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NONPARAMETRIC ESTIMATION OF THE INTENSITY FUNCTION
OF A RECURRENT EVENT PROCESS

OLIVIER BOUAZIZ(∗), FABIENNE COMTE(∗∗) AND AGATHE GUILLOUX(∗∗∗)

Abstract. In this paper, we consider the problem of estimating the intensity of a re-
current event process observed under a standard censoring scheme. We first propose a
collection of kernel estimators for which we provide MSE and MISE bounds. Then, we
describe and study an adaptive procedure of bandwidth selection, in the spirit of Gold-
enshluger and Lepski (2010) and we prove an oracle type bound for both the MSE and
the MISE of the final estimator. The method is illustrated by simulation experiments.
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AMS (2000) subject classification. 62N02, 62G05.
Keywords. Adaptive estimation. Censoring. Kernel estimator. Intensity. Nonparamet-
ric estimation. Recurrent event process.

1. Introduction

Recurrent event data arise in many fields such as medicine, insurance, economics and re-
liability. Medical examples include infections in HIV-infected subjects, tumor recurrences
in cancer patients or epileptic seizures of patients. Such repeated events impact on the
quality of life of the patients and also increase their risk of death. Therefore it becomes of
natural interest to study the rate function of the recurrent event process which represents
the instantaneous probability of experiencing a recurrent event at a given time. In this
paper, we propose a new kernel estimator of the rate function when the recurrent event
process is subject to right censoring and a terminal event is present. Then, we study the
finite sample properties of this nonparametric estimator and develop a method to choose
the bandwidth using data driven techniques.

Regression methods have been widely studied to estimate the cumulative mean function
or the rate function of the recurrent event process. For instance, Andersen and Gill [2]
considered a Cox model in presence of right censoring and they studied the intensity of
the recurrent process under a Poisson assumption. In the absence of terminal events, Pepe
and Cai [17] and Lin et al. [14] performed estimation of the regression parameters in a
more general model, taking into account time dependent covariates. Ghosh and Lin [9, 10]
extended these results to the presence of terminal events and derived asymptotic properties
of the regression parameter estimates. Finally, Bouaziz et al. [5] studied the cumulative
mean function through a single-index assumption which can be seen as a generalization
of the previous models. Asymptotic results on the parameter estimates were derived and
data-driven techniques were used.
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(∗∗∗): LSTA, University Pierre et Marie Curie.

1



2 O. BOUAZIZ, F. COMTE, A. GUILLOUX

However, all these approaches rely on a modelisation assumption on the mean or rate
functions which may not hold in practice. In a more flexible way, nonparametric proce-
dures were considered by several authors. In presence of censored data and without the
Poisson assumption, Nelson [16] and Lawless and Nadeau [13] introduced an estimator
of the cumulative mean function and derived a robust estimator of its variance. They
also obtained confidence intervals which enable them to compare mean functions in a two
sample testing. Then, the theoretical properties of this estimator were derived in Ghosh
and Lin [8]. In their main result, the cumulative mean function is proved to converge
weakly to a zero mean gaussian process. More recently, Dauxois and Sencey [7] studied
a model of recurrent events with competing risks and a terminal event. They performed
two sample tests on the rate function although their estimation procedure did not need
estimation of this function.

Few works using smoothing approach were also introduced in this framework. Bar-
toszyński et al. [3] briefly presented a kernel estimator of the rate function when the
recurrent events were supposed to be a Poisson process and the censored times constant.
Then, Chiang et al. [6] extended their results to a more general setting where no Poisson
assumption was made and they included a terminal event treated as a random censor-
ing variable. They studied two types of kernel estimator of the rate function and gave
asymptotic results for both estimators. Mainly, the asymptotic normality is proved and
confidence intervals are derived using a bootstrap method, where theoretical arguments
are provided to validate their procedures. An other kind of smoothing estimator was also
introduced in Bouaziz et al. [5] to estimate the cumulative mean function when covariables
are present. In our work, we extend this estimator to the rate function estimation in a
nonparametric context. It is well known that the performance of kernel estimator strongly
depends on the choice of the smoothing parameter. Therefore, adaptive bandwidth selec-
tion is carried out based on the recent work of Goldenshluger and Lepski [11]. Following
their minimax approach, the purpose of this article is to provide an oracle inequality for
the L2-risk and the integrated L2-risk of the kernel estimator with a data-driven choice of
the bandwidth.

The paper is structured as follows. After presenting the recurrent event model in the
next section, we introduce our estimation procedure and infer a kernel-type estimator of
the rate function in Section 3.1. In Sections 3.2 and 3.3 we give Mean Squared Error
(MSE) and Mean Integrated Squared Error (MISE) bounds of the estimator for a fixed
bandwidth. An adaptive procedure of bandwidth selection is then presented in Section 4.
In particular, we derive our main result, an oracle bound for both the MSE and MISE of
our rate function estimator. A short simulation study is conducted in Section 5 in order to
assess the practical properties of the method. Lastly, a few concluding remarks gathered
in Section 6 ends our presentation. The main proofs are detailed in Section 7 and some
technical results are postponed to the appendix Section 8.

2. Notation and first assumptions

2.1. Process assumptions. Let D be the terminal event (e.g. death) and N∗(t) be the
number of recurrent events experienced up to time t. As no recurrent event can occur
after the terminal event, the process N∗(·) has jumps of size +1 on [0, D].
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Let C be the censoring time, assumed to be independent of both N∗(·) and D. The
i.i.d. observations are then given by:

Ti = Di ∧ Ci
δi = I(Di ≤ Ci)
Ni(t) = N∗i (t ∧ Ci),

for i = 1, . . . , n. The distribution functions of D and C are respectively denoted by:

F (t) = P[D ≤ t] and G(t) = P[C ≤ t], t ≥ 0.

The mean function of N∗ is defined as E[N∗(t)] = µ(t) for all t ≥ 0. We assume that
N∗ has an intensity, in the sense that there exists a non-negative function λ such that, for
all t ≥ 0:

E[N∗(t)] = µ(t) =
∫ t

0
λ(s)ds.

We aim to infer on this intensity function λ. To this purpose we first introduce some
assumptions.

Assumption 1. Assume that:
(i) C⊥⊥(N∗, D),
(ii) P

[
dN∗(C) 6= 0

]
= 0,

(iii) P[D = C] = 0.

Assumption (i) is common in the context of recurrent events when censored data are
present (see e.g. [7],[8]). Assumptions (ii) and (iii) are technical assumptions used to
prevent us from ties between death, censoring and the apparition of recurrent event. Notice
that in practical situations, if such ties exist, they can be dealt with by assigning to
censored events values just slightly larger than their actual values.

The next assumption is introduced to circumvent problems arising in the tails of the
distributions of G and N .

Assumption 2. Assume that:
(i) there exist three positive constants τ, cF and cG such that τ < inf{t : H(t) = 1} and,

for all t ∈ [0, τ ],
1−G(t) ≥ cG, 1− F (t) ≥ cF .

(ii) there exists cτ > 0, such that N(t) ≤ cτ almost surely for every t ∈ [0, τ ].
(iii) ‖λ‖∞,τ := supt∈[0,τ ] λ(t) <∞.

The first assumption is common in the context of estimation with censored observations
(cf. [1]) while the second can be found e.g. in [7]. The last one is an additional condition
only required for the pointwise setting.

2.2. Kernel and functional assumptions. In this paper, our goal is to perform non-
parametric estimation of the function λ using a kernel-type estimator. Very classical
regularity conditions are required for the intensity function and the kernel K. We first
impose λ to belong to a Hölder space (see [18]).
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Assumption 3. Let β > 0 and L > 0. Assume λ(l) exists for l = bβc and

|λ(l)(t+ z)− λ(l)(t)| ≤ L|z|β−l, ∀z ∈ [−h, h], t ∈ [h, τ − h].

We also need to impose some conditions on the kernel K and the bandwidth h. Note
that the following set of assumptions can be fulfilled by many standard kernel functions.

Assumption 4. Assume that
(i) K has a compact support [−1, 1],

∫
K(u)du = 1 and

∫
K2(u)du <∞,

(ii) ‖K‖∞ := supu∈[−1,1] |K(u)| <∞,
(iii) K is a l = bβc order kernel, in the sense that∫ 1

−1
ujK(u)du = 0, for j = 1, . . . , l,

∫ 1

−1
uβK(u)du <∞,

(iv) nh ≥ 1 and 0 < h < 1.

Considering all these four assumptions, it is now possible to perform estimation of λ.
Our kernel estimator is introduced in the next section.

3. Study of the MSE and MISE of λ̂h

3.1. Kernel estimator. One of the difficulties of estimating the intensity function comes
from the fact that N∗ is not directly observed. Therefore, our estimation procedure is
based on the next equality which provides a new expression of λ relying on N instead of
N∗.
Under Assumption 1 and since N∗ does not jump after D, we have:

(1) E[dN(t)] = E[dN∗(t ∧ C)] = E[dN∗(t)E[I(t ≤ C)|N∗]] = λ(t)
(
1−G(t−)

)
dt.

The distribution function G is estimated by Ĝ, the Lo et al. [15] modified Kaplan-Meier
estimator,

Ĝ(t) =


1−

∏
i:T(i)≤t

(
1− 1

n− i+ 2

)1−δ(i)
if t ≤ T(n),

Ĝ(T(n)), if t > T(n),

where T(i) denotes the order statistic associated to the sample T1, . . . , Tn (that is T(1) ≤
. . . ≤ T(n) and the (δ(i))’s are the δi’s associated to the new indexes). Notice that, from
this definition, for all t ≥ 0:

(2) 1− Ĝ(t) ≥ (n+ 1)−1.

Then, we can propose the following kernel estimator to estimate λ:

(3) λ̂h(t) =
1
nh

n∑
i=1

∫
K

(
t− s
h

)
dNi(s)

1− Ĝ(s−)
,

where K is a kernel function and h a bandwidth satisfying Assumption 4. It is important
to notice that the kernel is bounded with compact support on [−1, 1] and consequently the
integral in (3) will vanish outside the interval [t− h, t+ h]. Therefore, given a bandwidth
h, we will in the following only discuss estimation of λ for t such that t± h ∈ [0, τ ].
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Let us also introduce the following pseudo-estimator:

λ̃h(t) =
1
nh

n∑
i=1

∫
K

(
t− s
h

)
dNi(s)

1−G(s−)
,

which is the kernel estimator of λ in the case where G is known. In the following, the
study of the quadratic error of λ̂h − λ is divided into two steps. We first study the error
of λ̃h−λ, then the one of λ̃h− λ̂h. The final results, a bound for the Mean Squared Error
(MSE) at a fixed point and the Mean Integrated Squared Error (MISE) of λ̂h−λ are given
in Theorem 1.

Throughout this paper we will use, for some function f , the notations ‖f‖1 =
∫
|f(x)|dx

and ‖f‖2 =
∫
f2(x)dx where the integrals are taken over the support of the function f .

Moreover, for two quantities α(n) and γ(n), the notations α(n) . γ(n) and α(n) ∝ γ(n)
will be used to say that there exists a positive constant c such that respectively α(n) ≤
cγ(n) or α(n) = cγ(n).

3.2. Study of the pseudo estimator λ̃h. We obtain with rather classical tools the
following results for the risk of the pseudo-estimator. We state successively the pointwise
error and the integrated error as the sum of a bias term and a variance term.

Proposition 1. Under Assumptions 1 to 4 we have:
(i) for all t ∈ [h, τ − h]:

E
[(
λ̃h(t)− λ(t)

)2] ≤ c21h2β +
cτ‖λ‖∞,τ
nhcG

‖K‖2,

where

c1 =
L

l!

∫ 1

−1
|u|βK(u)du.

(ii)
∫ τ−h

h
E
[(
λ̃h(t)− λ(t)

)2]
dt ≤ τc21h2β +

cτΛ(τ)
nh

‖K‖2, where

Λ(τ) =
∫ τ

0

λ(s)ds
1−G(s−)

.

Proof. For the bias terms, observe that, from Equation (1)

E[λ̃h(t)] =
∫
Kh (t− s)λ(s)ds

and using a change of variables, this leads to

(
E[λ̃h(t)]− λ(t)

)2 ≤ (∫ 1

−1
K(u)

(
λ(t+ uh)− λ(t)

)
du

)2

.

Now write λ(t + uh) = λ(t) + λ′(t)uh + · · · + (uh)l

l! λ(l)(t + ξuh), for 0 ≤ ξ ≤ 1, and use
Assumptions 3 and 4 to obtain the required result in both (i) and (ii).
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Now for the variance terms, write

V[λ̃h(t)] =
1
n

V
[∫

Kh (t− s)
1−G(s−)

dN(s)
]

≤ 1
n

E

[(∫
Kh (t− s)
1−G(s−)

dN(s)
)2
]
.

Then apply Lemma 9 (see Section 8):

V[λ̃h(t)] ≤ cτ
n

E
[∫

K2
h (t− s)

(1−G(s−))2
dN(s)

]
≤ cτ

n

∫
K2
h (t− s)

1−G(s−)
λ(s)ds.

From this point, Assumption 2 and the equality
∫
K2
h(t− s)ds = h−1‖K‖2 give the point-

wise variance bound while a change of variables gives the integrated variance term.
Gathering the bias and variance bounds gives the MSE and MISE stated in (i) and (ii)

and thus the result of Proposition 1.
�

3.3. Study of the estimator λ̂h. The most difficult part concerns the study of the
difference between λ̂h and λ̃h. We give our final conclusion here and postpone the proof
in Section 7.

Lemma 1. Under Assumptions 1 to 4, for all t ∈ [h, τ − h], we have

E
[(
λ̂h(t)− λ̃h(t)

)2] ≤ c log(n)
n

,

and

E
[∫ τ−h

h

(
λ̂h(t)− λ̃h(t)

)2
dt

]
≤ c′ log(n)

n
,

where c is a constant depending on ‖K‖∞, ‖λ‖∞,τ , cτ and c′ is a constant depending on
Λ(τ), ‖K‖2 and cτ .

Now, gathering the results of Proposition 1 (i)− (ii) and Lemma 1 gives the following
global bounds for the estimator.

Theorem 1. Under Assumptions 1 to 4 we have:
(i) for all t ∈ [h, τ − h],

E
[(
λ̂h(t)− λ(t)

)2] ≤ 2c21h
2β + 2

cτ‖λ‖∞,τ
nhcG

‖K‖2 + c
log(n)
n

,

(ii) ∫ τ−h

h
E
[(
λ̂h(t)− λ(t)

)2]
dt ≤ 2τc21h

2β + 2
cτΛ(τ)
nh

‖K‖2 + c′
log(n)
n

,

where c1 is the constant defined in Proposition 1 and c and c′ are the two constants intro-
duced in Lemma 1.
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A classical consequence of Theorem 1 is that the best resulting rate is proportional to
n−2β/(2β+1). Nevertheless, to reach such a rate, we should choose h ∝ n−1/(2β+1), where
β is the unknown regularity index. In the following, we provide a data driven way of
selecting the bandwidth which allows to reach almost or exactly the optimal rate without
requiring the knowledge of β.

4. Adaptive estimation of λ

4.1. Pointwise bandwidth selection. In this part we want to select automatically a
relevant bandwidth for our estimator using Goldenshluger and Lepski’s [12] method. Let
t = t0 be the point of interest and define:

λ̂h,h′(t) = Kh′ ∗ λ̂h(t),

where Kh(·) = (1/h)K(·/h) and u ∗ v denotes the convolution product of the functions u
and v, u ∗ v(x) =

∫
u(x− t)v(t)dt. Note that, from the definition of λ̂h,h′ ,

λ̂h,h′(t) =
1
n

n∑
i=1

∫
Kh′ ∗Kh(t− s) dNi(s)

1− Ĝ(s−)
=

1
n

n∑
i=1

∫
Kh ∗Kh′(t− s)

dNi(s)
1− Ĝ(s−)

,

so that λ̂h,h′(t) = Kh ∗ λ̂h′(t) = λ̂h′,h(t). Then, for some κ0 > 0, define

(4) V0(h) = κ0
cτ‖λ‖∞,τ‖K‖2 log(n)

nhcG
and consider

(5) A0(h, t0) = sup
h′∈Hn

{
(λ̂h′ − λ̂h,h′)2(t0)− V0(h′)

}
+
.

Lastly, we define our adaptive estimator in the following way:

(6) ĥ(t0) = argmin
h∈Hn

(A0(h, t0) + V0(h)) and λ̌(t0) = λ̂ĥ(t0)(t0).

Theorem 2. Under Assumptions 1 to 4, and if Hn is a finite discrete set of bandwidths
such that Card(Hn) ≤ n,

(7) ∀h ∈ Hn, nh ≥ κ1 log(n), for some κ1 ≥ 0,

and

(8)
∑

k,hk∈Hn

1
nhk

. loga(n), for some a ≥ 0,

then there exists a constant κ0 such that λ̌ defined by (4), (5) and (6) satisfies:

(9) ∀h ∈ Hn, E
[(
λ̌(t0)− λ(t0)

)2] ≤ c(c21h2β + V0(h)) + c′
log(1+a)(n)

n
,

where c is a numerical constant and c′ a constant depending on cτ , ‖λ‖∞,τ and cG.

Remark 1. Note that V0(h) contains several types of terms:
• κ0, a numerical constant. The proof below shows that κ0 = 80 would give the

theoretical result but a much lower value works, in practice (see Section 5).
• log(n)/(nh) which gives the asymptotic order of the term and is known.
• ‖K‖, a known constant, as the kernel is user chosen.
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• cτ and ‖λ‖∞,τ which are unknown quantities that can respectively be estimated
by

(10) ĉτ = max
1≤i≤n

Ni(τ), ‖̂λ‖∞,τ = sup
x∈[hn,τ−hn]

λ̂hn(x).

Here hn is an arbitrary bandwidth (it can be taken equal to n−1/5 for instance). Note
that if we replace in V0(h) the unknown terms by their estimates given in (10), we get an
estimate V̂0(h). Inserting this in theoretical part would imply several additional steps to
the study of the estimate. For sake of simplicity, we do not provide this part of the study.

The bound (9) holds for all h ∈ Hn and therefore reaches automatically the rate
(n/ log(n))−2β/(2β+1) provided that h0

opt ∝ (n/ log(n))−1/(2β+1) belongs to Hn. We can
note that a logarithmic loss occurs here with respect to the optimal non adaptive rate.
This is also what happens for classical density estimation and we can thus conjecture that
the procedure is nevertheless adaptive optimal.

Example of Hn. Considering constraints (7) and (8) on Hn, we can propose

Hn =
{
k

n
, k = blog2(n)c, . . . , n

}
so that Card(Hn) ≤ n and ∀k = blog2(n)c, . . . , n, we have hk ∈ [n−1, 1]. Moreover,
k0 = b(n/ log(n))2β/(2β+1)c is guaranteed to be such that h0

opt = k0/n belongs to Hn.
Besides,

∑
k 1/(nhk) = O(log(n)) and condition (8) holds with a = 1.

4.2. Global bandwidth selection. In the global risk setting, we set, for some κ > 0,

(11) V (h) = κ
cτΛ(τ)‖K‖2

nh

and we consider

(12) A(h) = sup
h′∈Hn

{
‖λ̂h′ − λ̂h,h′‖2 − V (h′)

}
+
.

Finally we define:

(13) ĥ = argmin
h∈Hn

(A(h) + V (h)) and λ∗ = λ̂ĥ.

Theorem 3. Under Assumptions 1 to 4, and if Hn is a finite discrete set of bandwidths
such that Card(Hn) ≤ n, condition (8) is fulfilled and

(14)
∑

k,hk∈Hn

exp(−b/hk) < +∞, ∀b > 0,

then there exists a constant κ such that λ∗ defined by (11), (12) and (13) satisfies:

(15) ∀h ∈ Hn,
∫ τ−1

1
E
[(
λ∗(t)− λ(t)

)2]
dt ≤ c(τc21h2β + V (h)) + c′

log1+a(n)
n

,

where c is a numerical constant and c′ a constant depending on cτ , Λ(τ) and cG.
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Remark 2. Note that all the points in Remark 1 can be transposed to V (h). The additional
term Λ(τ) is also unknown and can be estimated by:

Λ̂(τ) =
1
n

n∑
i=1

∫ τ

0

dNi(s)
(1− Ĝ(s−))2

.

It is worth emphasizing here that, if Hn is large enough to contain bandwidths of order
hopt ∝ n−1/(2β+1), then the adaptive estimator automatically reaches the optimal rate
n−2β/(2β+1), without requiring the knowledge of β. Compared to the pointwise setting, no
logarithmic loss occurs here.

Let us now give two examples of Hn fulfilling conditions (8) and (14).
Example 1. Take

Hn =
{
hk =

1
k
, k = 1, . . . , b

√
nc
}
.

Then Card(Hn) ≤
√
n ≤ n and ∀k = 1, . . . , b

√
nc, we have hk ∈ [n−1, 1]. Moreover

∑
k,hk∈Hn

(1/(nhk)) =
1
n

b
√
nc∑

k=1

k = O(1)

which ensures condition (8). Lastly

∑
k,hk∈Hn

exp(−b/hk) =
b
√
nc∑

k=1

e−bk = O(1)

and (14) is ensured.
Let us emphasize that since hopt ∝ n−1/(2β+1), the condition n−1/2 ≤ n−1/(2β+1) ≤ 1 is
required, that is β ≥ 1/2. This means there is a minimal regularity condition to impose
on the function of interest for (15) to hold.

Example 2. Take

Hn =
{
hk =

1
2k
, k = 1, . . . , blog(n)/ log(2)c

}
.

Then Card(Hn) ≤ log(n)/ log(2) ≤ n and ∀k = 1, . . . , blog(n)/ log(2)c, we have hk ∈
[n−1, 1]. Moreover

∑
k,hk∈Hn

(1/(nhk)) =
1
n

blog(n)/ log(2)c∑
k=1

2k = O(1),

which ensures condition (8). Lastly

∑
k,hk∈Hn

exp(−b/hk) =
blog(n)/ log(2)c∑

k=1

e−b2
k

= O(1)

and (14) is verified.
Here, no minimum regularity condition of the function to estimate is needed.
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Figure 1. Scenario 1 with β = 1 and n = 500, r̄e = 1.02, pc = 0% (top),
n = 1000, r̄e = 1.04, pc = 0% (middle), n = 5000, r̄e = 0.97, pc = 0%
(bottom)

5. Simulations

We illustrate the behavior of estimator λ̌, constructed with the pointwise bandwidth
selection of Section 4.1.

Recurrent events data are simulated as follows. For individuals i = 1, . . . , n, the terminal
event Di is simulated according to the distribution F , the censoring time Ci according to
G. Conditionally on Di, the number n(i) of recurrent events experienced by individual i
on time interval [0, Di] are simulated according to a Poisson distribution P(

∫ Di
0 ϕ(u)du).

Finally the recurrent times for individual i is simulated as n(i) i.i.d. random variables
with common p.d.f ϕ/

∫ D
0 ϕ(u)du. The intensity of the process N∗ to recover is, in this

case, given by:
λ(t) = ϕ(t)(1− F (t)).

We consider two scenarios for the simulated data:
(1) ϕ(t) = t and 1− F (t) = exp(−βt).
(2) ϕ(t) = (3/2)(1− |t− 1|)2 on [0, 2] and 1− F (t) = exp(−βt) on [0, 2].
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Figure 2. Scenario 2 with β = 0.05 and n = 500, r̄e = 0.92, pc = 0%
(top), n = 1000, r̄e = 0.89, pc = 0% (middle), n = 5000, r̄e = 0.91,
pc = 0% (bottom)

The estimators of Section 4.1 are constructed with Epanechnikov kernels: K(t) =
(3/4)(1 − t2), if |t| ≤ 1. We use a data-driven criterion for the selection of the band-
width, by replacing V0(h) in Definition (4) by:

V̂0(h) = κ0
ĉτ‖λ̂‖∞,τ‖K‖2 log(n)

n h ĉG
,

with

ĉτ = max
i=1,...,n

( sup
t∈[0,Tmax]

N i(t)) + 2

‖λ̂‖∞,τ = sup
t∈[0,Tmax]

|λ̂0.5(t)| and

ĉG = 1− Ĝ(Tmax−),

where Tmax is the greatest observed recurrent event.
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The finite set of bandwidths (Hn) considered in the algorithm is given by:

Hn = {log2(n)/n+ 1/2k, k = 0, . . . , blog(n)/ log(2)c}.

In the figures below, the intensity functions are estimated on a 20-points grid, regularly
spaced on [0, Tmax] and κ0 equals 10−2. The number of observations n, the mean number
of recurrent r̄e and the level of censoring pc are reported in the captions. In each figure,
the left plots show the true intensity functions in red, the estimators in blue, and the set
of all the estimators proposed to the selection algorithm is dashed black. The right plots
show the value of the selected windows for all points on the grid.

In Figures 1 and 2, we investigate the behavior of our estimators, when the sample size
n grows. In scenario 1, where the intensity λ to recover is smooth, as in scenario 2, where
λ has a singularity, the estimator behaves as expected: it improves with the sample size.

In Figure 3, we illustrate the behavior of our estimator when the censoring level grows.
In this case, the censoring time has an exponential distribution, with 1−G(t) = exp(−γt),
where the parameter γ takes the values γ = 1/30 (top), γ = 1/3 (middle) and γ = 1
(bottom). The resulting levels of censoring and mean numbers of recurrent events are
indicated in the caption. Note that, as the level of the censoring grows, the numbers
of observed recurrent events vanishes (from r̄e = 1.12, when pc = 4%, to r̄e = 0.25,
when pc = 50%) as does the time intervals, on which they are observed (from [0, 9], when
pc = 4%, to [0, 2.5], when pc = 50%).

From a general point of view, we can see in Figures 1, 2 and 3 that the algorithm
makes very different bandwidth choices, depending on the point of time. Therefore, the
pointwise strategy is very useful. In particular, we can see in Figures 1 and 2 that the
minimal bandwidth choice occurs at time 1 which in both cases is the location of the
maximum; moreover, the selected bandwidth is all the smaller that the peak is abrupt.
Lastly, Figure 3 shows that the pointwise strategy is relevant: indeed, it is obviously a
good strategy to change the bandwidth in function of the time since none of the proposed
curves would globally give a better estimate.

6. Concluding remarks

In this work, we not only provide a kernel estimator for the intensity function of a re-
current event process, but we also prove oracle type inequalities for the risk of an adaptive
estimator with data-driven selected bandwidth. We have studied both cases of pointwise
risk for pointwise chosen bandwidth and integrated global risk with a globally selected
bandwidth. Our bandwidth selection proposal is original and slightly different from stan-
dard cross-validation methods. This is because it is based on recent ideas developed by
Goldenshluger and Lepski [11]: in this sense, our results are new and the way of proving
the results is of interest. We also assess the practical feasibility and the good performances
of our proposal through a short simulation study: we found it more challenging to evaluate
the pointwise selection and illustrate the different bandwidths choices performed by the
algorithm.
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Figure 3. Scenario 1 with β = 1 and n = 1000, r̄e = 1.12, pc = 4% (top),
n = 1000, r̄e = 0.55, pc = 25% (middle), n = 1000, r̄e = 0.25, pc = 50%
(bottom)

7. Proofs

7.1. Proof of Lemma 1. The proof relies on four additional lemmas which are presented
below. First, write:

λ̂h(t)− λ̃h(t) =
1
nh

n∑
i=1

∫
Ĝ(s−)−G(s−)

(1− Ĝ(s−))(1−G(s−))
K

(
t− s
h

)
dNi(s).

Then introduce the sets

ΩG =
{
ω : ∀t ∈ [0, τ ], G(t)− Ĝ(t) ≥ −cG/2

}
,

Ω?
G =

{
ω : ∀t ∈ [0, τ ], |G(t)− Ĝ(t)| ≤ c0

√
n−1 log n

}
,

and

(16) Ωc0 = ΩG ∩ Ω?
G.
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Our idea is to study the difference process λ̂h − λ̃h on Ωc0 and its complementary. The
next lemma gives a useful bound of P[Ωc

c0 ]. The proof is postponed to Section 8.

Lemma 2. For all p ∈ N, there exists a choice of the constant c0 = c0(p) such that,

(17) P
[
Ωc
c0(p)

]
≤ c2n−p,

where c2 is a constant depending on k, cF and cG and c0(k) also depends on cF .

In the following, we denote by Ωp = Ωc0(p) such that Equation (17) in Lemma 2 holds.
We now start the proof of Lemma 1 by studying the difference process λ̂h − λ̃h on the set
Ωc
p.

Lemma 3. Under Assumptions 1 to 4, for all p ∈ N, t ∈ [h, τ − h], we have:

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
≤ (n+ 1)2n2−p/2c3‖K‖2∞,

where

c3 = c3/2τ

√
c2

(∫ τ

0

λ(s)ds
(1−G(s−))3

)1/2

.

Consequently, choosing p ≥ 10 yields E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
≤ c/n for a positive con-

stant c.

Lemma 4. Under Assumptions 1 to 4, for all p ∈ N, we have:∫ τ−h

h
E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
dt ≤ (n+ 1)2n1−p/2c3‖K‖2.

Consequently, choosing p ≥ 8 yields
∫ τ−h
h E

[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
dt ≤ c/n for a positive

constant c.

Proof of Lemmas 3 and 4. From the facts that 1 − Ĝ(t) ≥ (n + 1)−1 (see Equation (2))
and ‖Ĝ−G‖∞ < 1, we have for all t ∈ [h, τ − h]:

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
≤ (n+ 1)2

n2
E

( n∑
i=1

∫
Kh (t− s)
1−G(s−)

dNi(s)

)2

I(Ωc
p)


≤ (n+ 1)2E

[(∫
Kh (t− s)
1−G(s−)

dN(s)
)2

I(Ωc
p)

]

≤ (n+ 1)2cτE

[∫
K2
h (t− s) I(Ωc

p)
(1−G(s−))2

dN(s)

]
,(18)
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where the last inequality is obtained from Lemma 9. Now, for the proof of Lemma 3, use
consecutively the Cauchy-Schwarz inequality and Lemma 9 to obtain:

E

[∫
K2
h (t− s) I(Ωc

p)
(1−G(s−))2

dN(s)

]
≤ E1/2

[(∫
K2
h (t− s)

(1−G(s−))2
dN(s)

)2
]√

P[Ωc
p]

≤ ‖K‖2∞h−2√cτ E1/2

[∫ τ

0

dN(s)
(1−G(s−))4

]√
P[Ωc

p]

≤ ‖K‖2∞h−2n−p/2
√
c2cτ

(∫ τ

0

λ(s)ds
(1−G(s−))3

)1/2

,

and conclude the proof using the fact that h−1 ≤ n. To prove Lemma 4 write,∫ τ−h

h

∫
K2
h (t− s)

(1−G(s−))2
dN(s)dt ≤ h−1‖K‖2

∫ τ

0

dN(s)
(1−G(s−))2

.

Then, using Cauchy-Schwarz inequality, we get from inequality (18):∫ τ−h

h
E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
dt ≤ (n+ 1)2cτ

h
‖K‖2 E

[∫ τ

0

I(Ωc
p)dN(s)

(1−G(s−))2

]
≤ (n+ 1)2

h
cτ‖K‖2 E1/2

[(∫ τ

0

dN(s)
(1−G(s−))2

)2
]√

P
[
Ωc
p

]
≤ (n+ 1)2n−p/2

h
c3/2τ

√
c2‖K‖2

(∫ τ

0

λ(s)ds
(1−G(s−))3

)1/2

,

and again, we conclude the proof using the fact that h−1 ≤ n. �

We now study the difference process of λ̂h − λ̃h on Ωp.

Lemma 5. Under Assumptions 1 to 4, we have for all t ∈ [h, τ − h] and any p ∈ N,

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ c4 log n

n
‖λ‖∞,τ

{
‖K‖21‖λ‖∞,τ +

cτ‖K‖2

cGnh

}
,

where c4 = 4c20c
−2
G and c0 = c0(p).

Consequently, for t ∈ [h, τ − h], we have

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ c log(n)

n
,

where c is a positive constant.

Lemma 6. Under Assumptions 1 to 4, we have, for any p ∈ N∫ τ−h

h
E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
dt ≤ c4 log n

n
‖K‖2

{
2
∫ τ

0
λ2(t)dt+

cτΛ(τ)
nh

}
,

where Λ(τ) is defined in Theorem 1. Consequently, we have∫ τ−h

h
E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
dt ≤ c log(n)

n
,

where c is a positive constant.

Proof of Lemmas 5 and 6. First, use the facts that
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• 1− Ĝ(t) = 1−G(t) +G(t)− Ĝ(t) ≥ cG/2 on ΩG,
• ‖G(t)− Ĝ(t)‖∞ ≤ c0

√
n−1 log n on Ω?

G,
to write:

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ 4c20 log n

nc2G
E

( 1
n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

)2
 .

Then, we have:(
E

[
1
n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

])2

=
(∫
|Kh (t− s)|λ(s)ds

)2

≤ ‖K‖21‖λ‖2∞,τ ,
and

V

[
1
n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

]
≤ cτ‖K‖2‖λ‖∞,τ

cGnh
,

which follows from Proposition 1. Combining these two bounds gives the final result of
Lemma 5.

The proof of Lemma 6 follows the same line. From a change of variables and the
Cauchy-Schwarz inequality we have:∫ τ−h

h

(
E

[
1
n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

])2

dt =
∫ τ−h

h

(∫
|Kh (t− s)|λ(s)ds

)2

dt

≤
(∫ 1

−1
K2(u)du

)∫ τ−h

h

∫ 1

−1
λ2(t− uh)dudt

≤ 2‖K‖2
∫ τ

0
λ2(t)dt,

where the last inequality was obtained from an other change of variables. On the other
hand, from similar arguments as in the proof of Proposition 1, we have∫ τ−h

h
V

[
1
n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

]
dt ≤ cτΛ(τ)

nh
‖K‖2,

and the result follows. �

Gathering the results of Lemmas 3 to 6 imply the result of Lemma 1. �

7.2. Proof of Theorem 2. First, for all h ∈ Hn, the following sequence of inequalities
holds:(
λ̌(t0)− λ(t0)

)2 ≤ 3
(
λ̂ĥ(t0)(t0)− λ̂h,ĥ(t0)(t0)

)2 + 3
(
λ̂h,ĥ(t0)(t0)− λ̂h(t0)

)2 + 3
(
λ̂h(t0)− λ(t0)

)2
≤ 3
(
A0(h, t0) + V0(ĥ(t0))

)
+ 3
(
A0(ĥ(t0), t0) + V0(h)

)
+ 3
(
λ̂h(t0)− λ(t0)

)2
≤ 6A0(h, t0) + 6V0(h) + 3

(
λ̂h(t0)− λ(t0)

)2
.

Since V0(h), see (4), and (λ̂h(t0) − λ(t0))2, see Theorem 1, (i), have the adequate order
(with additional log(n) for V0), we only study A0(h, t0). With obvious definition of λ̃h,h′ =
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Kh′ ∗ λ̃h, λh(t0) = E[λ̃h(t0)] and λh,h′(t0) = E[λ̃h,h′(t0)], A0(h, t0) can be decomposed into
five terms:

A0(h, t0) = sup
h′∈Hn

{(
λ̂h′(t0)− λ̂h,h′(t0)

)2 − V0(h′)
}

+

≤ 5 sup
h′∈Hn

{(
λ̃h′(t0)− λh′(t0)

)2 − V0(h′)/10
}

+

+ 5 sup
h′∈Hn

{(
λ̃h,h′(t0)− λh,h′(t0)

)2 − V0(h′)/10
}

+

+ 5 sup
h′∈Hn

(
λ̂h′(t0)− λ̃h′(t0)

)2 + 5 sup
h′∈Hn

(
λ̂h,h′(t0)− λ̃h,h′(t0)

)2
+ 5 sup

h′∈Hn

(
λh′(t0)− λh,h′(t0)

)2
:= 5(T0,1 + T0,2 + T0,3 + T0,4 + T0,5).

We start with the last one:

|λh′(t0)− λh,h′(t0)| = |Kh′ ∗ λ(t0)−Kh′ ∗Kh ∗ λ(t0)| = |Kh′ ∗ (λ−Kh ∗ λ)(t0)|
≤ ‖K‖1 sup

t∈[0,τ ]
|(λ−Kh ∗ λ)(t)|.

This yields to

T0,5 ≤ ‖K‖21 ‖λ−Kh ∗ λ‖2∞,τ ≤ ‖K‖21c21h2β,

since λ−Kh ∗ λ corresponds to the bias term in Proposition 1.

Then we decompose T0,3 into two terms corresponding to I(Ωp) and I(Ωc
p) where Ωp is

defined by (16). First, from Lemma 3, we have

E
[

sup
h′∈Hn

(λ̂h′ − λ̃h′)2(t0)I(Ωc
p)
]
≤

∑
k,hk∈Hn

E
[
(λ̂hk − λ̃hk)2(t0)I(Ωc

p)
]

≤
∑

k,hk∈Hn

4c3‖K‖2∞n4−p/2 ≤ 4c3‖K‖2∞n5−p/2,
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using the fact that Card(Hn) ≤ n. Consequently, this term is of order 1/n as soon as
p ≥ 12. On the other hand, the following sequence of inequalities holds:

E
[

sup
h′∈Hn

(λ̂h′ − λ̃h′)2(t0)I(Ωp)
]

≤ 4c20
c2G

log(n)
n

E

 sup
h′∈Hn

(∫
|Kh′(t0 − s)|
1−G(s−)

(
1
n

n∑
i=1

dNi(s)

))2


≤ 8c20
c2G

log(n)
n

E

 sup
h′∈Hn

(∫
|Kh′(t0 − s)|
1−G(s−)

(
1
n

n∑
i=1

dNi(s)− λ(s)(1−G(s−))ds

))2


+
8c20
c2G

log(n)
n

sup
h′∈Hn

(∫
|Kh′(t0 − s)|λ(s)ds

)2

≤ 8c20
c2G

log(n)
n

∑
k,hk∈Hn

V

[
1
n

n∑
i=1

∫ |Khk(t0 − s)|
1−G(s−)

dNi(s)

]
+

8c20‖λ‖2∞,τ
c2G

log(n)
n
‖K‖21

≤ 8c20
c3G

log(n)
n

∑
k,hk∈Hn

cτ‖λ‖∞,τ‖K‖2

nhk
+

8c20‖λ‖2∞,τ
c2G

log(n)
n
‖K‖21,

(19)

where the bound on the variance term comes from the proof of Proposition 1. Therefore
E[T0,3] . log1+a(n)/n from Condition (8) and this ends the study of T0,3.

The term T0,4 can be handled in a similar way using the relation λ̂h,h′(t0)− λ̃h,h′(t0) =
Kh′ ∗ (λ̂h − λ̃h)(t0). Indeed,

E
[

sup
h′∈Hn

(λ̂h,h′ − λ̃h,h′)2(t0)I(Ωc
p)
]

= E
[

sup
h′∈Hn

(
Kh′ ∗ (λ̂h − λ̃h)

)2
(t0)I(Ωc

p)
]

≤ ‖K‖21E
[
‖λ̂h − λ̃h‖2∞,τI(Ωc

p)
]

≤ 4c3‖K‖21‖K‖2∞n4−p/2,

from Lemma 3 and

E
[

sup
h′∈Hn

(λ̂h,h′ − λ̃h,h′)2(t0)I(Ωp)
]

≤ 8c20
c2G

log(n)
n

∑
k,hk∈Hn

V

[
1
n

n∑
i=1

∫ |Khk ∗Kh(t0 − s)|
1−G(s−)

dNi(s)

]

+
8c20
c2G
‖λ‖∞,τ

log(n)
n

sup
h′∈Hn

‖Kh′ ∗Kh‖21.

Then, using the property

(20) ‖u ∗ v‖q ≤ ‖u‖1‖v‖q for q ≥ 1,
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it is easy to see that

V

[
1
n

n∑
i=1

∫ |Khk ∗Kh(t0 − s)|
1−G(s−)

dNi(s)

]
≤ cτ
ncG
‖λ‖∞,τ‖Kh ∗Khk‖

2

≤ cτ
ncG
‖λ‖∞,τ‖Kh‖21‖Khk‖

2

≤ cτ‖λ‖∞,τ‖K‖21‖K‖2

ncGhk
,

and
‖Kh′ ∗Kh‖21 ≤ ‖Kh′‖21‖Kh‖21 = ‖K‖41.

We conclude as previously that E[T0,4] . log1+a(n)/n.

Finally, let us study the terms T0,1 and T0,2. We start by recalling the following con-
centration inequality.

Lemma 7. [Bernstein inequality] Let ξ1, . . . , ξn be independent and identically distributed
random variables and Sn(ξ) =

∑n
i=1 ξi. Then, for η > 0,

(21) P (|Sn(ξ)− E[Sn(ξ)]| ≥ nη) ≤ 2 max
(

exp
(
−nη

2

4w

)
, exp

(
−nη

4b

))
,

where w and b are such that |ξ1| ≤ b almost surely and V(ξ1) ≤ w.

Now, we want to apply this result to ξi =
∫
Kh(t0 − s)dNi(s)/(1 − G(s−)). First, we

need to establish the values of the bounds b and w. We have

|ξ1| ≤ (cτ‖K‖∞)/(cGh) := b and V(ξ1) ≤ cτ‖λ‖∞,τ‖K‖2/(cGh) := w.

Thus, Inequality (21) can be written in the following way: for some x > 0,

P
[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)/10 + x

]
≤ 2 max

(
exp(−n(V0(h)/10 + x)/(4w)), exp(−n

√
V0(h)/10 + x/(4b))

)
≤ 2 max

(
exp(−n(V0(h)/10 + x)/(4w)), exp(−n

√
V0(h)/5/(8b)) exp(−n

√
x/2/(4b))

)
.

Then, we set κ0 ≥ 80, in order to have
nV0(h)

40w
= (κ0/40) log(n) ≥ 2 log(n).

On the other hand,

n
√
V0(h)

8b
√

5
=
‖K‖

√
cGκ0‖λ‖∞,τ

8‖K‖∞
√

5cτ

√
nh log(n) := κ2

√
nh log(n).

Then taking κ1 ≥ 4κ−2
2 in Condition (7) gives,

n
√
V0(h)

8b
√

5
≥ 2 log(n).

Therefore, we have

P
[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)/10 + x

]
≤ 2n−2 max

(
e−κ3nhx, e−κ4nh

√
x
)
,
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where

κ3 =
cG

4cτ‖λ‖∞,τ‖K‖2
and κ4 =

cG

4cτ‖K‖∞
√

2
.

This yields

E
[{
|λ̃h(t0)− λh(t0)|2 − V0(h)/10

}
+

]
≤
∫ +∞

0
P
[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)/10 + x

]
dx

≤ 2n−2 max
(∫ +∞

0
e−κ3nhxdx,

∫ +∞

0
e−κ4nh

√
xdx

)
≤ 2n−2 max

(
1

κ3nh
,

2
κ2

4(nh)2

)
≤ κ5n

−2,

for some positive constant κ5. Finally,

E[T0,1] = E
[

sup
h′∈Hn

{(
λ̃h′ − λh′

)2(t0)− V0(h′)/10
}

+

]
≤

∑
k,hk∈Hn

E
[{(

λ̃hk − λhk
)2(t0)− V0(hk)/10

}
+

]
≤ κ5 Card(Hn)n−2,

and since Card(Hn) ≤ n, we conclude that E[T0,1] . n−1.

The last term is T0,2 which can be treated in a similar way. Write

E[T0,2] = E
[

sup
h′∈Hn

{(
λ̃h,h′ − λh,h′

)2(t0)− V0(h′)/10)+
}]

≤
∑

k,hk∈Hn

E
[{(

λ̃h,hk − λh,hk
)2(t0)− V0(hk)/10

}
+

]
.

Then the sequel is the same as for the proof of T0,1 except that all h vanish because
‖Kh ∗Kh′‖∞ ≤ ‖Kh′‖∞‖K‖1.

Gathering the bounds of the five terms gives the result of Theorem 2. �

7.3. Proof of Theorem 3. Following the lines of the proof of Theorem 2, we have, for
all h ∈ Hn,

‖λ∗ − λ‖2 ≤ 3‖λ̂ĥ − λ̂h,ĥ‖
2 + 3‖λ̂h,ĥ − λ̂h‖

2 + 3‖λ̂h − λ‖2

≤ 3(A(h) + V (ĥ)) + 3(A(ĥ) + V (h)) + 3‖λ̂h − λ‖2

≤ 6A(h) + 6V (h) + 3‖λ̂h − λ‖2.

Here again, V (h) and ‖λ̂h−λ‖2 (see Theorem 1, (ii)) have the adequate order and we only
need to study A(h). Recall that λ̃h,h′ = Kh′ ∗ λ̃h, λh(t) = E[λ̃h(t)], λh,h′(t) = E[λ̃h,h′(t)]
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and write:

A(h) = sup
h′∈Hn

{
‖λ̂h′ − λ̂h,h′‖2 − V (h′)

}
+

≤ 5 sup
h′∈Hn

{
‖λ̃h′ − λh′‖2 − V (h′)/10

}
+

+ 5 sup
h′∈Hn

{
‖λ̃h,h′ − λh,h′‖2 − V (h′)/10

}
+

+ 5 sup
h′∈Hn

‖λ̂h′ − λ̃h′‖2 + 5 sup
h′∈Hn

‖λ̂h,h′ − λ̃h,h′‖2 + 5 sup
h′∈Hn

‖λh′ − λh,h′‖2

:= 5(T1 + T2 + T3 + T4 + T5).

We start with T5:

‖λh′ − λh,h′‖2 = ‖Kh′ ∗ (λ−Kh ∗ λ)‖2 ≤ ‖Kh′‖21‖λ−Kh ∗ λ‖2,

where we used the property (20) with q = 2. This yields to

T5 ≤ ‖K‖21 τc21h2β,

since ‖λ−Kh ∗ λ‖ corresponds to the bias term in Proposition 1.

Now, the same kind of arguments can be applied to T4:

λ̂h,h′ − λ̃h,h′ = Kh′ ∗ (λ̂h − λ̃h),

and so,

E [T4] ≤ ‖K‖21E
[
‖λ̂h − λ̃h‖2

]
≤ c′‖K‖21 log(n)/n,

where the last inequality was obtained from Lemma 1.

The term T3 can be dealt with in the same way as T0,3 in the proof of Theorem 2. First,
from Lemma 4,

E
[

sup
h′∈Hn

∫
(λ̂h′ − λ̃h′)2(t)I(Ωc

p)dt
]
≤

∑
j,hj∈Hn

∫
E[(λ̂hj − λ̃hj )

2(t)I(Ωc
p)]dt

≤
∑

j,hj∈Hn

4c3‖K‖2n3−p/2 ≤ 4c3‖K‖2n4−k/2,

and this term is of order 1/n as long as p ≥ 10. Then, using similar inequalities as in (19)
yields

E
[

sup
h′∈Hn

∫ τ−h

h
(λ̂h′ − λ̃h′)2(t)I(Ωp)dt

]
≤ 8c20

c2G

log(n)
n

∑
k,hk∈Hn

cτΛ(τ)‖K‖2

nhk
+

16c20
c2G

log(n)
n
‖K‖2

∫ τ

0
λ2(t)dt,

and we conclude from Equation (8) that E[T3] . loga+1(n)/n.

We finish the proof with T1 and T2. As in Theorem 2, these two terms can be treated
using a concentration inequality. First, we need to express each of them as a centered
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empirical process. For T1, write

E

[{
sup
h′∈Hn

‖λ̃h′ − λh′‖2 − V (h′)/10
}

+

]
≤

∑
k,hk∈Hn

E
[{
‖λ̃hk − λhk‖

2 − V (hk)/10
}

+

]
,

and recall that

(22) ‖λ̃hk − λhk‖
2 = sup

f∈L2([hk,τ−hk]),‖f‖=1
〈λ̃hk − λhk , f〉

2.

Now, we introduce the following centered empirical process:

νn,hk(f) = 〈λ̃hk−λhk , f〉 =
1
n

n∑
i=1

∫ τ−hk

hk

f(u)
(∫

Khk(u− s)
(

dNi(s)
1−G(s−)

− λ(s)ds
))

du.

As f 7→ νn,hk(f) is continuous, the supremum in (22) can be taken over a countable dense
subset of {f ∈ L2([1, τ − 1]), ‖f‖ = 1}, which we denote by Bτ (1). Therefore,

E[T1] ≤
∑

k,hk∈Hn

E

[{
sup

f∈Bτ (1)
ν2
n,hk

(f)− V (hk)/10

}
+

]
and the expectation here can be bounded using the following concentration inequality.

Theorem 4. (Talagrand Inequality) Let ξ1, . . . , ξn be independent random values, and
let νn,ξ(f) = (1/n)

∑n
i=1{f(ξi) − E[f(ξi)]}. Then, for a countable class of functions F

uniformly bounded and ε > 0, we have

E

[{
sup
f∈F

ν2
n,ξ(f)− 2(1 + 2ε2)H2

}
+

]
≤ 4
d

(
W

n
e−dε

2 nH2

W +
98M2

dn2ϕ2(ε)
e
− 2dϕ(ε)ε

7
√

2
nH
M

)
,

with ϕ(ε) =
√

1 + ε2 − 1, d = 1/6 and

sup
f∈F
‖f‖∞ ≤M, E

[
sup
f∈F
|νn,ξ(f)|

]
≤ H, sup

f∈F

1
n

n∑
i=1

V[f(ξi)] ≤W.

To apply this result, we first need to compute appropriate values of the bounds H, M ,
W and the constant ε. Clearly,

E

[
sup

f∈Bτ (1)
ν2
n,hk

(f)

]
≤ E

[
‖λ̃hk − λhk‖

2
]

=
∫ τ−hk

hk

V
[
λ̃hk(t)

]
dt = V (hk)/κ

and thus we require H2 = V (hk)/κ. Then we set ε2 = 1/2 and κ = 40 in order to have
2(1 + 2ε2)H2 = V (hk)/10.

Now to find the bound M , use the Cauchy-Schwarz inequality and the fact that ‖f‖ = 1
on Bτ (1) to write:∣∣∣∣∫ τ−hk

hk

f(u)
∫
Khk (u− s) dN(s)

1−G(s−)
du

∣∣∣∣ =
∣∣∣∣∫ (∫ τ−hk

hk

f(u)Khk (u− s) du
)

dN(s)
1−G(s−)

∣∣∣∣
≤ ‖f‖

∫ (∫ τ−hk

hk

K2
hk

(u− s)du
)1/2

dN(s)
1−G(s−)

≤ cτ‖K‖
cG

1√
hk

:= M.
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Lastly, we need to determine the adequate bound W . Introduce the notation K−hk(s) =
Khk(−s) and write:

V
[∫ τ−hk

hk

f(u)
∫
Khk (u− s) dN(s)

1−G(s−)
du

]
≤ E

[(∫∫ τ−hk

hk

Khk(u− s)f(u)du
dN(s)

1−G(s−)

)2
]

≤ E

[(∫
K−hk ∗ f(s)

dN(s)
1−G(s−)

)2
]

≤ cτ

(∫ (K−hk ∗ f)2(s)

1−G(s−)
λ(s)ds

)

≤ cτ‖λ‖∞,τ
cG

‖K−hk ∗ f‖
2 ≤ cτ‖λ‖∞,τ

cG
‖K−hk‖

2
1‖f‖2 =

cτ‖λ‖∞,τ‖K‖21
cG

:= W,

where we used Lemma 9 and the property (20) for q = 2. Therefore, W is a constant and
we can now apply Talagrand Inequality:

E

[{
sup

f∈Bτ (1)
ν2
n,hk

(f)− V (hk)/10

}
+

]
≤ ϑ1

n

(
exp(−ϑ2/hk) +

1
nhk

exp(−ϑ3

√
n)
)
,

for some positive constants ϑ1, ϑ2 and ϑ3. Then, from conditions (8), (14) and the fact
that Card(Hn) ≤ n, we conclude:

E[T1] ≤ ϑ1

n

∑
k,hk∈Hn

(
exp(−ϑ2/hk) +

1
nhk

exp(−ϑ3

√
n)
)
.

1
n
.

The proof for T2 follows the same line as for T1. First,

E[T2] ≤
∑

k,hk∈Hn

E
[{
‖λ̃h,hk − λh,hk‖

2 − V (hk)/10
}

+

]

and the Talagrand inequality needs to be applied to the centered process 〈λ̂h,hk−λh,hk , f〉,
where f ∈ Bτ (1). Since λ̃h,hk = Kh ∗ λ̃hk and λh,hk = Kh ∗ λhk the same bounds H,M
and W can be used, up to a constant. Indeed, using the inequalities

‖Kh ∗Khk‖2 ≤ ‖K‖1‖K‖2(hk)−1/2 and ‖Kh ∗K−hk‖1 ≤ ‖K‖
2
1

it can be shown that Theorem 4 can be applied with

H2 =
V (hk)‖K‖21

κ
, M =

cτ‖K‖1‖K‖
cG
√
hk

and W =
cτ‖λ‖∞,τ

cG
‖K‖41.

Finally, we obtain again E[T2] . 1/n.

Gathering the bounds of the five terms gives the result of Theorem 3.
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8. Technical lemmas

In order to give a proof of Lemma 2, we first need to introduce the following result
which is a direct consequence of Theorem 1 in [4].

Lemma 8. For all k ∈ N∗, there exists a positive constant ck depending on k such that

E
[
‖Ĝ−G‖2k∞,τ

]
≤ ck
nk
.

Proof. We use a nonasymptotic exponential bound for the Kaplan-Meier estimator which
can be formulated as follows (see Bitouzé et al., [4]): there exists a positive constant η
such that for any positive constant ε,

(23) P
[√

n‖(1− F ) (Ĝ−G)‖∞,τ > ε
]
≤ 2.5 e−2ε2+ηε

and so

E
[
‖Ĝ−G‖2k∞,τ

]
≤ 2k

∫ +∞

0
u2k−1 P

[
‖Ĝ−G‖∞,τ > u

]
du

≤ 2k
∫ +∞

0
u2k−1 P

[
c−1
F ‖(1− F ) (Ĝ−G)‖∞,τ > u

]
du

≤ 2k
∫ +∞

0
u2k−1 P

[√
n‖(1− F ) (Ĝ−G)‖∞,τ > cF

√
nu
]
du

≤ 5keη
2/8

∫ ∞
0

u2k−1 exp

{
−2c2Fn

(
u− η

4
√
ncF

)2
}
du

≤ 5eη
2/8k

2kc2kF

∫ +∞

−η/(2
√

2)

(
z +

η

2
√

2

)2k−1

e−z
2
dz n−k := ckn

−k.

�

Proof of Lemma 2. Since P[Ωc] ≤ P[Ωc
G] + P[(Ω?

G)c], we bound each term separately.
For any k > 0, we have

P [Ωc
G] ≤ P

[
‖G− Ĝ‖∞,τ > cG/2

]
≤ 4k

c2kG
E
[
‖G− Ĝ‖2k∞,τ

]
.

Thus, Lemma 8 implies that

(24) P [Ωc
G] ≤ dkn−k, where dk > 0.

Next, we use (23) and write:

P
[
‖Ĝ−G‖∞,τ > c0

√
n−1 log(n)

]
≤ P

[
‖(1− F )(y)Ĝ−G‖∞,τ > c0cF

√
n−1 log(n)

]
≤ 2.5 exp(−2c2F c

2
0 log(n) + ηcF c0

√
log(n)) ≤ 2.5 exp((−2cF c0 + η)c0cF log(n)).
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Thus, for c0 ≥ (η +
√
η2 + 8k)(4cF )−1 we have

P [Ω?c
G ] = P

[
‖G− Ĝ‖∞,τ > c0

√
n−1 log n

]
≤ 2.5n−k.

This result and Equation (24) imply P[Ωc] ≤ (dk + 2.5)n−k. �

We conclude this section with a very useful inequality concerning integrals with respect
to the counting process N .

Lemma 9. (Cauchy-Schwarz) For every bounded function h on [0, τ ], we have

N(τ)
∫ τ2

τ1
h2(s)dN(s) ≥

(∫ τ2

τ1

h(s)dN(s)
)2

,

where 0 ≤ τ1 ≤ τ2 ≤ τ .

Proof. We have

0 ≤
∫ τ2

τ1

(
h(s)−

∫ τ2

τ1

h(s)dN(s)
N(τ)

)2 dN(s)
N(τ)

0 ≤ 1
N(τ)

∫ τ2

τ1

h2(s)dN(s)− 2
(∫ τ2

τ1

h(s)
dN(s)
N(τ)

)2

+
(∫ τ2

τ1

h(s)
dN(s)
N(τ)

)2 ∫ τ2

τ1

dN(s)
N(τ)

.

Then, notice that
∫ τ2
τ1
dN(s) ≤ N(τ) to obtain the desired result. �
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