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Vector Addition System Reachability Problem:
A Short Self-Contained Proof?

Jérôme Leroux1

LaBRI, Université de Bordeaux, CNRS
leroux@labri.fr

Abstract. The reachability problem for Vector Addition Systems (VASs) is a
central problem of net theory. The general problem is known to be decidable by
algorithms exclusively based on the classical Kosaraju-Lambert-Mayr-Sacerdote-
Tenney decomposition (KLMTS decomposition). Recently from this decomposi-
tion, we deduced that a final configuration is not reachable from an initial one if
and only if there exists a Presburger inductive invariant that contains the initial
configuration but not the final one. Since we can decide if a Preburger formula
denotes an inductive invariant, we deduce from this result that there exist check-
able certificates of non-reachability in the Presburger arithmetic. In particular,
there exists a simple algorithm for deciding the general VAS reachability prob-
lem based on two semi-algorithms. A first one that tries to prove the reachability
by enumerating finite sequences of actions and a second one that tries to prove the
non-reachability by enumerating Presburger formulas. In this paper we provide
the first proof of the VAS reachability problem that is not based on the KLMST
decomposition. The proof is based on the notion of production relations, inspired
from Hauschildt, that directly proves the existence of Presburger inductive invari-
ants.

1 Introduction

Vector Addition Systems (VASs) or equivalently Petri Nets are one of the most popular
formal methods for the representation and the analysis of parallel processes [1]. Their
reachability problem is central since many computational problems (even outside the
realm of parallel processes) reduce to the reachability problem. Sacerdote and Tenney
provided in [9] a partial proof of decidability of this problem. The proof was completed
in 1981 by Mayr [7] and simplified by Kosaraju [4] from [9,7]. Ten years later [5],
Lambert provided a further simplified version based on [4]. This last proof still remains
difficult and the upper-bound complexity of the corresponding algorithm is just known
to be non-primitive recursive. Nowadays, the exact complexity of the reachability prob-
lem for VASs is still an open-problem. Even the existence of an elementary upper-bound
complexity is open. In fact, the known general reachability algorithms are exclusively
based on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.
? This version extends the POPL’2011 paper with additional figures and examples. Some classes

of sets get more intuitive names like the polytope conic sets, the polytope periodic sets, and
the Petri sets that are now called the definable conic sets, the asymptotically definable periodic
sets, and the almost semilinear sets.
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Recently [6] we proved thanks to the KLMST decomposition that Parikh images of
languages accepted by VASs are semi-pseudo-linear, a class that extends the Presburger
sets. An application of this result was provided; we proved that a final configuration is
not reachable from an initial one if and only if there exists a forward inductive invariant
definable in the Presburger arithmetic that contains the initial configuration but not the
final one. Since we can decide if a Presburger formula denotes a forward inductive
invariant, we deduce that there exist checkable certificates of non-reachability in the
Presburger arithmetic. In particular, there exists a simple algorithm for deciding the
general VAS reachability problem based on two semi-algorithms. A first one that tries
to prove the reachability by enumerating finite sequences of actions and a second one
that tries to prove the non-reachability by enumerating Presburger formulas.

In this paper we provide a new proof of the reachability problem that is not based on
the KLMST decomposition. The proof is based on the production relations inspired by
Hauschildt [3] and it proves directly that reachability sets are almost semilinear, a class
of sets introduced in this paper that extend the class of Presburger sets and contained
in the class of semi-pseudo-linear sets. In particular this paper provides a more precise
characterization of the reachability sets of VASs.

Outline of the paper: Section 2 provides notations and classical definitions. Sec-
tion 3 and Section 4 introduce classes of sets used in the sequel : definable conic sets
and vector spaces in the first one and asymptotically definable periodic sets, Presburger
sets, and almost semilinear sets in the second one. Section 5 and Section 6 show that
is sufficient to prove that the reachability relation of a Vector Addition system is an
almost semilinear relation in order to deduce the existence of forward inductive invari-
ants definable in the Presburger arithmetic proving the non-reachability. In Section 7 we
introduce the class of Vector Addition Systems and the central notion of production re-
lations. We show in the next Section 8 that these relations are asymptotically definable
periodic. In Section 9 we prove that the reachability relation of a Vector Addition Sys-
tem is an almost semilinear relation. Finally in Section 10 we combine all the previous
results to deduce the decidability of the Vector Addition System reachability problem
based on Presburger inductive invariants.

2 Notations

We introduce in this section notations and classical definitions used in this paper.

We denote by N,N>0,Z,Q,Q≥0,Q>0 the set of natural numbers, positive inte-
gers, integers, rational numbers, non negative rational numbers, and positive rational
numbers. Vectors and sets of vectors are denoted in bold face. The ith component of
a vector v ∈ Qd is denoted by v(i). We introduce ||v||∞ = max1≤i≤d |v(i)| where
|v(i)| is the absolute value of v(i). The total order ≤ over Q is extended component-
wise into an order ≤ over the set of vectors Qd. The addition function + is also ex-
tended component-wise over Qd. Given two sets V1,V2 ⊆ Qd we denote by V1+V2

the set {v1 + v2 | (v1,v2) ∈ V1 × V2}, and we denote by V1 − V2 the set
{v1 − v2 | (v1,v2) ∈ V1 × V2}. In the same way given T ⊆ Q and V ⊆ Qd
we let TV = {tv | (t,v) ∈ T ×V}. We also denote by v1 +V2 and V1 +v2 the sets
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{v1} + V2 and V1 + {v2}, and we denote by tV and Tv the sets {t}V and T{v}.
In the sequel, an empty sum of sets included in Qd denotes the set reduced to the zero
vector {0}.

A (binary) relation R over Qd is a subset R ⊆ Qd × Qd. The composition of two
relations R and S is the relation denoted by R◦S and defined as usual by the following
equality:

R ◦ S =
⋃

y∈Qd

{
(x, z) ∈ Qd ×Qd | (x,y) ∈ R ∧ (y, z) ∈ S

}
The reflexive and transitive closure of a relation R is denoted by R∗. In this paper,
notions introduced over the sets are transposed over the relations by identifying Qd×Qd
with Q2d.

An orderv over a set S is said to be well if for every sequence (sn)n∈N of elements
sn ∈ S we can extract a sub-sequence that is non-decreasing for v, i.e. there exists a
strictly increasing sequence (nk)k∈N of natural numbers in (N,≤) such that (snk

)k∈N
is non decreasing forv. A minimal element of an ordered set (S,v) is an element s ∈ S
such that for every t ∈ T the relation t v s implies s = t. Given a set Y ⊆ S we denote
by minv(Y ) the set of minimal elements of the ordered set (Y,v). Let us recall that if
(S,v) is well ordered then X = minv(Y ) is finite and for every y ∈ Y there exists
x ∈ X such that x v y.

Let us consider an orderv over a set S. We introduce the component-wise extension
of v over the set of vectors Sd defined by s v t if s(i) v t(i) for every i ∈ {1, . . . , d}.

Lemma 2.1 (Dickson’s Lemma). The ordered set (Sd,v) is well for every well or-
dered set (S,v).

Example 2.2. The set (N,≤) is well ordered. Hence (Nd,≤) is also well ordered. The
set (Z,≤) is not well ordered.

3 Definable Conic Sets

A conic set is a set C ⊆ Qd such that 0 ∈ C, C+C ⊆ C and such that Q≥0C ⊆ C.
A conic set C is said to be finitely generated if there exists a finite sequence c1, . . . , ck
of vectors cj ∈ C such that C = Q≥0c1 + · · ·+Q≥0ck.

Definition 3.1. A conic set C is said to be definable if it is definable in FO (Q,+,≤, 0).

In this section definable conic sets are geometrically characterized thanks to the vector
spaces and the topological closure.

Example 3.2. Fig. 1 depicts examples of finitely generated conic sets and (non finitely
generated) definable conic sets. The conic set C = {(c1, c2) ∈ Q2

≥0 |
√
2c2 ≤ c1} is

not definable.
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Fig. 1. The finitely generated conic set Q≥0(1, 1) + Q≥0(1, 0) and the definable conic set
{(0, 0)} ∪ {(c1, c2) ∈ Q2

>0 | c2 ≤ c1}

A vector space is a set V ⊆ Qd such that 0 ∈ V, V + V ⊆ V and such that
QV ⊆ V. Let X ⊆ Qd. The following set is a vector space called the vector space
generated by X.

V =


k∑
j=1

λjxj | k ∈ N and (λj ,xj) ∈ Q×X


This vector space is the minimal for inclusion among the vector space that contains X.
Note that the vector space V generated by a conic set C satisfies the equality V =
C − C. Let us recall that every vector space V is generated by a finite set X with at
most d vectors. The rank rank(V) of a vector space V is the minimal natural number
r ∈ {0, . . . , d} such that there exists a finite set X with r vectors that generates V. Note
that rank(V) ≤ rank(W) for every pair of vector spaces V ⊆W. Moreover, if V is
strictly included in W then rank(V) < rank(W).

Example 3.3. Vector spaces V included in Q2 satisfy rank(V) ∈ {0, 1, 2}. Moreover
these vectors spaces can be classified as follows : rank(V) = 0 if and only if V = {0},
rank(V) = 1 if and only if V = Qv with v ∈ Q2\{0}, and rank(V) = 2 if and only
if V = Q2.

The (topological) closure of a set X ⊆ Qd is the set X of vectors r ∈ Qd such
that for every ε ∈ Q>0 there exists x ∈ X satisfying ||r − x||∞ < ε. A set X is said
to be closed if X = X. Note that X is closed and this set is the minimal for inclusion
among the closed sets that contain X. Let us recall that a vector space V is closed and
the closure of a conic set is a conic set. Since the classical topological interior of a conic
set C is empty when the vector space generated by C is not equal to Qd (the conic set
is degenerated), we introduce the notion of interior of C relatively to the vector space
V = C −C. More precisely, a vector c ∈ C is said to be in the interior of C if there
exists ε ∈ Q>0 such that c + v ∈ C for every v ∈ C −C satisfying ||v||∞ < ε. We
denote by int(C) the set of interior vectors of C. Let us recall that int(C) is non empty
for every conic set C, and C1 = C2 if and only if int(C1) = int(C2) for every conic
sets C1,C2.

Example 3.4. Let X = (1, 5)× (1, 5). Then X = [1, 5]× [1, 5] (see Fig. 2).
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Fig. 2. Sets X = (1, 5)× (1, 5) and X = [1, 5]× [1, 5]

The following lemma characterizes the finitely generated cones.

Lemma 3.5 (Duality). Let V ⊆ Qd be a vector space. A conic set C ⊆ V is finitely
generated if and only if there exists a sequence (hj)1≤j≤k of vectors hj ∈ V\{0} such
that:

C =

k⋂
j=1

{
v ∈ V |

d∑
i=1

hj(i)v(i) ≥ 0

}

Moreover in this case the following equality holds if and only if V is the vector space
generated by C:

int(C) =

k⋂
j=1

{
v ∈ V |

d∑
i=1

hj(i)v(i) > 0

}

Proof. This is a classical result of duality [10]. ut

h1

h2

Fig. 3. A picture of the duality lemma 3.5

Example 3.6. Let us introduce the whole vector space V = Q2 and the finitely gener-
ated conic set C = Q≥0(1, 1) +Q≥0(1, 0). Fig. 3 shows that C =

⋂
j∈{1,2}{v ∈ V |∑d

i=1 hj(i)v(i) ≥ 0} where h1 = (0, 2) and h2 = (2,−2).

Lemma 3.7. The topological closure of a set definable in FO (Q,+,≤, 0) is a finite
union of finitely generated conic sets.
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Proof. Let X ⊆ Qd be a set definable in FO (Q,+,≤, 0). Since this logic admits
quantification elimination we deduce that there exists a quantifier free formula in this
logic that denotes X. Hence there exists a finite sequence (Aj)1≤j≤k of finite setsAj ⊆
Qd × {>,≥} such that X =

⋃k
j=1 Xj where:

Xj =
⋂

(h,#)∈Aj

{
x ∈ Qd |

d∑
i=1

h(i)x(i)#0

}

We can assume without loss of generality that Xj is non empty. Moreover if k = 0 the
proof is immediate since X = ∅. So we can assume that k ≥ 1. Let us introduce the
following set Rj :

Rj =
⋂

(h,#)∈Aj

{
x ∈ Qd |

d∑
i=1

h(i)x(i) ≥ 0

}

Lemma 3.5 shows that Rj is finitely generated. Thanks to Lemma 3.5, we deduce that
R =

⋃k
j=1 Rj is closed. We are going to prove that X = R. Since Xj ⊆ Rj we get

X ⊆ R. As R is closed we deduce that X ⊆ R. Let us prove the converse inclusion.
Let r ∈ R. There exists j ∈ {1, . . . , k} such that r ∈ Rj . Since Xj is non empty, there
exists xj ∈ Xj . As rj ∈ Rj and xj ∈ Xj we deduce that rj + Q>0xj ⊆ Xj . Hence
rj ∈ Xj and we have proved the other inclusion R ⊆ X. Therefore X is a finite union
of finitely generated conic sets since it is equal to R. ut

Theorem 3.8. A conic set C ⊆ Qd is definable if and only if the conic set C ∩V is
finitely generated for every vector space V ⊆ Qd.

Proof. Let us first consider a definable conic set C ⊆ Qd, let V be a vector space, and
let us prove that X is finitely generated where X = C ∩ V. Since X is definable in
FO (Q,+,≤, 0), Lemma 3.7 shows that X =

⋃k
j=1 Cj where Cj is a finitely generated

conic sets. Moreover, as X is non empty we deduce that k ≥ 1. As X is a conic set
we deduce that

∑k
j=1 Cj ⊆ X. Moreover, as 0 ∈ Cj for every j, we deduce that

Cj ⊆
∑k
j=1 Cj for every j. Thus X =

∑k
j=1 Cj and we have proved that X is finitely

generated.

Conversely, we prove by induction over r that the conic sets C ⊆ Qd such that
rank(C − C) ≤ r and such that the conic set C ∩V is finitely generated for every
vector space V ⊆ Qd are definable. The case r = 0 is immediate since in this case
C = {0}. Let us assume the induction proved for an integer r ∈ N and let us consider
a conic set C ⊆ Qd such that rank(C − C) ≤ r + 1 and such that the conic set
C ∩V is finitely generated for every vector space V ⊆ Qd. We introduce the vector
space W = C − C. Since C = C ∩V with V = Qd, we deduce that C is finitely
generated. Lemma 3.5 shows that there exists a finite sequence (hj)1≤j≤k of vectors
hj ∈W\{0} such that the following equality holds:

C =

k⋂
j=1

{
x ∈W |

d∑
i=1

hj(i)x(i) ≥ 0

}
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Since int(C) = int(C) we get the following equality:

int(C) =

k⋂
j=1

{
x ∈W |

d∑
i=1

hj(i)x(i) > 0

}

In particular int(C) is definable in FO (Q,+,≤, 0, 1). As int(C) ⊆ C ⊆ C we deduce
the following decomposition where Wj = {w ∈W |

∑d
i=1 hj(i)w(i) = 0}:

C = int(C) ∪
k⋃
j=1

(C ∩Wj)

Observe that hj ∈ W\Wj and in particular Wj is strictly included in W. Thus
rank(Wj) < rank(W) ≤ r + 1. Note that Cj = C ∩Wj is a conic set such that
rank(Cj −Cj) ≤ rank(Wj) ≤ r and such that Cj ∩V is a finitely generated conic
set for every vector space V. Thus by induction Cj is definable in FO (Q,+,≤, 0, 1).
We deduce that C is definable. We have proved the induction. ut

Example 3.9. Observe that the conic set C = {(c1, c2) ∈ Q2
≥0 |

√
2c2 ≤ c1} is not

finitely generated. Let us consider V = Q2 and observe that C ∩ V = C and since
C = C we deduce that C ∩V is not finitely generated. Theorem 3.8 shows that C is
not definable.

4 Presburger Sets And Almost Semilinear Sets

In this section we introduce the Presburger sets and the almost semilinear sets.

A periodic set is a subset P ⊆ Zd such that 0 ∈ P and such that P + P ⊆ P. A
periodic set P is said to be finitely generated if there exists a finite sequence p1, . . . ,pk
of vectors pj ∈ P such that P = Np1 + · · · + Npk (see Fig. 4). A subset S ⊆ Zd is
called a Presburger set if it can be denoted by a formula in the Presburger arithmetic
FO (Z,+,≤, 0, 1). Let us recall [2] that a subset S ⊆ Zd is Presburger if and only if it
is semilinear, i.e. a finite union of sets b + P where b ∈ Zd and P ⊆ Zd is a finitely
generated periodic set. The class of almost semilinear sets is obtained by weakening the
finiteness property of the periodic sets P.

Definition 4.1. A periodic set P is said to be asymptotically definable if the conic set
Q≥0P is definable.

Remark 4.2. Every finitely generated periodic set P is asymptotically definable since
in this case Q≥0P is a finitely generated conic set and in particular a definable conic
set.

Example 4.3. The periodic set P = {(p1, p2) ∈ N2 |
√
2p2 ≤ p1} is not asymptot-

ically definable since Q≥0P = {(c1, c2) ∈ N2 |
√
2c2 ≤ c1} is not definable (see

example 3.9).
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p(2)

p(1)

Fig. 4. The finitely generated periodic set P = N(1, 1) + N(2, 0)

p(2)

p(1)

p(1) + 1 ≤ 2p(2)

p(2) ≤ p(1)

Fig. 5. An asymptotically definable periodic set.

Example 4.4. The periodic set P = {p ∈ N2 | p(2) ≤ p(1) ≤ 2p(2) − 1} is rep-
resented in Figure 5. Observe that Q≥0P = {0} ∪ {c ∈ Q2

>0 | p(2) ≤ p(1)} is a
definable conic set. Thus P is an asymptotically definable periodic set.

The following lemma shows that the class of asymptotically definable periodic sets
is stable by finite intersections.

Lemma 4.5. We have (Q≥0P1) ∩ (Q≥0P2) = Q≥0(P1 ∩P2) for every periodic sets
P1,P2 ⊆ Zd.

Proof. Observe that P1 ⊆ Q≥0P1 and P2 ⊆ Q≥0P2. Hence P1 ∩ P2 ⊆ C where
C = (Q≥0P1) ∩ (Q≥0P2). As C is a conic set we deduce that Q≥0(P1 ∩ P2) ⊆ C.
For the converse inclusion. Let c ∈ C. Since c ∈ Q≥0P1, there exists λ1 ∈ Q≥0
such that c ∈ λ1P1. Symmetrically there exists λ2 ∈ Q≥0 such that c ∈ λ2P2. Let
n1, n2 ∈ N>0 such that n1λ1 ∈ N and n2λ2 ∈ N. Let n = n1n2 and observe that
nc ∈ n2(n1λ1)P1 ⊆ P1 since P1 is a periodic set. Symmetrically nc ∈ P2. We have
proved that nc ∈ P1∩P2. Thus c ∈ Q≥0(P1∩P2) and we get the other inclusion. ut

Definition 4.6. An almost semilinear set is a subset X ⊆ Zd such that for every Pres-
burger set S ⊆ Zd the set X ∩ S is a finite union of sets b + P where b ∈ Zd and
P ⊆ Zd is an asymptotically definable periodic set.
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Fig. 6. An asymptotically definable periodic set that is not almost semilinear.

Example 4.7. Let us consider the periodic set P = {(0, 0)} ∪ {(2n, 1) | n ∈ N} ∪
((1, 2)+N2) depicted in Fig.6. Observe that Q≥0P is the definable conic set {(0, 0)}∪
Q≥0×Q>0. Note that P is not almost semilinear since P∩ (N×{1}) = {(2n, 1) | n ∈
N} can not be decomposed as a finite union of sets b +P where b ∈ Zd and P ⊆ Zd
is an asymptotically definable periodic set.

The class of almost semilinear sets is included in the class of Presburger sets. The
strict inclusion will be proved strict as a direct consequence of a stronger result proved
in this paper. In fact the reachability relation of a Vector Addition System is proved to
be almost semilinear and we know that in general such a relation is not Presburger.

5 Linearizations

The linearization of a periodic set P ⊆ Zd is the periodic set lin(P) defined by the
following equality:

lin(P) = (P−P) ∩Q≥0P

Lemma 5.1. The linearization of an asymptotically definable periodic set is finitely
generated.

Proof. Let V be the vector space generated by P and let us introduce the conic set
C = Q≥0P. Note that Q≥0P ⊆ V and since V is closed we get C ⊆ V. As
Q≥0P is a definable conic set we deduce that C is finitely generated. Hence there
exists c1, . . . , ck ∈ C such that C = Q≥0c1 + · · · + Q≥0ck. As cj ∈ C ⊆ V =
Q≥0P−Q≥0P, by replacing cj by a vector in N>0cj we can assume that cj ∈ P−P
for every j ∈ {1, . . . , k}.

We introduce the following set R:

R =

r ∈ P−P | r =

k∑
j=1

λjcj λj ∈ Q 0 ≤ λj < 1


We observe that every vector r ∈ R satisfies ||r||∞ ≤ s where s =

∑k
j=1 ||cj ||∞.

Hence R ⊆ {−s, . . . , s}d and we deduce that R is finite.
Let L be the periodic set generated by the finite set R ∪ {c1, . . . , ck}. Since this

finite set is included in lin(P) we deduce that L ⊆ lin(P). Let us prove the converse
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inclusion. Let x ∈ lin(P). Since x ∈ C, there exists a sequence (µj)1≤j≤k of rational
elements µj ∈ Q≥0 such that x =

∑k
j=1 µjcj . Let us introduce nj ∈ N such that

λj = µj − nj satisfies 0 ≤ λj < 1. Let r =
∑k
j=1 λjcj . As r = x −

∑k
j=1 njcj we

get r ∈ P−P. Thus r ∈ R. From x = r+
∑k
j=1 njcj we get x ∈ L. We have proved

that lin(P) is the finitely generated periodic set L. ut

We observe that if the intersection (b1+P1)∩ (b2+P2) is empty where b1,b2 ∈
Zd and P1,P2 ⊆ Zd are two asymptotically definable periodic sets then the intersection
(b1 + lin(P1)) ∩ (b2 + lin(P2)) may be non empty (see Example 5.3). In this section
we show that a dimension is strictly decreasing.

Let us first introduce our definition of dimension. The dimension dim(X) of a non-
empty set X ⊆ Zd is the minimal integer r ∈ {0, . . . , d} such that there exists k ∈ N>0,
a sequence (bj)1≤j≤k of vectors bj ∈ Zd, and a sequence (Vj)1≤j≤k of vector spaces
Vj ⊆ Qd such that rank(Vj) ≤ r and such that X ⊆

⋃k
j=1 bj +Vj . The dimension

of the empty set is defined by dim(∅) = −1.

In the reminder of this section we prove the following Theorem 5.2. All the other
results or definitions introduced in this section are not used in the sequel.

Theorem 5.2. Let b1,b2 ∈ Zd and let P1,P2 be two asymptotically definable peri-
odic sets such that the intersection (b1 + P1) ∩ (b2 + P2) is empty. The intersection
X = (b1 + lin(P1)) ∩ (b2 + lin(P2)) satisfies:

dim(X) < max{dim(b1 +P1),dim(b2 +P2)}

Example 5.3. Sets introduced in this example are depicted in Fig. 7. Let us introduce
the asymptotically definable periodic sets P1 = {p ∈ N2 | p(2) ≤ p(1) ≤ 2p(2) − 1}
and P2 = N(1, 0) + N(3,−1). We consider b1 = (0, 0) and b2 = (7, 2). We observe
that the intersection of b1 + P1 and b2 + P2 is empty. Note that the intersection X
of b1 + lin(P1) and b2 + lin(P2) satisfies X = {(7, 2), (10, 1), (13, 0)}+N(1, 0). In
particular we have dim(X) = 1 whereas dim(b1+lin(P1)) = dim(b2+lin(P2)) = 2.

Fig. 7. A figure for Theorem 5.2 and Example 5.3.

We first characterize the dimension of a periodic set.
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Lemma 5.4. Let V be the vector space generated by a periodic set P. Then rank(V) =
dim(P).

Proof. Let P be a periodic set and let us first prove by induction over k ∈ N>0 that
for every sequence (Vj)1≤j≤k of vector spaces Vj ⊆ Qd, the inclusion P ⊆

⋃k
j=1 Vj

implies that there exists j ∈ {1, . . . , k} such that P ⊆ Vj . The case k = 1 is im-
mediate. Assume the property proved for an integer k ∈ N>0 and let us assume that
P ⊆

⋃k+1
j=1 Vj . If P ⊆ Vk+1 the property is proved. So we can assume that there

exists p ∈ P\Vk+1. Let us prove that P ⊆
⋃k
j=1 Vj . We consider x ∈ P. Observe

that if x 6∈ Vk+1 then x ∈
⋃k
j=1 Vj . So we can assume that x ∈ Vk+1. We ob-

serve that p + nx ∈ P for every n ∈ N since the set P is periodic. We deduce that
there exists j ∈ {1, . . . , k + 1} such that p + nx ∈ Vj . Naturally this integer j de-
pends on n. However, since {1, . . . , k + 1} is finite whereas N is infinite, there exists
j ∈ {1, . . . , k + 1} and n < n′ in N such that p + nx and p + n′x are both in Vj .
As Vj is a vector space, we deduce that n′(p + nx) − n(p + n′x) is in Vj . Hence
p ∈ Vj . As p 6∈ Vk+1 we deduce that j 6= k + 1. As Vj is a vector space we deduce
that (p+ n′x)− (p+ nx) ∈ Vj . Hence x ∈ Vj . We have proved that x ∈

⋃k
j=1 Vj .

Thus P ⊆
⋃k
j=1 Vj and by induction there exists j ∈ {1, . . . , k} such that P ⊆ Vj .

We have proved the induction.

Now, let us prove the lemma. We consider a periodic set P and we let V be the
vector space generated by this set. Since P ⊆ V we deduce that dim(P) ≤ rank(V).
For the converse inclusion, since P is non empty we deduce that P ⊆

⋃k
j=1 bj +Vj

where k ∈ N>0, bj ∈ Zd and Vj ⊆ Qd is a vector space such that rank(Vj) ≤
dim(P). Let us consider the set J = {j ∈ {1, . . . , k} | bj ∈ Vj} and let us prove that
P ⊆

⋃
j∈J Vj . Let p ∈ P and n ∈ N. Since np ∈ P there exists j ∈ {1, . . . , k} such

that np ∈ bj +Vj . Hence there exists j ∈ {1, . . . , k} and n < n′ in N such that np
and n′p are both in bj +Vj . As Vj is a vector space we deduce that n′p− np ∈ Vj .
Thus p ∈ Vj . Moreover as bj ∈ np−Vj ⊆ Vj we deduce that j ∈ J . We have prove
the inclusion P ⊆

⋃
j∈J Vj . From the previous paragraph we deduce that there exists

j ∈ J such that P ⊆ Vj . By minimality of the vector space generated by P we get
V ⊆ Vj . Hence rank(V) ≤ rank(Vj). Since rank(Vj) ≤ dim(P) we have proved
the inequality rank(V) ≤ dim(P). ut

Next we prove a separation property.

Lemma 5.5. Let C≤ and C≥ be two finitely generated conic sets that generates the
same vector space V and such that the vector space generated by C≤ ∩C≥ is strictly
included in V. Then there exists a vector h ∈ V\{0} such that for every # ∈ {≤,≥},
we have:

C# ⊆

{
v ∈ V |

d∑
i=1

h(i)v(i)#0

}
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Proof. Lemma 3.5 shows that there exists two finite sets H≤,H≥ included in V\{0}
such that:

C# =
⋂

h∈H#

{
v ∈ V |

d∑
i=1

h(i)v(i) ≥ 0

}

int(C#) =
⋂

h∈H#

{
v ∈ V |

d∑
i=1

h(i)v(i) > 0

}

Assume by contradiction that the intersection int(C≤) ∩ int(C≥) is non empty and let
c be a vector in this set. Observe that there exists ε ∈ Q>0 such that c+v ∈ C≤ ∩C≥
for every v ∈ V such that ||v||∞ < ε. We deduce that the vector space generated by
C≤ ∩C≥ contains V and we get a contradiction.

We deduce that the following intersection is empty where H = H≤ ∪H≥

⋂
h∈H

{
v ∈ V |

d∑
i=1

h(i)v(i) > 0

}

Farkas’s Lemma [10] shows that there exists a non-zero function f : H → Q≥0
such that

∑
h∈H f(h)h = 0. Let us introduce a =

∑
h∈H≥ f(h)h and b =

∑
h∈H\H≥ f(h)h.

Assume by contradiction that a = 0. Since a + b = 0 we deduce that b = 0. As f
is not the zero function, there exists h ∈ H such that f(h) 6= 0. Note that either
h ∈ H≥ or h ∈ H\H≥. In the first case we deduce that int(C≥) is empty and in
the second case we deduce that int(C≤) is empty. Since both cases are impossible we
get a contradiction. Thus a 66= 0. For every c ∈ int(C≥) we have

∑d
i=1 a(i)c(i) ≥ 0.

Since the set {c ∈ Qd |
∑d
i=1 a(i)c(i) ≥ 0} is closed we deduce that for every

c ∈ int(C≥) = C≥ the same inequality holds. Now let us consider c ∈ int(C≤). In
this case

∑d
i=1 b(i)c(i) ≥ 0. Since a+ b = 0 we get

∑d
i=1 a(i)c(i) ≤ 0. We deduce

that this inequality holds for every c ∈ C≤. ut

Remark 5.6. The previous Lemma 5.5 is wrong if we remove the finitely generated
condition on the conic sets C≤ and C≥. In fact let us consider the conic sets C≤ =
{x ∈ Q2

≥0 | x(1) ≤
√
2x(2)} and C≥ = {x ∈ Q2

≥0 | x(2) ≥
√
2x(2)}. Observe

that C≤ ∩C≥ = {0}. Hence the vector space generated by the intersection is strictly
included in Q2. However there does not exist a vector h ∈ Q2\{0} satisfying the sepa-
ration property required by Lemma 5.5. This problem can be overcome by introducing
the vector spaces of Rd. We do not introduce this extension to simplify the presentation.

We can now provide a proof for Theorem 5.2. We consider two vectors b1,b2 ∈ Zd
and two periodic sets P1,P2 ⊆ Zd such that (b1+P1)∩ (b2+P2) = ∅. We introduce
the intersection X = (b1 + lin(P1)) ∩ (b2 + lin(P2)). Observe that if X is empty the
theorem is proved. So we can assume that there exists a vector b in this intersection.
Let us denote by V1 and V2 the vector spaces generated by P1 and P2. Lemma 5.4
shows that rank(Vj) = dim(Pj) and from dim(bj + Pj) = dim(Pj) we deduce
that dim(bj + Pj) = rank(Vj). As X is included in b + V where V = V1 ∩ V2,
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we deduce that if V is strictly included in Vj for one j ∈ {1, 2} then dim(X) ≤
rank(V) < rank(Vj) = dim(bj +Pj) and the theorem is proved. So we can assume
that V1 = V2 = V. Let us consider the conic sets C1 = Q≥0P1 and C2 = Q≥0P2.
Since P1 and P2 are asymptotically definable periodic sets, we deduce that C1 and C2

are finitely generated conic sets. Note that C1,C2 ⊆ V. We introduce the intersection
C = C1 ∩C2.

Assume by contradiction that the vector space generated by C is equal to V. Let
us consider a vector c in the interior of C. The characterization given by Lemma 3.5
shows that in this case int(C) = int(C1)∩ int(C2). Since int(Cj) = int(Q≥0Pj) we
deduce that c ∈ (Q≥0P1) ∩ (Q≥0P2). Lemma 4.5 shows that c ∈ Q≥0(P1 ∩P2). By
replacing c be a vector in N>0c we can assume that c ∈ P1 ∩P2.

Let us prove that there exists k1 ∈ N such that b + k1c ∈ b1 + P1. From b ∈
b1 + lin(P1) we deduce that there exists p1,p

′
1 ∈ P1 such that b = b1 + p1 − p′1.

Since −p′1 is in the vector space generated by C and c is in the interior of C, there
exists n1 ∈ N large enough such that n1c+(−p′1) ∈ C1. Hence there exists n′1 ∈ N>0

such that n1n′1c − n′1p′1 ∈ P1. Thus n1n′1c − p′1 ∈ (n′1 − 1)p′1 + P1 ⊆ P1. Hence
b+ k1c ∈ b1 +P1 with k1 = n1n

′
1.

Symmetrically we deduce that there exists k2 ∈ N such that b+k2c ∈ b2+P2. We
have proved that b+ (k1 + k2)c ∈ (b1 +P1) ∩ (b2 +P2) and we get a contradiction
since this intersection is supposed to be empty.

We deduce that the vector space generated by C is strictly included in V. Lemma 5.5
shows that there exists a vector h ∈ V\{0} such that:

C1 ⊆

{
v ∈ V |

d∑
i=1

h(i)v(i) ≥ 0

}

C2 ⊆

{
v ∈ V |

d∑
i=1

h(i)v(i) ≤ 0

}
By replacing h by a vector in N>0h we can assume that h ∈ Zd. Now let us consider
x ∈ X. Since x−b1 ∈ C1 we deduce that

∑d
i=1 h(i)(x(i)−b1(i)) ≥ 0 and since x−

b2 ∈ C2 we deduce that
∑d
i=1 h(i)(x(i)−b2(i)) ≤ 0. We introduce the integers z1 =∑d

i=1 h(i)b1(i) and z2 =
∑d
i=1 h(i)b2(i). We have proved that X can be decomposed

into a finite union of slices X =
⋃z2
z=z1

Xz where:

Xz =

{
x ∈ X |

d∑
i=1

h(i)x(i) = z

}

Let us prove that dim(Xz) < rank(V). If Xz is empty the relation is immediate.
If Xz is non empty let us consider x ∈ Xz and observe that Xz ⊆ x+W where:

W =

{
v ∈ V |

d∑
i=1

h(i)v(i) = 0

}
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Note that h ∈ V\W. We deduce that W is strictly included in V and in particular
rank(W) < rank(V). Hence dim(Xz) < rank(V).

From X =
⋃z2
z=z1

Xz and dim(Xz) < rank(V) for every z, we deduce that
dim(X) < rank(V) and the theorem is proved.

6 Presburger Invariants

Given a relation R over Zd and two sets X,Y ⊆ Zd we introduce the forward image
postR(X) and the backward image preR(Y) defined by the following equalities:{

postR(X) =
⋃

x∈X{y ∈ Zd | (x,y) ∈ R}
preR(Y) =

⋃
y∈Y{x ∈ Zd | (x,y) ∈ R}

We say that a set X ⊆ Zd is a forward invariant for R if postR(X) ⊆ X and we
say that a set Y ⊆ Zd is a backward invariant for R if preR(Y) ⊆ Y. In the reminder
of this section we prove the following Theorem 6.1. All the other results or definitions
introduced in this section are not used in the sequel.

Theorem 6.1. Let R∗ be a reflexive and transitive almost semilinear relation over Zd
and let X,Y ⊆ Zd be two Presburger sets such thatR∗∩(X×Y) is empty. There exists
a partition of Zd into a Presburger forward invariant that contains X and a Presburger
backward invariant that contains Y.

We first prove the following lemma.

Lemma 6.2. The sets postR(X) and preR(Y) are almost semilinear for every almost
semilinear relation R ⊆ Zd × Zd and for every Presburger sets X,Y ⊆ Zd

Proof. Let us first prove that postR(X) is an almost semilinear set. We consider a
Presburger set S ⊆ Zd. Observe that X × S is a Presburger relation. Since R is an
almost semilinear relation we deduce that R∩ (X×S) can be decomposed into a finite
union

⋃k
j=1(aj ,bj)+Rj with k ∈ N, (aj ,bj) ∈ Zd×Zd and Rj is an asymptotically

definable periodic relation. We deduce that postR(X) ∩ S =
⋃k
j=1 bj + Pj where

Pj = {v ∈ Zd | ∃(u,v) ∈ Rj}. Since Rj is a periodic relation we deduce that Pj
is a periodic set. Moreover since Q≥0Rj is definable we deduce that Cj = {v ∈ Qd |
∃(u,v) ∈ Q≥0Rj} is definable. Let us prove that Q≥0Pj = Cj . By construction we
have Pj ⊆ Cj . Since Cj is conic we deduce that Q≥0Pj ⊆ Cj . For the converse
inclusion let v ∈ Cj . There exists u ∈ Qd such that (u,v) ∈ Q≥0Rj . Hence there
exists λ ∈ Q≥0 such that (u,v) ∈ λRj . Let us consider n ∈ N>0 such that nλj ∈ N
and observe that (nu, nv) ∈ (nλ)Rj ⊆ Rj since Rj is periodic. Thus nv ∈ Pj and
we have proved that v ∈ Q≥0Pj . Hence Q≥0Pj = Cj is a definable conic set and we
have proved that postR(X) is an almost semilinear set. From preR(Y) = postR−1(Y)
with R−1 = {(y,x) | (x,y) ∈ R} we deduce that preR(Y) is an almost semilinear
set. ut
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Now, let us prove Theorem 6.1. We consider a reflexive and transitive almost semi-
linear relation R∗. We introduce the notion of separators. A separator is a couple
(X,Y) of Presburger sets such that the intersection R∗ ∩ (X × Y) is empty. Since
R∗ is reflexive, the intersection X∩Y is empty. The Presburger set D = Zd\(X∪Y)
is called the domain of (X,Y). We observe that a separator (X,Y) with an empty
domain is a partition of Zd such that X is a Presburger forward invariant and Y is
a Presburger backward invariant. In particular Theorem 6.1 is obtained thanks to the
following Lemma 6.3 with an immediate induction.

Lemma 6.3. Let (X0,Y0) be a separator with a non-empty domain D0. There exists
a separator (X,Y) with a domain D such that X0 ⊆ X, Y0 ⊆ Y and dim(D) <
dim(D0).

Proof. We first observe that a couple (X,Y) of Presburger sets is a separator if and
only if postR∗(X) ∩ preR∗(Y) = ∅ if and only if postR∗(X) ∩Y = ∅ if and only if
preR∗(Y) ∩X = ∅.

Since R∗ is an almost semilinear relation we deduce that postR∗(X0) is an al-
most semilinear set. As D0 is a Presburger set, we deduce that postR∗(X0) ∩ D0 =⋃k
j=1 bj + Pj where bj ∈ Zd and Pj ⊆ Zd is an asymptotically definable periodic

set. We introduce the following Presburger set:

S =

k⋃
j=1

bj + lin(Pj)

Observe that postR∗(X0)∩D0 ⊆ S. We deduce that the set Y = Y0∪ (D0\S) is such
that postR∗(X0) ∩Y = ∅. Hence (X0,Y) is a separator.

Symmetrically, since R∗ is an almost semilinear relation we deduce that preR∗(Y)
is an almost semilinear set. As D0 is a Presburger set, we deduce that preR∗(Y)∩D0 =⋃n
l=1 cl +Ql where cl ∈ Zd and Ql ⊆ Zd is an asymptotically definable periodic set.

We introduce the following Presburger set:

T =
n⋃
l=1

cl + lin(Ql)

Observe that preR∗(Y) ∩D0 ⊆ T. We deduce that the set X = X0 ∪ (D0\T) is such
that preR∗(Y) ∩X = ∅. Hence (X,Y) is a separator.

Let us introduce the domain D of (X,Y). We have the following equality where
Zj,l = (bj + lin(Pj)) ∩ (cl + lin(Ql)):

D = D0 ∩ (
⋃

1≤j≤k
1≤l≤n

Zj,l)

As (X,Y) is a separator we deduce that postR∗(X)∩preR∗(Y) is empty. As bj+Pj ⊆
postR∗(X0) ⊆ postR∗(X) and cl +Ql ⊆ preR∗(Y) we deduce that the intersection
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(bj +Pj)∩ (cl+Ql) is empty. Theorem 5.2 shows that dim(Zj,l) < max{dim(bj +
Pj),dim(cl+Ql)}. Since bj+Pj ⊆ D0 and cl+Ql ⊆ D0 we deduce that dim(bj+
Pj) ≤ dim(D0) and dim(cl + Ql) ≤ dim(D0). We have proved that dim(D) <
dim(D0). ut

7 Vector Addition Systems

In this section we introduce the Vector Addition Systems, the production relations and a
well order over the set of runs of Vector Addition Systems.

A Vector Addition System (VAS) is a finite subset A ⊆ Zd. A marking is a vector
m ∈ Nd. The semantics of vector addition systems is obtained by introducing for every
word w = a1 . . .ak of vectors aj ∈ A the relation w−→ over the set of markings defined
by x

w−→ y if there exists a word ρ = m0 . . .mk of markings mj ∈ Nd such that
(x,y) = (m0,mk) and mj = mj−1 + aj for every j ∈ {1, . . . , k}. The word ρ is
unique and it is called the run from x to y labeled by w. The marking x is called the
source of ρ and it is denoted by src(ρ), and the marking y is called the target of ρ and
it is denoted by tgt(ρ). The set of runs is denoted by Ω.

The reachability relation is the relation denoted by ∗−→ over the set of markings
defined by x

∗−→ y if there exists a word w ∈ A∗ such that x w−→ y. In the sequel we
often used the fact that x w−→ y implies x+ v

w−→ y + v for every v ∈ Nd.

The production relation of a marking m ∈ Nd (see Fig. 8) is the relation ∗−→m

over Nd defined by r
∗−→m s if m + r

∗−→ m + s. The production relation of a run
ρ = m0 . . .mk is the relation ∗−→ρ defined by the following composition:

∗−→ρ=
∗−→m0 ◦ · · · ◦

∗−→mk

m

m+ r
m+ s

0

Fig. 8. The production relation of a marking m.

Example 7.1. The production relation ∗−→m with m = 0 is the reachability relation.

The following Lemma 7.2 shows that ∗−→ρ seens as a subset of Z2d is periodic for
every run ρ as a composition of periodic relations (see Fig. 9). Note that in Section 8
we prove that these periodic relations are asymptotically definable.
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Lemma 7.2. The relation ∗−→m is periodic.

Proof. Let us assume that r1
∗−→m s1 and r2

∗−→m s2. Since r1
∗−→m s1 we deduce that

r1 + r2
∗−→m s1 + r2. Moreover, since r2

∗−→m s2 we deduce that r2 + s1
∗−→m s2 + s1.

Therefore r1 + r2
∗−→m s1 + s2. ut

m

m+ r1 m+ s1

0

m

m+ r2
m+ s2

0

m

m+ r1 + r2
m+ s1 + r2
m+ s1 + s2

0

Fig. 9. Production relations are periodic.

We introduce a well order over the set of runs based on the following Lemma 7.3

Lemma 7.3. The following inclusion holds for every run ρ:

(src(ρ), tgt(ρ))+
∗−→ρ ⊆

∗−→

Proof. Assume that ρ = m0 . . .mk with mj ∈ Nd, and let (r, s) be a couple in the
production relation ∗−→ρ. Since this relation is defined as a composition, there exists
a sequence (vj)0≤j≤k+1 of vectors vj ∈ Nd satisfying the following relations with
v0 = r and vk+1 = s:

v0
∗−→m0

v1 · · ·vk
∗−→mk

vk+1

We introduce the vector aj = mj −mj−1 for every j ∈ {1, . . . , k}. Since mj−1
aj−→

mj we deduce that mj−1 +vj
aj−→mj +vj . Moreover, as vj

∗−→mj
vj+1, there exists

a word wj ∈ A∗ such that mj + vj
wj−−→ mj + vj+1. We deduce that the following

relation holds:
m0 + v0

w0a1w1...akwk−−−−−−−−−−→mk + vk+1

Therefore (m0,mk) + (v0,vk+1) is in the reachability relation. ut

We introduce the order � over the set of runs defined by ρ � ρ′ if the following
inclusion holds:

(src(ρ′), tgt(ρ′))+
∗−→ρ′ ⊆ (src(ρ), tgt(ρ))+

∗−→ρ

In the reminder of this section we prove the following theorem. All the other results or
definitions introduced in this section are not used in the sequel.

Theorem 7.4. The order � is well.



18 Jérôme Leroux

The order � is proved well thanks to the Higmann’s Lemma. We first recall this
lemma. Let us consider an order v over a set S. We introduce the order v∗ over the
set of words over S defined by u v∗ v where u = s1 . . . sk with sj ∈ S if there exists
a sequence (tj)1≤j≤k with tj ∈ S and sj v tj and a sequence (wj)0≤j≤k of words
wj ∈ S∗ such that v = w0t1w1 . . . tkwk.

Lemma 7.5 (Higmann’s Lemma). The ordered set (S∗,v∗) is well for every well
ordered set (S,v).

We associate to every run ρ = m0 . . .mk the word α(ρ) = (a1,m1) . . . (ak,mk)
where aj = mj −mj−1. Note that α(ρ) is a word over the alphabet S = A× Nd. We
introduce the order v over this alphabet by (a,m) v (a′,m′) if a = a′ and m ≤ m′.
Since A is a finite set and ≤ is a well order over Nd, we deduce that v is a well order
over S. From the Higmann’s lemma, the order v∗ is well over S∗. We introduce the
well order � over the set of runs defined by ρ� ρ′ if α(ρ) v∗ α(ρ′), src(ρ) ≤ src(ρ′)
and tgt(ρ) ≤ tgt(ρ′). The following lemma provides a useful characterization of this
order.

Lemma 7.6. Let ρ = m0 . . .mk be a run and let ρ′ be another run. We have ρ � ρ′

if and only if there exists a sequence (vj)0≤j≤k+1 of vectors in Nd such that ρ′ =
ρ′0 . . . ρ

′
k where ρ′j is a run from mj + vj to mj + vj+1.

Proof. We introduce the sequence (aj)1≤j≤k defined by aj = mj −mj−1.

Assume first that ρ� ρ′.
Since α(ρ) v∗ α(ρ′) we get α(ρ′) = w0(a1,m

′
1)w1 . . . (ak,m

′
k)wk where wj ∈ S∗

and m′j ≥ mj . We introduce the sequence (vj)0≤j≤k+1 defined by v0 = src(ρ′) −
src(ρ), vk+1 = tgt(ρ′)− tgt(ρ) and vj = m′j−mj for every j ∈ {1, . . . , k}. Observe
that vj ∈ Nd for every j ∈ {0, . . . , k + 1}. We deduce that ρ′ can be decomposed into
ρ′ = ρ′0 . . . ρ

′
k where ρ′j is the run from mj + vj to mj + vj+1 such that α(ρ′j) = wj .

Conversely let (vj)0≤j≤k+1 be a sequence of vectors in Nd such that ρ′ = ρ′0 . . . ρ
′
k

where ρ′j is a run from mj + vj to mj + vj+1. We deduce that we have the following
equality where m′j = mj + vj and a′j ∈ A:

α(ρ′) = α(ρ′0)(a
′
1,m

′
1)α(ρ

′
1) . . . (a

′
k,m

′
k)α(ρ

′
k)

Observe that a′j = tgt(ρ′j−1)−m′j = (mj+vj)−(mj−1+vj) and in particular a′j =
aj . We deduce that α(ρ) v∗ α(ρ′). Moreover, since src(ρ) ≤ src(ρ′) and tgt(ρ) ≤
tgt(ρ′) we deduce that ρ� ρ′. ut

Since � is a well order, the following lemma shows that � is a well order. We have
proved Theorem 7.4.

Lemma 7.7. ρ� ρ′ implies ρ � ρ′.

Proof. Assume that ρ = m0 . . .mk. Lemma 7.6 shows that there exists a sequence
(vj)0≤j≤k+1 of vectors in Nd such that ρ′ = ρ′0 . . . ρ

′
k where ρ′j is a run from mj + vj

to mj + vj+1. Lemma 7.3 shows that (src(ρ′j), tgt(ρ
′
j))+

∗−→ρ′j
⊆ ∗−→.



Vector Addition System Reachability Problem: A Short Self-Contained Proof 19

Hence (vj ,vj+1)+
∗−→ρ′j
⊆ ∗−→mj

. We deduce that (v0,vk+1)+
∗−→ρ′⊆

∗−→ρ by composi-
tion. Since (src(ρ′), tgt(ρ′)) = (src(ρ), tgt(ρ)) + (v0,vk+1) we get ρ � ρ′ from the
previous inclusion. ut

8 Asymptotically Definable Production Relations

In this section we prove that production relations are asymptotically definable (Theo-
rem 8.1). All the other results or definitions introduced in the section are not used in the
sequel.

Theorem 8.1. Production relations are asymptotically definable.

The following lemma shows that asymptotically definable periodic relations are
stable by composition. In particular it is sufficient to prove that production relations
∗−→m are asymptotically definable for every marking m ∈ Nd in order to deduce that

production relations ∗−→ρ are asymptotically definable for every run ρ.

Lemma 8.2. We have Q≥0(R1 ◦ R2) = (Q≥0R1) ◦ (Q≥0R2) for every periodic rela-
tions over Zd.

Proof. We have R1 ⊆ Q≥0R1 and R2 ⊆ Q≥0R2. Thus R1 ◦ R2 ⊆ C where C =
(Q≥0R1) ◦ (Q≥0R2). As C is a conic set we get Q≥0(R1 ◦R2) ⊆ C. For the converse
inclusion, let us consider (x, z) ∈ C. There exists y ∈ Qd such that (x,y) ∈ Q≥0R1

and (y, z) ∈ Q≥0R2. There exists λ1, λ2 ∈ Q≥0 such that (x,y) ∈ λ1R1 and (y, z) ∈
λ2R2. We introduce n1, n2 ∈ N>0 such that n1λ1 ∈ N and n2λ2 ∈ N and we deduce
that n(x,y) ∈ R1 and n(y, z) ∈ R2 with n = n1n2. Hence n(x, z) ∈ R1 ◦ R2. We
deduce that (x, z) ∈ Q≥0(R1 ◦R2). ut

Theorem 3.8 shows that the conic set Q≥0
∗−→m is definable if and only if the fol-

lowing conic set is finitely generated for every vector space V ⊆ Qd ×Qd:

(Q≥0
∗−→m) ∩ V

We introduce the periodic relation ∗−→m,V defined as the intersection ∗−→m ∩V . Let us
observe that (Q≥0

∗−→m)∩V is equal to Q≥0
∗−→m,V . So, we just have to prove that the

conic set Q≥0
∗−→m,V is finitely generated for every m ∈ Nd and for every vector space

V ⊆ Qd ×Qd.

We introduce the set Ωm,V of runs ρ such that (src(ρ), tgt(ρ)) − (m,m) is in
(Nd × Nd) ∩ V . Note that a couple (r, s) ∈ Nd × Nd satisfies r ∗−→m,V s if and only
if there exists a run ρ ∈ Ωm,V such that src(ρ) = m + r and tgt(ρ) = m + s. We
introduce the set Qm,V of markings q that occurs in at least one run ρ ∈ Ωm,V . In
general the set Qm,V is infinite. We consider the set Im,V of i ∈ {1, . . . , d} such that
{q(i) | q ∈ Qm,V } is infinite. We observe that if i ∈ Im,V there exists a sequence of
markings in Qm,V such that the ith component is strictly increasing. We are going to
prove that there exists a sequence of markings in Qm,V such that every component in
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Im,V is strictly increasing. This property is proved by introducing the intraproductions.
An intraproduction for (m, V ) is a triple (r,x, s) such that x ∈ Nd, (r, s) ∈ (Nd ×
Nd) ∩ V and such that:

r
∗−→m x

∗−→m s

Since ∗−→m is a periodic relation we deduce that the set of intraproductions is stable
by addition. In particular m + nx occurs in at least one run of Ωm,V for every in-
traproduction (r,x, s) and for every n ∈ N. Hence, if x(i) > 0 then i ∈ Im,V . An
intraproduction for (m, V ) is said to be total if x(i) > 0 for every i ∈ Im,V .

Lemma 8.3. There exists a total intraproduction for (m, V ).

Proof. Since finite sums of intraproductions are intraproductions, it is sufficient to
prove that for every i ∈ Im,V there exists an intraproduction (r,x, s) for (m, V ) such
that x(i) > 0. We fix i ∈ I .

Let us first prove that there exists q ≤ q′ in Qm,V such that q(i) < q′(i). Since
i ∈ I there exists a sequence (qn)n∈N of markings qn ∈ Qm,V such that (qn(i))n∈N
is strictly increasing. Since (Nd,≤) is well ordered, we can extract for this sequence a
subsequence that is non decreasing for ≤. We have proved that there exists q ≤ q′ in
Qm,V such that q(i) < q′(i).

As q ∈ Qm,V then q occurs in a run in Ωm,V . Hence there exists (r, s) ∈ (Nd ×
Nd) ∩ V such that:

m+ r
∗−→ q

∗−→m+ s

Symmetrically, as q′ ∈ Qm,V there exists (r′, s′) ∈ (Nd × Nd) ∩ V such that:

m+ r′
∗−→ q′

∗−→m+ s′

Let us introduce v = q′ − q. We deduce:

– (m+ r′) + r
∗−→ q′ + r from m+ r′

∗−→ q′.
– q+ (v + r)

∗−→ (m+ s) + (v + r) from q
∗−→m+ s.

– (m+ r) + (v + s)
∗−→ q+ (v + s) from m+ r

∗−→ q.
– q′ + s

∗−→ (m+ s′) + s from q′
∗−→m+ s′.

Since q′ + r = q + v + r and q + v + s = q′ + s, we have proved the following
relations where x = s+ v + r:

r+ r′
∗−→m x

∗−→m s+ s′

As (r+r′, s+s′) ∈ (Nd×Nd)∩V we deduce that (r+r′,x, s+s′) is an intraproduction
for (m, V ). Since x(i) > 0 we are done. ut

Let us introduce an additional element∞ 6∈ N and let N∞ = N ∪ {∞}. A vector
in Nd∞ is called an extended marking and the set I = {i ∈ {1, . . . , d} | m(i) = ∞}
is called the set of relaxed components of an extended marking m. Given a finite set
I ⊆ {1, . . . , d} and a marking m ∈ Nd, we denote by mI the extended marking defined
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by mI(i) = ∞ if i ∈ I and mI(i) = m(i) if i 6∈ I . Given a word w = a1 . . .ak of
vectors aj ∈ A, we extend the relation w−→ over the set of extended markings relaxed
over a set I by x

w−→ y if there exists a word ρ = m0 . . .mk of extended markings
relaxed over I such that (x,y) = (m0,mk) and mj(i) = mj−1(i) + aj(i) for every
j ∈ {1, . . . , k} and for every i ∈ {1, . . . , d}\I . The word ρ is unique and it is called
the run from x to y labeled by w.

We introduce the finite graph Gm,V = (Q,A, E) where Q = {qIm,V | q ∈
Qm,V } and whereE = {(pIm,V ,a,qIm,V ) | p,q ∈ Qm,V ∧q = p+a}. We introduce
the periodic relationRm,V of couples (r, s) ∈ (Nd×Nd)∩V such that r(i) = s(i) = 0
for every i ∈ {1, . . . , d}\Im,V and such that there exists a cycle in Gm,V on the state
mIm,V labeled by a word a1 . . .ak where aj ∈ A such that r+

∑k
j=1 aj = s.

Lemma 8.4. The periodic relation Rm,V is Presburger.

Proof. This is a classical result based on the fact that the Parikh image of a regular
language is Presburger. ut

Lemma 8.5. The following equality holds:

Q≥0Rm,V = Q≥0
∗−→m,V

Proof. Let us first prove the inclusion ⊇. Let (r, s) such that r ∗−→m,V s. In this case
there exists a word w ∈ A∗ such that m + r

w−→ m + s. Observe that m + nr and
m + ns are in Qm,V for every n ∈ N. Hence r(i) > 0 or s(i) > 0 implies i ∈ Im,V

and we deduce that mIm,V
w−→ mIm,V . Therefore w is the label of cycle in Gm,V on

mIm,V . We have proved that (r, s) ∈ Rm,V .

Now let us prove the inclusion ⊆. We consider (r, s) ∈ Rm,V . In this case (r, s) ∈
(Nd × Nd) ∩ V satisfies r(i) = s(i) = 0 for every i 6∈ Im,V and there exists a word
w = a1 . . .ak of vectors aj ∈ A that labels a cycle in Gm,V on mIm,V and such
that m + r +

∑k
j=1 aj = m + s. Let us consider a total intraproduction (r′,x, s′) for

(m, V ). Given p ∈ N and j ∈ {0, . . . , k} we introduce the following vector mp,j :

mp,j = m+ r+ px+ a1 + · · ·+ aj

Let us first prove that there exists p ∈ N such that mp,j(i) ∈ N for every i ∈ Im,V

and j ∈ {0, . . . , k}. Let i ∈ Im,V and j ∈ {0, . . . , k}, since x(i) > 0, there exists
pi,j ∈ N such that mp,j(i) ∈ N for every p ≥ pi,j . We deduce that there exists p ∈ N
such that mp,j(i) ∈ N for every i ∈ Im,V and j ∈ {0, . . . , k}.

Now we prove that mp,j(i) ∈ N for every i ∈ {1, . . . , d}\Im,V and j ∈ {0, . . . , k}.
Let j ∈ {0, . . . , k}. Since w is the label of a cycle on mIm,V , there exists an extended
marking qj relaxed over Im,V such that the following relation holds:

mIm,V
a1...aj−−−−→ qj

We deduce that for every i ∈ {1, . . . , d}\Im,V we have m(i) + a1(i) + · · ·+ aj(i) =
qj(i). Since r(i) = 0 and x(i) = 0 we get mp,j(i) ∈ N.
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We have proved that mp,j ∈ Nd for every j ∈ {0, . . . , k}. Since mp,j −mp,j−1 =
aj we deduce that ρp = mp,0 . . .mp,k is a run. Note that mp,0 = m + px + r and
mp,k = m + px + r +

∑k
j=1 aj = m + px + s. We have proved that the following

relation holds:
m+ px+ r

w−→m+ px+ s

In particular (r, s) is in the production relation ∗−→m′ where m′ = m + px. Since a
production relation is periodic we get m′ + nr

∗−→ m′ + ns for every n ∈ N. As
(pr′, px, ps′) is an intraproduction for (m, V ) we get m+ pr′

∗−→m′
∗−→m+ ps′. We

deduce the relation (m+pr′)+nr
∗−→m′+nr from (m+pr′)

∗−→m′, and the relation
m′ + ns

∗−→ (m + ps′) + ns from m′
∗−→ (m + ps′). We deduce that the following

relation holds for every n ∈ N:

m+ pr′ + nr
∗−→m+ ps′ + ns

Hence p(r′, s′) + N(r, s) ⊆ ∗−→m,V . Thus (r, s) ∈ Q≥0
∗−→m,V . From the inclusion

Rm,V ⊆ Q≥0
∗−→m,V we get the inclusion Q≥0Rm,V ⊆ Q≥0

∗−→m,V . ut

Lemma 8.6. The conic set Q≥0P is finitely generated for every Presburger periodic
set P.

Proof. Let us consider a Presburger periodic set P. Since P is Presburger then P =⋃k
j=1 bj + Pj where bj ∈ Zd and Pj ⊆ Zd is a finitely generated periodic set. We

introduce the finitely generated conic set C =
∑k
j=1(Q≥0bj + Cj) where Cj is the

finitely generated conic set Cj = Q≥0Pj . Since P ⊆ C and C is a conic set we deduce
the inclusion Q≥0P ⊆ C. As C is finitely generated we deduce that C is closed. Hence
Q≥0P ⊆ C. For the other inclusion let p ∈ Pj . For every n ∈ N we have bj+np ∈ P.
Hence 1

nbj + p ∈ Q≥0P for every n ∈ N>0. We deduce that p ∈ Q≥0P. Therefore
Pj ⊆ Q≥0P. We get Cj ⊆ Q≥0P. As Q≥0bj ⊆ Q≥0P ⊆ Q≥0P we have proved the
inclusion C ⊆ Q≥0P. Hence the previous inclusion is in fact an equality. ut

Now, we can prove Theorem 8.1. Lemma 8.4 shows that Rm,V is a Presburger
periodic relation. Lemma 8.6 proves that the conic set Q≥0Rm,V is finitely generated.

Lemma 8.5 shows that Q≥0
∗−→m,V is finitely generated. Hence (Q≥0

∗−→m) ∩ V is a
finitely generated conic set for every vector space V ⊆ Qd × Qd. Theorem 3.8 shows
that the conic relation Q≥0

∗−→m is definable. Hence ∗−→m is an asymptotically definable
periodic relation.

9 Almost Semilinear Reachability Relations

In this section we prove the following Theorem 9.1. All the other results or definitions
introduced in this section are not used in the sequel.

Theorem 9.1. The reachability relation of a Vector Addition System is an almost semi-
linear relation.
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We are interested in proving that ∗−→ is an almost semilinear relation. We first inspect
the intersection ∗−→ ∩((m,n) + P ) where (m,n) ∈ Nd × Nd and P ⊆ Nd × Nd is
a finitely generated periodic relation. We introduce the order ≤P over P defined by
p ≤P p′ if p′ ∈ p + P . Since P is finitely generated we deduce that ≤P is a well
order over P (Dickson’s Lemma). We introduce the set Ωm,P,n of runs ρ such that
(src(ρ), tgt(ρ)) ∈ (m,n) + P . This set is well ordered by the relation �P defined
by ρ �P ρ′ if ρ � ρ′, (src(ρ), tgt(ρ)) − (m,n) ≤P (src(ρ′), tgt(ρ′)) − (m,n). We
deduce that min�P

(Ωm,P,n) is finite.

Lemma 9.2. The following equality holds:

∗−→ ∩((m,n) + P ) =
⋃

ρ∈min�P
(Ωm,P,n)

(src(ρ), tgt(ρ)) + (
∗−→ρ ∩P )

Proof. Let us first prove ⊇. Let ρ ∈ Ωm,P,n. Lemma 7.3 shows that the inclusion
(src(ρ), tgt(ρ))+

∗−→ρ⊆
∗−→ holds. Since (src(ρ), tgt(ρ)) ∈ (m,n) + P and P is peri-

odic we deduce the inclusion ⊇.
Let us prove ⊆. Let (x′,y′) in the intersection ∗−→ ∩((m,n) + P ). There exists a

run ρ′ ∈ Ωm,P,n such that x′ = src(ρ′) and y′ = tgt(ρ′). Since �P is a well order,
there exists ρ ∈ min�P

(Ωm,P,n) such that ρ �P ρ′. We deduce that (x′,y′) is in
(src(ρ), tgt(ρ))+

∗−→ρ. We get (x′,y′) ∈ (src(ρ), tgt(ρ)) + (
∗−→ρ ∩P ) and we have

proved the inclusion ⊆. ut

Theorem 8.1 shows ∗−→ρ is an asymptotically definable periodic relation. Since P
is a finitely generated periodic relation we deduce that P is asymptotically definable.
Lemma 4.5 shows that the class of asymptotically definable periodic relations is stable
by finite intersections. We deduce that ∗−→ρ ∩P is asymptotically definable. Thanks to
the previous lemma we have proved that ∗−→ is almost semilinear and Theorem 9.1 is
proved.

10 Conclusion

The reachability problem for Vector Additions Systems consists to decide for a triple
(m,A,n) where m,n are two markings of a Vector Addition System A if there exists
a word w ∈ A∗ such that m w−→ n. The following algorithm decides this problem.

1 Reachability( m , A , n )
2 k ← 0
3 repeat forever
4 for each word w ∈ A∗ of length k
5 ifm

w−→ n
6 return ‘‘reachable’’
7 for each Presburger formula ψ of length k
8 if ψ(m) and ¬ψ(n) are true and
9 x ≥ 0 ∧ y ≥ 0 ∧ ψ(x) ∧ y ∈ x+A ∧ ¬ψ(y) unsat
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10 return ‘‘unreachable’’
11 k ← k + 1

The correctness is immediate since when the algorithm returns “reachable” we deduce
that there exists a word w ∈ A∗ such that m w−→ n and when it returns “unreachable”
we deduce a Presburger formula ψ that denotes a set I satisfying m ∈ I (since ψ(m)
is true), n 6∈ I (since ¬ψ(n) is true), and such that I is a forward invariant (since
x ≥ 0 ∧ y ≥ 0 ∧ ψ(x) ∧ y ∈ x + A ∧ ¬ψ(y) is unsatisfiable). The termination is
guaranteed by the following Theorem 10.1.

Theorem 10.1. For every pair of markings (m,n) in the complement of the reachabil-
ity relation of a Vector Addition System, there exists a partition of the set of markings
into a Presburger forward invariant that contains m and a Presburger backward in-
variant that contains n.

Proof. Let us consider X = {m} and Y = {n} and let R∗ be the reachability relation
of the Vector addition system. Theorem 9.1 shows that R∗ is an almost semilinear rela-
tion. Since R∗ is reflexive and transitive and such that (X×Y)∩R∗ = ∅, Theorem 6.1
shows that there exists a partition of the set of markings into a Presburger forward in-
variant set that contains X and a Presburger backward invariant set that contains Y. ut

This algorithm does not require the classical KLMST decomposition. Note however
that the complexity of this algorithm is still open. In fact, the complexity depends on
the minimal size of a word w ∈ A∗ such that m w−→ n if m ∗−→ n, and the minimal
size of a Presburger formula ψ(x) denoting a forward invariant I such that m ∈ I and
n 6∈ I otherwise. We left as an open question the problem of computing lower and upper
bounds for these sizes. Note that the VAS exhibiting a large (Ackermann size) but finite
reachability set given in [8] does not directly provide an Ackermann lower-bound for
these sizes since Presburger forward invariants can over-approximate reachability sets.

As future work we are interested in providing complexity bounds on formulas in
FO (Q,+,≤, 0, 1) denoting the definable conic sets Q≥0

∗−→m.
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