4-NO_2$	6-31	acetone	58.9	113.2	53.8	-199.3
$\Delta E^{\ddagger} = -1$	$1.9\sigma + 69.$	5(r=0.98)	$33); \ \Delta G^{\ddagger} = 1$	$-13.2\sigma + 12$	24.1 (r = 0.1)	998);	
$\Delta H^{\ddagger} = -$	$14.2\sigma + 65.$.8(r=0.99)	$(\Delta S^{\ddagger}); \Delta S^{\ddagger} = -$	-195.5 ± 1.3	5 J mol ⁻¹ K	-1	
27a	Н	6-311	acetone	90.2	153.2	89.8	-212.7
27b	4-MeO	6-311	acetone	91.5	155.7	93.4	-209.0
27c	4-Me	6-311	acetone	91.4	155.8	92.2	-213.3
27e	4 - F	6-311	acetone	89.0	152.9	88.7	-215.2
27g	4-Cl	6-311	acetone	88.3	152.1	87.6	-216.6
27h	3-C1	6-311	acetone	87.7	152.5	86.1	-222.5
27k	4-CN	6-311	acetone	83.0	147.7	80.5	-225.2
271	$3-NO_2$	6-311	acetone	82.7	147.1	80.0	-225.1
27m	$4-NO_2$	6-311	acetone	80.5	145.0	77.7	-225.7
				$-9.51\sigma + 15$			
$\Delta H^{\ddagger} = -$	$14.2\sigma + 90.$	<u>`</u>	$(\Delta S^{\ddagger} =$	-218.4 ± 6.3	3 J mol ⁻¹ K	-1	
28a	Н	6-31	water	34.9	96.2	38.8	-192.5
28b	4-MeO	6-31	water	38.0	98.2	42.2	-187.9
28c	4-Me	6-31	water	36.1	99.1	40.2	-197.3
28g	4-C1	6-31	water	33.9	94.8	37.7	-191.7
28h	3-C1	6-31	water	32.4	93.3	35.9	-192.4
281	$3-NO_2$	6-31	water	29.2	89.3	32.3	-191.5
28m	$4-NO_2$		water	27.5	. 87.2	30.5	-190.4
						$r^+ + 96.2 (r =$	= 0.759);
$\Delta H^{\ddagger} = -4$	$4.82\sigma^{+} + 38$	8.5 (r = 0.9)	$(\Delta S^{\ddagger}); \Delta S^{\ddagger} =$	-192.0 ± 2	$.8 J \text{ mol}^{-1}$	$X^{-1};$	
						r^{+} + 98.5 (r =	= 0.983);
				$-192.0 \pm 2.$			
28a	Н	6-311	water	71.1	129.3	74.7	-183.3
28b	4-MeO	6-311	water	66.5	114.6	70.9	-146.6
28c	4-Me	6-311	water	70.9	127.8		-178.8
28e	4-F		water	71.7	131.5	75.4	-188.1
28g	4-C1		water	71.3	129.9		-184.8
28h	3-C1		water	71.0			-176.7
28k	4-CN		water	67.4	125.0	69.8	-185.0
281	3-NO ₂		water	67.5	124.9	69.7	-185.2
28m	$4-NO_2$		water	66.4		68.3	-169.7
<u>4-MeO -</u>	$\underline{4Cl}$: ΔE^{\ddagger}	$= 5.63\sigma^{+} +$	-71.5(r = 0)	0.921); ΔG^{3}	$r = -18.0\sigma_{+}^{+}$	r + 130.4 (r - 1)	= 0.732);
$\Delta H^* = -4$	$4.61\sigma^{-} + 75$	5.0(r=0.9)	$(\Delta S^*) =$	-177.6 ± 1	2.9 J mol ⁻¹	$K^{-1};$	
2 01 1	$NO_2 \cdot \Lambda E^{\ddagger}$	$= -11 \ 1\sigma^{+}$	+751(r =	0 992)· AG	$h^* = -13.0\sigma$	$^{+}$ + 131.9(r)	= 0.700).
3-CI-4				-177.6 ± 12	1	• • • • • • • • • • • • • • • • • • •	


Table S11. Activation parameters and their Hammett correlations for the hydrolysis of)/6-


1155x812mm (150 x 150 DPI)


1155x812mm (150 x 150 DPI)


1155x812mm (150 x 150 DPI)


1155x812mm (150 x 150 DPI)

1155x812mm (150 x 150 DPI)

1155x812mm (150 x 150 DPI)

1155x812mm (150 x 150 DPI)