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Among the various ways to construct a characteristic Sturmian word, one of the most used consists in defining an infinite sequence of prefixes that are standard. Nevertheless in any characteristic word c, some standard words occur that are not prefixes of c. We characterize all standard words occurring in any characteristic word (and so in any Sturmian word) using firstly morphisms, then standard prefixes and finally palindromes.

this passion comes from the various connections Sturmian words have with other domains like for instance number theory [START_REF] Allouche | Applied Combinatorics on Words[END_REF][START_REF] Allouche | Automatic sequences[END_REF], discrete geometry [START_REF] Berstel | Combinatorics on words: Christoffel words and repetition in words[END_REF][START_REF] Klette | Digital straightness -a review[END_REF], crystallography [START_REF] Bombieri | Which distributions of matter diffract? An initial investigation[END_REF] or scheduling [START_REF] Altman | Balanced sequences and optimal routing[END_REF].

Another reason is the richness of combinatorial properties of Sturmian words (see previous references) which concerns various aspects including, e.g., palindromes, repetitions, unbordered or Lyndon words (see for instance [START_REF] Berstel | Sturmian words. Lyndon words and trees[END_REF][START_REF] Berthé | Initial powers of Sturmian sequences[END_REF][START_REF] Chuan | Unbordered factors of the characteristic sequences of irrational numbers. Theoret[END_REF][START_REF] Currie | Least periods of factors of infinite words[END_REF][START_REF] Harju | Minimal Duval Extensions[END_REF][START_REF] Melançon | Lyndon factorization of Sturmian words[END_REF][START_REF] Mignosi | A note on a conjecture of Duval and Sturmian words[END_REF][START_REF] Richomme | Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words[END_REF][START_REF] Saari | Everywhere α-repetitive sequences and Sturmian words[END_REF]). The problem considered in the current paper continues a theme of characterizing those factors of a Sturmian word that belong to some interesting class of finite words.

We consider standard words. These finite words can be used to define in a constructive way some Sturmian words (see Sect. 2 for more details) building arbitrarily long prefixes of so-called characteristic Sturmian words. Among these infinite words, the well-known Fibonacci word is maybe the one with a maximal number of extremal properties [START_REF] Cassaigne | On extremal properties of the Fibonacci word[END_REF]. In his Ph.D. thesis [START_REF] Saari | On the frequency and periodicity of infinite words[END_REF], the second author observed that the Fibonacci word contains some factors that are standard but not prefixes of it, and he asked for a characterization of the set of standard words occurring as factors in the Fibonacci word.

Sections 3, 4 and 5 solve this problem in a much more general way since they provide, for any Sturmian word, characterizations of its factors that are standard. Section 3 uses existing links between standard words and Sturmian morphisms. The proof is rather technical but the result allows to derive in a simple way a characterization using standard words occurring in the construction of characteristic words mentioned above (Sect. 4). Previous characterizations are illustrated using the Fibonacci word as an example. This word is also used in Section 5 to show how to relate standard factors of a Sturmian word to palindromes. This needs a characterization based on directive sequences of standard words.

Standard and Sturmian words

We will follow the usual notation and terminology of combinatorics on words. For further information about the concepts and results mentioned in this section, we refer the reader to [START_REF] Choffrut | Combinatorics of words[END_REF][START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF].

A word is a sequence, finite or infinite, of symbols drawn from a finite alphabet A; in this paper we set A = {0, 1}. The empty word is denoted by ε. The set of all finite words over A is denoted by A * ; the set of all nonempty words over A is denoted by A + . A finite word u is a factor of a word w if we can write w = xuy. The length of a word u is denoted by u , and the number of occurrences of a letter a in u is denoted by u a . For an integer k ≥ 2, a kth power is a word of the form u k , that is, a word obtained concatenating k occurrences of a given word u (we also denote u 1 = u and u 0 = ε).

A Sturmian word is an infinite word with precisely n+1 factors for each length n. Equivalently [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF], Theorem 2.1.13 and Proposition 2.1.18 a Sturmian word is an infinite word whose factors coincide with those of a characteristic word, where a characteristic word is an infinite word c α , depending on an irrational α with 0 < α < 1, such that c α (n) = α(n + 1)αn for all n ≥ 1. When proving a property of the factors of a Sturmian word, it often suffices to prove it for a characteristic word. A finite word s is called a standard word if there exist integers n ≥ -1, d 1 ≥ 0, d 2 , d 3 , . . . , d n ≥ 1, and words s -1 , s 0 , s 1 , . . . , s n with s = s n such that

s -1 = 1, s 0 = 0, s k = s d k k-1 s k-2 (k ≥ 1). Also, if n ≥ 1, then (d 1 , d 2 , . . . , d n ) is called the directive sequence of the word s n .
Observe that the letter 1 has a directive sequence (0), but the letter 0 does not have any. Therefore we agree that the directive sequence of 0 is the empty sequence.

Two basic properties of standard words are that (1) they are primitive (that is, not a power of a shorter word) and (2) all standard words of length at least 2 have a suffix in {01, 10}.

In this paper, we are interested in factors of an infinite word that are standard words; we call such a factor briefly a standard factor.

Let us denote the simple continued fraction expansion of α by

α = [ 0; d 1 + 1, d 2 , d 3 , . . . ].
The sequence (d 1 , d 2 , d 3 , . . .) is called the directive sequence of c α . This terminology is justified by the fact that c α can be obtained as a limit of those standard words whose directive sequences are prefixes of the one of c α , that is,

c α = lim n→∞ s n .
Many properties of Sturmian words can be dealt with using morphisms. Let us recall that a mapping h :

A * → A * is called a morphism if it satisfies h(uv) = h(u)h(v) for all u, v ∈ A * .
Observe that a morphism is uniquely determined by how it maps letters. The well-known Fibonacci word f is the characteristic word c α with α = (3 -√ 5)/2, so that it has directive sequence (1, 1, 1, . . .). It is also the unique fixed point of the morphism

ϕ : 0 → 01 1 → 0.
Next we define the morphisms

L 0 : 0 → 0 1 → 01 L 1 : 0 → 10 1 → 1.
The following lemma is well-known; it has a straightforward proof in the spirit of the proof of [START_REF] Berstel | Algebraic combinatorics on words[END_REF], Proposition 2.3.11, which we omit here.

Lemma 2.1. A word w ∈ {0, 1} * is standard if and only if there exists a morphism f in the monoid generated by L 0 and L 1 such that either w = f (0) or w = f (1).

In addition to L 0 and L 1 , we shall need a few other morphisms. For all integers m ≥ 1, we define the morphisms

θ m : 0 → 0 m-1 1 1 → 0 m-1 10.
We also define the morphism E : 0 → 1, 1 → 0, and denote (with (d 1 , d 2 , d 3 , . . .) the directive sequence of c α )

h n = θ d1+1 • θ d2 • . . . • θ dn (n ≥ 1).
Morphisms h n are handy because we have h n (0) = s n and h n (1) = s n s n-1 for all n ≥ 1 (see the proof of [START_REF] Berstel | Algebraic combinatorics on words[END_REF], Prop. 2.2.24). Furthermore, they satisfy

h 2k = L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 • L 0 , and (2.1 
)

h 2k+1 = L d1 0 • L d2 1 • . . . • L d 2k 1 • L d 2k+1 0 • L 1 • E. (2.2)
This follows from the two identities

θ m = L m-1 0 • E • L 0 and E • L 0 = L 1 • E.
For a finite word x, the shortest palindrome that has x as a prefix is denoted by x (+) ; this is called the (right) palindromic closure of x due to de Luca [START_REF] De Luca | Sturmian words: structure, combinatorics, and their arithmetics[END_REF]. We let P al denote the operation of iterated palindromic closure defined by

P al(a 1 ) = a 1 and P al(a 1 a 2 . . . a n ) = P al(a 1 a 2 . . . a n-1 )a n (+) ,
where a i is a letter. The characteristic word c α can be also represented as follows. Let us denote 0 d1 1 d2 0 d3 . . . = x 1 x 2 x 3 . . ., where x i ∈ {0, 1}. Then

c α = lim n→∞ P al(x 1 . . . x n ).
The sequence 0 d1 1 d2 0 d3 . . . is called the directive word of c α . Both directive words and directive sequences will be used in this paper to represent a characteristic word.

The following relation (see [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF], Thm. 9) will be useful. If x and y are characteristic words directed, respectively, by a 1 a 2 a 3 . . . and a 2 a 3 . . ., where a i ∈ {0, 1}, then x = L a1 (y).

(2.3)

Characterization via morphisms L 0 and L 1

Here we present a characterization of standard factors of a Sturmian word using the morphisms L 0 and L 1 . The proof can appear a bit laborious, but the result enables us to derive two other characterizations in a relatively simple manner.

First, however, we need to introduce an auxiliary notation. Let n 1 , n 2 , n 3 ≥ 1 be integers. Then we let S(n 1 , n 2 , n 3 ) denote the union of the following five sets of words:

L i 0 (0), L i 0 (1), L i 0 (10) | 0 ≤ i < n 1 , L n1 0 (1 i 0) | 1 ≤ i ≤ n 2 , L n1-1 0 ( 10 
) i 1 | 1 ≤ i ≤ n 2 , L n1 0 1 n2-1 0(1 n2 0) i 1 n2 0 | 1 ≤ i ≤ n 3 , L n1 0 1 i-1 01 i 0 | 1 ≤ i ≤ n 2 .
Using Lemma 2.1, it is readily checked that all words in S(n 1 , n 2 , n 3 ) are standard (note that

1 i 0 = L i 1 (0), ( 10 
) i 1 = L 1 • L i 0 (1), 1 n2-1 0(1 n2 0) i 1 n2 0 = L n2-1 1 • L 0 • L i+1 1 (0) and 1 i-1 01 i 0 = L i-1 1 • L 0 • L 1 (0)
). It is instructive to observe that each word in S(n 1 , n 2 , n 3 ) is a factor of any characteristic word whose directive sequence starts with 0 n1 1 n2 0 n3 . This follows from equation (2.3) when w belongs to one of the two first sets of S(n 1 , n 2 , n 3 ). When w belongs to one of the three last sets of S(n 1 , n 2 , n 3 ), we deduce the previous observation from the following three facts where x denotes an arbitrary non-ultimately-periodic infinite word over {0, 1}:

-1 n2+1 is a factor of L n2 1 (x); -1 n2-1 0(1 n2 0) n3 1 n2+1 is a factor of L n2 1 • L n3 0 (x); and -1 n2-1 01 n2 0 is a factor of L n2 1 • L n3 0 (x)
. Now we are ready for the main result of this section. In order to state it nicely, we extend notation S by letting S(0, n 2 , n 3 ) = ∅, the empty set, for all integers n 2 and n 3 . 

.]. A finite standard word u is a factor of c α if and only if there exists an integer k ≥ 0 such that one of the following holds:

• There exists (1)

x ∈ S(d 2k+1 , d 2k+2 , d 2k+3 ) such that u = L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 (x). • There exists x ∈ S(d 2k+2 , d 2k+3 , d 2k+4 ) such that u = L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 • L d 2k+1 0 • E(x).
u ∈ L i 0 (0), L i 0 (1), L i 0 (10) | 0 ≤ i < k ; (2) u = L k 0 (v) with v a standard factor of L 1 (y); (3) u = L k 0 (w0) with w = ε, w0 is standard, and w1 is a factor of L 1 (y); (4) u = L k-1 0 (10) n 1 with n ≥ 1 and 1 n+1 is a factor of L 1 (y).
Proof. It is easy to see that conditions (1)-( 4) are sufficient. We prove the necessity of the conditions by induction on k. The case k = 1 follows immediately from Lemma 3.4. So we may suppose that k ≥ 2. Using Lemma 3.4, we have the following four cases to consider:

Case 1. If u ∈ {0, 1, 10}, then condition (1) holds. Case 2. We have u = L 0 (v), where v is a standard factor of L k-1 0 (y). By the induction assumption, one of the four conditions holds:

(

1) v ∈ L i 0 (0), L i 0 (1), L i 0 (10) | 0 ≤ i < k -1 ; (2) v = L k-1 0 (v ) with v a standard factor of L 1 (y); (3) v = L k-1 0
(w0) with w = ε, w0 standard, and w1 a factor of L 1 (y); (4) v = L k-2 0 (10) n 1 with n ≥ 1 and 1 n+1 a factor of L 1 (y). Therefore one of conditions ( 1)-( 4) holds.

Case 3. We have u = L 0 (w0) with w = ε, the word w0 is a standard word, and w1 a factor of L k-1 0 (y). Since w0 is standard, the word w must end in the letter 1. Consequently, the word 11 is a factor of L k-1 0 (y). But this is not possible as k -1 ≥ 1.

Case 4. We have u = (10) n 1 with n ≥ 1 and 1 n+1 a factor of L k-1 0 (y). Again, since k -1 ≥ 1, this case is not possible. The proof is complete. Lemma 3.6. If u is a standard word with u ∈ {0, 1} + 0, then there exists an integer ≥ 1 such that either u = 1 0 or u ∈ 1 -1 0{1 -1 0, 1 0} * 1 0.

Proof. The claim is clearly true if u = 2. If u ≥ 3, then Lemma 2.1 implies that u = L 0 (v) or u = L 1 (v) for some standard word v with 2 ≤ v < u . Furthermore, also v satisfies v ∈ {0, 1} + 0, and therefore either v is of the form 1 0 or it is in 1 -1 0{1 -1 0, 1 0} * 1 0 for some ≥ 1. A straightforward computation shows that u is of one of the attested forms. Lemma 3.7. Let y be a Sturmian word over {0, 1}. Suppose that w = ε is a finite word such that w0 is a standard word and w1 is a factor of y. Then either w = 1 or w = 1 -1 0(1 0) i 1 , where ≥ 1 and i ≥ 0 are integers.

Proof. Since w = ε and w0 is standard, the word w ends in the letter 1. Let ≥ 1 denote the largest integer such that 1 is a suffix of w. If w = 1 , we are done, so we may suppose that this is not the case. Then by Lemma 3.6, we have w0 ∈ 1 -1 0{1 -1 0, 1 0} * 1 0.

Since the works of Morse and Hedlund [START_REF] Morse | Symbolic dynamics II: Sturmian trajectories[END_REF] it is well-known that all Sturmian words have the balance property, that is, for all factors u, v of the same length Case 3. Condition (3) in Lemma 3.8 holds, that is, we have

u = L d1 0 (1 0)
with ≥ 1 and 1 +1 is a factor of z. It is easy to see that 1 d2+2 is not a factor of z; therefore ≤ d 2 .

Case 4. Next we suppose that condition (4) in Lemma 3.8 holds. Then

u = L d1 0 1 -1 0(1 0) i 1 0 ,
where ≥ 1, i ≥ 0, and 1 -1 0(1 0) i 1 +1 is a factor of z. Since the word 1 d2+2 is not a factor z, we have ≤ d 2 . We may thus assume that i ≥ 1. Now the word 01 0 is a factor of z. Since z, as any word of the form L d2 1 (x), can be factorized over {1 d2 0, 1}, and since ≤ d 2 , it follows that = d 2 . To finish proving this case, we only need to show that i ≤ d 3 . Indeed, otherwise the word

1 d2-1 0(1 d2 0) d3+1 1 d2+1
is a factor of z, and it follows that 0 d3+2 is a factor of L d3 0 • L 1 (y), which is not possible because 00 is not factor of L 1 (y).

Case 5. Finally, suppose that condition (5) in Lemma 3.8 holds, that is,

u = L d1-1 0 (10) n 1
with n ≥ 1 and 1 n+1 a factor of z. Since 1 d2+2 is not a factor of z, we have n ≤ d 2 .

Now we are ready to finish proving Theorem 3.1.

Proof of Theorem 3.1. From Lemma 2.1, a finite word u is a standard factor of c α if and only if E(u) is a standard factor of E(c α ). When d 1 = 0, E(c α ) is the word c β with β = 1α = [0; d 2 + 1, d 3 , . . .] (see [START_REF] Berstel | Algebraic combinatorics on words[END_REF], Cor. 2.2.20). Then since

E • L 0 = L 1 • E (and E • L 1 = L 0 • E)
, it is straightforward that if Theorem 3.1 holds for c β then it holds for c α . So we may assume that d 1 ≥ 1. Suppose that

u = L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 (x) with x ∈ S(d 2k+1 , d 2k+2 , d 2k+3 ).
As noted earlier, x is a standard factor of any characteristic word whose directive word starts with 0 d 2k+1 1 d 2k+2 0 d 2k+3 . . . Consequently, by Equation (2.3) and Lemma 2.1, u is a standard factor of c α . Analogous reasoning works also in the case when

u = L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 • L d 2k+1 0 • E(x) with x ∈ S(d 2k+2 , d 2k+3 , d 2k+4 )
because then E(x) is a standard factor of any characteristic word whose directive word starts with 1

d 2k+2 0 d 2k+3 1 d 2k+4 . . . Conversely, suppose that u is a standard factor of c α . By equation (2.3), c α = L d1 0 • L d2 1 • L d3 0 • L 1 (y)
for a word y. Consequently, since we are assuming that d 1 ≥ 1, Lemma 3.9 applies, and so u satisfies one of conditions ( 1)-( 5) of Lemma 3.9. If u satisfies condition (1), ( 3), (4), or (5), then u ∈ S(d 1 , d 2 , d 3 ), so we may assume that condition (2) holds. Then u = L d1 0 (u 1 ), where u 1 is a standard factor of the characteristic word

L d2 1 • L d3 0 • L d4 1 • . . . Denote u 1 = E(u 1 ). Then u = L d1 0 • E(u 1 )
, and u 1 is a standard factor of the characteristic word

L d2 0 • L d3 1 • L d4 0 • .
. . Consequently, Lemma 3.9 applies, and so either

u 1 ∈ S(d 2 , d 3 , d 4 ) or u 1 = L d2 0 (u 2 )
, where u 2 is a standard factor of the characteristic word

L d3 1 • L d4 0 • L d5 1 • . . . In the first case, we have u = L d1 0 • E(u 1 ) and u 1 ∈ S(d 2 , d 3 , d 4 ),
and the claim holds. In the second case, we denote u 2 = E(u 2 ), whence u 2 is a standard factor of the characteristic word

L d3 0 • L d4 1 • L d5 0 • . . . Again, Lemma 3.9 implies that either u 2 ∈ S(d 3 , d 4 , d 5 ) or u 2 = L d3 0 (u 3 )
, where u 3 is a standard factor of the characteristic word

L d4 1 • L d5 0 • L d6 1 • . . . In the first case, we have u = L d1 0 • E • L d2 0 (u 2 ) = L d1 0 • L d2 1 (u 2 ) and u 2 ∈ S(d 3 , d 4 , d 5 ),
and the claim holds. In the second case, we continue the process. Since d i ≥ 1 for i ≥ 2, the sequence of lengths of words u 1 , u 2 , u 3 , . . . is strictly decreasing, and hence the procedure described above cannot continue forever. When it stops, we arrive at the form given in the claim.

Characterization via standard words

Here we reformulate Theorem 3.1 to a more constructive form.

Theorem 4.1. Let α = [ 0 ; d 1 + 1, d 2 , . . . ].
Then a finite standard word u is a factor of c α if and only if there exists an integer k ≥ 0, or k ≥ 1 if d 1 = 0, such that u belongs to one of the following sets (where the s i 's correspond to those defined in Sect. 2):

s k , s i k s k-1 , s i k s k-1 s k | 0 ≤ i < d k+1 ; s i-1 k+1 s k s i k+1 s k | 1 ≤ i ≤ d k+2 ; s d k+2 -1 k+1 s k s i+1 k+2 | 1 ≤ i ≤ d k+3 ; s d k+1 -1 k s k-1 s i k+1 | 1 ≤ i ≤ d k+2 .
Proof. We start with the following four identities; they follow immediately from equations (2.1) and (2.2). For all k ≥ 0, we have

L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 (0) = s 2k , ( 4.1) 
L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 (1) = s 2k-1 , (4.2) 
L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 • L d 2k+1 0 (0) = s 2k , (4.3) 
L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 • L d 2k+1 0 (1) = s 2k+1 . (4.4) Next, if x ∈ S(d 2k+1 , d 2k+2 , d 2k+3
), then x belongs to one of the following sets:

L i 0 (0), L i 0 (1), L i 0 (10) | 0 ≤ i < d 2k+1 = 0, 0 i 1, 0 i 10 | 0 ≤ i < d 2k+1 ; L d 2k+1 0 (1 i 0) | 1 ≤ i ≤ d 2k+2 ; L d 2k+1 0 1 i-1 01 i 0 | 1 ≤ i ≤ d 2k+2 ; L d 2k+1 0 1 d 2k+2 -1 0(1 d 2k+2 0) i 1 d 2k+2 0 | 1 ≤ i ≤ d 2k+3 = L d 2k+1 0 1 d 2k+2 -1 0 L d 2k+2 1 (0) i+1 | 1 ≤ i ≤ d 2k+3 ; L d 2k+1 -1 0 (10) i 1 | 1 ≤ i ≤ d 2k+2 = 0 d 2k+1 -1 1 L d 2k+1 0 (1) i | 1 ≤ i ≤ d 2k+2 .
Consequently, if

u = L d1 0 • L d2 1 • . . . • L d 2k-1 0 • L d 2k 1 (x) with x ∈ S(d 2k+1 , d 2k+2 , d 2k+3 ),
the equations above imply that u is in one of the sets

s 2k , s i 2k s 2k-1 , s i 2k s 2k-1 s 2k | 0 ≤ i < d 2k+1 , s i 2k+1 s 2k | 1 ≤ i ≤ d 2k+2 , s i-1 2k+1 s 2k s i 2k+1 s 2k | 1 ≤ i ≤ d 2k+2 . s d 2k+2 -1 2k+1 s 2k s i+1 2k+2 | 1 ≤ i ≤ d 2k+3 , s d 2k+1 -1 2k s 2k-1 s i 2k+1 | 1 ≤ i ≤ d 2k+2 .
Similarly, if

u = L d1 0 • L d2 1 • . . .• L d 2k-1 0 • L d 2k 1 • L d 2k+1 0 • E(x) with x ∈ S(d 2k+2 , d 2k+3 , d 2k+4 ),
then it follows from the equations above that u is in one of the sets

s 2k+1 , s i 2k+1 s 2k , s i 2k+1 s 2k s 2k+1 | 0 ≤ i < d 2k+2 , s i 2k+2 s 2k+1 | 1 ≤ i ≤ d 2k+3 , s i-1 2k+2 s 2k+1 s i 2k+2 s 2k+1 | 1 ≤ i ≤ d 2k+3 , s d 2k+3 -1 2k+2 s 2k+1 s i+1 2k+3 | 1 ≤ i ≤ d 2k+4 , s d 2k+2 -1 2k+1 s 2k s i 2k+2 | 1 ≤ i ≤ d 2k+3 .
Applying Theorem 3.1, it follows that u is a standard factor of c α if and only if there exists an integer k ≥ 0, or k ≥ 1 if d 1 = 0, such that u is in one of the following sets

s k , s i k s k-1 , s i k s k-1 s k | 0 ≤ i < d k+1 , s i k+1 s k | 1 ≤ i ≤ d k+2 , s i-1 k+1 s k s i k+1 s k | 1 ≤ i ≤ d k+2 , s d k+2 -1 k+1 s k s i+1 k+2 | 1 ≤ i ≤ d k+3 , s d k+1 -1 k s k-1 s i k+1 | 1 ≤ i ≤ d k+2 .
Now the formulation of the statement is obtained by observing that sets of the form

s i k+1 s k | 1 ≤ i ≤ d k+2 are included in the union of sets of the form s k , s i k s k-1 , s i k s k-1 s k | 0 ≤ i < d k+1 .
This completes the proof.

Example 4.2. Let us denote f n = ϕ n (0) for n ≥ 0 and f -1 = 1. Then the characterization of the standard factors of the Fibonacci word f given by Theorem 4.1 is

{ f n-1 , f n-1 f n , f n f n+2 f n+2 , f n-1 f n+1 | n ≥ 0 },
which is clearly the same set we obtained in Example 3.3.

Characterization via the directive sequence

In this section, we characterize the standard factors of a Sturmian word in terms of their directive sequences, and show how this can be used for characterizing standard factors in terms of palindromic closure.

• The directive sequence of the word s

i-1 k+1 s k s i k+1 s k for k ≥ 0 and 1 ≤ i ≤ d k+2 is (d 1 , . . . , d k , d k+1 , i -1, 1, 1) if i = 1, [form 4] (d 1 , . . . , d k , d k+1 + 1, 1) if i = 1. [form 3]
For the second case, note that s k s k+1 s k = s

d k+1 +1 k s k-1 s k . • The directive sequence of the word s d k+2 -1 k+1 s k s i+1 k+2 for k ≥ 0 and 1 ≤ i ≤ d k+3 is (d 1 , . . . , d k , d k+1 , d k+2 -1, 1, i + 1) if d k+2 = 1, [form 5] (d 1 , . . . , d k , d k+1 + 1, i + 1) if d k+2 = 1. [form 6]
In the first case we used s

d k+2 -1 k+1 s k s i+1 k+2 = (s d k+2 -1 k+1 s k s k+1 ) i+1 s d k+2 -1 k+1 s k ; the second case follows from s k s i+1 k+2 = s k (s k+1 s k ) i+1 = (s d k+1 +1 k s k-1 ) i+1 s k . • The directive sequence of the word s d k+1 -1 k s k-1 s i k+1 for k ≥ 0 and 1 ≤ i ≤ d k+2 is ⎧ ⎨ ⎩ (d 1 , . . . , d k , d k+1 -1, 1, i) if d k+1 = 1, [form 7] (d 1 , . . . , d k + 1, i) i fd k+1 = 1, k = 0, [form 8] (0, 1, i) i f d k+1 = 1, k = 0. [form 9].
Next we will recall a result by de Luca connecting the directive sequence of a standard word and palindromic closures ( [START_REF] De Luca | Sturmian words: structure, combinatorics, and their arithmetics[END_REF], p. 66). Each word w over {0, 1} is uniquely determined by a finite sequence (h 1 , h 2 , . . . , h n ) of integers, where h 1 ≥ 0, h i > 0 for 1 < i < n and w = 0 h1 1 h2 0 h3 . . .; such a representation of w is called its integral representation. We have the following immediate corollary of the previous proposition.

Corollary 5.4. If s is a standard word of length at least 2 with directive sequence (d 1 , . . . , d n ) then s = P al(0 d1 1 d2 . . . 0 dn-1 1 dn-1 )10, when n is even, s = P al(0 d1 1 d2 . . . 1 dn-1 0 dn-1 )01, when n is odd. Now one can use Corollary 5.4 to present the standard factors of a Sturmian word by using the directive sequences given in Theorem 5.1 and the palindromic closure operation. We did not do this since the statement of this result involves a lot of cases (more than in Thm. 5.1) and so does not seem interesting.

However, the Fibonacci word is a special case, as shown in the next example.

Example 5.5. In this example we present a characterization of the standard factors of the Fibonacci word that is essentially different from the ones in Examples 3.3 and 4.2.

The directive sequence of the Fibonacci word is (1, 1, 1, . . .). Thus Theorem 5.1 says that the directive sequences of the standard factors of the Fibonacci word are of the following form:

• empty sequence, (0), (0, 1),

• (1, 1, . . . , 1, 1),

• (1, 1, . . . , 1, 2), possibly with no preceding 1's; that is (2), (1, 2), (1, 1, 2), . . ., • (1, 1, . . . , 1, 2, 1), possibly with no preceding 1's; that is (2, 1), (1, 2, 1), . . ., • (1, 1, . . . , 1, 2, 2), possibly with no preceding 1's; that is (2, 2), (1, 2, 2), . . ., • (0, 1, 1). Therefore, by Corollary 5.4, the standard factors of the Fibonacci word are • 0, 1, 01, 10, 101; • For each nonempty prefix u of (01) ∞ , the words P al(u)01 and P al(u)10; • For each nonempty prefix u of (01) ∞ of odd length, the words P al(u0) [START_REF] Bombieri | Which distributions of matter diffract? An initial investigation[END_REF] and P al(u01)10; • For each nonempty prefix u of (01) ∞ of even length, the words P al(u1)01 and P al(u10)01.

To conclude let us mention that most of the previous characterizations can certainly be extended to the more general case of episturmian words [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF][START_REF] Glen | Episturmian words: a survey[END_REF] using links between episturmian morphisms and directive sequences of these words defined over arbitrary alphabet (see, e.g., [START_REF] Glen | Directive words of episturmian words: equivalence and normalization[END_REF]). Nevertheless the main problem should be a combinatorial explosion.
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 3235 By the definition of the continued fraction [ 0 ;d 1 + 1, d 2 , . . .], we have d 1 ≥ 0 and d k ≥ 1 for k ≥ 2.When d 1 = 0, the first item provides no standard word for k = 0. Let y be an infinite word over {0, 1}, and let k ≥ 1 be an integer. Then a standard word u is a factor of L k 0 • L 1 (y) if and only if one of the following conditions holds:

  Proposition 5.3 (de Luca). Let w ∈ {0, 1} * , and let (h 1 , h 2 , . . . , h n ) be its integral representation. The standard words P al(w)01 and P al(w)10 have the directive sequences (h 1 , . . . , h n , 1) and (h 1 , . . . , h n + 1) if n is even, and (h 1 , . . . , h n + 1) and (h 1 , . . . , h

n , 1)

if n is odd, respectively.
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Lemma 3.4. Let x, y be two infinite words over {0, 1} such that x = L 0 (y). Suppose that the letter 1 occurs in x. Then a word u is a standard factor of x if and only if one of the following holds:

(1) u ∈ {0, 1, 10};

(2) u = L 0 (v) with v a standard factor of y;

(3) u = L 0 (w0) with w = ε, the word w0 standard, and w1 a factor of y; (4) u = (10) n 1 with n ≥ 1 and 1 n+1 a factor of y.

Proof. Using Lemma 2.1, it is verified that conditions (1)-( 4) are sufficient, that is, if u fulfills one of these conditions then u is a standard factor of x.

Conversely, suppose first that u ≤ 2. As a standard word, u is primitive, and consequently u ∈ {0, 1, 01, 10}. We see that u satisfies condition (1), unless u = 01 = L 0 (1), in which case u satisfies condition [START_REF] Allouche | Automatic sequences[END_REF].

Suppose now that u ≥ 3. Lemma 2.1 implies that either u = L 0 (v) or u = L 1 (v) for some standard word v. Furthermore, the primitivity and length of u imply that both letters 0 and 1 occur in v, and hence v < u . We have two possibilities to consider:

If u = L 0 (v), then u begins with 0. If v is a factor of y, then condition (2) is satisfied, and therefore we may suppose that v is not a factor of y. It follows that u also ends with 0. Now it is easy to see that v = w0 for some word w = ε such that w1 is a factor of y. Hence condition (3) holds.

If u = L 1 (v), then the word 00 does not occur in u. Since u is a factor of x = L 0 (y), the word 11 does not occur in u either. Consequently, we have u = (10) n or u = (10) n 1 for some n ≥ 0. Since u is primitive and u ≥ 3, it follows that u = (10) n 1 and n ≥ 1. Since u is a factor of L 0 (y), we see that 1 n+1 must be a factor of y. Thus condition (4) holds. of a Sturmian word, we have u 0v 0 ≤ 1. Hence, since w1 ends in 1 +1 , the balance property of y implies that 01 -1 0 cannot occur in w. Consequently, we have w0 ∈ 1 -1 0{1 0} * 1 0, and the proof is complete.

Using the previous result, we may rewrite Lemma 3.5 as follows.

Lemma 3.8. Let y be an infinite word over {0, 1}, and let k ≥ 1 be an integer. Then a standard word u is a factor of L k 0 • L 1 (y) if and only if one of the following conditions holds:

Proof. This statement is obtained by applying Lemma 3.7 to condition (3) of Lemma 3.5, which then splits into conditions (3) and (4) of the current lemma. Therefore we only need to make sure that conditions (3) and ( 4) are sufficient. But this is immediately clear.

Finally, before proving Theorem 3.1, we formulate the previous lemma into a more suitable form: Lemma 3.9. Let y be an infinite word over {0, 1} such that 0 occurs in y. Let

y) if and only if one of the following conditions holds:

(1) u ∈ L i 0 (0),

Proof. That conditions (1)-( 3) and ( 5) are sufficient is a direct consequence of the sufficiency of corresponding conditions in Lemma 3.8. For condition (4), the same holds since either 01 or 00 occurs in y and thus the word 1 d2-1 0( 1. empty sequence, (0), (0, 1);

Remark 5.2. In the previous theorem, some items (e.g., 5 and 7) give the same directive sequences for some instances of d k and i. Nevertheless, no set of directive sequences corresponding to an item is included in another. For the second case, note that s k-1 s k = s d k +1 k-1 s k-2 .