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Collective thermo-electrophoresis of charged colloids

Arghya Majee and Alois Würger
Laboratoire Ondes et Matière d’Aquitaine, Université Bordeaux 1 & CNRS,

351 cours de la Libération, 33405 Talence, France

Thermally driven colloidal transport is to a large extent due to the thermoelectric or Seebeck
effect of the charged solution. We show that, contrary to the generally adopted single-particle
picture, the transport coefficient depends on the colloidal concentration. For solutions that are dilute
in the hydrodynamic sense, collective effects may significantly affect the thermophoretic mobility.
Our results provide an explanation for recent experimental observations on polyelectrolytes and
charged particles, and suggest that for charged colloids collective behavior is the rule rather than
the exception.

PACS numbers: 66.10.C, 82.70.-y,47.57.J-

I. INTRODUCTION

Transport in macromolecular or colloidal dispersions
is mainly driven by interface forces [1—4]. Because of the
rather short-ranged flow pattern induced in the surround-
ing fluid, these forces do not result in hydrodynamic in-
teractions, in contrast to diffusion and sedimentation. As
a consequence, nearby beads hardly see each other, and
their transport velocity is independent of concentration
[5]; for the same reason, free-solution electrophoresis of
polyelectrolytes does not depend on the molecular weight
[6, 7]. Similar results have been obtained for thermal dif-
fusion of high polymers [8—11].
Recent experiments on thermophoresis in charged col-

loids, however, dress a rather different picture and in-
dicate that the single-particle description fails in several
instances: Contrary to expectation, the transport veloc-
ity due to a temperature gradient,

u = −DT∇T, (1)

was found to depend on the volume fraction of particle
dispersions and on the chain length N of macromolecu-
lar solutions: (i) Data on sodium polystyrene sulfonate
(NaPSS) [12] and single-stranded DNA [13] at constant
polymer content but variable N , reveal that the mobil-
ity DT becomes smaller for larger molecules; e.g., in the
range from 50 to 48000 base pairs, that of DNA decreases
by a factor of 5. These findings are obtained at low con-
centration where the molecular mean distance is much
larger than the gyration radius. (ii) Regarding particle
suspensions, experiments on 70-nanometer silica beads
[14] and 26-nm latex spheres [15] in a weak electrolyte,
show that at a volume fraction of 2%, DT is significantly
reduced with respect to the zero-dilution value.
In the present work we show that these experimental

findings arise from an interaction mechanism that has
been overlooked so far, i.e., the collective thermoelectric
response of the composite system. By treating the salt
ions and the dispersed colloid on an equal footing, we
find that both the thermoelectric field and the mobil-
ity DT vary with the colloidal concentration. Depend-
ing on the electrolyte strength and the valency of the

macroions, collective effects may occur at low dilution,
that is, for particle dispersion with negligible pair poten-
tial and polymer solutions where neighbor chains do not
overlap.

Thermally driven motion of charged colloids is very
sensitive to the solvent composition. From previous work
it emerges that two rather different mechanisms con-
tribute to the velocity [15, 16],

u = −µT∇T + µE. (2)

The first term arises from the local particle-solvent inter-
actions in a non-uniform temperature. As first pointed
out by Ruckenstein [17], the temperature gradient de-
forms the electric double layer and induces a pressure gra-
dient opposite to ∇T . The resulting thermoosmotic sur-
face flow toward higher T drives the particle to the cold
side; the overall picture is similar to electroosmotic effects
in an electric field [18]. The coefficient µT ∝ εζ2/ηT de-
pends on the ζ-potential, and the solvent permittivity ε
and viscosity η; different prefactors occur in the limits of
small and large particles [17—25]. This form agrees rather
well with the observed salinity dependence [26], yet fails
in view of the strong variation with T reported for vari-
ous systems [12, 13], thus suggesting the existence of an
additional, so far poorly understood contribution to µT .

The present work deals with the second term in (2),
which accounts for the Seebeck effect of the charged so-
lution or, in other words, for electrophoresis in the ther-
moelectric field E with the mobility µ = εζ/η. Due to
their temperature dependent solvation forces, ions mi-
grate along or opposite to the thermal gradient. As a con-
sequence, surface charges develop at the cold and warm
boundaries of the vessel and give rise to a macroscopic
electric field E = −ψ∇T/T ; see Fig. 1. The thermopo-
tential parameter ψ is related to the Seebeck coefficient
S = −ψ/T ; for electrolytes S attains values of several
100µV/K, which is by one to two orders of magnitude
larger than in common metals [27].



2

II. THERMOPHORETIC MOBILITY

We consider a dispersion of negatively charged parti-
cles or macromolecules of valency −Z and concentration
n, in a monovalent electrolyte solution of ionic strength
n0 with a constant temperature gradient ∇T . According
to the general formulation of non-linear thermodynam-
ics the currents of colloid and salt ions are linear func-
tions of generalized forces [28]; the latter can be expressed
through thermal and concentration gradients. The cur-
rent of colloidal macroions is given by

J = −D∇n+ nu, (3)

where the first term on the right-hand side accounts for
normal diffusion and the second one for transport with
the drift velocity (2).

The densities of small ions account for the counterions
released by the colloidal particles and the added salt. the
salinity. The mobile ion currents

J± = −D±

(
∇n± + 2n±α±

∇T

T
∓ n±

eE

kBT

)
(4)

comprise normal diffusion with coefficients D±, thermal
diffusion with the reduced Soret parameters α±, and elec-
trophoresis with the Hückel mobility for monovalent ions.
In (3) and (4) we have added an electric field term; it is
important to note that E is not an external field but
arises from the kinetics of the mobile charges and is pro-
portional to the applied temperature gradient. A similar
phenomenon occurs in a non-uniform electrolyte, where
the electric field is proportional to the salinity gradient
and to the difference of the ionic diffusion coefficients D±

[2, 29].

The numbers α± describe the drift of positive and neg-
ative salt ions in a temperature gradient. The values for
the most common ions have been determined by Agar
from thermopotential measurements of electrolyte solu-
tions [31]; our notation and Agar’s “heat of transport”
Q∗± are related through α± = Q∗±/2kBT . Typical values
range from α ≈ 0 for Li+ to α ≈ 3 for OH−; those of the
most common ions are given in Table I.

TABLE I: Reduced Soret coefficient α± of several salt ions at
room temperature. The values of the heat of transport Q∗±
are taken from Ref. [31]. The parameters α± are calculated
from α± = Q

∗
±/2kBT .

Ion H+ Li+ K+ Na+ OH− Cl−

Q∗
i (kJ/Mol) 13.3 0.53 2.59 3.46 17.2 0.53

αi 2.7 0.1 0.5 0.7 3.4 0.1

 warm cold 
charge density ρ 

 

 

 

thermoelectric field E 
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FIG. 1: Thermoelectric effect in a colloidal suspension of
charged particles in salt solution. In the example presented,
the Soret parameters are such that negative and positive ions
accumulate at the cold and warm boundaries, respectively.
In the left panel, vertical dashed lines indicate the thick-
ness of the surface layers of about one Debye length λ. This
schematic view exaggerates the surface layers, which are much
thinner in real systems. The right panel shows the spatial
variation of the net charge density ρ, the thermoelectric field
E, and the thermopotential U ; dashed lines indicate the zero
of the ordinate. Note the non-zero surface charges at the cold
and hot boundaries. The present paper discusses the bulk
behavior only, where ρ = 0 and where E is constant.

A. The steady state

Eqs. (3) and (4) provide the currents as functions of
the generalized thermodynamic forces, that is, of the con-
centration and temperature gradients [28]. We are inter-
ested in the steady state characterized by

J± = 0 = J. (5)

For later use we give of a resulting relation for the elec-
tric field. Inserting the drift velocity (2) and superpos-
ing the three equations (5) such that the concentration
gradients result in the gradient of the charge density,
∇ρ = e∇(n+ − n− − Zn), and collecting terms propor-
tional to E and ∇T , one has

E = e
2n+α+ − 2n−α− − ZnTµT/D

εκ2
∇T

T
+
∇ρ

εκ2
, (6)

with the shorthand notation κ2 = e2(n+ + n− +
ZnTµT /D)/εkBT .
In order to determine the four unknowns ∇n±, ∇n, E,

the three equations (5) need to be completed by a fourth
condition; it is provided by Gauss law

divE = ρ/ε (7)

which relates E and the charge density ρ = e(n+−n−−
Zn), and thus closes the above set of equations.

B. Small-gradient approximation

The above Eqs. (5) and (7) are non-linear in the con-
centrations and thus cannot be solved as they stand. The
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salt and colloid concentrations vary very little through
the sample; the relative changes δn/n and δn±/n± be-
tween the hot and cold boundaries are proportional to
the reduced temperature difference δT/T . Since in ex-
periment, the ratio δT/T is much smaller than unity, we
may safely replace the concentrations n and n± in the
coefficients of (6) with constants n̄ and n̄±; the latter
are defined as the colloidal and salt concentrations at
∇T = 0.
Formally, this small-gradient approximations corre-

sponds to neglecting terms that are quadratic in the small
quantities ∇n±, ∇n, E, and ∇T . This approximation
has been used, more or less explicitly, in previous works
on the thermoelectric effect [30, 31] and in recent applica-
tions in colloidal thermophoresis [15, 16, 32]. Moreover,
various works on the osmotic flow driven by externally
imposed gradients of charged solutes resorts to the same
approximation, albeit with the salinity change ∇n0 in-
stead of the temperature gradient [2, 29, 33].

C. Bulk thermoelectric field

The above relations (5)-(7) describe both the bulk
properties of a macroscopic sample and boundary effects
such as the surface charges that develop at the hot and
cold boundaries; see Fig. 1. The thickness of the surface
layer is given by the Debye length and thus in the range
between one and hundred nanometers. This is much
smaller than the sample size. Thus we discard surface
effects and discuss the bulk behavior only; a full evalua-
tion including surface effects is given in the Appendix.
In a macroscopic sample the net charge density van-

ishes because of the huge electrostatic energy. With

ρbulk = 0,

Gauss’ law imposes (7) imposes a constant electric field;
its explicit expression is readily obtained from (6)

E = −ψ
∇T

T
, (8)

with the shorthand notation for the coefficient of ∇T/T

ψ = −e
2n̄+α+ − 2n̄−α− − Zn̄TµT/D

εκ̄2

and κ̄2 = e2(n̄++ n̄−+Zn̄TµT/D)/εkBT . Note that we
have used the small-gradient approximation and replaced
the colloidal and ion concentrations with their mean val-
ues.
Although it is not always mentioned explicitly, the

argument of zero bulk charge density has been used
in previous works on the Seebeck effect of electrolytes
[15, 16, 30—32] and, more generally, for colloidal trans-
port in non-equilibrium situations involving thermal or
chemical gradients [2, 29, 33].

D. Zero-dilution limit

We briefly discuss the case of a very dilute suspension
where the colloidal charges are negligible for the electro-
static properties. Putting n → 0 in the electric field (8)
we have ψ0 = − (α+ − α−) kBT/e and

E0 = (α+ − α−)
kB∇T

e
.

This expression has been used previously in [15, 16, 30,
32]. Note that the parameter κ−1 reduces to the usual
exprerssion of the Debye screening length.
Inserting the thermoelectric field E in the drift velocity

(2) and comparing with (2) defines the thermophoretic
mobility

D0
T = µT +

εζψ0
ηT

. (9)

Not surprisingly it is independent of the colloidal con-
centration. The parameter ψ0 and the macroscopic ther-
mopotential U = ψ0δT/T between the hot and cold ves-
sel boundaries, are given by the steady state of the elec-
trolyte solution. With the numbers of Table I, one finds
the values ψ0 = −15 mV and +70 mV for NaCl and
NaOH solutions, respectively. Thus one expects D0

T to
change its sign upon replacing one salt by the other [16].
This is confirmed by a very recent study on sodium dode-
cylsulfate (SDS) micelles, where the electrolyte composi-
tion NaCl1−xOHx was varied at constant ionic strength
[32]; increasing the relative hydroxide content x from 0
to 1 resulted in a linear variation of the Soret coefficient
ST and a change of sign at x ≈

1

2
[32].

E. Collective effects on the electric field E

Now we derive the main result of this paper, that is,
the dependence of E and DT on the colloidal concentra-
tion and, in the case of polyelectrolytes, on its molecular
weight. As two important parameters we define the ratio
of the colloidal charge density and the salinity,

φ =
Zn̄

n0
, (10)

and the ratio of colloidal electrophoretic mobility µ and
diffusion coefficient D,

ξ =
kBT

e

|µ|

D
. (11)

In the following we assume a negative surface poten-
tial. For typical colloidal suspensions, the charge ratio
is smaller than unity, φ ∼ 0.1, whereas the parameter ξ
may exceed 102.
Rewriting the coefficient ψ in (8) in terms of the di-

mensionless quantities φ and ξ, we have

ψ = −
2(1 + φ)α+ − 2α− − φTµT /D

2 + φ+ φξ

kBT

e
. (12)
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Eq. (12) shows how the thermoelectric field arises from
the competition of the Soret motion of the mobile ions
and the colloidal solute. In the low-dilution limit φ→ 0
the first term in the numerator reduces to (α+ − α−)
which corresponds to the response of the electrolyte so-
lution discussed in previous work [15, 16, 32].
The φ-dependent term in the numerator becomes rel-

evant where φ ∼ D/TµT and, in particular, may change
the sign of ψ and thus of the thermoelectric field. With
typical values TµT ∼ 10

−9 m/s2 one has D/TµT = 10
−3

for micron-size particles (and polyelectrolytes of a gy-
ration radius.of 1 µm), and D/TµT = 10−1 for 10-
nanometer beads. This means that, at typical colloidal
densities, the thermoelectric field is essentially deter-
mined by the macroions. The denominator in (12) results
in an overall decrease when augmenting the colloidal con-
centration.

F. Collective effects on the mobility DT

Now we determine the steady-state thermophoretic
mobility. Plugging the value of the electric field E given
in (8) into the drift velocity (2) and comparing with (1),
we get

DT =
D0
T

1 + φ
2+φξ

. (13)

where D0
T is defined by Eq. (9) albeit with a modified

parameter

ψ0 = −
(1 + φ)α+ − α−

1 + φ/2

kBT

e
. (14)

The mobility and its dependence on the ratio φ consti-
tute the main result of this paper. According to (9), the
sign of DT is determined by the competition of the bare
mobility µT and the Seebeck term proportional to ζψ0.
Since φ < 1 in most cases, the numerator of (13) is rather
similar to the dilute case discussed above (9).
A much more striking variation arises from the de-

nominator of (13). For typical values of the charge ratio
φ ∼ 0.1, collective effects set in where 1

2
φξ ∼ 1, in other

words where ξ is of the order of 20. For high polymers
(N = 103...106) and colloidal particles in the range from
ten nanometers to a micron, the parameter ξ takes val-
ues between 10 and 103. This simple estimate suggests
collective effects to occur in many systems. A detailed
comparison with experiment is given in the following sec-
tion.
In the limit of zero dilution φ→ 0 one readily recovers

the expression (9). The opposite case of a saltfree system
leads to

DT =
D0
T

1 + ξ
, (φ→∞)

with ψ0 determined by the counterions only. In view
of the large values of ξ mentioned above, one expects a
strong reduction of the mobility in the salt free case.

III. COMPARISON WITH EXPERIMENT

We discuss Eq. (13) in view of recent experiments on
colloidal suspensions. At relevant values of the charge
ratio (φ ∼ 0.1) the numerator hardly differs from that of
the dilute case. Thus in the following we focus on the
reduction of DT due to the denominator.

A. Polyelectrolytes

We start with experimental findings on polyelec-
trolytes at constant volume fraction but variable mole-
cular weight. In their study of 2 g/l of NaPSS in a 100
mM/l NaCl solution, Iacopini et al. found a significant
variation with the chain length [12]: Fig. 2a shows the
data measured at 30◦ C for molecules of 74, 160, and
360 repeat units, with an overall decrease of the mobility
by 40 percent. The same factor has been found in the
temperature range from 15 to 35◦ C.
The solid line represents collective effects arising from

the denominator of Eq. (13). It has been calculated
with the double-layer term in the small-bead limit, as-
suming the monomer to be small as compared to the
Debye length (R < λ) [22—24],

µT = −
dε

dT

ζ2

3η
,

and with the Hückel-limit electrophoretic mobility µ =
2

3
εζ/η. Inserting the diffusion coefficientD = kBT/6πηR
and the Bjerrum length ℓB = e2/4πεkBT in (11), we have

ξ =
e|ζ|

kBT

R

ℓB
. (15)

The theoretical curve of Fig. 2a is calculated with the
parameters ζ = −27 mV, nN = 10 mM/l, and φ =
0.1. Its variation arises only from the gyration radius
R = ℓN1−ν

K Nν ; we have used the usual exponent ν = 3

5
,

the size of a monomer ℓ = 0.4 nm, and the number of
monomers per segment NK = 10. The dashed line in-
dicates the mobility in the short-chain limit. The theo-
retical expression (13) provides a good description of the
reduction of DT with increasing chain length.
As a second example, DNA in 1 mM/l Tris buffer shows

a similar behavior; its mobility decreases by a factor of 5
over the range from N =50 to 48500 base pairs per mole-
cule [13]. The overall DNA content was kept constant,
Nn = 50µM/l, with a charge ratio φ = 0.05. Eqs. (13)
and (15) provide a good fit to these data, albeit with a
somewhat too small exponent ν ≈ 0.4. In view of this
discrepancy one should keep in mind the rather complex
electrostatic properties of polyelectrolytes.
The reduction observed for both NaPSS and DNA can-

not be explained by hydrodynamic effects. Interchain in-
teractions are of little significance because of the low di-
lution. Indeed, the effective volume fraction of the poly-
mer coils hardly attains a few percent, nR3 ∼ 10−2; thus
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FIG. 2: Comparison with measured data. (a) Variation of DT

with the chain length N of a polyelectrolyte at fixed volume
fraction. The data on 2 g/l NaPSS in a 100 mM/l NaCl solu-
tion at 30◦ C are taken from Iacopini et al. [12]. The solid line
is calculated from Eq. (13) with the parameters as given in
the main text. The dependence on N arises from the gyration
radius R. (b) Volume fraction dependence of DT of a disper-
sion of 70-nm silica beads in a solution of 30µM/l sulpho-
rhodamine B. The data are from Ghofraniha et al. [14]; the
fit curves are obtained from (13) and (16), with different val-
ues of the reduced virial coefficient B/V , where V = 4

3
πR3 is

the particle volume.

nearby chains do not overlap and leave both the viscosity
and the diffusion coefficient unchanged. Regarding hy-
drodynamic interactions of beads of the same molecule,
it is known that they enhance the electrophoretic mobil-
ity in (2) and (9) with increasing chain length. Yet this
effect occurs for short polyelectrolytes and saturates for
chains longer than the size of the screening cloud [35]; for
the examples studied here, it would enhance DT in the
range N < 40. We conclude that hydrodynamic effects
may ruled out as an explanation for the reduction shown
in Fig. 2a. Finally we discuss electrostatic single-particle
effects. The electrophoretic mobility in saltfree solution
has been found to decrease slightly at higher concentra-
tion, because of the increase of the overall ionic strength
and the shorter screening length [36, 37]. In the present
case, however, the weight fraction of the polyelectrolyte
is constant, and so is the overall charge density. Thus
the electrostatic properties of the solution are the same
for different chain lengths.

B. Colloidal particles

Now we discuss the concentration dependent mobility
DT that has been reported for dispersions of solid parti-
cles in weak electrolytes. Ghofraniha et al. studied silica
particles (R = 35 nm) in a 30 µM/l solution of the neg-
atively charged dye sulpho-rhodamine B [14]. The data

shown in Fig. 2b reveal a significant decrease with the
colloidal volume fraction; at 3% DT is reduced to less
than half of the zero-dilution value. The negative sign of
the measured DT indicates that the thermoelectric con-
tribution εψ0ζ/ηT to (9) overtakes the Ruckenstein term
[16]

µT =
εζ2

3ηT
.

The negative surface potential ζ implies that the ther-
mopotential parameter of the sulpho-rhodamine solution
is positive, ψ0 > 0.
The curves in Fig. 2b are calculated from (11) and

(13) with ψ0 = 10 mV, which is comparable to common
salts and weaker than the values of NaOH and tetraethy-
lammonium [15, 32]. The rather small DT suggests that
the particles are weakly charged; we use Z = 30 and
ζ = −10 mV. The dashed line gives the mobility D0

T in
the zero-dilution limit, whereas the solid lines are given
by (13).
In addition to the explicit concentration dependence

in terms of the parameter φ, one has to take into ac-
count that, even at moderate colloidal volume fraction,
the Einstein coefficient D is not constant. Indeed, co-
operative diffusion of charged particles arises from the
electrostatic pair potential Φ(r) and, to a lesser extent,
from hydrodynamic interactions [38]. To linear order in
the concentration, the virial expansion for the Einstein
coefficient reads as

D = D0(1 + 2nB), (16)

with the parameter

B =
1

2

∫
dV
(
1− e−Φ/kBT

)
.

For hard spheres the virial coefficient is given by the par-
ticle volume, B = 4V with V = 4

3
πR3. The electrostatic

pair potential results in an effective interaction volume
V = 4

3
π(R+ χ

2
λ)3, where λ is the Debye length and χ a

numerical factor [26, 32, 34]; for small and highly charged
particles in a weak electrolyte, the repulsive forces may
enhance the virial coefficient by one or two orders of mag-
nitude. On the other hand, hydrodynamic interactions
contribute a negative term B/V ∼ −6.5 and reduce the
Einstein coeffient accordingly [38]. Our discussion of the
data of Ref. [14] is restricted to volume fractions up to
3%; at higher concentration the measured D saturates
and the linear approximation ceases to be valid. In units
of the particle volume V , the measured virial coefficient
reads B/V = 20 [14]; the best fit of the mobility data is
obtained with B/V = 14. This value is much larger than
that of hard spheres and thus indicates the importance
of electrostatic repulsion. The concentration of mobile
charge carriers n0 = 30µM/l leads to a screening length
of about 50 nm. With χ ∼ 2 in the above expression for
the effective volume, one finds a virial coefficient close
to the measured value. As an illustration of the effect
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of collective diffusion on DT , we plot Eq. (13) for these
three values: Though the variation of DT with B is not
neglegible, it is significantly weaker than that of the ther-
moelectric effect.
As a second experiment we mention data by Putnam

and Cahill on latex beads of radius R = 13 nm in an
electrolyte solution of 2mM/l ionic strength [15]; varying
the volume fractions from 0.7 to 2.2 wt%, these authors
observed a reduction of DT by about 10 percent. With a
valency of Z ∼ 50 one finds that, at the highest particle
concentration n = 4µM/l, the charge ratio φ does not
exceed 10 percent.
Finally we address the concentration dependence ob-

served by Guarino and Piazza for the Soret coefficient
ST = DT/D of SDS micelles [26]. Its decrease with the
SDS content, is well described by collective diffusion ac-
cording to (16). In a very recent measurement, Vigolo
et al. vary the electrolyte composition NaCl1−xOHx and
thus the thermal diffusion parameter of the anion in (14),
α− = (1 − x)αCl + xαOH [32]. The observed linear de-
pendence of ST on x confirms the crucial role of the ther-
mopotential. Unfortunately there are no mobility data
for micelles; thus at present it is not possible to determine
whether their DT is subject to collective effects similar
to those of polyelectrolytes and solid beads.

IV. SUMMARY AND CONCLUSION

In summary, charged colloids in a non-uniform tem-
perature show collective transport behavior mediated by
the Seebeck effect of both colloidal and salt ions. For
large particles and macromolecules, cooperative effects
set in at rather low concentration, where hydrodynamic
interactions are absent and where the charge ratio φ is
much smaller than unity. The criterion for the onset of
collective behavior, φξ ∼ 1 in (13), involves the ratio
of the electrophoretic mobility and the Einstein coeffi-
cient; by contrast, the criterion for cooperative diffusion,
Bn ∼ 1, depends on the pair potential of the solute parti-
cles. The discussed examples suggest that the collective
thermoelectric effect is generic for colloids at ordinary
concentrations. This issue could be relevant for microflu-
idic applications of thermophoresis.
We conclude with a remark on the thermoelectric field

given in Eq. (12). Both its magnitude and its sign can be
tuned by chosing the appropriate electrolyte and adjust-
ing the charge ratio. With a thermal gradient of less than
one Kelvin per micron, E may attain values of 100 V/m.
Thus the thermoelectric effect could be used for applying
electric fields in microfluidic devices. Local laser heating
would permit to realize almost any desired spatiotempo-
ral electric-field pattern.
Helpful and stimulating discussions with D.G. Cahill,

R. Piazza, D. Braun, and N. Ghofraniha are gratefully
acknowledged.

V. APPENDIX

The thermoelectric field (8) has been derived by us-
ing the charge neutrality of the bulk of a macroscopic
sample. Here we give a derivation based on the steady
state, Gauss’ law, and the electrostatic boundary condi-
tions. Resorting to the small-gradient approximation, we
replace the coefficients in (6) by their mean values and
thus have

E = −ψ
∇T

T
+
∇ρ

ε κ̄2
.

From Gauss’s law (7) one has ∇ρ/ε = ∇2E and thus ob-
tains a differential equations for the thermoelectric field
E with a constant inhomogeneity −(ψ/T )∇T ,

E −
∇2E

κ̄2
= −ψ

∇T

T
.

The solution E = Einh + Eh consists of two contribu-
tions. The inhomogeneous term Einh = −(ψ/T )∇T ac-
counts for the macroscopic Seebeck effect. The remaining
one Eh is related to surface charges at the cold and hot
boundaries of the sample. The homogeneous equation
∇2Eh = κ̄2Eh is solved by the exponential function,

Eh = A+e
κ̄z +A−e

−κ̄z,

where z is the coordinate in the direction of the temper-
ature gradient. Its range is −1

2
L ≤ z ≤ 1

2
L with the

sample size L.
The electrostatic boundary conditions require that the

electric field vanishes at z = ±1

2
L. Putting E = 0 and

solving for the coefficients of Eh , one readily finds A± =
−1

2
Einh/ cosh(κ̄L/2) and the thermoelectric field

E = −
ψ

T
∇T

(
1−

cosh(κ̄z)

cosh(κ̄L/2)

)
.

Both E and the corresponding charge density ρ are illus-
trated in the right panel of Fig. 1. The field vanishes
at the boundaries and reaches its constant bulk value (8)
within a few screening lengths κ̄−1. The parameter κ̄−1

takes values in the range between 1 and 100 nanometers
and thus is much smaller than the size of sample L. Even
in microfluidic devices, κ̄L is in general larger than 103.
In real systems a more complex picture may emerge

from the surface roughness of the boundaries, the solute
size, and surface charges of other origin. Note that such
additional effects do not affect the bulk electric field (8)
and thus are irrelevant for the results of this paper.
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