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STANDARD FACTORS OF STURMIAN WORDS *>**

GWENAEL RicHOMME! 2, KALLE SAARI®
AND Luca Q. ZAMBONI®?

Abstract. Among the various ways to construct a characteristic
Sturmian word, one of the most used consists in defining an infinite
sequence of prefixes that are standard. Nevertheless in any character-
istic word ¢, some standard words occur that are not prefixes of c. We
characterize all standard words occurring in any characteristic word
(and so in any Sturmian word) using firstly morphisms, then standard
prefixes and finally palindromes.

Mathematics Subject Classification. 68R15.

1. INTRODUCTION

Morse and Hedlund [25] begun the study of Sturmian words in 1940 to help
develop the theory of symbolic dynamical systems they initiated a couple of years
earlier [24]. Since then, and especially during the last two decades, Sturmian words
have been under intensive scrutiny, as indicated by the surveys [4,5,7]. A reason of
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this passion comes from the various connections Sturmian words have with other
domains like for instance number theory [1,2], discrete geometry [8,20], crystallog-
raphy [10] or scheduling [3].

Another reason is the richness of combinatorial properties of Sturmian words
(see previous references) which concerns various aspects including, e.g., palin-
dromes, repetitions, unbordered or Lyndon words (see for instance [6,9,13,14,19,
22,23,26,27]). The problem considered in the current paper continues a theme of
characterizing those factors of a Sturmian word that belong to some interesting
class of finite words.

We consider standard words. These finite words can be used to define in a
constructive way some Sturmian words (see Sect. 2 for more details) building
arbitrarily long prefixes of so-called characteristic Sturmian words. Among these
infinite words, the well-known Fibonacci word is maybe the one with a maximal
number of extremal properties [11]. In his Ph.D. thesis [28], the second author
observed that the Fibonacci word contains some factors that are standard but not
prefixes of it, and he asked for a characterization of the set of standard words
occurring as factors in the Fibonacci word.

Sections 3, 4 and 5 solve this problem in a much more general way since they
provide, for any Sturmian word, characterizations of its factors that are standard.
Section 3 uses existing links between standard words and Sturmian morphisms.
The proof is rather technical but the result allows to derive in a simple way a char-
acterization using standard words occurring in the construction of characteristic
words mentioned above (Sect. 4). Previous characterizations are illustrated using
the Fibonacci word as an example. This word is also used in Section 5 to show
how to relate standard factors of a Sturmian word to palindromes. This needs a
characterization based on directive sequences of standard words.

2. STANDARD AND STURMIAN WORDS

We will follow the usual notation and terminology of combinatorics on words.
For further information about the concepts and results mentioned in this section,
we refer the reader to [12,21].

A word is a sequence, finite or infinite, of symbols drawn from a finite alpha-
bet A; in this paper we set A = {0,1}. The empty word is denoted by e. The set
of all finite words over A is denoted by .A*; the set of all nonempty words over A
is denoted by A™T. A finite word u is a factor of a word w if we can write w = xuy.
The length of a word u is denoted by ‘u‘, and the number of occurrences of a
letter a in u is denoted by |u‘a For an integer k > 2, a kth power is a word of the
form u®, that is, a word obtained concatenating k occurrences of a given word u
(we also denote u! = v and u® = ¢).

A Sturmian word is an infinite word with precisely n+1 factors for each length n.
Equivalently [21], Theorem 2.1.13 and Proposition 2.1.18 a Sturmian word is an
infinite word whose factors coincide with those of a characteristic word, where
a characteristic word is an infinite word c¢,, depending on an irrational a with
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0 < a < 1, such that

ca(n) = [a(n +1)] — [on]
for all n > 1. When proving a property of the factors of a Sturmian word, it often
suffices to prove it for a characteristic word.

A finite word s is called a standard word if there exist integers n > —1, d; > 0,
da,ds,...,d, > 1, and words s_1, Sg, S1,- .., S, With s = s, such that

s_1=1, s9=0, s,= SZElsk_g (k>1).

Also, if n > 1, then (dy,da,...,d,) is called the directive sequence of the word
Sn. Observe that the letter 1 has a directive sequence (0), but the letter 0 does
not have any. Therefore we agree that the directive sequence of 0 is the empty
sequence.

Two basic properties of standard words are that (1) they are primitive (that
is, not a power of a shorter word) and (2) all standard words of length at least 2
have a suffix in {01, 10}.

In this paper, we are interested in factors of an infinite word that are standard
words; we call such a factor briefly a standard factor.

Let us denote the simple continued fraction expansion of a by

o = [O;dl-i-l,dg,dg,...].

The sequence (dy, dz,ds, . ..) is called the directive sequence of c¢,. This terminol-
ogy is justified by the fact that ¢, can be obtained as a limit of those standard
words whose directive sequences are prefixes of the one of ¢, that is,

co = lim s,.
n—oo
Many properties of Sturmian words can be dealt with using morphisms. Let us
recall that a mapping h: A* — A* is called a morphism if it satisfies h(uv) =
h(u)h(v) for all u,v € A*. Observe that a morphism is uniquely determined by
how it maps letters.

The well-known Fibonacci word f is the characteristic word ¢, with a = (3 —
\/5)/2, so that it has directive sequence (1,1,1,...). Tt is also the unique fixed
point of the morphism

0 — 01

1 — .

Next we define the morphisms

0 0 0 10
LO:{ ’_) 01 le{ ’_)

1 — 1 — 1.

The following lemma is well-known; it has a straightforward proof in the spirit of
the proof of [7], Proposition 2.3.11, which we omit here.
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Lemma 2.1. A word w € {0,1}* is standard if and only if there exists a morphism
f in the monoid generated by Lo and Ly such that either w = f(0) or w = f(1).

In addition to Ly and L1, we shall need a few other morphisms. For all integers
m > 1, we define the morphisms

g {0 = 0l
O I e (1]

We also define the morphism E: 0 — 1,1 — 0, and denote (with (d1,ds,ds,...)
the directive sequence of ¢, )
hp =04,41004,0...004, (n>1).

n

Morphisms h,, are handy because we have h,,(0) = s, and h,(1) = sps,—1 for all
n > 1 (see the proof of [7], Prop. 2.2.24). Furthermore, they satisfy

hop = Lgl o Lib 0...0 Lg%’l o L‘li% o Ly, and (2.1)

hok+1 = Lgl o Lib 0...0 L‘li% o Lg%“ oL;o0FE. (2.2)

This follows from the two identities 0,, = Lomf1 oFoLjand EoLy=Li0FE.

For a finite word z, the shortest palindrome that has x as a prefix is denoted
by (t); this is called the (right) palindromic closure of z due to de Luca [15]. We
let Pal denote the operation of iterated palindromic closure defined by

Pal(ay) = a1 and Pal(ayas...an) = (Pal(alag .. .an_l)an)(+),

where a; is a letter.
The characteristic word ¢, can be also represented as follows. Let us denote
0919209 . = pyz9m3. .., where x; € {0,1}. Then

¢q = lim Pal(xy...xzy).
n—oo
The sequence 09119209 . . | is called the directive word of c,. Both directive words
and directive sequences will be used in this paper to represent a characteristic
word.

The following relation (see [16], Thm. 9) will be useful. If x and y are charac-
teristic words directed, respectively, by ajasas ... and asas ..., where a; € {0,1},
then

x = La, (y). (2.3)

3. CHARACTERIZATION VIA MORPHISMS Lo AND L,
Here we present a characterization of standard factors of a Sturmian word using

the morphisms Ly and L;. The proof can appear a bit laborious, but the result
enables us to derive two other characterizations in a relatively simple manner.
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First, however, we need to introduce an auxiliary notation. Let nq,ns,n3 > 1
be integers. Then we let S(n1,n2,n3) denote the union of the following five sets
of words:

{ L5(0), Lo(1), Ls(10) [0 <i < ma },
{Lir(1'0)|1<i<ny},
{Ly 1 ((10)'1) |1 <i<na ),

{ Ly (1"2710(1720)'1"20) | 1 < i < ns },
{L§ (1"7101°0) [1<i<mny}.

Using Lemma 2.1, it is readily checked that all words in S(nq1,n2,n3) are standard
(note that 1°0 = Li(0), (10)'1 = Ly o Li(1), 1"2710(120)"1"20 = L' o Ly o
LiH0) and 1°7101°0 = L' o Ly o L1(0)).

It is instructive to observe that each word in S(nq,n2,n3) is a factor of any
characteristic word whose directive sequence starts with 0™"11720™3. This follows
from equation (2.3) when w belongs to one of the two first sets of S(n1,ne,ns).
When w belongs to one of the three last sets of S(ni,n2,ng), we deduce the
previous observation from the following three facts where x denotes an arbitrary
non-ultimately-periodic infinite word over {0, 1}:

- 1"+ g a factor of L}?(x);

- 1m271g(1m20)"2 12! is a factor of L}? o Ly*(x); and

- 127101720 is a factor of L]? o L{®(x).
Now we are ready for the main result of this section. In order to state it nicely,
we extend notation S by letting S(0, n2,n3) = 0, the empty set, for all integers nq
and ns.

Theorem 3.1. Let « = [0;dy + 1,da,...]. A finite standard word u is a factor
of co if and only if there exists an integer k > 0 such that one of the following
holds:

o There exists x € S(dak+1,d2k+2, dok+3) such that
u=Li o L% 0. o L' o Ld2(x).
o There exists x € S(dakt2,dak+3, dokt+a) such that
u=LolL¥0.. o Lg%’l o L2k o Lg%“ o E(x).
Remark 3.2. By the definition of the continued fraction [0;d; + 1,ds,...], we

have d; > 0 and di > 1 for k > 2. When d; = 0, the first item provides no
standard word for k = 0.
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We will divide the proof of Theorem 3.1 into several lemmas. But let us see
first what it says in the case of the Fibonacci word:

Example 3.3. Recall that the directive sequence of the Fibonacci word f is
(1,1,...). Since

S(1,1,1) = {0,1, 10,010, 101, 0010, 0010010},

and since Lo o Ly = ¢? and Lgo E = ¢, it follows from Theorem 3.1 that the set
of standard factors of the Fibonacci word equals

{©"(1),¢"(10),"(101),"(0010010) | n >0},

We will see other ways to characterize these standard factors in later examples.
Now we are ready to start proving Theorem 3.1.

Lemma 3.4. Let x,y be two infinite words over {0,1} such that x = Lo(y).
Suppose that the letter 1 occurs in x. Then a word u is a standard factor of x if
and only if one of the following holds:

(1) we{0,1,10}

(2) w= Lo(v) with v a standard factor of y;

(3) w = Lo(w0) with w # ¢, the word w0 standard, and wl a factor of y;
(4) uw=(10)"1 with n > 1 and 1"t a factor of y.

Proof. Using Lemma 2.1, it is verified that conditions (1)—(4) are sufficient, that
is, if u fulfills one of these conditions then w is a standard factor of x.

Conversely, suppose first that |u‘ < 2. As a standard word, u is primitive,
and consequently u € {0,1,01,10}. We see that u satisfies condition (1), unless
u =01 = Lo(1), in which case u satisfies condition (2).

Suppose now that |u| > 3. Lemma 2.1 implies that either u = Lo(v) or u =
Ly (v) for some standard word v. Furthermore, the primitivity and length of u
imply that both letters 0 and 1 occur in v, and hence M < |u‘ We have two
possibilities to consider:

If u = Lo(v), then u begins with 0. If v is a factor of y, then condition (2) is
satisfied, and therefore we may suppose that v is not a factor of y. It follows that
u also ends with 0. Now it is easy to see that v = w0 for some word w # € such
that wl is a factor of y. Hence condition (3) holds.

If u = L1(v), then the word 00 does not occur in u. Since u is a factor of x =
Lo(y), the word 11 does not occur in u either. Consequently, we have u = (10)"
or u = (10)"1 for some n > 0. Since w is primitive and ‘u‘ > 3, it follows that
u = (10)"1 and n > 1. Since u is a factor of Lo(y), we see that 1"T! must be a
factor of y. Thus condition (4) holds. O
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Lemma 3.5. Let'y be an infinite word over {0,1}, and let k > 1 be an integer.
Then a standard word u is a factor of LE o Li(y) if and only if one of the following
conditions holds:

(1) we {L§0),Li(1),LH(10) | 0<i <k };

(2) u= L{(v) with v a standard factor of L1(y);

(3) u = LE(w0) with w # ¢, w0 is standard, and w1 is a factor of L1(y);

(4) u= Llocfl((lo)"l) with n > 1 and 1"+ is a factor of L1(y).

Proof. Tt is easy to see that conditions (1)—(4) are sufficient. We prove the necessity
of the conditions by induction on k. The case k = 1 follows immediately from
Lemma 3.4. So we may suppose that £ > 2. Using Lemma 3.4, we have the
following four cases to consider:

Case 1. If u € {0, 1,10}, then condition (1) holds.

Case 2. We have u = Lo(v), where v is a standard factor of LE~(y). By the
induction assumption, one of the four conditions holds:

(1) v e { Ly(0),Li(1), Li(10) [ 0 <i<k—1};

(2) v = LE7'(v) with v/ a standard factor of L;(y);

(3) v = LE~Y(w0) with w # ¢, w0 standard, and w1 a factor of L1 (y);

(4) v =L ?((10)"1) with n > 1 and 1"+ a factor of L1 (y).
Therefore one of conditions (1)—(4) holds.

Case 3. We have u = Lo(w0) with w # &, the word w0 is a standard word,
and wl a factor of L’gil(y). Since w0 is standard, the word w must end in the
letter 1. Consequently, the word 11 is a factor of ngfl(y). But this is not possible
ask—1>1.

Case 4. We have u = (10)"1 with n > 1 and 17! a factor of L !(y). Again,
since k — 1 > 1, this case is not possible. The proof is complete. O

Lemma 3.6. If u is a standard word with uw € {0,1}70, then there exists an
integer £ > 1 such that either u = 10 or u € 1°710{1~10, 10}*1%0.

Proof. The claim is clearly true if ‘u‘ =2 If |u| > 3, then Lemma 2.1 implies
that u = Lo(v) or u = Ly(v) for some standard word v with 2 < ‘v| < |ul.
Furthermore, also v satisfies v € {0,1}10, and therefore either v is of the form 1¢0
or it is in 1¢710{1°710, 1°0}*1°0 for some ¢ > 1. A straightforward computation
shows that u is of one of the attested forms. |

Lemma 3.7. Lety be a Sturmian word over {0,1}. Suppose that w # € is a finite
word such that w0 is a standard word and wl is a factor of y. Then either w = 1°
or w = 1710(1°0)*1°, where £ > 1 and i > 0 are integers.

Proof. Since w # ¢ and w0 is standard, the word w ends in the letter 1. Let
¢ > 1 denote the largest integer such that 1 is a suffix of w. If w = 1¢, we are
done, so we may suppose that this is not the case. Then by Lemma 3.6, we have
w0 € 1¢710{1¢710, 1°0}*10.

Since the works of Morse and Hedlund [25] it is well-known that all Sturmian
words have the balance property, that is, for all factors u, v of the same length
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of a Sturmian word, we have Hu|0 - |v|0‘ < 1. Hence, since wl ends in 1+, the

balance property of y implies that 01710 cannot occur in w. Consequently, we
have w0 € 1°710{1°0}*1%0, and the proof is complete. a

Using the previous result, we may rewrite Lemma 3.5 as follows.

Lemma 3.8. Lety be an infinite word over {0,1}, and let k > 1 be an integer.
Then a standard word u is a factor of L& o Li(y) if and only if one of the following
conditions holds:

(1) we { L§(0), L§(1), L5(10) | 0 <i <k };

(2) u= LE(v) with v a standard factor of L1(y);

(3) w= LE(1%0) with £ > 1 and 1+ is a factor of L1(y);

(4) u = LE(1710(1%0)1%0), where € > 1, i > 0, and 1°710(1°0)"1*! is a
factor of L1(y);

(5) u= Ly 1 ((10)"1) with n > 1 and 1"*! a factor of Li(y).

Proof. This statement is obtained by applying Lemma 3.7 to condition (3) of
Lemma 3.5, which then splits into conditions (3) and (4) of the current lemma.
Therefore we only need to make sure that conditions (3) and (4) are sufficient.
But this is immediately clear. U

Finally, before proving Theorem 3.1, we formulate the previous lemma into a
more suitable form:

Lemma 3.9. Lety be an infinite word over {0,1} such that 0 occurs in'y. Let

di,da,ds > 1 be integers. A standard word u is a factor of Lgl ) L‘{b ) Lg3 oLi(y)

if and only if one of the following conditions holds:

(1) w e { L(0), Ly(1), L(10) | 0< i < dy };

(2) u= L& (v) with v a standard factor of L o L3 o Ly (y);

(3) we{L§'(1°0) [ 1 <i < do};

(4) w e {L5 (1710(1%0)"1%) | (i=0 and 1 < £ < dp) or (1 <i < d3 and £ =
d2)};

(5) we {Ly 1 ((10)'1) |1 <i < da}.

Proof. That conditions (1)-(3) and (5) are sufficient is a direct consequence of the
sufficiency of corresponding conditions in Lemma 3.8. For condition (4), the same
holds since either 01 or 00 occurs in y and thus the word 142710(1920)%192+1 is a
factor of L2 o Ld* o Ly (y).

Conversely, suppose u is a standard factor of Lgl o Lib ) Lg3 o L1(y). In what
follows, we denote z = Lib ) Lg3 o Li(y). Lemma 3.8 implies that one of the
following five cases holds:

Case 1. Condition (1) of Lemma 3.8 holds with k = dy. This is condition (1)
of the present lemma.

Case 2. Condition (2) in Lemma 3.8 holds, and we have u = L3 (v) with v a
standard factor of z.



STANDARD FACTORS OF STURMIAN WORDS 167
Case 3. Condition (3) in Lemma 3.8 holds, that is, we have
u = L§*(1°0)

with £ > 1 and 1t is a factor of z. It is easy to see that 192%2 is not a factor
of z; therefore ¢ < ds.
Case 4. Next we suppose that condition (4) in Lemma 3.8 holds. Then

u= L3 (1*7'0(1%0)"10),

where ¢ > 1,4 > 0, and 1°710(1°0)1°*! is a factor of z. Since the word 192%2 is
not a factor z, we have £ < dy. We may thus assume that ¢ > 1.

Now the word 010 is a factor of z. Since z, as any word of the form Lib (x),
can be factorized over {1920, 1}, and since £ < da, it follows that £ = dy. To finish
proving this case, we only need to show that i < dz. Indeed, otherwise the word

1d2710(1d20)d3+1 1d2+1

is a factor of z, and it follows that 0972 is a factor of Lg3 o L1(y), which is not
possible because 00 is not factor of Li(y).
Case 5. Finally, suppose that condition (5) in Lemma 3.8 holds, that is,

w= Lg " ((10)"1)

with n > 1 and 1"t a factor of z. Since 19212 ig not a factor of z, we have
n S d2. O

Now we are ready to finish proving Theorem 3.1.

Proof of Theorem 3.1. From Lemma 2.1, a finite word u is a standard factor of
¢q if and only if F(u) is a standard factor of E(c,). When dy = 0, E(c,) is the
word ¢g with 8 = 1 —a = [0;d2 + 1,d3,...] (see [7], Cor. 2.2.20). Then since
EoLy=LioFE (and Eo Ly = Lyo E), it is straightforward that if Theorem 3.1
holds for ¢g then it holds for ¢,. So we may assume that d; > 1.

Suppose that

U= Lgl o L?Q 0...0 ngk*l o L;l% (I) with x € S(dgk_;,_l, dok+2,dok+3).

As noted earlier, = is a standard factor of any characteristic word whose direc-
tive word starts with 0%2k+1192k+20%2k+3  Consequently, by Equation (2.3) and
Lemma 2.1, u is a standard factor of ¢,. Analogous reasoning works also in the
case when

u = Lgl OL(li2 o.. .OLg?k*1 OL(li% OL(C)I%Jrl OE(:L') with = € S(d2k+2, d2k+3, d2k+4)

because then F(z) is a standard factor of any characteristic word whose directive
word starts with 192k+2(d2k+3]d2ka
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Conversely, suppose that u is a standard factor of ¢,. By equation (2.3), ¢, =
LiroL{2oL¥ oLy (y) for a word y. Consequently, since we are assuming that d; >
1, Lemma 3.9 applies, and so u satisfies one of conditions (1)—(5) of Lemma 3.9. If
u satisfies condition (1), (3), (4), or (5), then u € S(d1, dz, d3), so we may assume
that condition (2) holds. Then u = L3 (u;), where u; is a standard factor of the
characteristic word L% o L3 o L% o . ..

Denote u} = E(u1). Then u = L3 o E(u}), and v/ is a standard factor of the
characteristic word L(")l2 ) Lil3 o Lg“ o... Consequently, Lemma 3.9 applies, and so
cither u} € S(da,ds,ds) or u} = L3 (uy), where uy is a standard factor of the
characteristic word L{* o L3* o L% o ... In the first case, we have

u=L3oE(u)) and u) € S(dy,ds,ds),
and the claim holds. In the second case, we denote uy, = E(ug), whence u} is a
standard factor of the characteristic word L3 o L% o LE o ... Again, Lemma 3.9

implies that either u} € S(ds,ds,ds) or uh = Lg3 (u3), where ug is a standard
factor of the characteristic word L{* o L3 o L9 o ... In the first case, we have

u=L3oEoL¥(uy) =L o L{(uh) and € S(ds,dy,ds),

and the claim holds. In the second case, we continue the process.

Since d; > 1 for ¢ > 2, the sequence of lengths of words wuy, ug, us, ... is strictly
decreasing, and hence the procedure described above cannot continue forever.
When it stops, we arrive at the form given in the claim. O

4. CHARACTERIZATION VIA STANDARD WORDS
Here we reformulate Theorem 3.1 to a more constructive form.

Theorem 4.1. Let a = [0;dy + 1,da,...]. Then a finite standard word u is a
factor of co if and only if there exists an integer k > 0, or k > 1 if d; = 0,
such that u belongs to one of the following sets (where the s;’s correspond to those
defined in Sect. 2):

{ sk, Sksk—1, Spsp—15k | 0<i <dpy1 };
{ s};llsksi_,_lsk | 1 § ) § dk+2 };

digo—1 i .
{sei? sesptly | 1< <digs s

{ SZkJrlilSk,lS};Jrl | 1 § 7 S dk+2 }
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Proof. We start with the following four identities; they follow immediately from
equations (2.1) and (2.2). For all k¥ > 0, we have

LI oL® o, o LI o LI*(0) = sy, (4.1)
LI oL® o, o LI o LI (1) = syp_1, (4.2)
LI oL o, o LI 1 o L2+ o LI+ (0) = sy, (4.3)
Li oL 0. o L o L9 o LI*1(1) = 59141 (4.4)

Next, if € S(dak+1, dok+2, dog+3), then = belongs to one of the following sets:

{L3(0), Li(1), Ly(10) | 0<i < dapyr } = {0,071, 010 | 0 < i < gy };
{Lg”““(l 0)|1<i< d2k+2}
{Lg”““ (1°7101°0) | 1 < i < dops2 }
{Lgmﬁl (192271 (1%2k+20) 1%284+20) | 1 <4 < dopys | =

(L (a0 20) %) | 14 davra
(L5 7H((10)")) | 1< < dopsn } =

{0‘12"*1 11(Ld2’“+1( ))l | 1<i<dapya )

Consequently, if
_7d1 da dagk—1 day, .
u = LO o Ll ©...0 LO o Ll (SL') with =« € S(d2k+1, d2k+2, d2k+3),
the equations above imply that u is in one of the sets

{SQk, ShySok—1, Shpsor_182k | 0 < i < dogi1 }7
{ shpyison | 1<i<dopya },

i1 i .
{ sopy152k8ieqsor | 1 <0 < dagyo )

dog42—1 i+1 .

{ 5oy samsiiye | 1 <4 <danys },
dokt1— ; .

{ son 52k71512k+1 | 1<i<dopio}.

Similarly, if

u = Lgl OL‘lj2 Oo.. .0113%71 OL%Z’“ OLg%Jrl OE(Q’J) with «x € S(d2k+2, d2k+3, d2k+4),
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then it follows from the equations above that u is in one of the sets

{ Son41, Shpp152ks Shpy1S2kSons1 | 0 < i < dogya |,
{ shrrosort1 | 1 <i<dapys},

i1 i ,
{52k+232k+152k+252k+1 | 1<i<dauys},

dak4+3—1 i+1 .
{52k+2 82k+152%43 | 1<:< d2k+4 }7

dopy2—1 i :
Sonat SokSopys | 1 <0 <dapys ).

Applying Theorem 3.1, it follows that u is a standard factor of ¢, if and only if
there exists an integer £k > 0, or kK > 1 if d; = 0, such that u is in one of the
following sets

{ sk, shSk—1, Sis—15% | 0 < < dygr },

{shyisk | 1<i<dpgo},

{ s};rllskszﬂsk | 1<i<ds2 },

dipya—1 i .
{skft sesiln | 1< < diys ),
{ si’“*l_lsk_ls};_irl | 1 <i<dgso }

Now the formulation of the statement is obtained by observing that sets of the
form

{524—151@ | 1§i§dk+2}

are included in the union of sets of the form
{ sk, ShSk—1, Spsk—18K | 0 <1 < dgs }.
This completes the proof. O

Example 4.2. Let us denote f,, = ¢™(0) for n > 0 and f_; = 1. Then the charac-
terization of the standard factors of the Fibonacci word f given by Theorem 4.1 is

{fn—la fo—1fn, fofni2fni2, fooifni |n > 0}7

which is clearly the same set we obtained in Example 3.3.

5. CHARACTERIZATION VIA THE DIRECTIVE SEQUENCE

In this section, we characterize the standard factors of a Sturmian word in terms
of their directive sequences, and show how this can be used for characterizing
standard factors in terms of palindromic closure.
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Theorem 5.1. Let « = [0;dy + 1,da,...]. A finite standard word u is a factor
of cq if and only if it has one of the following directive sequences, where k > 0, or
k>11ifd; =0:

1. empty sequence, (0), (0,1);

2. (di,dz,...,dg-1,d,1), 1<i<dp1+ 1

3. (di,dz,...,dg-1,dk,i,1), 1<i<dgi1+ 1

4. (dl,dg,...,dk_l,dk,dk+1,i,1,1), 1§i<dk+2;

5. (di,da,...,dgy1,dgso — 1,10+ 1), 1<i<dkss if digo # 1,

6. (di,da,...,dk—1,dg,dps1+1,i+1), 1<i<dpys if dipo = 1;

7. (di,da, ... dg,dgr1 —1,1,4), 1<i<dis2 if di1 # 15

8 (di,dz,...,dg—1,dx + 1,1), 1<i<dis2 if dip1 =1
and k # 0;

9. (0,1,9), 1<i<dy ifdi=1.

Remark 5.2. In the previous theorem, some items (e.g., 5 and 7) give the same
directive sequences for some instances of dy and i. Nevertheless, no set of directive
sequences corresponding to an item is included in another.

Proof of Theorem 5.1. Theorem 5.1 is a direct consequence of Theorem 4.1. Below
we show the correspondence between words occurring in Theorem 4.1 and their
directive sequences. More precisely, using the characterization of standard factors
of ¢, in Theorem 4.1, we show that each of the standard factors has a directive
sequence listed above. The converse can be seen with a similar construction.

By [form n] we indicate that the directive sequence is of the form of the nth
item in Theorem 5.1. Thus for each item, looking at all directive sequences on this
form for all £ > 0, one can verify the possible values for .

e The directive sequence of the word sy is

(dy,...,dy) if k # 0, [form 2][form 3 when dj, =1 and k > 2]
the empty sequence if k = 0. [form 1]

e The directive sequence of the word s}%sk,l for k>0 and 0 <@ < dpyq is

(dy,...,dx—1,dg,i) if i #0, [form 2] [form 3 when ¢ =1 and k > 1]

(di,...,dx—1) if i =0 and k > 2, [form 2]
the empty sequence if i =0 and k = 1, [form 1]
(0) if i =0 and k = 0. [form 1]

e The directive sequence of the word s};sk_lsk for k> 0and 0 <i < djqq is
(dy,...,dg—1,dg,i,1) if i # 0 (sequence (i,1) when k = 0), [form 3]
(di,...,dx—1,dp +1) ifi=0and k # 0, [form 2]

(0,1) ifi =0and k =0. [form 1]

For the second case, note that si_1s, = sZ’“_"{lsk,g.
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e The directive sequence of the word Sijlsks;chlSk fork>0and 1 <i <

diyo is
(dl, ce ,dk,dk+1,i - 17 1, 1) if ¢ 75 1, [form 4]
(diy...,dig,dp+1 +1,1) if i = 1. [form 3]
For the second case, note that spsgy18k = szk“ﬂsk_lsk.
e The directive sequence of the word siiﬁrlsksﬁé fork>0and 1 <i<
diy3 is
(dl, co oy digy dpg1,digr2 — 1,10+ 1) if diqo # 1, [form 5]
(dl,...,dk,dk+1+1,i+1) if diqo = 1. [form 6]
In the first case we used sZ’ff._lskstQ = (sZ’f:f_lskSk-H)i+132’f12_18k;
the second case follows from sks}:é = sk(skﬂsk)iﬂ = (Szkﬂﬂskq)”lsk.

o The directive sequence of the word szk“flsk_ls};ﬂ fork>0and1<i<

dpyo is
(di,.. o dy,dirr —1,1,4)  if dgyr # 1, [form 7]
(dy,...,d; +1,9) if dpy1 =1, k #0, [form 8]
(0,1,1) if dpy1 =1, k=0. [form 9].

O

Next we will recall a result by de Luca connecting the directive sequence of a
standard word and palindromic closures ([15], p. 66).

Each word w over {0,1} is uniquely determined by a finite sequence (hq,
ha, ..., hy) of integers, where hy >0, h; > 0 for 1 <i < n and w = 0" 120" ., ;
such a representation of w is called its integral representation.

Proposition 5.3 (de Luca). Letw € {0,1}*, and let (hy, ha, ..., hy,) be its integral
representation. The standard words Pal(w)01 and Pal(w)10 have the directive
sequences

(h1y... hn,1) and (R, ..., hy + 1)
if n is even, and

(h1,...,hn +1) and (h1,..., hn, 1)
if n is odd, respectively.

We have the following immediate corollary of the previous proposition.

Corollary 5.4. If s is a standard word of length at least 2 with directive sequence
(di,...,d,) then

s = Pal(041%2 .. 09-119=1)10,  when n is even,
s = Pal(041%2 .. 19n-109=1)01,  when n is odd.

Now one can use Corollary 5.4 to present the standard factors of a Sturmian word
by using the directive sequences given in Theorem 5.1 and the palindromic closure
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operation. We did not do this since the statement of this result involves a lot of
cases (more than in Thm. 5.1) and so does not seem interesting.
However, the Fibonacci word is a special case, as shown in the next example.

Example 5.5. In this example we present a characterization of the standard
factors of the Fibonacci word that is essentially different from the ones in Exam-
ples 3.3 and 4.2.

The directive sequence of the Fibonacci word is (1,1,1,...). Thus Theorem 5.1
says that the directive sequences of the standard factors of the Fibonacci word are
of the following form:

mpty sequence (0), (0,1),

L1,...,1,1),

1,1,..., 1, 2), possibly with no preceding 1’s; that is (2), (1,2), (1, 1,2), ...,
1,1,...,1,2,1), possibly with no preceding 1’s; that is (2,1), (1,2,1),...,
1,1,...,1,2 2,2),(1,2,2),...,

Y

° e
.
o
. (1.
e (1,1,...,1,2,2), possibly with no preceding 1’s; that is (2, 2), (1,
(0,1, ).

Therefore, by Corollary 5.4, the standard factors of the Fibonacci word are

e 0,1,01,10,101;

e For each nonempty prefix u of (01)*°, the words Pal(u)01 and Pal(u)10

e For each nonempty prefix u of (01)> of odd length, the words Pal(u0)10
and Pal(u01)10;

e For each nonempty prefix u of (01)* of even length, the words Pal(u1)01
and Pal(u10)01.

)

To conclude let us mention that most of the previous characterizations can cer-
tainly be extended to the more general case of episturmian words [16,17] using
links between episturmian morphisms and directive sequences of these words de-
fined over arbitrary alphabet (see, e.g., [18]). Nevertheless the main problem
should be a combinatorial explosion.
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