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Abstract 

 

Within the context of 5-axis free-form machining, CAM software offers various ways of tool-

path generation, depending on the geometry of the surface to be machined. Therefore, as the 

manufactured surface quality results from the choice of the machining strategy and machining 

parameters, the prediction of surface roughness in function of the machining conditions is an 

important issue in 5-axis machining. The objective of this paper is to propose a simulation 

model of material removal in 5-axis based on the N-buffer method and integrating the Inverse 

Kinematics Transformation. The tooth track is linked with the velocity giving the surface 

topography resulting from actual machining conditions. The model is assessed thanks to a 

series of sweeping over planes according to various tool axis orientations and cutting 

conditions. 3D surface topography analyses are performed through the new areal surface 

roughness parameters proposed by recent standards. 

 

Keywords: Surface topography, Surface Roughness parameters, Surface analysis, 5 axis 

milling  

 

1. Introduction  

In the field of free-form machining, CAM software offers various machining strategies 

depending on the geometry of the surface to be machined. The surface quality results from the 

choice of the machining strategy and corresponding parameters (tool inclination, feed per 

tooth, cutting speed, radial depth of cut). Resulting machining time, productivity and 

geometrical surface quality directly depend on these parameters. In 5 axis machining, axis 

kinematical capacities as well as specific NC treatments alter tool trajectory execution, leading 

to changes in actual local feedrates. Moreover, as the tool axis orientation generally varies 

during machining, the resulting surface pattern can be affected [1]. The prediction of the 3D 

surface topography according to the machining conditions is an important issue in 5-axis 

machining to correctly achieve process planning and to link resulting surface patterns with part 

functionality.  



 

1.1 Surface topography description 

With the advances in 3D measuring systems, it is now possible to measure machined surface 

patterns with enough accuracy [2,3,4] although there is no standard traceability [5]. A draft 

standardized project [ISO 25178-2] developed by the ISO Technical Committee 213 working 

group 16, proposes the definition of areal parameters as an extension of the well-known profile 

parameters [6] [7]. However, only a few studies try to link the surface roughness with surface 

requirements via areal surface roughness parameters. For friction in servo hydraulic 

assemblies, negative Skewness and the lowest Kurtosis values as well as the highest valley 

fluid retention index are found to have the lowest frictional characteristics [8]. The 

functionality of automotive cylinder bores is partially characterized by oil consumption and 

blow-by. In this specific case, it is more significant to consider Sq, Sk, Svk, Sds, Sbi to describe 

oil consumption and Sv, Svi for blow-by [9]. Concerning the fatigue limit, authors prefer to 

refer to Sq, Std and Sal [10]. Due to the lack of information concerning the influence of 

roughness parameters on surface requirement, a description of the 3D pattern obtained after 

surface machining is essential to bring out the influence of machining parameters on surface 

topography, and to afterwards link surface roughness with functional requirements. 

 

1.2 Surface topography prediction 

In the literature, few formalized studies exist which aim at linking the surface topography with 

the machining strategy parameters [11]. Two standpoints can be adopted: the experimental 

standpoint and the theoretical standpoint. Based on surface topography measurements, most of 

the experimental methods attempt to establish the link between the feedrates, the machining 

direction, the tool orientation and the 3D topographies. Unfortunately, results are only 

qualitative; only a few of them clearly express the relationship between the machining strategy 

parameters and the surface topography [12], [13]. Adopting the theoretical standpoint, Kim 

described the texture obtained in ball-end milling from numerical simulations only accounting 

for the feedrate influence [14]. Bouzakis focused on the motion of the cutting edge. The author 

highlights the influence of the tool orientation, the transversal step and the feedrate on the 

machined surface quality [15]. Toh supplements this work by defining the best direction to 

machine an inclined plane [16]. In a previous work, we proposed to link the machining strategy 

in 3-axis ball-end milling with a 3D surface roughness parameter and to optimize the 

machining direction according to this parameter [17]. Kim proposed to simulate the 3D 

topography obtained in 5 axis milling using a filleted-ball end tool. The envelope of the tool 

movement is modelled by successive tool positioning according to the feed per tooth.   

 

Due to difficulties in measuring the surface topography for complex shapes, the need for 

models or simulations for predicting the machined 3D surface topography is real. However, if 

most literature works enhance the major role of the federate, the context of high speed 

machining is seldom considered. Actually, in multi-axis high speed machining the computation 

of the inverse kinematic transformation and the synchronisation of the rotational axes with the 

translation ones impact the respect of the programmed feedrate which does not remain constant 

during machining. Therefore, it seems essential to integrate those local federate variations in a 

prediction model of 3D surface topography obtained in multi-axis high-speed machining. 
 

In this paper, a theoretical approach is proposed to predict the 3D surface topography obtained 

in 5-axis milling with a filleted-ball end cutter tool integrating actual feedrate evolution.  



Actual feedrate evolution is obtained thanks to a kinematical predictive model which accounts 

for the local variations of the velocity due to multi-axis high speed machining [18]. The 

modelling of the cutting process is only geometrical; material pull out is not consider here. The 

proposed model applies for complex surfaces for which the topography measurement is 

generally difficult. The topography prediction relies on the well-known N-buffer simulation 

method [19].  

Based on simulations, the study finally aims at formalizing the influence of the machining 

parameters (feed per tooth, tool inclination, maximal scallop height allowed) on the 3D surface 

topography. For this purpose, the topography is characterized using the areal surface 

parameters. An attempt is made to propose links between areal surface parameters and the 

parameters of the machining strategy.  
 

2. 3D Surface topography in 5 axis machining 

Material removal simulation relies on the well-known N-buffer method [19]. The main 

difficulty is the integration of the effects linked to 5-axis machining within a context of high 

velocities. Indeed, the use of the two additional rotational axes leads to two main difficulties 

during trajectory execution: the computation of the Inverse Kinematical Transformation in real 

time to define set points corresponding to tool postures, and the synchronization of the 

rotational axes with the translational ones [18]. Moreover, due to kinematical axis limits, axis 

velocities may vary leading to feedrate fluctuations which can alter the 3D pattern. In the 

proposed approach, the prediction of the surface topography takes advantage of a model of 

velocity prediction developed in a previous work which gives a good estimation of the local 

feedrate of the tool-teeth [18]. 

 

 

 

 

 

 

 

 

Fig. 1: Hyperbolic paraboloïd 

 

To illustrate this purpose, do consider the example of the surface presented in figure 1. The 

surface, a hyperbolic paraboloïd with a double curvature, is machined along its rules with a 

filleted-end tool (R=5mm, r=1.5mm), considering a tool inclination of 1°(tilt angle = 1°, see 

figure 4). During machining, the surface curvature involves a combined movement of all the 5 

axes. The programmed feedrate is set to 5m/min.Using the predictive velocity model, the 

calculation of the feedrate all trajectory long is carried out [1]. Figure 2 presents the evolution 

of the local feedrate for the machining of the trajectory at the middle of the surface (red arrow 

in figure 1). Simulated values as well as measured ones are reported. 
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Fig. 2: Simulated and measured feedrates 

As it can be observed, whether for the simulation as for the measurement, the programmed 

feedrate is only reached at the beginning and at the end of the trajectory; velocity is strongly 

decreased at the middle of the trajectory. However, some differences between simulated and 

measured values are noticeable: although the velocity decreasing is correctly predicted by 

simulation, deceleration is faster and occurs later. Nevertheless, simulation gives a good 

estimate of the feedrate, and thus of the local feed per tooth. Therefore, as actual cutting 

conditions can be known, a more precise simulation of the 3D surface topography is now 

possible. 

The simulation requires the modelling of the surface, the modelling of the tool geometry and 

the definition of the actual tool trajectory [1]. The surface is sampled by a grid of points 

defined in a (XY) plane. A line, parallel the local surface normal, is associated to each point of 

the grid, thus defining a line-net. This line-net is truncated by the cutter tool according to the 

actual tool trajectory, and the remaining part of the line-net defines the 3D topography of the 

machined surface.  

For its part, the tool is supposed to be rigid and measured by optical means. The complete tool 

geometry is approximated by a local meshing, i.e. the cutting edge as well as the tool flank face. 

Only active cutting edges are considered. To ensure a correct approximation of the tool 

surface, the meshing is performed with a chord error equal to 0.1μm. 

Concerning the tool trajectory, the proposed method integrates actual local feedrates calculated 

using the prediction model (figure 3). More generally, the tool trajectory is defined in the part 

coordinate system (PCS) by a set of tool postures. Considering the velocity prediction model, 

local feedrates Vf
i
 can be calculated for each tool posture. Therefore, a tool posture belonging 

to the trajectory is defined by {Xp
i
,Yp

i
,Zp

i
,I

i
,J

i
,K

i
,Vf

i
}, where (Xp

i
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) are the coordinates of 

the tool tip and (I
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i
) are the axis tool direction components.  

 



 
Fig. 3: Local trajectory calculation in 5-axes 

 

The displacement of the tooltip between two postures is defined as: 
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      Eq. (1) 

Hence, based on the linear interpolation of the feedrate the time interval separating two tool 

postures is calculated as follows: 
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         Eq. (2) 

Supposing the rotational velocity of the spindle spindle to be equal to the programmed one, 

{i
}, the angular positions of the tool axis are given by: 
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 
i
 

spindle
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i,i1        Eq. (3) 

The elementary trajectory defined between two tool postures is afterwards sampled considering 

a fixed step, d.: 


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i
 N * d          Eq. (4) 

where N* is an integer belonging to the interval [1,floor(
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i

d
)]. 

Therefore, the temporal sampling parameter is calculated using the following equation: 
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          Eq. (5) 

For each sampling point (N*), the local feedrate is thus expressed by: 
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This yields to the calculation of the sampled tool locations along the elementary trajectory: 
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Finally, the simulated machined surface is obtained by computing the intersections between the 

normal lines defining the part and the tool for each configuration {Xp
*
,Yp

*
,Zp

*
,I

*
,J

*
,K

*
,*

}. 

 

3. Model assessment 

 

3.1  Model assessment for plane surfaces 

 

The model is assessed by comparing 3D surface topographies obtained by simulations to actual 

measured ones for different types of part. The first validation concerns the milling of a series of 

planes considering variable machining strategy parameters: the tool axis orientation, the 

programmed feedrate (Vf) and the maximal scallop height allowed (hc) (Table 1). In the 

proposed experiments, the tool orientation is defined by the tilt angle (t) and the yaw angle 

(n). A complete experimental design is performed, considering 2 levels per factor, except for 

the yaw angle, for which 3 levels are considered. The machining is performed on a 5-axis 

machine tool using a filleted-end milling tool (R=5mm, rc=1.5mm) with a unique tooth in order 

to control the tooth geometry which contributes to the final imprint. 

 

 

Fig.4: Definition of the experimental design 

 

Yaw angle (θn °) Tilt angle (θt °) Scallop height (hc mm) Feedrate Vf (m/min) 

0 20 40 1 10 0,005 0,001 2 4 

Tab. 1: Experimental parameters 

After machining, resulting surface topographies are measured using a coherence scanning 

interferometer. To characterize the obtained pattern, 3D parameters define in the draft standard 

[ISO 25178-2] are used. Although a complete experimental design has been performed only a 

few cases are reported in table 2. Nevertheless, for all the cases, simulated patterns as well as 

defect magnitudes match the measured ones. Some small deviations can be observed, probably 

due to the cutting process or/and the effect of the actual tool geometry.  

 

 

 

 



 

 

 

 

   

Fig. 5: Measured and simulated pattern for case 1 

Tab. 2: Comparison between measured and simulated patterns 

The experimentation enhances the influence of the feedrate on the 3D parameters 

characterizing the surface topography. As in a previous study, an attempt is made to link Sz,, 

the maximum height of the surface with the machining parameters [17]. For this purpose, an 

analytical model is defined from the expression of the effective cutting radius. Let us consider 

an approximation of the effective cutting tool radius by the equivalent radius (Req) defined at 

the contact point in function of the tool axis orientation (defined by the couple (n, t)) [20]:  
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The analytical model highlights the influence of the scallop height (hc) compared to the 

feedrate (fz) for different tool orientations. Therefore, if r is the corner radius of the tool, Sz is 

estimated by: 
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In the case of the experimental design previously developed, this approximation gives a mean 

error of 1.58 m for the simulation and 1.67 m for the measurement. The standard deviation 

is respectively 1.22 m for the simulated values, and 1.26 m for the measured ones. To 

case 
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summarize, the analytical model gives a relationship useful to link the tool axis orientation, and 

the machining parameters to the maximum height deviation Sz, in the case of a plane surface. 

 

3.2 Model assessment for complex surfaces 

One main interest of the model is that it applies for the machining of complex surfaces. Indeed, 

due to measuring system capacities, measurement on complex surfaces is generally difficult as 

regards its curvature. The model is applied to the paraboloïd. Considering the red tool path 

defined in figure 6, the machining is performed according to the following machining 

conditions: tool orientation defined by (t=1°, n=0°); distance between passes equal to 5mm; 

programmed feedrate equal to 5 m/min. 

 

 

 

 

 

 

 

 

Fig. 6: Machined part 

The 3D topography obtained after machining is simulated considering the predicted velocities 

(figure 2). As it was highlighted, the velocity is strongly decreased at the middle of the 

trajectory due to the kinematics limits and only reaches half the programmed feedrate. The 

simulated pattern is reported in figure 7 (right). On the other hand, the part is measured using 

the chromatic sensor. The measured topography reported in figure 7 is close to the simulated 

one. Defect magnitudes as well as the patterns are similar. Differences are probably due to the 

actual cutting phenomenon. Nevertheless, such differences are small enough to assess the 

model relevancy for predicting 3D surface topography of complex surfaces machined in 5-axis 

milling. 

 

Fig. 7: Measured (left) and predicted (right) topographies for the paraboloïd 

 

studied tool-path 



Hence, the analysis of influent parameters on the surface topography can be conducted through 

simulations only.  

 

4. 3D surface topography parameters 

The complete experimental design is also conducted through simulations, considering 

experimental parameters defined in table 2. As previously discussed, the feedrate is an essential 

parameter, as it actually conditions the 3D pattern (Figure 8). Modifications of local feedrate 

during machining may affect the 3D surface finish.  

 

 

Fig. 8: Simulated patterns (from left to right cases 2, 3 and 4 – Table 2) 

Usually, the maximum scallop height allowed is one of the most used parameters in CAM 

software to define the 3D surface topography. As shown in figure 8 (case 4), a non null yaw 

angle provides a pattern for which the notion of cusp has no more significance. This enhances 

the major influence of the tool inclination in surface patterns resulting from 5-axis machining. 

According to previous works aiming at linking areal surface roughness parameters with part 

functionality [8,9,10], the analysis of the experimental is only conducted for the parameters the 

most significant for fatigue and friction applications. These parameters are classified in 

function of their family: amplitude parameters Sa, Sq, Sv, Ssk, Sku and spatial parameters Sal, 

Sds, Std. Results relative to our experimentation are given in table 3. The effect of each factor 

is calculated as follows:  

 










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j

jii
1

1
.EffectMeanS        Eq. (10) 

Where j = yaw, tilt, scallop height, feedrate 

Concerning Std, the screw angle seems the more relevant influent parameter. This is consistent 

with pattern observations. In fact the marks left by the tooth are oriented according to this 

angle. Due to the modification of the effective cutting radius, the screw angle has also a 

significant effect on Sal, Std, St and Sv. On the opposite, its effect is quite negligible on 

kurtosis or skewness values. The tilt angle is the most significant parameter for Sq, with a little 

effect on Sal. However, it does not influence the texture direction Std. Results emphasise that 

feedrate is more influent than the maximum scallop height on the studied 3D parameters. 

Particularly for the distribution of peaks (Sds), the feedrate is the most significant parameter.  

 

 

 

 

 



 

 

 

Parameter Mean 

Effect 

Yaw Tilt 
Scallop 

height 
Feedrate 

Amplitude 

Maximum height of the surface Sz (m) 4,79 -2,34 0,56 -0,82 1,27 

Arithmetic deviation of the surface Sa (m) 0,92 -0,45 0,19 0,1 0,16 

Root-Mean-Square Deviation of the 

Surface Sq (m/m) 1,10 -0,32 -0,57 0,12 0,24 

Kurtosis of Topography Height 

Distribution Sku (no unit) 2,33 0,01 -0,04 -0,17 0,06 

Skewness of Topography Height 

Distribution Ssk (no unit) 0,47 0,00 -0,07 -0,05 -0,02 

Volume Valley Void Volume of the Surface Sv (m) 1,71 -0,81 0,25 -0,28 0,47 

Spatial 

Density of Summits of the Surface Sds (pics/mm2)  606,38 132,87 -115,13 -31,68 -153,50 

The Fastest Decay Autocorrelation Length Sal (mm) 0,15 -0,12 -0,07 -0,03 -0,04 

Texture Direction of the Surface Std (°) -21,80 -13,33 0,03 -0,44 -0,70 

Tab. 3: Mean values of the effects 

Nonetheless, previous observations must be modulated as influences of the machining strategy 

parameters are close to each other. In addition, interactions between parameters have not been 

studied in this work. Indeed, the scallop height, the yaw and the tilt angles are linked by the 

transversal step calculation. This actually binds respective influences. 

 

5. Conclusion 

The objective of the present paper is to propose a method for characterizing 3D topographies of 

complex machined surfaces. For this purpose, a simulation model of material removal in 5-axis 

milling is developed and assessed. As in 5-axis machining, velocities are non uniform during 

machining and vary linked to kinematical limits, the model is coupled to a velocity prediction 

model allowing the determination of actual local feeds per tooth. Simulations, compared with 

measurements, clearly enhances that variable local federates along a trajectory affect the 

resulting pattern. On the other hand, the effect of machining strategy parameters such as tool 

inclination and maximum scallop height allowed are investigated thanks to the topography 

simulation model. The pattern characterization is performed via areal parameters with an 

attempt to link them with machining strategy parameters. Simulations bring out that depending 

on the areal parameter chosen, one of the machining parameter is determinant for the surface 

quality. In particular, the influence both angles defining the tool inclination is significant. 

Nevertheless, the final objective of the present work is to propose a method for the choice of 

machining strategy parameters according to the machined surface function. In this direction, an 

important work remains to link areal surface parameters to part functionality. 
 

References 

[1] S. Lavernhe, Y. Quinsat, C. Lartigue, R. Meyer, NC-simulation for the prediction of 

surface finish in 5-axis High-Speed Machining, 3rd CIRP International Conference on High 

Performance Cutting, Dublin (Ireland), 1 (2008) 387 – 396. 

[2] R. Ohlsson, A. Wihlborg, H. Westberg, The accuracy of fast 3D topography measurements, 

International Journal Of Machine Tools and Manufacture, 41 (2001) 1899-1907. 

[3] Blunt, Liam, Jiang, Xiang and Scott, Paul J. Advances in micro and nano-scale surface 

metrology. Key Engineering Materials, 295-296 (2005) 431-436.  



[4] W. Zeng & X. Jiang & L. Blunt Surface characterisation-based tool wear monitoring in 

peripheral milling IntJ Adv Manuf Technol 40 (2009) 226–233. 

[5] Richard Leach Some issues of traceability in the field of surface topography measurement 

Wear 257 (2004) 1246–1249. 

[6] W. P. Dong, P. J. Sullivan, K. J. Stout, Comprehensive study of parameters for 

characterizing three dimensional surface topography IV: Parameter for characterising spatial 

and hybrid properties.Wear 178 (1994) 45-60. 

[7] R. Leach, Fundamental Principles of Engineering Nanometrology (Micro and Nano 

Technologies), Elsevier, Amsterdam, 2009.  

[8] P. Saravanakumar, K.K. Manesh, M. Singaperumal, B. Ramamoorthy, Modelling of fluid 

continuum considering 3D surface parameters in hydraulic assemblies, Precision Engineering 

33 (2009) 99–106 

[9] L. Blunt, X. Jiang Advanced techniques for assessment surface topography : Development 

of a basis for 3D surface texture standards “surfstand”, Kogan Page science, 2003 

[10] D. Novovic, R.C. Dewes, D.K. Aspinwall, W. Voice, P. Bowen, The effect of machined 

topography and integrity on fatigue life International Journal of Machine Tools & Manufacture 

44 (2004) 125–134 

[11] P. G. Benardos, G. -C. Vosniakos, Predicting surface roughness in machining: a review, 

International Journal of Machine Tools and Manufacture, 43 (2003) 833-844. 

[12] A. M. Ramos, C. Relvas, A. Simões, The influence of finishing milling strategies on 

texture roughness and dimensional deviations on the machining of complex surface, Journal of 

Materials Processing Technology 136 (2003) 209-216. 

[13] D.A. Axinte, R. C. Dewes, Surface integrity of hot work tool steel after high speed 

milling-experimental data and empirical models, Journal of Materials Processing Technology, 

127 (2002) 325-335. 

[14] B. H. Kim, C.N. Chu, Texture prediction of milled surfaces using texture superposition 

method, Computer Aided Design, 31 (1999) 485-494 

[15] K.–D. Bouzakis, P. Aichouh, K. Efstahiou, Determination of the chip geometry, cutting 

force and roughness in free form surfaces finishing milling, with ball end tools, International 

Journal of Machine Tools & Manufacture, 43 (2003) 499-514. 

[16] C.K. Toh. Surface topography analysis in high speed finish milling inclined hardened 

steel, Precision Engineering, 28 (2004) 386–398. 

[17] Y. Quinsat, L. Sabourin, C. Lartigue, Surface topography in ball en milling process: 

Description of a 3D surface roughness parameter, Journal of Materials Processing Technology 

195 (2008) 135-143. 

[18] S. Lavernhe, C. Tournier, C. Lartigue, Kinematical performance prediction in multi-axis 

machining for process planning optimization, International Journal of Advanced 

Manufacturing Technology, 37 (2008) 534-554. 

[19] R.B. Jerard, R.L. Drysdale, K. Hauck, B. Schaudt, J. Magewick, Sculptured Surfaces - 

Methods for Detecting Errors in Numerically Controlled Machining of Sculptured Surfaces, 

IEEE Computer Graphics & Applications, (1989) 26-39. 

[20] Y.S. Lee, H. Ji, « Surface interrogation and machining strip evaluation for multi-axis CNC 

die mold machining », International Journal of Production Research, 35 (1997) 225-252. 

[ISO 25178-2] ISO/DIS 25178, Geometrical product specifications (GPS) - Surface texture: 

Areal - Part 2: Terms, definitions and surface texture parameters, 

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?ics1=17&ics2=0

40&ics3=20&csnumber=42785 

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?ics1=17&ics2=040&ics3=20&csnumber=42785
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?ics1=17&ics2=040&ics3=20&csnumber=42785


 


