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Abstract

Knowledge of a machine tool axis to axis geometric location errors allows compensation and corrective actions to be
taken to enhance its volumetric accuracy. Several procedures exist, involving either lengthy individual test for each
geometric error or faster single tests to identify all errors at once.

This study focuses on the closed kinematic chain method which uses a single setup test to identify the eight link
errors of a five axis machine tool. The identification is based on volumetric error measurements for different poses with
a non-contact Cartesian measuring instrument called CapBall, developed in house.

In order to evaluate the uncertainty on each identified error, a multi-output Monte Carlo approach is implemented.
Uncertainty sources in the measurement and identification chain – such as sensors output, machine drift and frame
transformation uncertainties – can be included in the model and propagated to the identified errors. The estimated
uncertainties are finally compared to experimental results to assess the method. It also reveals that the effect of the
drift, a disturbance, must be simulated as a function of time in the Monte Carlo approach.

Results shows that the machine drift is an important uncertainty source for the machine tested.

Keywords: Machine tool, link errors, identification, adaptive Monte Carlo, uncertainty, thermal disturbance

1. Introduction

Five axis machine tools are well known in the indus-
try for their high versatility and productivity by allowing
the control of both position and orientation of the cutting
tool relative to the workpiece. However, the higher number
of axes results in more sources of errors, such as geomet-
ric link errors, which represent the relative location error
between successive axes of a machine tool. Furthermore,
the effects of those link errors are combined, resulting in
potentially significant volumetric errors between the tool
and the workpiece. Many studies have been carried out
to estimate the link errors. Abbaszadeh-Mir et al. de-
veloped a linearised model relating the eight link errors
of a five axis machine tool to the volumetric errors [1]
which can be solved in a least square sense to estimate
the link errors. Lei and Hsu proposed a measuring instru-
ment to evaluate volumetric errors [2] with a method based
on the closed chain principle [3]. Bringmann and Knapp
developed a method called ”Chase-the-ball” using a ball
artefact mounted in the tool holder and linear probes to
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measure the Cartesian volumetric errors and identify link
errors using a similar approach [4]. Zargarbashi and Mayer
presented a non-contact measuring instrument called Cap-
Ball to measure volumetric errors and identify the eight
link errors [5]. The knowledge of those eight link errors
allows to enhance the machine accuracy by a compensa-
tion for their effect on volumetric errors at the tool center
point.

In [6, 7], Bringmann and Knapp showed how the ma-
chine tool performance influence identification tests, con-
sidering the contribution of motion errors on uncertainty.

The purpose of this paper is to investigate the uncer-
tainty contributions on the identified errors when using a
Cartesian closed chain calibration approach and the Cap-
Ball sensing head. The identification procedure is briefly
described and the result of identification are presented
and evaluated. The second part presents the multi-output
Monte Carlo technique and the sources of uncertainty con-
sidered.

The machine drift uncertainty is included in the model:
a statistical model is compared to one that takes into ac-
count the cyclic character of the drift observed in the mea-
surement chain.

Finally, the estimated uncertainties are compared to
experimental results, and the uncertainty due to each source
are separately evaluated to pinpoint the most penalising
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source of uncertainty.

2. Relation between link errors and volumetric er-
rors

2.1. Machine tool

The tests were performed on a Huron KX8-Five five
axis machining center, depicted in Fig. 1. This machine
has a WCAYFXZT structure, with a 45-degree-tilted A
rotary axis. The strokes of the axis are 650mm, 700mm
and 450mm for X, Y and Z respectively. The numerical
command controller is a Siemens Sinumerik 840D Power-
line.

2.2. Link errors model

In [1], Abbaszadeh-Mir et al. presented a linear rela-
tion between the eight link errors of the machine and the
six positioning errors of the setup – gathered in an array
δp – on one hand and the three components of the Carte-
sian volumetric errors1 at the tool center point expressed
in the tool frame – written in the vector δτ – on the other
hand.

Following the methodology proposed in [1], the relevant
error parameters are the following:

δp = [δγY δαZ δβZ δβA δγA δαC δβC δyC
δxT δyT δzT δxW δyW δzW ]

T (1)

where δαi, δβi and δγi denotes a small rotation of the
joint i around the X-, Y- and Z-axis respectively with re-
spect to its nominal orientation (e.g. δγY is the squareness
between X and Y expressed as a small rotation of the Y
axis around the Z-axis); and δyC denotes a translation of
joint C in the direction y with respect to its nominal po-
sition relative to joint A. Subscripts W and T stand for
workpiece and tool respectively. Explanations about the
components of the vector δp are given in Table 1.

The errors gathered in δp are modelled by small trans-
lational and rotational displacements. The Cartesian volu-
metric errors δτ results from the sum of the effect of those
small displacements, each propagated at the tool center
point. Joint motion errors, e.g. straightness, yaw, pitch,
roll or positioning error of the axis are assumed negligible
compared to the influence of link error in this model [5].

The link errors are modelled with small displacement
screw. Considering a pose k of the machine, the small
displacement screws can be transported at the tool tip
involving linear transport equations. This leads to a linear
operator Jk called Jacobian of the link and setup errors
and built as an algebraic expression of the sum of the effect
of the previously introduced small displacements, leading
to eq.(2).

1The Cartesian volumetric errors are expressed as a vector con-
taining the 3 components of the relative displacement of the tool
center point to its nominal position.
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Fig. 1: CapBall system, composed of a sensing head attached in the
spindle and a master ball mounted on the table.

δτ = Jk · δp (2)

More details about the construction of the Jacobian
are given in [1] and [5].

3. Identification procedure

3.1. Measuring instrument

In order to measure the volumetric errors at the tool
center point δτ , a non-contact measuring instrument, called
CapBall, had been developed in house [5]. It consists in a
master ball mounted on the table and a sensing head fitted
with three capacitive sensors, mounted in a tool holder in
the spindle.

The three sensors have their axes nominally orthogonal
and intersecting in one point called Pt. The machine is
programmed to keep the tool center point Pt coincident
with the center of the master ball called Pw (Fig. 1). Due
to the geometric errors of the machine and setup, Pt and
Pw are not exactly coincident, and the resulting volumetric
error is measured by the sensing head.

The capacitive sensors are pre-calibrated for the spher-
ical target using a set of three high precision linear stages.
The response non-linearity is kept under 0.5% as long as
the eccentricity is kept within ±300µm and the distance
between the sensor and the ball is in a ±300µm range
centred on the position at which the sensor gives a 0 Volt
signal.
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3.2. Identification

Eq.(2) provides three scalar equations for each pose of
the machine. Those three scalar equations correspond to
the measurement of the three components of the Cartesian
volumetric error δτ with the CapBall.

As the array δp has 14 components, it requires several
poses to have enough scalar equations for its identification.
With n poses, eq.(2) can be written n times relating n
different values of the volumetric error vectors δτ 1 · · · δτn

to δp, as in eq.(3).δτ 1

...
δτn

 =

J1

...
Jn

 · δp (3)

The array J id =
[
J1 · · · Jn

]T
is called the identifi-

cation Jacobian. The column matrix δχ =
[
δτ 1 · · · δτn

]T
is called the error vector set. Finally, eq.(3) is written in
a condensed manner as follows:

δχ = J id · δp (4)

The link and setup errors δp are identified using a
Moore-Penrose pseudo inverse matrix:

δp = J id
+ · δχ (5)

A set of 807 poses has been defined as the identifica-
tion trajectory. Those poses are chosen considering certain
constraints:

• maximise the volume inscribed into the identifica-
tion path to cover the largest part of the machine
working envelop to identify more representative pa-
rameter estimates;

• provide a relatively good condition number for the
identification Jacobian to reach a better data noise
immunity;

• provide a large number of scalar equations to iden-
tify the parameters with a good outlier points ro-
bustness.

The trajectory shown in Fig. 2 describes the 807 suc-
cessive positions of the points Pt and Pw in the machine
coordinate system. The identification trajectory is per-
formed with a clockwise A-axis and C-axis motion. The
X-,Y- and Z-axis motions are calculated to keep the po-
sition of the tool tip relative to the workpiece nominally
constant.

3.3. Calibration of the sensors orientation

During the measurements, the sensing head orientation
is maintained constant relative to the machine coordinate
system by programming the regulation of the spindle ori-
entation on the machine. However, the sensing head mea-
surement frame is not parallel to the machine tool frame.

-500
-400

-300
-200

-100

-600
-500

-400
-300

-200
-100

-400

-300

-200

-100

x (mm)
y (mm)

z 
(m

m
)

Fig. 2: Identification trajectory: successive positions of the points
Pt and Pw in the machine coordinate system used to generate the
identification Jacobian.

The CapBall allows the measurement of the Cartesian
volumetric errors in the sensing head frame. To be able to
express δτ in the machine tool frame, the orientation of
the sensors axes must be calibrated.

The procedure is achieved by executing a calibration
trajectory within a cube of 0.2mm × 0.2mm × 0.2mm
centred on the nominal position of the master ball, with
a regular mesh of 125 points. For each of the 125 points
of the calibration trajectory, the vector δτ t defined from
Pw to Pt, expressed in the machine coordinate system, is
programmed at a known value. At the same time, the
sensor readings are recorded in δτ s. The two following
homogeneous coordinate matrices can be built to model
this process:

∆t =

[
δτ t,1 · · · δτ t,125

1 · · · 1

]
4×125

(6)

∆s =

[
δτ s,1 · · · δτ s,125

1 · · · 1

]
4×125

(7)

Those two matrices can be theoretically related by a
transform matrix Ms→t to convert the sensors readings
into master ball motion relative to the sensing head ex-
pressed in the machine frame:

Ms→t ·∆s = ∆t (8)

Then, the best transform matrix from sensors frame to
machine frame considering a least square criterion is:

Ms→t = ∆t ·∆s
+ (9)

where ∆s
+ is the Moore-Penrose pseudo inverse of ∆s.
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With this method, none of the terms ofMs→t are con-
strained. The sensors are ordered so that (e1, e2, e3) is
a right-handed reference frame. In an hypothetically per-
fect case, where the sensors directions would be exactly or-
thogonal, the gains perfectly known, the sensors response
exactly linear and the machine movements perfect, then
Ms→t should be written as:

Ms→t =

[
e1 e2 e3 d
0 0 0 1

]
(10)

with the norm of each ei equal to 1 and all the ei forming
together and orthogonal matrix. The experimentalMs→t

obtained with eq.(9) is quite similar to those theoretical
values. The Details are given in Table 2. The last row of
the experimental Ms→t matrix is equal to its theoretical
value, with an approximation of 10−15, supposed to be
numerical errors only.

Differences between theoretical and experimental norms
of the ei vectors come mainly from differences in the sen-
sors gains. As shown in Table 2, it is less than 1%. Con-
sidering the projections ei · ej , the resulting values could
be attributed to lack of orthogonality between the sensors
axes and the machine’s local out-of-squareness.

The vector d results from the sensors reading offset due
to inaccurate axial position of the sensors in the sensing
head. Each of its components were below 10µm, which
contributes to keeping the sensors in their linear domain.

The difference between the theoretical and the exper-
imental Ms→t is considered negligible. The experimental
Ms→t obtained during the calibration procedure is used
for the identification of the link errors.

3.4. Synchronism between poses and sensors values

To measure the volumetric errors δτ k for the pose k,
the trajectory is run with exact stop and dwell time at each
pose with a tolerance of 1µm. Compared to the method
proposed by Zargarbashi and Mayer [5], this requires a
longer measurement time (about 10 minutes instead of 2),
but considering the entire procedure, including prepara-
tion time, this is not a significant penalty.

The sensors signals are gathered continually trough a
LABView application with a 1000Hz sampling rate. The
volumetric errors for the programmed poses are extracted
using a steady value algorithm developed for this purpose.

3.5. Identification result

The identification process has been performed using
the identification trajectory illustrated in Fig. 2. The iden-
tified error parameters are given in Table 1.

Fig. 3 shows the measured volumetric errors and the
prediction using the identified model (top). The differ-
ence between measured errors and modelled errors is called
residual errors (bottom). This portion of the errors unex-
plained by the model are under 10µm, with root mean
square value of 1.5µm, 1.8µm and 1.3µm in the x, y and
z directions respectively.

Table 1: Result of identification – link errors and setup errors.

Link error Value

δγy, out-of-squareness between X and Y -8.8 µm/m
δαz, out-of-squareness between Y and Z 138.3 µm/m
δβz, out-of-squareness between X and Z -35.7 µm/m
δβa, tilt of A around y -23.0 µm/m
δγa, tilt of A around z 6.9 µm/m
δαc, tilt of C around x -34.4 µm/m
δβc, tilt of C around y -9.9 µm/m
δya, offset of A relative to C in y -2.9 µm

Setup error Value

δxw, ball (workpiece) setup error (x) 1.5 µm
δyw, ball (workpiece) setup error (y) -25,7 µm
δzw, ball (workpiece) setup error (z) 18.8 µm
δxt, sensing head (tool) setup error (x) -1.1 µm
δyt, sensing head (tool) setup error (y) -14.7 µm
δzt, sensing head (tool) setup error (z) -21.5 µm

Table 2: Comparison between theoretical and experimental values of
Ms→t.

Norm |e1| |e2| |e3|
Experimental 0.998 0.996 0.996
Theoretical 1 1 1

Projection e1 · e2 e1 · e3 e2 · e3

Experimental -0.030 -0.029 -0.021
Theoretical 0 0 0

3.6. Validation of the identified errors

The robustness of the identified model is evaluated
by comparing its predictions against experimental mea-
surements for a validation trajectory (Fig. 4) run with
a counter-clockwise A-axis motion. The comparison be-
tween predictions and measurements is given in Fig. 5.
The RMS values of the residual errors are then equal to
2.7µm, 3.6µm and 2.5µm in x, y and z direction respec-
tively. Those values are twice as large as those for the
identification trajectory.

4. Monte Carlo analysis

4.1. Structure of the simulation

A Monte Carlo approach has been implemented to eval-
uate the uncertainty of the identified link errors. For such
problems of least square identification, a Monte Carlo ap-
proach is not necessarily needed if uncertainties on the in-
put can be modelled by a simple distribution [9]. However,
as will be shown, the uncertainty on the input (i.e. the
measured volumetric errors δτ 1 · · · δτn) cannot be mod-
elled by a simple distribution.

Instead of choosing an arbitrary number of trials, con-
sidered sufficient, the simulation is adaptive, as described
in [8]. The main purpose of implementing an adaptive
method is to provide control variables (i.e. expected val-
ues y, standard uncertainties u(y) and lower and higher
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Fig. 3: Measured and predicted (according to identification) volumetric errors (top graph) and residuals only (bottom graph) along the
identification trajectory.
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Fig. 4: Validation trajectory (blue) compared to identification tra-
jectory (red).

coverage interval endpoints ylow and yhigh) with an ex-
pected numerical tolerance.

Briefly, the adaptive method consists in performing the
Monte Carlo simulation divided into sequences of M trials
until the maximum of each standard deviations sets asso-
ciated with the average of the estimate for each sequence
sy, the standard uncertainty su(y), and lower and higher
coverage interval endpoints sylow

and syhigh
are lower than

the chosen numerical tolerance (see [8] and Fig. 6). The
algorithm described in [8] has been implemented in MAT-

Table 3: Standard measurement uncertainty of the sensors.

Sensor – Channel Value

Sensor 4 – Channel 1 0.28µm
Sensor 5 – Channel 2 0.28µm
Sensor 6 – Channel 3 0.40µm

LAB language in house.
In this case, M has been set to 104 for a coverage prob-

ability of 95%. The numerical tolerance δ has been set to
0.5 · 10−4mm.

The model of uncertainty includes three sources: the
drift of the closed kinematic chain during the measure-
ment, the uncertainty on the sensors output values and the
uncertainty due to the projection from the sensing head
frame to the tool frame. Those uncertainty sources are
part of the measurement and identification process.

Potential uncertainty due to the NC-unit action is re-
moved using the exact stop option in the NC program. The
influence of joint motion errors [7] was not considered.

4.2. Sensors

Standard type A uncertainty on the sensors output has
been evaluated in the useful measurement range, accord-
ing to [10]. It is used to produce random values within a
normal distribution in the Monte Carlo analysis for each
point and sensor. The standard measurement uncertain-
ties are given in Table 3.

4.3. Transformation uncertainties

As described previously, the measurement result of each
sensor is used to provide the measured volumetric error in
the machine reference frame, using the transform matrix
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Fig. 5: Comparison of the experimental volumetric errors and model prediction for a validation trajectory.

Ms→t. Standard uncertainties on the terms of this matrix
induce additional uncertainties on the estimated parame-
ters. To evaluate this effect, the trajectory used for cali-
bration was run four times to provide a total of 500 points
where the small programmed X-, Y-, Z-axes motions can
be compared to the measured ones. Distributions of the
differences between programmed and measured errors are
given in Fig. 7.

The distributions observed correspond with normal dis-
tributions so the influence of the transformation from the
sensors frame to the machine frame has been modelled
by a normal distribution reflecting the evaluated standard
deviations observed.

This model can be seen as slightly pessimistic, since
this uncertainty model is based on data that are them-
selves suffering sensors uncertainties and thermal varia-
tions. The thermal variation effect can be neglected, con-
sidering the 4 tests have been performed within 3 min-
utes. No further hypothesis were made to avoid including
the contribution of sensors uncertainties here. The mod-
elled effect of the frame transformation is known to be over
evaluated, leading to higher total uncertainties.

4.4. Drift of the closed kinematic chain

The thermal expansion of the spindle during machining
is a well known problem among the machining community
[11]. The dimensional variations – or drift – of the closed
kinematic chain has been considered in the uncertainty
model.

An example of the drift cycles is shown in Fig. 9. The
spindle temperature is regulated by a cooling device which
generates thermal cycles. During those cycles, the spindle
suffers small movements of approximately 7.5µm peak to
valley in the z direction and 4.5µm peak to valley in the
x and y directions. Such a high magnitude of the drift
may result from the use of the machine not under normal
condition met during machining.
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Fig. 7: Distributions of the difference in x, y and z directions be-
tween programmed and measured volumetric errors for 500 points
in a normal probability plot – Standard deviations ux = 0.56µm,
uy = 0.27µm and uz = 0.69µm.

Similar were observed for three different poses, depicted
in Fig. 8. For those three poses, similar period, magni-
tude and pattern have been observed between channels. It
suggests that the observed effect is not a variation of the
mesurand (i.e. the 8 link errors) but a variation in the
measurement chain, as the observed volumetric variations
do not vary with the pose, influenced itself by the link er-
rors. However, if the machine link errors – the mesurand –
are affected, it is still a contribution to uncertainty since it
means that the desired conditions of the mesurand are not
met. Such conditions are difficult to define for a machine
tool since its metrology is not conducted during normal
machining conditions.

The drift is included in the uncertainty model. Two
different methods are compared: on one hand the drift
is treated statistically and on the other hand, its cyclic
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Fig. 8: CAD view of the 3 poses for the evaluation of the dimensional
variation of the measurement chain.

character is preserved in the model.

4.4.1. Statistical method

The principle given for linear positioning measurement
in ISO/TR 230-9 [12] is applied. It takes into account
the magnitude of the drift – called EV E – to calculate
the uncertainty due to environmental variation uEV E as
described by eq.(11).

uEV E =
EV E

2
√

3
(11)

In this case, a value of uEV E is evaluated for each sen-
sor to produce random values within a normal distribution
subtracted for each point in the Monte Carlo analysis. The
values of EV E summarised in Table 4 are evaluated accord-
ing to the measurements shown Fig. 9. In the following,
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Fig. 9: Example of thermal variations measured during a static test.

this is called the statistical method.

4.4.2. Cyclic method

In the cyclic method, the uncertainty due to environ-
mental drift is evaluated considering the cyclic character
of the variation. A typical variation period of these cycles
(Fig. 9) has been chosen so that the drift is modelled as a
periodical function of time DEV E from t = 0 to +∞.

The beginning of the first trial of each sequence is cho-
sen randomly in the period which gives the starting time
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Fig. 10: Simulated distributions of the identified link errors with a 95% coverage interval (cyclic method).

Table 4: Magnitude EV E and uncertainty uEV E of the drift.

Sensor – Channel EV E uEV E

Sensor 4 – Channel 1 6.95µm 2.00µm
Sensor 5 – Channel 2 3.42µm 0.99µm
Sensor 6 – Channel 3 6.63µm 1.91µm

t0. The duration of a simulated trajectory is known as
tm, and the time interval between the volumetric errors
measurement at two following point is known as ti. Then,
the measurement time tnk of the point number k (k varies
from 1 to 807) in the trial number n (n varies from 1 to
M) is given by eq.(12).

tnk = t0 + (n− 1) · tm + k · ti (12)

where:
tm = 807 · ti (13)

The simulated drift at this point is given byDEV E(tnk).
The calculated variation is subtracted from the simulated
measured value. In the following, this is called the cyclic
method.

5. Results

5.1. Simulation results

The reliability of the multi-output Monte Carlo simu-
lation method was evaluated by confronting simulation re-
sults to experimental values: 15 identification trajectories

were executed, leading to 15 error sets δχ. The first 5 sets
were removed from the analysis to avoid including thermal
variation of the joints, leading to potential variations of the
mesurand. Then, eq.(5) provides an array of identified link
and setup errors for each of the 10 tests considered as rel-
evant. The execution of those 10 tests took approximately
3 hours, so several drift cycles occurred over this period
(while the machine joints, assumed to be unaffected by the
thermal drift, mainly attributed to the spindle, remains in
a steady state after the 5 previous test warm up period).

The mean value of the 10 δχ sets is used as an input
for the Monte Carlo simulation. Other inputs are either
the uEV E value for each sensor or the periodical function
of the time DEV E , standard uncertainties on the sensors
output and standard uncertainties of the sensor to machine
frame transformation. Outputs of the simulation are the
expected distribution of the identified link errors (Fig. 10)
and lower and higher coverage interval endpoints (Fig. 11
and Fig. 12). The 95% coverage intervals given by the
Monte Carlo simulation are compared to the 10 relevant
tests results in Fig. 11 for the statistical method and in
Fig. 12 for the cyclic method. The mean values of Fig. 11
and Fig. 12 do not exactly match the results presented in
the Table 1 because identification results of the Table 1
were obtained during the winter and the the experiments
leading to Fig. 11 and Fig. 12 were performed during the
summer in a laboratory where the global climate condition
can fluctuate a lot. This statement shows that the machine
geometry is also subject to larger alterations on a long
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Fig. 11: Comparison between simulated 95% coverage interval obtained with the statistical method (black or dark) and experimentally
identified link errors (red or grey).
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Fig. 13: Evolution and convergence of the control variables for a
typical simulation – h is the Monte Carlo sequence number; the
numerical tolerance is δ = 0.05µmor µm/m.

period, but this phenomenon is not discussed further in
this paper.

The statistical method leads to uncertainty intervals
smaller than observed variations of the identified errors,
whereas the simulation with the cyclic method provides a
more realistic size for the 95% coverage interval for each
link error. This illustrates the importance of taking into
account the cyclic character of the drift in the model. From
this point onward, only the cyclic method is kept in the
analysis.

As shown in Fig. 10, the measurement chain variation
cycles lead to non-normal distributions2, even if expected
values correspond to identified values with the δχ input.

Sizes of the 95% coverage intervals for the cyclic method
are given for each link error in Table 5.

5.2. Numerical stability of the cyclic method

Ten simulations were executed with the cyclic method
to characterise the numerical stability. All ten simulations
converged to the same outputs in terms of expected values,
standard uncertainties and lower and higher endpoints of
the 95% coverage interval, with a ±δ tolerance previously
defined as 10−4mm. From this point of view, the method
can be considered numerically stable.

A typical convergence of the control variables is shown
in Fig. 13. The number of sequences performed to reach
the convergence criteria for all the control variables is h =
20 in this case. The lower and higher endpoints of the
95% coverage interval proved to require more sequences to
reach convergence. For the ten simulations, the number of
sequences before convergence varied from 17 to 24.

Table 5: Size of the 95% coverage interval for each uncertainty
sources separately, compared to total 95% coverage interval.

Link error ∆EV E
a ∆sensors ∆trans

√∑
∆2 ∆95%

a

δγY (µm/m) 8.1 0.49 0.68 8.1 8.4

δαZ (µm/m) 7.4 0.65 0.85 7.5 7.8

δβZ (µm/m) 7.9 0.88 1.41 8.1 8.2

δβA (µm/m) 9.8 0.48 0.87 9.9 10.0

δγA (µm/m) 13.9 0.29 0.64 13.9 14.0

δαC (µm/m) 8.4 0.38 0.75 8.4 8.6

δβC (µm/m) 5.9 0.48 0.81 6.0 6.0

δyC (µm) 5.1 0.12 0.21 5.1 5.2

aFor the cyclic method.

5.3. Contribution of each uncertainty source

Three other simulations were performed this time, in-
cluding only one source of uncertainty at a time. This
allows to compare the contribution of each source of un-
certainty. Table 5 shows the total contribution of all un-
certainty sources ∆95% (for the cyclic method) compared
to ∆EV E for the drift variations only (cyclic method),
∆sensors for the sensors output uncertainty only and ∆trans

for the frame transformation uncertainties only. Those
simulated values show that the dimensional variations are
responsible for most of the total uncertainties.

It is noticeable that for each error parameter, the quadratic
sum of the 3 contributions

√∑
∆2 is lower than the pre-

dicted ∆95% probably a consequence of the cyclic character
of the drift included in the model.

6. Conclusion

The paper presents a method to evaluate contributions
to the uncertainties for identified link errors of a five axis
machine tool. Sources of uncertainty in the identification
procedure have been inventoried, considering certain hy-
pothesis. Those standard uncertainties have been propa-
gated with a multi-output adaptive Monte Carlo approach,
using either a statistical model or a cyclic model for the
drift.

The main source of uncertainty in the procedure, for
the tested machine in the prevailing experimental condi-
tions, was the drift of the closed kinematic chain. The
cyclic nature of the drift proved to have a significant im-
pact on the simulation results.

The numerical stability of the implemented method
was evaluated, and the obtained uncertainties compared
to results from ten experimental identification trials.

The method was also used to evaluate the contribution
of each of the three uncertainty source in order to pinpoint
the dominant source, in order to improve the link errors

2Simulation run without including the drift led to normal distri-
butions.
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identification method by decreasing or removing its im-
pact. The effect of environmental variation errors, gener-
ally attributed to thermal variations of the spindle, proved
to be predominant under the conditions of the tests. The
thermal stability control during the identification must
now be improved to decrease the total uncertainty of the
procedure.
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[9] E. Kyriakides, G. Heydt, Calculating confidence intervals
in parameter estimation: A case study, IEEE Trans-
actions on Power Delivery 21 (1) (2006) 508 – 509.
doi:10.1109/TPWRD.2005.848440.

[10] JCGM 10:2008 — Evaluation of measurment data – Guide to
the expression of the uncertainty in measurement, BIPM, Sèvre,
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