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Abstract
We study the alternating-time temporal logics ATL and ATL? extended with strategy contexts:
these make agents commit to their strategies during the evaluation of formulas, contrary to plain
ATL and ATL? where strategy quantifiers reset previously selected strategies.

We illustrate the important expressive power of strategy contexts by proving that they make
the extended logics, namely ATLsc and ATL?sc, equally expressive: any formula in ATL?sc can
be translated into an equivalent, linear-size ATLsc formula. Despite the high expressiveness of
these logics, we prove that their model-checking problems remain decidable by designing a tree-
automata-based algorithm for model-checking ATL?sc on the full class of n-player concurrent game
structures.

1 Introduction

Temporal logics and model checking. Thirty years ago, temporal logics (LTL, CTL) have
been proposed for specifying properties of reactive systems, with the aim of automatically
checking that those properties hold for these systems [18, 10, 19]. This model-checking
approach to formal verification has been widely studied, with powerful algorithms and
implementations, and successfully applied in many situations.

Alternating-time temporal logic (ATL). In the last ten years, temporal logics have been
extended with the ability of specifying controllability properties of multi-agent systems:
the evolution of a multi-agent system depends on the concurrent actions of several agents,
and ATL extends CTL with strategy quantifiers [4]: it can express properties such as agent A
has a strategy to keep the system in a set of safe states, whatever the other agents do.

qB

Figure 1 Example of a two-player turn-
based game

Nesting strategy quantifiers. Assume that, in the
formula above, “safe states” are those from which
agent B has a strategy to reach her goal state qB
infinitely often, and consider the system depicted
on Fig. 1, where the circled states are controlled
by player A (meaning that Player A selects the
transition to be fired from those state) and the square
state is controlled by player B. It is easily seen that
this game contains no “safe state”: after each visit to qB, Player A can decide to take the
system to the rightmost state, from which qB is not reachable. It follows that Player A has
no strategy to keep the system in safe states.

Now, assume that Player A commits to always select the transition to the left, when
the system is in the initial (double-circled) state. Then under this strategy, it suffices for
Player B to always go to qB when the system is in the square state in order to achieve
her goal of visiting qB infinitely often. The difference with the previous case is that here,
Player B takes advantage of Player A’s strategy in order to achieve her goal.
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Both interpretations of our original property can make sense, depending on the context.
However, the original semantics of ATL cannot capture the second interpretation: strategy
quantifications in ATL “reset” previous strategies. While this is very convenient algorithmic-
ally (and makes ATL model-checking polynomial-time for some game models), it prevents
ATL from expressing many interesting properties of games (especially non-zero-sum games).

In [7], we introduced an alternative semantics for ATL, where strategy quantifiers store
strategies in a context. Those strategies then apply for evaluating the whole subformula, until
they are explicitly removed from the context or replaced with a new strategy. We demonstrated
the high expressiveness of this new semantics by showing that it can express important
requirements, e.g. existence of equilibria or dominating strategies.

Our contribution. This work is a continuation of [7]. Our contribution in this paper is
twofold: on the one hand, we prove that ATL?sc is not more expressive than ATLsc: this is a
theoretical argument witnessing the expressive power of strategy contexts; it complements
the more practical arguments presented in [7]. On the other hand, we develop an algorithm
for ATL?sc model-checking, based on alternating tree automata. Our algorithm uses a novel
encoding of strategies into the execution tree of the underlying concurrent game structures.
This way, it is valid for the whole class of concurrent game structures and without restrictions
on strategies, contrary to previously existing algorithms on related extensions of ATL.

Related work. In the last three years, several approaches have been proposed to increase
the expressiveness of ATL and ATL?.

Strategy logic [8, 9] extends LTL with first-order quantification over strategies. This allows
for very expressive constructs: for instance, the property above would be written as
∃σA. [G (∃σB . (GF qB) (σA, σB))] (σA).
This logic was only studied on two-player turn-based games in [8, 9], where a non-
elementary algorithm is given. The algorithm we propose in this paper could be adapted
to handle strategy logic in multi-player concurrent games.
QDµ [17] is a second-order extension of the propositional µ-calculus augmented with
decision modalities. In terms of expressiveness, fixpoints allow for richer constructs than
CTL- or LTL-based approaches. Again, model-checking has been proved to be decidable,
but only over the class of alternating transition systems (as defined in [3]).
Stochastic game logic [6] is an extension of ATL similar to ours, but in the stochastic case.
It is proved undecidable in the general case, and decidable when strategy quantification
is restricted to memoryless (randomized or deterministic) strategies.
several other semantics of ATL, related to ours, are discussed in [1, 2]. A ∆P

2 -algorithm
is proposed there for a subclass of our logic (where strategies stored in the context are
irrevocable and cannot be overwritten), but no proof of correctness is given. In [20], an
NP algorithm is proposed for the same subclass, but where strategy quantification is
restricted to memoryless strategies.

By lack of space, some proofs are omitted in this paper, but they are detailed in [11].

2 ATL with strategy contexts

2.1 Concurrent game structures.
Concurrent game structures [4] are a multi-player extension of classical Kripke structures.
Their definition is as follows:
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▶ Definition 1. A Concurrent Game Structure (CGS for short) C is an 7-tuple 〈Loc, Lab, δ,
Agt,M,Mov,Edg〉 where:
〈Loc, Lab, δ〉 is a finite Kripke structure, where Loc is the set of locations, Lab : Loc→ 2AP

is a labelling function, and δ ⊆ Loc× Loc is the set of transitions;
Agt = {A1, ..., Ap} is a finite set of agents (or players);
M is a finite, non-empty set of moves;
Mov : Loc× Agt→ P(M) ∖ {∅} defines the (finite) set of possible moves of each agent
in each location.
Edg : Loc×MAgt → δ is a transition table; with each location ` and each set of moves of
the agents, it associates the resulting transition, which is required to depart from `.

The size |C| of a CGS C is |Loc|+ |Edg|, where |Edg| is the size of the transition table1.

The intended behaviour of a CGS is as follows [4]: in a location `, each player Ai in Agt
chooses one among her possible moves mi in Mov(`, Ai); the next transition to be fired is
given by Edg(`, (m1, ...,mp)). We write Next(`) for the set of all transitions corresponding
to possible moves from `, and Next(`, Aj ,mj), with mj ∈ Mov(`, Aj), for the restriction of
Next(`) to possible transitions from ` when player Aj plays the move mj . We extend Mov
and Next to coalitions (i.e., sets of agents) in the natural way:

given A ⊆ Agt and ` ∈ Loc, Mov(`, A) denotes the set of possible moves for coalition A
from `. Those moves m are composed of one single move per agent of the coalition, i.e.,
m = (ma)a∈A.
Given m = (ma)a∈A ∈ Mov(`, A), we let Next(`, A,m) denote the restriction of Next(`)
to locations reachable from ` when every player Aj ∈ A makes the move mAj .

A (finite or infinite) path of C is a sequence ρ = `0`1 . . . of locations such that for any i,
`i+1 ∈ Next(`i). Finite paths are also called history. The length of a history ρ = `0`1 . . . `n
is n. We write ρi→j for the part of ρ between `i and `j (inclusive). In particular, ρi→j is
empty iff j < i. We simply write ρi for ρi→i, denoting the i+ 1-st location `i of ρ. We also
define first(ρ) = ρ0, and, if ρ has finite length n, last(ρ) = ρn. Given a history π of length n
and a path ρ s.t. last(π) = first(ρ), the concatenation of π and ρ is the path τ = π · ρ s.t.
τ0→n = π and τn→∞ = ρ (notice that the last location of π and the first location of ρ are
“merged”).

A strategy for a player Ai ∈ Agt is a function fi that maps any history to a possible
move for Ai, i.e., satisfying fi(`0 . . . `m) ∈ Mov(`m, Ai). A strategy for a coalition A of
agents is a mapping assigning a strategy to each agent in the coalition. The set of strategies
for A is denoted Strat(A). The domain of FA ∈ Strat(A) (denoted dom(FA)) is A. Given
a coalition B, the strategy (FA)|B (resp. (FA)∖B) denotes the restriction of FA to the
coalition A ∩B (resp. A∖B).

Let ρ be a history of length n. A strategy FA = (fj)Aj∈A for some coalition A induces a
set of paths from ρ, called the outcomes of FA after (or from) ρ, and denoted Out(ρ, FA):
a path π = ρ · `1`2 . . . is in Out(ρ, FA) iff, writing `0 = last(ρ), for all i ≥ 0 there exists a
set of moves (mi

k)Ak∈Agt such that mi
k ∈ Mov(`i, Ak) for all Ak ∈ Agt, mi

k = fAk(π0→n+i)
if Ak ∈ A, and `i+1 ∈ Next(`i,Agt, (mi

k)Ak∈Agt). We write Out∞(ρ, FA) for the set of infinite
outcomes of FA after ρ. Note that Out(ρ, FA) ⊆ Out(ρ, (FA)|B) for any two coalitions A
and B, and that Out(ρ, F∅) represents the set of all paths starting with ρ.

1 Our results would still hold (with the same complexity) if we consider symbolic CGSs [13], where the
transition table is encoded succinctly as boolean formulas.
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It is also possible to combine two strategies F ∈ Strat(A) and F ′ ∈ Strat(B), resulting in
a strategy F ◦F ′ ∈ Strat(A ∪B) defined as follows: (F ◦F ′)|Aj (ρ) is F|Aj (ρ) (resp. F ′|Aj (ρ))
if Aj ∈ A (resp. Aj ∈ B ∖A).

Finally, given a strategy F and a history ρ, we define the strategy F ρ corresponding to
the behaviour of F after prefix ρ: it is defined, for any history π with last(ρ) = first(π), as
F ρ(π) = F (ρ · π).

2.2 Alternating-time temporal logics.
The logics ATL and ATL? have been defined in [4] as extensions of CTL and CTL? with
strategy quantification. Following [7], we further extend them with strategy contexts:

▶ Definition 2. The syntax of ATL?sc is defined by the following grammar:

ATL?sc 3 ϕs, ψs ::= p | ¬ϕs | ϕs ∨ ψs | 〈·A·〉ϕp | ·〉A〈·ϕs
ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ ψp | Xϕp | ϕpUψp

with p ∈ AP and A ⊆ Agt. Formulas defined as ϕs are called state-formulas, while ϕp
defines path-formulas. The logic ATLsc is obtained by restricting the grammar of ATL?sc
path-formulas as follows:

ϕp, ψp ::= ¬ϕp | Xϕs | ϕsUψs.

That a formula ϕ in ATL?sc (or ATLsc) holds (initially) along a computation ρ of a CGS C
under a strategy context F (i.e., a preselected strategy for some of the players, hence
belonging to some Strat(A) for a coalition A), denoted C, ρ |=F ϕ, is defined as follows:

C, ρ |=F p iff p ∈ Lab(first(ρ))
C, ρ |=F ¬ϕ iff C, ρ 6|=F ϕ

C, ρ |=F ϕ ∨ ψ iff C, ρ |=F ϕ or C, ρ |=F ψ

C, ρ |=F 〈·A·〉ϕp iff ∃FA ∈ Strat(A). ∀ρ′ ∈ Out∞(first(ρ), FA ◦F ). C, ρ′ |=FA ◦F ϕp

C, ρ |=F ·〉A〈·ϕs iff C, ρ |=F∖A ϕs

C, ρ |=F Xϕp iff C, ρ1→∞ |=Fρ0→1 ϕp

C, ρ |=F ϕpUψp iff ∃i ≥ 0. C, ρi→∞ |=Fρ0→i ψp and ∀0 ≤ j < i. C, ρj→∞ |=Fρ
0→j ϕp

We define the following shorthands, which will be useful in the sequel: > def= p∨¬p, ⊥ def=
¬>, Fϕ def= >Uϕ, Gϕ

def= ¬F¬ϕ, 〈·A·〉ϕs
def= 〈·A·〉 (⊥Uϕs) and 〈〈A〉〉ϕ def= ·〉Agt〈· 〈·A·〉ϕ.

▶ Example 3 (see [7] for more examples). We illustrate the usefulness of strategy contexts
with some examples. First, the last shorthand 〈〈A〉〉 is the classical ATL? strategy quantifier
(where each quantification resets the context), so that ATLsc and ATL?sc encompass ATL and
ATL?, respectively.

ATLsc can also express qualitative equilibria properties, for instance Nash equilibria.
Given the (non-zero-sum) objectives Φ1 and Φ2 of players 1 and 2, Nash equilibria are
strategy profiles where none of the player can unilaterally improve her payoff. In other
terms, if the Player-1 strategy in the context is not winning against the Player-2 strategy,
then there is no Player-1 winning strategy against this particular strategy of Player 2 (and
symmetrically). Thus, the existence of a Nash equilibrium can be expressed as

〈·A1, A2·〉
[(
〈·A1·〉Φ1→Φ1

)
∧
(
〈·A2·〉Φ2→Φ2

)]
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As another example, we mention the interaction between a server S and different cli-
ents (Ci)i, where we may want to express that the server can be programmed in such a way
that each client Ci has a strategy to have its request granted. This could be written as

〈·S·〉G
[∧
i

(
reqi→ 〈·Ai·〉F granti

)]
As stated in Lemma 4, the truth value of a state formula ϕs depends only on the strategy

context F and the first state of the computation ρ where it is interpreted (thus we may
simply write C, first(ρ) |=F ϕs when it raises no ambiguity).

▶ Lemma 4. Let C be a CGS, and F ∈ Strat(A) be a strategy context. For any state
formula ϕs, and for any two infinite paths ρ and ρ′ with first(ρ) = first(ρ′), it holds

C, ρ |=F ϕs ⇔ C, ρ′ |=F ϕs.

Proof. The proof is by induction on the structure of ϕs: the result obviously holds for
atomic propositions, and it is clearly preserved by boolean combinations and by the ·〉A〈·
operator. Finally, if ϕs = 〈·A·〉ψs, the result is immediate as the semantics only involves the
first location of the path along which the formula is being evaluated. ◀

▶ Remark. It must be noted that contrary to ATL, it is not possible to restrict to memoryless
strategies (i.e., that only depend on the current state) for ATLsc formulas. For example,
the formula 〈·A·〉G ( 〈·∅·〉FP ∧ 〈·∅·〉FP ′) is equivalent in a standard Kripke struture (seen
as a CGS with one single player A) to the CTL? formula E(

∞
FP ∧

∞
FP ′) that may require

strategies with memory. The next section provides more results on the extra expressiveness
brought in by strategy contexts.

3 The expressive power of strategy contexts

As shown in [7], adding strategy contexts in formulas increases the expressive power of logics:
ATLsc (resp. ATL?sc) is strictly more expressive than ATL (resp. ATL?). Game Logic (see [4])
can also be translated into ATL?sc (while the converse is not true). In this section, we present
some new results on the expressiveness of ATLsc.

3.1 Alternating bisimulation.
Contrary to ATL, ATL?, GL or AMC, our logics are not alternating-bisimulation (see [5])
invariant, indeed we have: There exists two CGSs C and C′, with an alternating-bisimulation
linking two states `0 of C and `′0 in C′, and an ATLsc formula ϕ such that C, `0 |= ϕ and
C′, `′0 6|= ϕ.

3.2 Relative expressiveness of ATLsc and ATL?
sc.

Surprisingly, strategy contexts bring ATLsc to the same expressiveness as ATL?sc. This was
already exemplified above, with the CTL? formula E(

∞
FP ∧

∞
FP ′). We can extend this

approach to any ATL?sc formula: the idea is to
1. first use full strategy contexts (by adding universally quantified strategies) in order to be

able to insert the 〈·∅·〉 modality before every temporal modality, and
2. ensure that for every nested strategy quantifier 〈·A·〉 , Coalition A cannot take advantage

of the added strategies.
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Given an ATL?sc formula Φ and a coalition B, we define Φ̂[B] inductively as follows:

P̂ [B] def= P ¬̂ϕ[B] def= ¬ϕ̂[B] ϕ̂ ∧ ψ
[B] def= ϕ̂[B] ∧ ψ̂[B]

X̂ϕ
[B] def= 〈·∅·〉X ϕ̂[B] ϕ̂Uψ

[B] def= 〈·∅·〉 (ϕ̂
[B]

U ψ̂[B])

〈̂·A·〉ϕ
[B] def= 〈·A·〉 ¬ 〈·Agt\(A ∪B)·〉 ¬ϕ̂[A∪B] ·̂〉A〈·ϕ

[B] def= ϕ̂[B∖A]

Clearly, Φ̂[B] is an ATLsc formula. The idea behind this translation is that a state-formula ϕ̂A
interpreted in a strategy context F only depends on F|A. We then have:

▶ Lemma 5. Let C be a CGS, ` be one of its locations, and F be a strategy context. Then for
any ATL?sc formula ϕ, for any strategy context G s.t. dom(G) = Agt∖ dom(F ), and for any
outcome π ∈ Out∞(`,G ◦F ), it holds: C, π |=F ϕ ⇔ C, π |=G ◦F ϕ̂

[dom(F )]. Moreover, if ϕ is
a state-formula, this result extends to any strategy context G s.t. dom(G) ∩ dom(F ) = ∅.

Since our transformation does not depend on the underlying CGS, we get:

▶ Theorem 6. Given a set of agents Agt, any ATL?sc formula ϕ can be translated into an
equivalent (under the empty context) ATLsc formula ϕ̂ for any CGS based on Agt.

Another consequence of the previous result is that any ATL? state-formula ϕ can be
translated into the equivalent ATLsc formula ϕ̂∅ in polynomial time. Thus we have:

▶ Corollary 7. Model-checking ATLsc is 2EXPTIME-hard.

4 From ATLsc to alternating tree automata

The main result of this section is the following:

▶ Theorem 8. Model-checking ATLsc formulas with at most k nested strategy quantifiers
can be achieved in (k + 1)EXPTIME. The program complexity (i.e., the complexity of
model-checking a fixed ATLsc formula) is in EXPTIME.

The proof mainly consists in building an alternating tree automaton from a formula and
a CGS. Similar approaches have already been proposed for strategy logic [9] or qDµ [17], but
they were only valid for subclasses of CGSs: strategy logic was only studied on turn-based
games, while the algorithm for qDµ was restricted to ATSs [3]. In both cases, the important
point is that strategies are directly encoded as trees, with as many successors of a node as
the number of possible moves from the corresponding node. With this representation, it is
required that two different successors of a node correspond to two different states (which is
the case for ATSs, hence for turn-based games): if this is not the case, the tree automaton
may accept strategies that do not only depend on the sequence of states visited in the history,
but also on the sequence of moves proposed by the players. Our encoding is different: we
work on the execution tree of the CGS under study, and label each node with possible moves
of the players. We then have to focus on branches that correspond to outcomes of selected
strategies, and check that they satisfy the requirement specified by the formula. Before
presenting the detailed proof, we first introduce alternating tree automata and fix notations.

4.1 Trees and alternating tree automata
Let Σ and S be two finite sets. A Σ-labelled S-tree is a pair T = 〈T, l〉, where
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T ⊆ S∗ is a non-empty set of finite words on S satisfying the following constraints: for any
non-empty word n = m · s in T with m ∈ T and s ∈ S, the word m is also in T ;
l : T → Σ is a labeling function.

Given such a tree T = 〈T, l〉 and a node n ∈ T , the set of directions from n in T is the set
dirT (n) = {s ∈ S | n·s ∈ T}. The set of successors of n in T is succT (n) = {n·s | s ∈ dirT (n)}.
We use Tn to denote the subtree rooted in n. An S-tree is complete if T = S∗, i.e., if
dirT (n) = S for all n ∈ T . We may omit the subscript T when it is clear from the context.

The set of infinite paths of T is the set PathT = {s0 ·s1 · · · ∈ Sω | ∀i ∈ ℕ. s0 ·s1 · · · si ∈ T}.
Given such an infinite path π = (si)i∈ℕ, we write l(π) for the infinite sequence (l(si))i∈ℕ ∈ Σω,
and Inf(l(π)) for the set of letters in Σ that appear infintely often along l(π).

Assume that Σ = Σ1×Σ2, and pick a Σ-labelled S-tree T = 〈T, l〉. For all n ∈ T , we write
l(n) = (l1(n), l2(n)) with li(n) ∈ Σi for i ∈ {1, 2}. Then for i ∈ {1, 2}, the projection of T
on Σi, denoted by projΣi(T ), is the Σi-labelled S-tree 〈T, li〉. Two Σ-labelled S-trees are
Σi-equivalent if their projections on Σi are equal. These notions naturally extend to more
complex alphabets, of the form

∏
i∈I Σi.

We now define alternating tree automata, which will be used in the proof. This requires
the following definition: the set of positive boolean formulas over a finite set P of propositional
variables is the set of formulas generated by: PBF(P ) 3 ζ ::= p | ζ ∧ ζ | ζ ∨ ζ | > | ⊥ where p
ranges over P . That a valuation v : P → {>,⊥} satisfies a formula in PBF(P ) is defined in
the natural way. We abusively say that a subset P ′ of P satisfies a formula ϕ ∈ PBF(P )
iff the valuation 1P ′ (mapping the elements of P ′ to > and te elements of P ∖ P ′ to ⊥)
satisfies ϕ. Since negation is not allowed, if P ′ |= ϕ and P ′ ⊆ P ′′, then also P ′′ |= ϕ.

▶ Definition 9. Let S and Σ be two finite sets. An alternating S-tree automaton on Σ, or
〈S,Σ〉-ATA, is a 4-tuple A = 〈Q, q0, τ,Acc〉 where Q is a finite set of states, q0 ∈ Q is the
initial state, Σ is a finite alphabet, τ : Q× Σ→ PBF(S ×Q) is the transition function, and
Acc : Qω → {>,⊥} is the acceptance function.

A non-deterministic S-tree automaton on Σ, or 〈S,Σ〉-NTA, is a 〈S,Σ〉-ATA in which
conjunctions are not allowed for defining the transition function. The size of A, denoted
by |A|, is the number of states in Q.

Let A = 〈Q, q0, τ,Acc〉 be an 〈S,Σ〉-ATA, and T = 〈T, l〉 be a Σ-labelled S-tree. An execu-
tion tree of A on T is a T ×Q-labelled S×Q-tree E = 〈E, p〉 such that p(ε) = (ε, q0), and for
each node e ∈ E with p(e) = (t, q), the set dirE(e) = {(s0, q0), (s1, q1), ..., (sn, qn)} ⊆ S ×Q
satisfies τ(q, l(t)), and for all 0 ≤ i ≤ n, the node e ·(si, qi) is labelled with (t ·si, qi). We write
pS(e · (si, qi)) = t · si and pQ(e · (si, qi)) = qi for the two components of the labelling function.

An execution tree is accepting if Acc(pQ(π)) = > for any infinite path π ∈ (S × Q)ω
in PathE . A tree T is accepted by A iff there exists an accepting execution tree of A on T .
In the sequel, we use parity acceptance condition, given as a function Ω: Q→ {0, ..., k − 1},
from which Acc is defined as follows: Acc(pQ(π)) = > iff min{Ω(q) | q ∈ Inf(pQ(π))} is
even. 〈S,Σ〉-ATAs with such accepting conditions are called 〈S,Σ〉-APTs, and given an
〈S,Σ〉-APT A, the size of the image of Ω is called the index of A, and is denoted by idx(A).
Analogously, 〈S,Σ〉-NPTs are 〈S,Σ〉-NTAs with parity acceptance conditions.

4.2 Unwinding of a CGS
Let C = 〈Loc, Lab, δ,Agt,M,Mov,Edg〉 be an n-player CGS, where we assume w.l.o.g. that
δ = Loc× Loc, and Mov(`, Ai) =M for any state ` and any player Ai. Let `0 be a state of C.
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For each location ` ∈ Loc, we define Σ(`) = {`} × {Lab(`)} × {Edg(`)}, and Σ+(`) =
Σ(`)× (M∪ {⊥})Agt × 2{po,pl,pr}, where ⊥ is a special symbol not inM and po, pl and pr
are three fresh propositions not in AP. We let2 ΣC =

⋃
`∈Loc Σ(`), and Σ+

C =
⋃
`∈Loc Σ+(`).

The unwinding of C from `0 is the ΣC-labelled complete Loc-tree U = 〈U, v〉 where U =
Loc∗ and v(u) ∈ Σ(last(`0 · u)) for all u ∈ U . An extended unwinding of C from `0 is a
Σ+
C -labelled complete Loc-tree U ′ such that projΣC

(U ′) = U . For each letter σ of Σ+
C , we write

σLoc, σAP, σEdg, σstr and σp for the five components, and extend this subscripting notation
for the labelling functions of trees (written lLoc, lAP, lEdg, lstr and lp).

In the sequel, we identify a node u of U (which is a finite word over Loc) with the finite
path `0 · u of C. Notice that this sequence of states of C may correspond to no real path of C,
in case it involves a transition that is not in the image of Edg.

With C and `0, we associate a 〈Loc,Σ+
C 〉-APT AC,`0 = 〈Loc, `0, τ,Ω〉 s.t. Loc = {` |

` ∈ Loc}, `0 is the initial state, Ω constantly equals 0 (hence any valid execution tree is
accepting), and given a state ` ∈ Loc and a letter σ ∈ Σ+

C , the transition function is defined
as follows: if σ ∈ Σ+(`), we let τ(`, σ) =

∧
`′∈Loc(`′, `′), and otherwise, we let τ(`, σ) = ⊥.

▶ Lemma 10. Let C be a CGS and `0 be a state of C. Let T = 〈T, l〉 be a Σ+
C -labelled

Loc-tree. Then AC,`0 accepts T iff projΣC
(T ) is the unwinding of C from `0.

In the sequel, we also use automaton AC , which accepts the union of all L(AC,`0) when `0
ranges over Loc. It is easy to come up with such an automaton, e.g. with Lemma 13 below.

4.3 Strategy quantification
Let T = 〈T, l〉 be a Σ+

C -labelled complete Loc-tree accepted by AC,`0 . Such a tree defines
partial strategies for each player: for A ∈ Agt, and for each node n ∈ T , we define stratTA(`0 ·
n) = lstr(n)(A) ∈M∪ {⊥}. For D ⊆ Agt, we write stratTD for (stratTA)A∈D.

As a first step, for each D ⊆ Agt, we build a 〈Loc,Σ+
C 〉-APT Astrat(D) which will ensure

that for all A ∈ D, stratTA is really a strategy for player A, i.e., never returns ⊥. This
automaton has only one state q0, with τ(q0, σ) =

∧
`∈Loc(`, q0) provided that σstr(A) 6= ⊥ for

all A ∈ D. Otherwise, τ(q0, σ) = ⊥. Finally, Astrat accepts all trees having a valid execution
tree (i.e., Ω constantly equals 0). The following result is straightforward:

▶ Lemma 11. Let C be a CGS, `0 be a location of C, and D ⊆ Agt. Let T = 〈T, l〉 be a
Σ+
C -labelled complete Loc-tree accepted by AC,`0 . Then T is accepted by Astrat(D) iff for each

player A ∈ D, stratTA never equals ⊥.

We now build an automaton for checking that proposition po labels outcomes of T .
More precisely, let D ⊆ Agt be a set of players. The automaton Aout(D) will accept T iff
po labels exactly the outcomes of strategies stratTA for players A ∈ D. This is achieved by
the following two-state automaton Aout(D) = 〈Q, q∈, τ,Ω〉: Q = {q∈, q/∈}, q∈ is the initial
state, Ω constantly equals 0, and the transition function is defined as follows: if po /∈ σ, then
τ(q∈, σ) = ⊥ and τ(q/∈, σ) =

∧
`∈Loc(`, q/∈); otheriwse, τ(q/∈, σ) = ⊥ and

τ(q∈, σ) =
∧

`∈Next(σ,D)

(`, q∈) ∧
∧

`/∈Next(σ,D)

(`, q/∈)

2 Notice that |ΣC | = |Loc| and |Σ+
C | is linear in the size of the input, as we assume an explicit representation

of the Edg function [13].
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where Next(σ,D) is

{` ∈ Loc | ∃(mi)i ∈MAgt s.t. (σLoc, `) = σEdg(σLoc, (mi)i) and ∀Ai ∈ D. σstr(Ai) = mi}.

In other terms, Next(σ,D) returns the set of successor states of state σLoc if players in D
follow the strategies given by σstr, and according to the transition table σEdg. Notice that
Next(σ,D) is non-empty iff σstr(Ai) 6= ⊥ for all Ai ∈ D. We then have:

▶ Lemma 12. Let C be a CGS, and `0 be one of its locations, and D ⊆ Agt. Let T = 〈T, l〉
be a Σ+

C -labelled complete Loc-tree accepted by AC,`0 and Astrat(D). Then T is accepted by
Aout(D) iff for all n ∈ T , po ∈ lp(n) iff the finite run `0 · n is an outcome of stratTD from `0.

4.4 Boolean operations, projection, non-determinization, ...
In this section, we review some classical results about alternating tree automata, which we
will use in our construction.

▶ Lemma 13. [15, 16] Let A and B be two 〈S,Σ〉-APTs that respectively accept the languages
A and B. We can build two 〈S,Σ〉-APTs C and D that respectively accept the languages
A∩B and A (the complement of A in the set of Σ-labelled S-trees). The size and index of C
are at most (|A|+ |B|) and max(idx(A), idx(B)) + 1, while those of D are |A| and idx(A).

▶ Lemma 14. [16] Let A be a 〈S,Σ〉-APT. We can build a 〈S,Σ〉-NPT N accepting the same
language as A, and such that |N | ∈ 2O(|A|idx(A)·log(|A|idx(A))) and idx(N ) ∈ O(|A|idx(A)).

▶ Lemma 15. [14] Let A be a 〈S,Σ〉-NPT, with Σ = Σ1×Σ2. For all i ∈ {1, 2}, we can build
a 〈S,Σ〉-NPT Bi such that, for any tree T , it holds: T ∈ L(Bi) iff ∃T ′ ∈ L(A). projΣi(T ) =
projΣi(T

′). The size and index of Bi are those of A.

▶ Lemma 16. Let A be a 〈S,Σ × 2{p}〉-APT s.t. for any two Σ × 2{p}-labelled S-trees T
and T ′ with projΣ(T ) = projΣ(T ′), we have T ∈ L(A) iff T ′ ∈ L(A). Then we can build a
〈S,Σ× 2{p}〉-APT B s.t. for all Σ× 2{p}-labelled S-tree T = 〈T, l〉, it holds: T ∈ L(B) iff
∀n ∈ T. (p ∈ l(n) iff Tn ∈ L(A)). Then B has size O(|A|) and index idx(A) + 1.

4.5 Transforming an ATLsc formula into an alternating tree automaton
▶ Lemma 17. Let C be a CGS with finite state space Loc. Let ψ be an ATLsc-formula,
and D ⊆ Agt be a coalition. We can build a 〈Loc,Σ+

C 〉-APT Aψ,D s.t.
for any Σ+

C -labelled complete Loc-tree T accepted by AC and by Astrat(D), it holds

T ∈ L(Aψ,D) ⇔ C, lLoc(ε) |=stratT
D
ψ;

for any two Σ+
C -labelled complete Loc-tree T and T ′ s.t. projΣ′

C
(T ) = projΣ′

C
(T ′), with

Σ′C = ΣC × (M∪ {⊥})Agt, we have

T ∈ L(Aψ,D) ⇔ T ′ ∈ L(Aψ,D).

The size of Aψ,D is at most d-exponential, where d is the number of (nested) strategy
quantifiers in ψ. Its index is d− 1-exponential.

Sketch of proof. The proof proceeds by induction on the structure of formula ψ. The case
of atomic propositions is straightforward. Applying Lemma 13, we immediately get the result
for the case when ϕ is a boolean combination of subformulas.
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We now sketch the proof for the case when ψ = 〈·A·〉Xϕ. The case formulas 〈·A·〉ϕ1 Uϕ2
and3 〈·A·〉ϕ1 Rϕ2 could be handled similarly. The idea of the construction is as follows:
we use automaton Aout(D ∪A) to label outcomes with po, Aϕ,D∪A to label nodes where ϕ
holds, and build an intermediate automaton Af to check that all the outcomes satisfy Xϕ.
We then project out the strategy of coalition A, which yields the automaton for 〈·A·〉Xϕ.

Assume that we have already built the automaton Aϕ,D∪A (inductively). Applying
Lemma 16 to Aϕ,D∪A with the extra proposition pr, we get an automaton Bpr,ϕ,D∪A such
that, given a tree T = 〈T, l〉 accepted by AC and Astrat(D ∪A), it holds

T ∈ L(Bpr,ϕ,D∪A) ⇔ ∀n ∈ T. (pr ∈ l(n)⇔ C, lLoc(n) |=stratTn
D∪A

ϕ). (1)

In order to check that all the outcome satisfy Xϕ, we simply have to build an auto-
maton Af for checking the CTL? property A(G po→X pr). We refer to [12] for this
classical construction. This automaton Af has the following property: for any Σ+

C -labelled
Loc-tree T = 〈T, l〉, we have

T ∈ L(Af ) ⇔ T , ε |= A(G po→X pr). (2)

Now, let H be the product of Astrat(A), Aout(D ∪A), Af and Bpr,ϕ,D∪A, and let T be a
tree accepted by AC and Astrat(D). If T is accepted by H, then then D ∪A ⊆ dom(T ) and
all the outcomes of the strategy stratTD∪A from lLoc(ε) satisfy Xϕ.

The converse does not hold in general, but we prove a weaker form: from T = 〈T, l〉,
accepted by AC and Astrat(D), and such that D∪A ⊆ dom(T ) and the outcomes of stratTD∪A
from lLoc(ε) satisfy Xϕ, we build T ′ = 〈T, l′〉 such that projΣ′

C
(T ) = projΣ′

C
(T ′), and T ′

is accepted by H. To do this, it suffices to modify the labelling of T with po and pr,
in such a way that T ′ is accepted by Aout(D ∪ A) and Bpr,ϕ,D∪A. This ensures that
C, lLoc(ε) |=stratT ′

D∪A
〈·∅·〉Xϕ, and that T ′ is also accepted by Af . In the end, we have that

for any tree T = 〈T, l〉 accepted by AC and Astrat(D),

D ∪A ⊆ dom(T ) and C, lLoc(ε) |=stratT
D∪A

〈·∅·〉Xϕ ⇔

∃T ′ s.t. projΣ′
C
(T ′) = projΣ′

C
(T ) and T ′ ∈ L(H). (3)

Applying Lemma 14, we get a 〈Σ+
C , Loc〉-NPT N such that L(N ) = L(H). We can then

apply Lemma 15 for Σ+
C = (ΣC× (M∪{⊥})Agt∖A)× ((M∪{⊥})A×2po,pl,pr ) on the NPT N ;

the resulting 〈Σ+
C , Loc〉-NPT P accepts all trees T whose labelling on (M∪{⊥})A× 2po,pl,pr

can be modified in order to have the tree accepted by N . Then P satisfies both properties of
the Lemma: the second property directly follows from the use Lemma 15. For the first one,
pick T = 〈T, l〉 accepted by AC and by Astrat(D). If T is accepted by P , then from Lemma 15,
there exists a tree T ′ = 〈T, l′〉, with the same labelling as T on ΣC × (M∪ {⊥})Agt∖A),
and accepted by N . Since L(N ) = L(H), and from (3), we get that D ∪A ⊆ dom(T ′) and
C, lLoc(ε) |=stratT ′

D∪A
〈·∅·〉Xϕ. Thus stratT ′

A is a strategy for coalition A, and it witnesses
the fact that C, lLoc(ε) |=stratT ′

D
〈·A·〉Xϕ, and we get the desired result since stratTD =

stratT ′

D . Conversely, if C, lLoc(ε) |=stratT
D
〈·A·〉Xϕ, then we can modify the labelling of T

with a witnessing strategy for A, obtaining a tree T ′ such that C, lLoc(ε) |=stratT ′
D∪A

〈·∅·〉Xϕ.
From (3), T ′ can in turn be modified into a tree T ′′, with projΣ′

C
(T ′′) = projΣ′

C
(T ′), in

3 The “release” modality R is the dual of U , defined by ϕ1 R ϕ2 ≡ ¬[(¬ϕ1) U (¬ϕ2)]. Notice that X is
self-dual as we only evaluate formulas along infinite outcomes.
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such a way that T ′′ ∈ L(H). Finally, since the projections of T ′′ and T coincide on
(ΣC × (M∪ {⊥})Agt∖A), it holds that T is accepted by P. This concludes the proof for
〈·A·〉Xϕ.

The proofs for the “until” and “release” modalities follow the same lines, using pl and pr
as extra atmomic propositions for the left- and right-hand subformulas, and modifying
automaton Af so that it accepts trees satisfying A(G po→ plU pr) and A(G po→ plR pr),
respectively. Finally, when ψ = ·〉A〈·ϕ, we let A ·〉A〈·ϕ,D = Aϕ,D∖A, which is easily proved to
satisfy both requirements.

Unless A = ∅, the construction of the automaton for 〈·A·〉Xϕ (or 〈·A·〉ϕ1 Uϕ2 or
〈·A·〉ϕ1 Rϕ2) involves an exponential blowup in the size and index of the automata for the
subformulas, and the index is bilinear in the size and index of these automata. In the end,
for a formula involving d nested non-empty strategy quantifiers, the automaton has size
d-exponential and index d− 1-exponential. ◀

▶ Corollary 18. Given an ATLsc formula ϕ, a CGS C and a state `0 of C, we can built
an alternating parity tree automaton A s.t. L(A) 6= ∅ iff C, `0 |=∅ ϕ. Moreover, A has
size d-exponential and index d− 1-exponential, where d is the number of nested non-empty
strategy quantifiers.

Proof. It suffices to take the product of the automaton Aϕ,∅ (from Lemma 17) with AC,`0 .
In case this 〈Loc,Σ+

C 〉-APT accepts a tree T , Lemma 17 entails that C, `0 |=∅ ϕ. Conversely,
if C, `0 |= ϕ, then the extended unwinding tree T = 〈T, l〉 of C from `0 in which lstr(n) = ⊥
for all n ∈ T is accepted by AC,`0 (and, trivially, by Astrat(∅)), and from Lemma 17, it is
also accepted by Aϕ,∅. ◀

Proof of Theorem 8. The first statement directly follows from the previous corollary, since
emptiness of alternating parity tree automata A can be checked in time exp(O(|A|× idx(A))).

For the second statement, notice that the size and index ofAϕ,∅ in the proof of Corollary 18
do not depend on the CGS C. Hence the automaton A of Corollary 18 has size linear in |C|,
and can be computed in time exponential in |C| (because Aout(D) requires the computation
of Next(σ,D)). Non-emptiness is then checked in time exponential in |C|. ◀

▶ Remark. Our algorithm can easily be modified in order to handle ATL?sc. One solution is
to rely on Theorem 6, but our translation from ATL?sc to ATLsc may double the number of
nested non-empty strategy quantifiers. The algorithm would then be in (2k + 1)-EXPTIME,
where k is the number of nested strategy quantifications. Another solution is to adapt our
construction, by replacing each state-subformula with a fresh atomic proposition, and build
the automaton Af for a more complex CTL? formula. This results in a (k + 1)-EXPTIME
algorithm. In both cases, the program complexity is unchanged, in EXPTIME.

Similarly, our algorithm could be modified to handle strategy logic [9]. One important
difference is that strategy logic may require to store several strategies per player in the tree,
while ATLsc only stores one strategy per player. This would then be reflected in a modified
version of the Next function we use when building Aout(D), where we should also indicate
which strategies we use for which player.

5 Conclusions

Strategy contexts provide a very expressive extension of the semantics of ATL, as we witnessed
by the fact that ATLsc and ATL?sc are equally expressive. We also designed a tree-automata-
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based algorithm for model-checking both logics on the whole class of CGSs, based on a novel
encoding of strategies as a tree.

Our algorithms involve a non-elementary blowup in the size of the formula, which we
currently don’t know if it can be avoided. Trying to establish lower-bounds on the complexity
of the problems is part of our future works. Regarding expressiveness, ATLsc can distinguish
between alternating-bisimilar CGSs, and we are also looking for a behavioural equivalence
that could characterize the distinguishing power of ATLsc.
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