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A mathematical model for unsteady mixed flows in closed water

pipes

Christian Bourdarias∗ Mehmet Ersoy† Stéphane Gerbi‡

Abstract. We present the formal derivation of a new unidirectional model for unsteady mixed flows in non
uniform closed water pipe. In the case of free surface incompressible flows, the FS-model is formally obtained, using
formal asymptotic analysis, which is an extension to more classical shallow water models. In the same way, when
the pipe is full, we propose the P-model, which describes the evolution of a compressible inviscid flow, close to gas
dynamics equations in a nozzle. In order to cope the transition between a free surface state and a pressured (i.e.
compressible) state, we propose a mixed model, the PFS-model, taking into account changes of section and slope
variation.

Key words. Shallow water equations, unsteady mixed flows, free surface flows, pressurized flows, curvilinear
transformation, asymptotic analysis.

Notations concerning geometrical variables

• (0, i, j,k): Cartesian reference frame

• ω(x, 0, b(x)): parametrization in the reference frame (0, i, j,k) of the plane curve C which corresponds to the main flow
axis

• (T,N,B): Serret-Frenet reference frame attached to C with T the tangent, N the normal and B the bi-normal vector

• X, Y,Z: local variable in the Serret Frenet reference frame with X the curvilinear abscissa, Y the width of pipe, Z the
B-coordinate of any particle.

• σ(X, Z) = β(X,Z) − α(X,Z): width of the pipe at Z with β(X,Z) (resp. α(X, Z)) is the right (resp. left) boundary
point at altitude Z

• θ(X): angle (i,T)

• S(X): cross-section area

• R(X): radius of the cross-section S(X)

• nwb: outward normal vector to the wet part of the pipe

• n: outward normal vector at the boundary point m in the Ω-plane
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Notations concerning the free surface (FS) part

• Ω(t, X): free surface cross section

• H(t, X): physical water height

• h(t, X): Z-coordinate of the water level

• nfs: outward B-normal vector to the free surface

• A: wet area

• Q: discharge

• ρ0: density of the water at atmospheric pressure p0

Notations concerning the pressurised part

• Ω(X): pressurised cross section

• ρ(t, X): density of the water

• β: water compressibility coefficient

• c =
1√
β ρ0

: sonic speed

• A =
ρ

ρ0
S: FS equivalent wet area

• Q: FS equivalent discharge

Notations concerning the PFS model

• S: the physical wet area: S = A if the state is free surface, S otherwise

• H: the Z coordinate of the water level: H = h if the state is free surface, R otherwise

Other notations

• Bold characters are used for vectors except for S

1 Introduction

The presented work takes place in a more general framework: the modelling of unsteady mixed
flows in any kind of closed domain taking into account the cavitation problem and air entrapment.
We are interested in flows occurring in closed pipe with non uniform sections, where some parts
of the flow can be free surface (it means that only a part of the pipe is filled) and other parts are
pressurised (it means that the pipe is full). The transition phenomenon between the two types
of flows occurs in many situations such as storm sewers, waste or supply pipes in hydroelectric
installations. It can be induced by sudden change in the boundary conditions as failure pumping.
During this process, the pressure can reach severe values and cause damages. The simulation of
such a phenomenon is thus a major challenge and a great amount of works was devoted to it
these last years (see [15],[24],[25],[12] for instance). Recently Fuamba [17] proposed a model for the
transition from a free surface flow to a pressurised one in a way very close to ours.

The classical shallow water equations are commonly used to describe free surface flows in open
channels. They are also used in the study of mixed flows using the Preissman slot artefact (see
for example [12, 25]). However, this technique does not take into account the depressurisation
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phenomenon which occurs during a water hammer. On the other hand the Allievi equations,
commonly used to describe pressurised flows, are written in a non-conservative form which is not
well adapted to a natural coupling with the shallow water equations.

A model for the unsteady mixed water flows in closed pipes and a finite volume discretization
have been previously studied by two of the authors [6] and a kinetic formulation has been proposed
in [8]. We propose here the PFS-model which tends to extend naturally the work in [6] in the
case of a closed pipe with non uniform section. For the sake of simplicity, we do not deal with the
deformation of the domain induced by the change of pressure. We will consider only an infinitely
rigid pipe.

The paper is organized as follows. The first section is devoted to the derivation of the free surface
model from the 3D incompressible Euler equations which are written in a suitable local reference
frame in order to take into account the local effects produced by the changes of section and the
slope variation. To this end, we present two models derived by two techniques inspired from the
works in [3] and [18]. The first one consists in taking the mean value in the Euler equations along
the normal section to the main axis. The obtained model provides a description taking in account
the geometry of the domain, namely the changes of section and also the inertia strength produced
by the slope variation. The second one is a formal asymptotic analysis. In this approach, we seek
for an approximation at the first order and, by comparison with the previous model, the term
related to the inertia strength vanishes since it is a term of second order. We obtain the FS-model.
In Section 3, we follow the derivation of the FS-model and we derive the model for pressurised
flows, called P-model, from the 3D compressible Euler equations by a formal asymptotic analysis.
Writing the source terms into a unified form and using the same couple of conservative unknowns
as in [7], we propose in Section 4, a natural model for mixed flows, that we call PFS-model, which
ensures the continuity of the unknowns and the source terms.

2 Formal derivation of the free surface model

The classical shallow water equations are commonly used to describe physical situations like rivers,
coastal domains, oceans and sedimentation problems. These equations are obtained from the
incompressible Euler system (see e.g. [1, 19]) or from the incompressible Navier-Stokes system (see
for instance [10, 11, 18, 21]) by several techniques (e.g. by direct integration or asymptotic analysis
or as in [14] and especially as proposed by Bouchut et al. [3, 4] from which the PFS-model is
based).

In order to formally derive a unidirectional shallow water type equation for free surface flow
in closed water pipe with varying slope and section, we consider that the length of the pipe is
larger than the diameter and we write the incompressible Euler equations in a local Serret-Frenet
frame attached to a given plane curve (generally the main pipe axis, see Remark 4.1). Then, taking
advantage of characteristic scales, we perform a thin layer asymptotic analysis with respect to some

small parameter ε =
H

L
which is also assumed to be proportional to the vertical, W and horizontal,

U ratio of the fluid movements, i.e. ε =
W

U
. This assumption translates the fact that in such

domain, the flow follows a main flow axis. Finally, the equations are vertically averaged along
orthogonal sections to the given plane curve and we get the Free Surface model called FS-model.

Throughout this section, we only consider pipes with variable circular section. However, this
analysis can be easily adapted to any type of closed pipes.
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Let (O, i, j,k) be a convenient Cartesian reference frame, for instance the canonical basis of R3.
The Euler equations in Cartesian coordinate are :

{
div(ρ0 U) = 0

∂t(ρ0 U) + ρ0 U · ∇U+∇P = ρ0F
(1)

where U(t, x, y, z) is the velocity field of components (u, v, w), P = p(t, x, y, z)I3 is the isotropic
pressure tensor, ρ0 is the density of the water at atmospheric pressure p0 and F is the exterior

strength of gravity given by: F = −g




− sin θ(x)
0

cos θ(x)


 where θ(x) is the angle (i,T) in the (i,k)-

plane (c.f. Fig. 1 or Fig. 2) with T the tangent vector (defined below) and g is the gravity
constant.
We introduce a characteristic function, φ, in order to define the fluid area (as in [18, 21]) :

φ =

{
1 if z ∈ Ω(t, x),
0 otherwise

(2)

where Ω(t, x) is the wet section (5)). Using the divergence free equation, we obviously find the
equation on φ:

∂t(ρ0 φ) + div(ρ0φU) = 0. (3)

Remark 2.1. This equation allows to get the kinematic free surface condition:

any free surface particle is advected by the fluid velocity.

On the wet boundary (fm), we assume a no-leak condition: U · nfm = 0 where nfm is the outward
unit normal vector to the wet boundary (as displayed on Fig. 2). We also assume that the pressure
at the free surface level is equal to the atmospheric pressure (which is assumed to be zero in the
rest of the paper for the sake of simplicity).
We define the domain ΩF (t) of the flow at time t as the union of sections, Ω(t, x), assumed to
be simply connected compact sets, orthogonal to some plane curve C. We define the parametric
representation of this curve by x→ (x, 0, b(x)) in the plane (O, i, j,k) where k is the vertical axis,
b(x) is the elevation of the point ω(x, 0, b(x)) in the (O, i, j)-plane (c.f. Fig. 1).
Setting

X =

∫ x

x0

√

1 +

(
d b(ξ)

dx

)2

dξ (4)

the curvilinear variable where x0 is a given abscissa, Y = y, the variable “width” and Z the B-
coordinate (i.e. the elevation of a fluid particle M along the B vector as defined below), we define
the local reference of origin ω(x, 0, b(x)) and by the basis (T,N,B) where T is the unit tangent
vector, N the unit normal vector and B the unit bi-normal vector attached to the plane curve C at
the point ω(x, 0, b(x)) (see Fig. 1 and Fig. 3 for notations). In the (O, i,k)-plane, the vector B is
normal to the curve C.
With these notations, for every point ω ∈ C, the wet section Ω(t,X) can be defined by the following
set:

Ω(t,X) =
{
(Y,Z) ∈ R

2;Z ∈ [−R(X),−R(X) +H(t,X)], Y ∈ [α(X,Z), β(X,Z)]
}

(5)
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where R(X) is the radius of the pipe section S(X) = πR2(X) and H(t,X) is the physical water
height. We note α(X,Z) (respectively β(X,Z)) the left (respectively right) boundary point at
elevation Z, for −R(X) 6 Z 6 R(X) (as displayed on Fig. 3). We also assume that the support of
the functions α(·, z) and β(·, z) are compact in [−R(X), R(X)]. Finally, we note the Z-coordinate
of the water height by h(t,X) = −R(X) +H(t,X).

Figure 1: Geometrics characteristics of the pipe
Mixed flows: free surface and pressurized

Figure 2: outward unit normal vector nfm 6= n (except for a pipe with uniform section)
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Figure 3: Transversale section Ω(t,X) at the point ω for a free surface flow

In what follows, we will assume that the following condition holds:

(H) Let R(x) bet the algebraic curvature radius at the point ω(x, 0, b(x)). Then, for every x ∈ C,
we have:

|R(x)| > R(x).

Remark 2.2. This geometric condition ensure that the application T : (x, y, z) → (X,Y,Z) is a
C1-diffeomorphism. In other words, it simply means that for a given fluid particle, there exists a
unique point ω ∈ C as displayed on Fig. 4.

Figure 4: Forbidden case by assumption (H) :
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2.1 Incompressible Euler equations in curvilinear coordinates

Following Bouchut et al. [3, 4], we write the previous system (1) in the local frame of origin
ω(x, 0, b(x)) and of basis (T,N,B) by the following change of variables T : (x, y, z) → (X,Y,Z)
using the divergence chain rule that we recall here:

Lemme 2.1. Let (X,Y,Z) 7→ T (X,Y,Z) = (x, y, z) be a C1-diffeomorphism and A−1 = ∇(X,Y,Z)T
be the Jacobian matrix with determinant J .
Then, for every vector field Φ, we have:

Jdiv(x,y,z)Φ = div(X,Y,Z)(JAΦ) ,

and, for every scalar function f :

∇(x,y,z)f = At∇(X,Y,Z)f,

where At is the transposed matrix of A.

Let (U, V,W )t be the components of the vector field in variables (X,Y,Z),

(U, V,W )t = Θ(u, v, w)t

where Θ is the rotation matrix generated around the axis j:

Θ =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 .

2.1.1 Transformation of the divergence equation

A given point M of coordinates (x, y, z) such that:

M(x, y, z) =
(
x− Z sin θ(x) , y , x+ Z cos θ(x)

)
(6)

(in the (O, i, j,k)-basis) has (X,Y,Z)-coordinate in the local frame generated by the basis (T,N,B)
from origin ω and the matrix A−1 (appearing in Lemma 2.1) reads as follows:

A−1 =




dx

dX
− Z

d θ

dX
cos θ(X) 0 sin θ(X)

0 1 0
d b

dX
− Z

d θ

dX
sin θ(X) 0 cos θ(X)




=




J cos θ 0 sin θ
0 1 0

J sin θ 0 cos θ




where
dx

dX
=

1√

1 +

(
d b

dx

(
x(X,Y,Z)

))2
= cos θ(X),

d b(X)

dX
= sin θ(X),
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and

J(X,Y,Z) := det(A−1) = 1− Z
d θ(X)

dX

with J(X,Y,Z) = J(X,Z).
Then, we have:

A =
1

J




cos θ 0 sin θ
0 1 0

−J sin θ 0 J cos θ


 (7)

and using Lemma (2.1), the free divergence equation in variables (X,Y,Z) is,

Jdivx,y,z(U) = divX,Y,Z




U
JV
JW


 = 0,

i.e.
∂XU + ∂Y (JU) + ∂Z(JW ) = 0. (8)

Remark 2.3. The application (x, y, z) →M(x, y, z) is a C1-diffeomorphism since J(X,Z) > 0 in
view of the assumption (H).

2.1.2 Transformation of the equation of conservation of the momentum

Following the previous paragraph, using Lemma 2.1 to the scalar convection equation
df

dt
charac-

terized by the speed U which is a divergence free field, we get the following identity:

J(∂t +U · ∇)f = J
(
∂tf + div(fU)

)
= Jdivt,x,y,z

(
Jf

JA−1fU

)
,

where A−1 is the inverse matrix of A given by (7). Thus, we have:

J(∂t +U.∇)f = ∂t(Jf) + ∂X(fU) + ∂Y (JfV ) + ∂Z(JfW ) (9)

Performing a left multiplication of the equation of conservation of the momentum (1) by JΘ,
where the source term is written as F = −∇ (g ·M) (for a point M defined as previously (6)), we
get:

0 = JΘ(∂tU+U · ∇U+ div(P/ρ0) +∇ (g ·M)

= J
(
∂t(ΘU) + (ΘU · ∇)U+ JΘdiv(P/ρ0) + JΘ∇ (g ·M)

)

= J


∂t




U
V
W


+




(U · ∇u) cos θ + (U · ∇w) sin θ
U · ∇v

−(U · ∇u) sin θ + (U · ∇w) cos θ






︸ ︷︷ ︸
(a)

+




Jdiv(ψi) cos θ + Jdiv(ψk) sin θ
Jdiv(ψj)

−Jdiv(ψi) sin θ + Jdiv(ψk) cos θ




︸ ︷︷ ︸
(b)

where ψ := (p+ g(b+ Z cos θ))/ρ0.
Then, we proceed in two steps:
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Computation of (a).
We have:

J




∂tU + (U · ∇u) cos θ + (U · ∇w) sin θ
∂tV +U · ∇v

∂tW +−(U · ∇u) sin θ + (U · ∇w) cos θ




= J




∂tU +U · ∇U −WU · ∇θ
∂tV +U · ∇V

∂tW +U · ∇W + UU · ∇θ


 .

(10)

Applying successively the identity (9) with f = U, V,W , we get:

∂t




JU
JV
JW


+ divX,Y,Z






U
JV
JW


⊗




U
JV
JW




− iUW

dθ

dX
+ kU2 d θ

dX
. (11)

Computation of (b).
Applying again Lemma 2.1, we show that the three following identities hold for every scalar

function ψ: 



Jdiv(ψi) = divX,Y,Z




ψ cos θ
0

−Jψ sin θ


 ,

Jdiv(ψj) = ∂Y (Jψ),

Jdiv(ψk) = divX,Y,Z




ψ sin θ
0

Jψ cos θ


 .

(12)

Moreover, we have:

{
∂X(ψ cos θ) cos θ + ∂X(ψ sin θ) sin θ = ∂Xψ,
∂Z(Jψ cos θ) sin θ − ∂Z(Jψ sin θ) cos θ = 0,

(13)

and {
∂X(ψ sin θ) cos θ − ∂X(ψ cos θ) sin θ = ψ∂Xθ,
∂Z(Jψ cos θ) cos θ + ∂Z(Jψ sin θ) sin θ = ∂Z(ψJ).

(14)

In view of equalities (12)–(14) applied to the quantity ψ := (p + g(b + Z cos θ))/ρ0, the term (b)
reads as follows: 


∂X(ψ)
∂Y (Jψ)

ψ∂Xθ + ∂Z(Jψ)


 . (15)

Finally, gathering results (11)–(15), the incompressible Euler equations in variables (X,Y,Z) are:





∂X(ρ0 U) + ∂Y (Jρ0 V ) + ∂Z(Jρ0W ) = 0,

∂t(Jρ0 U) + ∂X(ρ0 U
2) + ∂Y (Jρ0 UV ) + ∂Z(Jρ0 UW ) + ∂Xp = G1,

∂t(Jρ0 V ) + ∂X(ρ0 UV ) + ∂Y (Jρ0 V
2) + ∂Z(Jρ0 VW ) + J∂Y (p) = 0,

∂t(Jρ0W ) + ∂X(ρ0 UW ) + ∂Y (Jρ0 VW ) + ∂Z(Jρ0W
2) + J∂Z(p) = G2

(16)

where

G1 = ρ0 UW
dθ

dX
− gρ0J sin θ, G2 = −ρ0 U2 d θ

dX
− Jgρ0 cos θ. (17)
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The no-leak condition, with respect to the new variables, becomes:




U
V
W


 · nfm = 0 (18)

where nfm =
1

cos θ(X)




− sin θ(X)
0

cos θ(X)


.

The condition at the free surface, in the new variables, reads:

p
(
t,X, Y, Z = h(t,X)

)
= 0 . (19)

2.1.3 Formal asymptotic analysis

Taking advantage of the ratio of the domain, we perform a formal asymptotic analysis of the equa-
tions (16) with respect to a small parameter ε. Especially, we are interested on the approximation
at main order. In that case, we will get J ≡ 1.

To this end, let
1

ε
=

L

H
=
L

l
, be the ratio aspect of the pipe, assumed very large. H, L and l, is

the characteristic height, length and width (to simplify, l = H as the pipe, here, is assumed with
circular cross section). In the same way, denoting by (V ,W ) the characteristic speed following the
normal and bi-normal direction, U the characteristic speed following the main pipe axis, we also
assume that:

ǫ =
V

U
=
W

U
.

Let T and P be the characteristic time and pressure such that

U =
L

T
, P = ρ0U

2
.

We set the following non-dimensioned variables:

Ũ =
U

U
, Ṽ = ε

V

U
, W̃ = ε

W

U
,

X̃ =
X

L
, Ỹ =

Y

H
, Z̃ =

Z

H
, p̃ =

p

P
, θ̃ = θ.

Under these assumptions, the rescaled Jacobian is:

J̃(X̃, Ỹ , Z̃) = 1− εZ̃
d θ̃

dX̃
.

Then, the non-dimensioned system (16) is reduced to:





∂
X̃
Ũ + ∂

Ỹ
(J̃ Ṽ ) + ∂

Z̃
(J̃W̃ ) = 0

∂t̃(J̃ Ũ) + ∂
X̃
(Ũ2) + ∂

Ỹ
(J̃ Ũ Ṽ ) + ∂

Z̃
(J̃ Ũ W̃ ) + ∂

X̃
p̃ = G1,

ε2
(
∂t̃(J̃ Ṽ ) + ∂X̃(Ũ Ṽ ) + ∂Ỹ (J̃ Ṽ

2) + ∂Z̃(J̃ Ṽ W̃ )
)
+ ∂Ỹ (J̃ p̃) = 0,

ε2
(
∂t̃(J̃ W̃ ) + ∂X̃(Ũ W̃ ) + ∂Ỹ (J̃ Ṽ W̃ ) + ∂Z̃(J̃ W̃

2)
)
+ J̃∂Z̃(p̃) = G2

(20)
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where

G1 = εŨW̃
d θ̃

dX̃
− sin θ̃(X̃)

Fr,L
2 − Z̃

Fr,H
2

d

dX̃
cos θ̃(X̃),

G2 = −εŨ2 d θ̃

dX̃
− cos θ̃(X̃)

Fr,H
2 + ε

d θ̃

dX̃

Z̃J̃ cos θ̃(X̃)

Fr,H
2 ,

Fr,χ =
U√
gχ

is the Froude number following the axis T, B or N with χ = L or χ = H.

Formally, taking ε = 0 in the previous equation, we get:

∂
X̃
Ũ + ∂

Ỹ
Ṽ + ∂

Z̃
W̃ = 0, (21)

∂t̃Ũ + ∂
X̃
(Ũ2) + ∂

Ỹ
(Ũ Ṽ ) + ∂

Z̃
(ŨW̃ ) + ∂

X̃
p̃ = −sin θ̃(X̃)

Fr,L
2 − Z̃

Fr,H
2

d

dX̃
cos θ̃(X̃), (22)

∂
Ỹ
p̃ = 0, (23)

∂
Z̃
p̃ = −cos θ̃(X̃)

Fr,H
2 . (24)

B Henceforth, we note (x, y, z) the dimensioned variables (X,Y,Z) and (u, v, w) dimensioned speed
(U, V,W ). In particular, we set:

x = LX̃, y = HỸ , z = HZ̃

et
u = UŨ, v = ǫUṼ , v = ǫUW̃ et p = ρ0U

2
p̃.

Then, multiplying the equation (21) by ρ0
U

L
, (22) by ρ0

U

T
, (23) by ρ0

U
2

H
, (24) by ρ0

U
2

H
, we obtain

the hydrostatic approximation of the Euler equations (16):

∂x(ρ0u) + ∂y(ρ0v) + ∂z(ρ0w) = 0, (25)

∂t(ρ0u) + ∂x(ρ0u
2) + ∂y(ρ0uv) + ∂z(ρ0uw) + ∂xp = −gρ0 sin θ(x)− gρ0z

d

dx
cos θ(x), (26)

∂yp = 0, (27)

∂zp = −g cos θ(x). (28)

2.1.4 Vertical averaging of the hydrostatic approximation of Euler equations

Let A(t, x) and Q(t, x) be the conservative variables of wet area and discharge defined by the
follwoing relations:

A(t, x) =

∫

Ω(t,x)
dydz (29)

and
Q(t, x) = A(t, x)u(t, x) (30)

where

u(t, x) =
1

A(t, x)

∫

Ω(t,x)
u(t, x, y, z) dydz (31)

is the mean speed of the fluid over the section Ω(t, x).
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Kinematic boundary condition and the equation of the conservation of the mass.

Let V be the vector field

(
v
w

)
. Integrating the equation of conservation of the mass (3) on

the set:
Ω(x) = {(y, z); α(x, z) 6 y 6 β(x, z), −R(x) 6 y 6 ∞},

we get the follwing equation:

∫

Ω(x)
∂t(ρ0φ) + ∂x(ρ0φu) + divy,z(ρ0φV) dydz = ρ0

(
∂tA+ ∂xQ+

∫

∂Ωfm(x)
(u∂xM −V) · n ds

)

(32)
where A and Q are given by (29) and (30).
According to the definition (2) of φ, the boundary Ωfm coincides with γfm. Using, the no-leak
condition (18), Equation (32) is equivalent to

∂t(ρ0A) + ∂x(ρ0Q) = 0 (33)

Now, if integrate the equation (3) on Ω(t, x), we get:

ρ0

(∫ h(t,x)

−R(x)
∂t

∫ β(x,z)

α(x,z)
dydz + ∂xQ+

∫

∂Ω(t,x)
(V− u∂xM) · n ds

)
= 0 (34)

where ∫ h(t,x)

−R(x)
∂t

∫ β(x,z)

α(x,z)
dydz = ∂tA− σ(x, h(t, x))∂th

with σ(x, h(t, x)) the width at the free surface elevation as displayed on Fig. 3.
In view of the no-leak condition (18), the integral on the wet boundary is zero, i.e. :

∫

γfm(t,x)
(V− u∂xM) · nfm ds = 0.

Then, we deduce:

∂(ρ0A) + ∂x(ρ0Q) + ρ0

∫

γsl(t,x)
(∂tM + u∂xM −V) · nsl ds = 0. (35)

By comparing equations (33) and (35), we finally get the kinematic condition at the free surface:

∫

γsl(t,x)
(∂tM + u∂xM −V) · nsl ds = 0. (36)

and we deduced from (35) the following equation of the conservation of the mass:

∂t(ρ0A) + ∂x(ρ0Q) = 0. (37)
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Equation of the conservation of the momentum.
In order to get the equation of the conservation of the momentum of the free surface model, we

integrate each terms of (26) along sections Ω(t, x) as follows:

∫

Ω
∂t(ρ0u)︸ ︷︷ ︸

a1

+ ∂x(ρ0u
2)︸ ︷︷ ︸

a2

+divy,z (ρ0uV)︸ ︷︷ ︸
a3

+ ∂xp︸︷︷︸
a4

dydz =

∫

Ω
−ρ0gz

d

dx
cos θ

︸ ︷︷ ︸
a5

− ρ0g sin θ︸ ︷︷ ︸
a6

dydz

where V =

(
v
w

)
.

Assuming that
u v ≈ u v, u2 ≈ u2,

we successively get:

Computation of the term

∫∫∫

Ω(t,x)
a1 dydz.

The pipe being non-deformable, only the integral at the free surface is relevant:

∫

γfm(t,x)
ρ0u∂tM · nsl ds = 0.

So, we get:

∫

Ω(t,x)
∂t(ρ0u) dydz = ∂t

∫

Ω(t,x)
ρ0u dydz −

∫

γsl(t,x)
ρ0u∂tM · nsl ds.

Computation of the term

∫∫∫

Ω(t,x)
a2 dydz.

∫

Ω(t,x)
∂x(ρ0u

2) dydz = ∂x

∫

Ω(t,x)
ρ0u

2 dydz −
∫

γsl(t,x)
ρ0u

2∂xM · nsl ds

−
∫

γfm(t,x)
ρ0u

2∂xM · nfm ds.

Computation of the term

∫∫∫

Ω(t,x)
a3 dydz.

∫

Ω(t,x)
divy,z (ρ0uV) dydz =

∫

γsl(t,X)
ρ0uV · nsl ds

+

∫

γfm(t,X)
ρ0uV · nfm ds.

Summing the result of the previous step a1 + a2 + a3, we get:

∫

Ω(t,x)
a1 + a2 + a3 dydz = ∂t(ρ0Q) + ∂x

(
ρ0
Q2

A

)
(38)

where A and Q are given by (29) and (30).
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Computation of the term

∫∫∫

Ω(t,x)
a4 dydz.

Let us first note that the pressure is hydrostatic:

p(t, x, z) = ρ0g(h(t, x) − z) cos θ(x) (39)

since from the equation (27), the pressure does not depend on the variable y. Equation (39) follows
immediately by integrating the equation (28) from z to h(t, x).
For ψ = p, p given by the relation (39), (t, x) fixed, we have:

∫

Ω(t,x)
∂xψ dydz =

∫ h(t,x)

−R(x)

∫ β(x,z)

α(x,z)
∂xψ dydz

=

∫ h(t,x)

−R(x)
∂x

∫ β(x,z)

α(x,z)
ψ dydz

−
(∫ h(t,x)

−R(x)
∂xβ(x, z)ψ|y=β(x,z) − ∂xα(x, z)ψ|y=α(x,z) dz

)

= ∂x

∫

Ω(t,x)
ψ dydz

−
(∫ h(t,x)

−R(x)
∂xβ(x, z)ψ|y=β(x,z) − ∂xα(x, z)ψ|y=α(x,z) dz

)

−∂xh(t, x)
∫ β|z=h(t,x)

α|z=h(t,x)

ψ|z=h(t,x) dy

−∂xR(x)
∫ β|z=h(t,x)

α|z=h(t,x)

ψ|z=−R(x) dy.

Finally, we have:

∫

Ω(t,x)
∂xp dydz = ∂x(ρ0gI1(x,A(t, x)) cos θ(x))− gρ0I2(x,A) cos θ(x)

−ρ0g
(
h(t, x) +R(x)

)
cos θ(x)σ

(
x,−R(x)

)d R(x)
dx

(40)

where I1 is the hydrostatic pressure:

I1(x,A) =

∫ h(A)

−R(x)
(h(A) − z)σ(x, z) dz. (41)

When the sections of the pipe are rectangular and uniform, we have I1(x,A) := I1(A) and σ(x, z) =
σ = cte. Moreover, we have A = (h+R)σ = Hσ and the pressure reads

gI1(A)

σ
=
gI1(A)

σ
= g

H2

2

as for the usual formulation of the mono-dimensional Saint-Venant equations.
We can also regard I1/A = y as the distance separating the free surface to the center of the

mass of the wet section (see Fig. 5).
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Figure 5: ȳ

The term I2 is the pressure source term:

I2(x,A) =

∫ h(A)

−R(x)
(h(A) − z)∂xσ(x, z) dz. (42)

It takes into account of the section variation via the term ∂xσ(x, ·).
The term ρ0g

(
h(t, x) + R(x)

)
cos θ(x)σ

(
x,−R(x)

)dR(x)
dx

is also a term which takes into account

the variations of the section. The contribution of this term is non zero when:

σ(x, z = −R(x)) 6= 0, and (43)

∂xR(x) 6= 0. (44)

As we only deal with pipe with circular section, therefore, the result of the computation is simply∫

Ω(t,x)
a4 dydz

∫

Ω(t,x)
∂xp dydz = ∂x(ρ0gI1(x,A(t, x)) cos θ(x))− gρ0I2(x,A) cos θ(x) (45)

in the rest of the paper.

Computation of the term

∫∫∫

Ω(t,x)
a5 dydz.

We have: ∫

Ω(t,x)
ρ0gz

d

dx
cos θ dydz = ρ0gAz

d

dx
cos θ (46)

where z is the z-coordinate of the center of the mass. As
I1(x,A(t, x)

A(t, x)
:= y (see step “Computation

of the term a3.”), the quantity z is related to I1 by the formula:

z = h(t, x)− I1(x,A(t, x)

A(t, x)
. (47)
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Computation of the term

∫∫∫

Ω(t,x)
a6 dydz.

We have: ∫

Ω(t,x)
ρ0g sin θ dydz = ρ0gA sin θ. (48)

Then, gathering results (38)–(48), we get the equation of the conservation of the momentum.
Finally, the new shallow water equations for free surface flows in closed water pipe with variable
slope and section are:





∂t(ρ0A) + ∂x(ρ0Q) = 0

∂t(ρ0Q) + ∂x

(
ρ0
Q2

A
+ gρ0I1 cos θ

)
= −gρ0A sin θ + gρ0I2 cos θ − gρ0Az

d

dx
cos θ

(49)

This model is called FS-model.
In System (49), we may add a friction term −ρ0gSf T to take into account dissipation of energy.

We have chosen this term Sf as the one given by the Manning-Strickler law (see e.g. [25]):

Sf (A,U) = K(A)U |U | .

The term K(A) is defined by: K(A) =
1

K2
sRh(A)4/3

, Ks > 0 is the Strickler coefficient of roughness

depending on the material, Rh(A) = A/Pm is the hydraulic radius and Pm is the perimeter of the
wet surface area (length of the part of the channel’s section in contact with the water).

3 Formal derivation of the pressurized model

When the section is completely filled, we have to define a strategy to derive a suitable pressurized
model in order to

• take into the compressibility of the water,

• modelise the water hammer (issuing form the overpressure and depression waves)

keeping in mind that we want to construct a mixed model which allows

• deal with free surface flows,

• deal with pressurized flows and

• to cope the transition between a free surface state and a pressurized (i.e. compressible) state
transition phenomenon.

There exists a large literature on this topic, for instance

• the Preissmann slot artefact (see, for instance, [13]) but this technique has the drawback to
do not take into account the sub-atmospheric flows,

• the Allievi equations (see, for instance,[2]) but this equation are not well suited for a coupling
with the derived FS-model.
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Then, as a starting point, we consider the 3D isentropic compressible Euler equations:

∂tρ+ div(ρU) = 0, (50)

∂t(ρU) + div(ρU⊗U) +∇p(ρ) = ρF, (51)

where U(t, x, y, z) is the fluid velocity of components (u, v, w) and ρ(t, x, y, z) is the volumetric

mass of the fluid. The gravity source term is F = −g




− sin θ(x)
0

cos θ(x)


 where θ(x) is the angle (i,T)

(see Fig. 1 or Fig. 2). As defined previously, T is the tangential vector at the point ω ∈ C (see
Section 2 for notations) where the “pressurized” plane curve is defined below.
The system is closed by the linearised pressure law (see [25, 27]):

p = pa +
ρ− ρ0
β0ρ0

(52)

which have the advantage to show clearly overpressure state and depression state. Indeed, ρ0 being
the volumetric mass of water, the overpressure state corresponds to ρ > ρ0 while ρ < ρ0 represents
a depression state. The case ρ = ρ0 is a critic one and a bifurcation point as we will see on Fig. 8.

In the expression of the pressure (52), the sound speed is defined as c2 =
1

ρ0β0
where β0 is the

compressibility coefficient of water. In practice, β0 is 5.0 10−10m2/N and thus c ≈ 1400m2/s. pa
is some function and without loss of generality, it may be set to zero. Let us note that pa plays an
important role in the construction of the mixed model PFS (as we will see in Section 4).
At the wet boundary, we assume a no-leak condition and we assume that the pipe is non-deformable.
Thus we have the following crucial property:





If (x, 0, bsl(x)) is the parametric representation of the plane curve Csl for
free surface flows, then we define continuously the parametric
representation(x, 0, b(x)) of the plane curve Cch for pressurized flows.

(53)

As a consequence, the section Ω(x) (in pressurized state) orthogonal to the plane curve Cch is
a continuous extension of the free surface one. Henceforth, we note this curve C. At a given
curvilinear abscissa, at the point ω ∈ C, we define pressurized section as follows:

Ω(X) =
{
(Y,Z) ∈ R

2;Z ∈ [−R(X), R(X)], Y ∈ [α(X,Z), β(X,Z)]
}
.

Remark 3.1. As the section is non-deformable, Ω(x) depends only on the spatial variable x.

Following the previous section, we proceed to the change of variables, namely we consider the
application T : (x, y, z) → (X,Y,Z).

3.1 Compressible Euler equations in curvilinear coordinates

Let (U, V,W )t be the component of the fluid velocity in variables (X,Y,Z) given by

(U, V,W )t = Θ(u, v, w)t

where Θ is the rotation matrix generated around the axis j:

Θ =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 .
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3.1.1 Transformation of the equation of conservation of the mass

Writing the equation of conservation of the mass (50) under a divergence form:

divt,x,y,z

(
ρ
ρU

)
= 0

and applying Lemma 2.1, we obviously get the equations in variables (X,Y,Z):

∂t(Jρ) + ∂X(ρU) + ∂Y (JρV ) + ∂Z(JρW ) = 0 (54)

where J is the determinant of the matrix A−1 (as already defined by (29)).

Remark 3.2. Let us also remark that, from (H), we have J(X,Z) > 0.

3.1.2 Transformation of the equation of conservation of the momentum

Following Section 2.1, namely:

• using Lemma 2.1,

• multiplying the equation of conservation of the momentum (51) on the left by the matrix JΘ,

we get the equation for U in the variables (X,Y,Z):

∂t(ρJU)+∂X (ρU2)+∂Y (ρJUV
2)+∂Z(ρJUW )+∂Xp = −ρJg sin θ(X)+ρUW

d

dX
cos θ(X). (55)

Other equations are unused since we want to derive a unidirectional model. Let us also note, in the
derivation of the FS-model, all these equations were relevant to get the expression of the pressure.

3.1.3 Formal asymptotic analysis

As previously made in Section 2.1.3, we write the non-dimensioned version of equation equations
(54)-(55) with respect to the small parameter ε already introduced. In particular, we seek for
an approximation at main order with respect to the asymptotic expansion with respect to ε. As
pointed out before, we will get J ≈ 1 where J is the determinant of the Jacobian matrix of the
change of variables.
Let us recall that

1

ε
=
L

H
=
L

l
=
U

V
=

U

W

is assumed large enough where H, L and l is a characteristic length of the height, the length, and
the width (where l = H since we deal with only circular cross section pipe) and U , V and W , is
a characteristic speed following the main axis, the normal direction and the bi-normal one. Then,
let T be a characteristic time such that

U =
L

T
.

We set the non-dimensioned variables:

Ũ =
U

U
, Ṽ = ε

V

U
, W̃ = ε

W

U
,
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X̃ =
X

L
, Ỹ =

Y

H
, Z̃ =

Z

H
, ρ̃ =

ρ

ρ0
, θ̃ = θ.

With these notations, the non-dimensioned equations (54)-(55) are:





∂t̃(ρ̃J̃) + ∂X̃(ρ̃Ũ) + ∂Ỹ (ρ̃J̃ Ṽ ) + ∂Z̃(ρ̃J̃W̃ ) = 0

∂t̃(ρ̃J̃ Ũ) + ∂X̃(ρ̃Ũ
2
) + ∂Ỹ (ρ̃J̃ Ũ Ṽ ) + ∂Z̃(ρ̃J̃ ŨW̃ ) +

1

Ma
2∂X̃ ρ̃ = ǫρ̃ŨW̃ ρ̃(X̃)

−ρ̃sin θ̃(X̃)

Fr,L
2

− Z̃

Fr,H
2

d

dX̃
cos θ̃(X̃)

(56)

where Fr,M =
Ū√
gM

is the Froude number and Ma =
U

c
is the Mach number.

Formally, taking ε = 0 , the previous equations (56) reads:

∂t̃(ρ̃) + ∂X̃(ρ̃Ũ) + ∂Ỹ (ρ̃Ṽ ) + ∂Z̃(ρ̃W̃ ) = 0, (57)

∂t̃(ρ̃Ũ) + ∂X̃(ρ̃Ũ2) + ∂Ỹ (ρ̃Ũ Ṽ ) + ∂Z̃(ρ̃ŨW̃ ) +
1

Ma
2 ∂X̃ p̃ = −ρ̃sin θ̃(X̃)

Fr,L
2 (58)

− Z̃

Fr,H
2

d

dX̃
cos θ̃(X̃) (59)

B Henceforth, we note (x, y, z) the dimensioned variables (X,Y,Z), and (u, v, w) dimensioned
speed (U, V,W ). Setting:

x = LX̃, y = HỸ , z = HZ̃,

u = UŨ, v = ǫUṼ , v = ǫUW̃ ,

ρ = ρ̃, we finally get the following equations written in the curvilinear variables:

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0, (60)

∂t(ρu) + ∂x(ρu
2) + ∂y(ρuv) + ∂z(ρuw) + ∂xp = −gρ sin θ(x)− gρz

d

dx
cos θ(x). (61)

where p is the linearised pressure law given by (52).

Remark 3.3. The previous equations are the hydrostatic approximation of the Euler compressible
equations where we have neglected the second and third momentum equation.

3.1.4 Vertical averaging of the hydrostatic approximation of Euler equations

The physical section of water, S(x), and the discharge, Q(t, x), are defined by:

S(x) =

∫

Ω(t,x)
dydz, (62)

and
Q(t, x) = S(x)u(t, x) (63)
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where u is the mean speed over the section Ω(x):

u(t, x) =
1

S(t, x)

∫

Ω(t,x)
u(t, x, y, z) dydz. (64)

Let m ∈ ∂Ω(x), we denote n =
m

|m| the outward unit normal vector to the boundary ∂Ω(x) at the

point m in the Ω-plane and m stands for the vector ωm (c.f. Fig. 3).
Following the section-averaging method performed to obtain the FS-model, we integrate Sys-
tem (60)-(61) over the cross-section Ω. Noting the averaged values over Ω by the overlined letters
(except for z), and using the approximations ρu ≈ ρu, ρu2 ≈ ρu2, we get the following shallow
water like equations:

∂t(ρS) + ∂x(ρSu) =

∫

∂Ω(x)
ρ (u∂xm−V) .n ds (65)

∂t(ρSu) + ∂x(ρSu
2 + c2ρS) = −gρS sin θ + c2ρ

dS

dx
− gρSz

d

dx
cos θ, (66)

+

∫

∂Ω(x)
ρu (u∂xm−V) .n ds

whereV = (v,w)t is the velocity field in the (N,B)-plane. The integral terms appearing in (65) and
(66) vanish, as the pipe is infinitely rigid, i.e. Ω = Ω(x) (see [7] for more details about deformable
pipes). It follows the non-penetration condition (see Fig. 6):




u
v
w


 .nwb = 0 .

Omitting the overlined letters (except for z), setting the conservative variables

A =
ρ

ρ0
S the FS equivalent wet area (67)

Q = AU the FS equivalent discharge . (68)

and dividing Equations (65)-(66) by ρ0, adding on each side of the equation (66) the quantity

−c2dS
dx

, we get the pressurized model, called P-model:





∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+ c2(A− S)

)
= −gA sin θ + c2

(
A

S
− 1

)
dS

dx
− gAz

d

dx
cos θ.

(69)

Remark 3.4. In term of area, a depression occurs when A < S (i.e ρ < ρ0) and an overpressure
if A > S (i.e. ρ > ρ0).

As introduced previously for the FS-model, we may introduce the friction term −ρgSf T given
by the Manning-Strickler law (see e.g. [25]):

Sf (S,U) = K(S)U |U |

where K(S) is defined by: K(S) =
1

K2
sRh(S)4/3

, Ks > 0 is the Strickler coefficient of roughness

depending on the material and Rh(S) = S/Pm is the hydraulic radius where Pm is the perimeter
of the wet surface area (length of the part of the channel’s section in contact with the water, equal
to 2π R in the case of circular pipe).
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4 The PFS-model

In the previous sections, we have proposed two models, one for the free surface flows and the other
for pressurized (compressible) flows which are very close to each other. In this section, we are
motivated to connect “continuously” these two models through the transition points. Let us recall
these two models.

The FS-model.





∂tAsl + ∂xQsl = 0,

∂tQsl + ∂x

(
Q2

sl

Asl
+ psl(x,Asl)

)
= −gAsl

dZ

dx
+ Prsl(x,Asl)− gAslz

d

dx
cos θ

−gK(x,Asl)
Qsl|Qsl|
Asl

(70)

where
psl(x,Asl) = gI1(x,Asl) cos θ,
Prsl(x,Asl) = gI2(x,Asl) cos θ,

K(x,Asl) =
1

K2
sRh(Asl)4/3

,

with I1 and I2 are defined by (41) and (42).

The P-model.





∂tAch + ∂xQch = 0,

∂tQch + ∂x

(
Q2

ch

Ach
+ pch(x,Ach)

)
= −gAch

dZ

dx
+ Prch(x,Ach)− gAchz

d

dx
cos θ

−gK(x, S)
Qch|Qch|
Ach

(71)

where
pch(x,Ach) = c2(Ach − S),

P rch(x,Ach) = c2
(
Ach

S
− 1

)
dS

dx
,

K(x, S) =
1

K2
sRh(S)4/3

.

We remark that the term
dZ

dx
, z

d

dx
cos θ and the friction are similar in both models (where we

set Z(x) = b(x)).

Remark 4.1. The plane curve with parametrization (x, 0, b(x)) is chosen as the main pipe axis in
the axis-symmetric case. Actually this choice is the more convenient for pressurised flows while the
bottom line is adapted to free surface flows. Thus, we must assume small variations of the section
(S′ small) or equivalently small angle ϕ as displayed on Fig. 6 in order to keep a continuous
connection of the term Z(x) from one to other type of flows.
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Figure 6: Some restriction concerning the geometric domain: ϕ < θ.

The real difference between these two models is mainly due to the pressure law: one is of
“acoustic” type while the other is hydrostatic. We are then motivated by defining a suitable couple
of “mixed” variables in order to connect “continuously” these two models through the transition
points. But, necessarily, the gradient of flux of the new system will be discontinuous at transition
points, due to the difference of sound speed (as we will see below).
To this end, we introduce a state indicator E (see Fig. 8) such that:

E =

{
1 if the state is pressurised: (ρ 6= ρ0),
0 if the state is free surface: (ρ = ρ0).

(72)

Next, we define the physical wet area S by:

S = S(A,E) =

{
S if E = 1,
A if E = 0.

(73)

We introduce then a couple of variables, called “mixed variables”:

A =
ρ

ρ0
S, (74)

Q = Au (75)

which satisfies:

• if the flow is free surface, ρ = ρ0, E = 0 and consequently S = A, and

• if the flow is pressurized, ρ 6= ρ0, E = 1 and consequently S = S.

To construct a “mixed” pressure law (c.f. Fig. 8), we set:

p(x,A,E) = c2(A− S) + gI1(x,S) cos θ (76)
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where the term I1 is given by:

I1(x,S) =

∫ H(S)

−R(x)
(H(S)− z)σ(x, z) dz (77)

with H representing the z-coordinate of the water level:

H = H(S) =

{
h(A) si E = 0,
R(x) si E = 1.

(78)

Thus, the constructed pressure is continuous throughout the transition points:

lim
A→S

A<S

p(x,A,E) = lim
A→S

A>S

p(x,A,E)

but its gradient is discontinuous (c.f. Fig. 7):

∂p

∂A
(x,A, 0) =

√
gA

T
6= c2 =

∂p

∂A
(x,A, 1).

Figure 7: Pressure law in the case of pipe with circular section.

Remark 4.2. The transition point (ρ = ρ0) is then a bifurcation point.

From the FS-model (70), the P-model (71), the “mixed” variables (74)-(75), the state indicator E
(72), the physical height of water S (73) and the pressure law (76), we can define the PFS-model
(Pressurised and Free Surface) for unsteady mixed flows in closed water pipes with variable section
and slope, as follows:





∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+ p(x,A,E)

)
= −gAdZ

dx
+ Pr(x,A,E)

−G(x,A,E)

−gK(x,A,E)
Q|Q|
A

(79)
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where Pr, K, and G represent respectively the pressure source term, the curvature term and the
friction:

Pr(x,A,E) = c2
(
A

S
− 1

)
dS

dx
+ gI2(x,S) cos θ

with I2(x,S) =

∫ H(S)

−R(x)
(H(S)− z) ∂xσ(x, z) dz,

G(x,A,E) = gA z(x,S)
d

dx
cos θ,

K(x,A,E) =
1

K2
sRh(S)4/3

.

Remark 4.3. From the PFS equations, it is easy to recover the FS-model. Indeed, if E = 0
then S(A,E) = A and the pressure law (76) is the hydrostatic pressure, the term Pr is also the
hydrostatic pressure source term. It follows that the PFS-system (79) coincide exactly with the
FS-model (70).
If E = 1, then S(A,E) = S and the pressure law gives c2(A− S) + gI1(x, S) cos θ which is exactly
the linearised pressure law if we consider pa(x) = gI1(x, S) cos θ instead of 0. We can then see
the term pa as a limit state between an over-pressurised zone and a de-pressurized one. We show
different situations on Fig. 8.

Figure 8: Free surface state p(X,A, 0) = g I1(X,A) cos θ (top), pressurized state with overpressure
p(x,A, 1) > 0 (bottom left), pressurized state with depression p(x,A, 1) < 0 (top right).

Remark 4.4. We have seen that when the flow is fully pressurized, the overpressure states are
reported when A > S and depression states when A < S. However, when the flow is mixed and
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A < S, we do not know a priori if the state is free surface or pressurized. Therefore, the indicator
state E is there to overcome this difficulty. Thus, combining this with a discrete algorithm on E is
useful to describe both depression areas and free surface ones. When A > S, without any ambiguity,
the pressurised state is proclaimed. From a numerical point of view, the transition points between
two types of flows are treated as a free boundary, corresponding to the discontinuity of the gradient
of the pressure (for more details, see [5, 16]).

The PFS-model (79) satisfies the following properties:

Theorem 4.1.

1. The right eigenvalues of System (79) are given by:

λ− = u− c(A,E), λ+ = u+ c(A,E)

with c(A,E) =





√
g

A

T (A)
cos θ if E = 0,

c if E = 1.

Then, System (79) is strictly hyperbolic on the set:

{A(t, x) > 0} .

2. For smooth solutions, the mean velocity u = Q/A satisfies

∂tu+ ∂x

(
u2

2
+ c2 ln(A/S) + gH(S) cos θ + gZ

)

= −gK(x,A,E)u|u| 6 0.
(80)

The quantity
u2

2
+ c2 ln(A/S) + gH(S) cos θ + gZ is called the total head.

3. The still water steady state reads:

u = 0 and c2 ln(A/S) + gH(S) cos θ + gZ = cte. (81)

4. It admits a mathematical entropy

E(A,Q,E) =
Q2

2A
+ c2A ln(A/S) + c2S + gAz(x,S) cos θ + gAZ (82)

which satisfies the entropy relation for smooth solutions

∂tE + ∂x

(
(E + p(x,A,E)) u

)
= −gAK(X,A,E)u2|u| 6 0 . (83)

Notice that the total head and E are defined continuously through the transition points.

Remark 4.5. The term Az(x,A)(cos θ)′ is also called “corrective term” since it allows to write the
equation (80) and (83) with (82).
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Proof of Theorem 4.1: The results (80) and (83) are obtained in a classical way. Indeed, Equation
(80) is obtained by subtracting the result of the multiplication of the mass equation by u to the mo-

mentum equation. Then multiplying the mass equation by

(
u2

2
+ c2 ln(A/S) + gH(S) cos θ + gZ

)

and adding the result of the multiplication of Equation (80) by Q, we get:

∂t

(
Q2

2A
+ c2A ln(A/S) + c2S + gAz(x,S) cos θ + gAZ

)

+∂x

((
Q2

2A
+ c2A ln(A/S) + c2S + gAz(x,S) cos θ + gAZ + p(x,A,E)

)
u

)

+c2
(
A

S
− 1

)
∂tS = −gAK(x,A,E)u2|u| 6 0 .

We see that the term c2
(
A

S
− 1

)
∂tS is identically 0 since we have S = A when the flow is free

surface whereas S = S(x) when the flow is pressurised. Moreover, from the last inequality, when
S = A, we have the classical entropy inequality (see [6, 7]) with E :

E(A,Q,E) =
Q2

2A
+ gAz(x,A) cos θ + gAZ

while in the pressurised case, it is:

E(A,Q,E) =
Q2

2A
+ c2A ln(A/S) + c2S + gAZ.

Finally, the entropy for the PFS-model reads:

E(A,Q,E) =
Q2

2A
+ c2A ln(A/S) + c2S + gAz(X,S) cos θ + gAZ.

Let us remark that the term c2S makes E continuous through transition points and it permits also
to write the entropy flux under the classical form (E + p)u.

�

5 Perspectives

In view of the difference of sound speed (c ≈ 1400 m/s for a pressurised state and c ≈ 1 m/s
for a free surface state), the gradient of the pressure, thus the flux of the PFS equations, is
discontinuous throughout the transition points. More generally, these equations belong to a class
of hyperbolic systems of conservation laws with discontinuous gradient, especially a generalization
of equations coupled through a fixed discontinuity (see [20, 23, 22] with the classical example of
Lighthill-Whitham-Richards model for road traffic) since, in the present case the discontinuity is
mobile. It is then an interesting and a difficult problem because of the definition of the solution
associated to the Riemann problem. In general, given two initial states which are not connected
by a shock wave, there exits an infinite number of paths to connect them through the interface.
For instance, in Boutin’s thesis [9], he defined paths using physical criteria that enable to extract
the solution. To our knowledge, and up to date, there are no results for the mobile discontinuities
and the PFS-model is a nice example of such open problem. However, in each region where the
gradient of the flux is continuous, the solution is constructed in a classical way (see, for example,
[26]).
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