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Abstract - A new modeling approach for electrical networks is introduced in this 
paper based on fractal geometry and self-similarity. A particular parameter called 
fractal dimension is computed using a box counting method. The resulting model, 
based on a scaling power law, gives an accurate mathematical representation of the 
frequency behaviour of the network over a large range of frequencies while 
preserving the strong links between its physical structure and its dynamic 
performances. 
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1. INTRODUCTİON 

The liberalization of the electricity market and the 
needs of more reliable, secure and efficient power 
systems cause the emergence of a new paradigm: the 
smart grid. It can be defined by the convergence 
between the power and information systems 
infrastructures [1]. This reinforced intrication will 
enhance the capacity of integration and regulation of 
the global electric system. But, because of this 
strong couplings, the smart system will be also 
complex to design and operate. For that reason, 
modeling of smart grids is from today a key issue for 
studies of stability and assessment of new control 
strategies [2],[3], optimization of power flow [4] or 
analysis of harmonic distortion [5].  

To manage complexity means to be able to describe 
by a simple mathematical model the global 
behaviour of the electricity network without writing 
the equations which rule the operation of each 
component integrated in the network. Classical 
approaches are based on aggregation or order 
reduction methods [6],[7]. For instance, a group of 
induction motors will be represented by a single 
aggregated motor instead of describing each motor 
operation separately. Or a complete, detailed model 
of a network is identified by a black-box reduced-
order model. In the latter case, the mathematical 
structure of the model does not respect the physical 
structure of the network and links between model 
and physical parameters are lost. 

The authors propose an alternative approach based 
on fractal theory and self-similarity. Its purpose is 
the development of reduced-order but knowledge-
based models of power systems (ICT infrastructure 
is here ignored for simplicity purpose. Of course, it 
should be reintroduced in future works). The model 

will be derived from the self-similar relations which 
describe the structure of an electrical network. A 
particular attention will paid to the dynamic 
modelling of the system and more specifically links 
between topology of the network and its frequency 
response will be underlined. 

2. DESCRİPTİON AND MODELİNG OF A REFERENCE 
NETWORK 

2.1. DESCRİPTİON 

A real power distribution network of 21 Bus is 
chosen for this study. It has been elected for its 
exemplarity (medium size and radial distribution 
network, IEEE referenced test network). The 
topology is given in Fig. 1. Lines and loads 
parameters are detailed in [8]. The network is 
assumed to be balanced so that only a single phase 
network is studied. No propagation effects are taken 
into account. Finally, the network is simplified by 
removing loads and reactance capacitors. Or course, 
this will limit the validity of our approach but it will 
better highlight the strong links between the physical 
structure of the network and its mathematical 
representation. 
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Fig.1. Topology of the 21 Bus-feeder 

The frequency response of the network is given in 
Fig. 2. It exhibits three distinct ranges of behaviours: 
capacitive, resonant and inductive. 
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Fig.2. Frequency response of the real network 

The resonant zone is bounded at high frequencies by 
the natural frequency fH and at low frequencies by 
the natural frequency fL. Their numerical values are: 
fH= 4529 Hz, and fL=450 Hz. Fig. 3 shows that 
below fL, the network behaves as a capacitance equal 
to the sum of all line capacitance. At high 
frequencies, the behaviour becomes inductive and 
depends on the inductance value of the line 
connected to the source [9]. 
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Fig.3. Asymptotic approximation outside the 
resonance range [9] 

2.2. BLACK BOX IDENTIFICATION OF THE REFERENCE 

NETWORK 

The reference network can be represented by an 
ARMA model whose parameters are identified using 
a black-box approach [10]. To get a good 
approximation, a 24-order model is required (see. 
Fig.4). 

Even if widely used by control engineers for 
identifying dynamic processes, this approach has 

severe drawbacks. At first, it gives a black-box 
model which makes difficult any reverse 
engineering. Indeed, the model does not include any 
information about the topology and the effective 
parameters of the system. It is not possible to track 
into the model which characteristics of the network 
are responsible of a particular dynamic behaviour. 
Moreover, the order of the model is not “controlled” 
during the modelling process. It depends only of the 
accuracy required from the mathematical 
representation and it can result in high order models 
not suitable for analysis or design. For those reasons, 
knowledge-based models are by far the best way to 
represent electrical systems. 
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Fig.4. Black-box identification 

3. TOWARD A KNOWLEDGE-BASED MODEL 

3.1. INVESTIGATION OF THE İNTERMEDİATE 

FREQUENCIES BEHAVIOUR 

In order to investigate the intermediate frequencies 
range (very costful in terms of modelling) the 
damping factors of the lines are first artificially 
increased to kill the resonant peaks. A comparison 
between damped and resonant cases is given in 
Fig.5. It appears that the damped network can be 
seen as giving the average behaviour of the real 
system. It is worth noting that the gain of this 
damped network follows a power law ηω −  and its 
phase is constant and equal to -η·(π/2) rad/s. This is 
an abnormal behaviour, neither inductive, nor 
capacitive or resistive. This is typical of a dynamic 
system described by the following power law: 
Z(jω)=A.(jω)-η. 

Power laws are often exhibited by complex systems 
(internet, biological or social networks, polymers, 
landscapes …) which results of the self-similar 
assembly of elementary components [11],[12]. The 
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exponent η is generally linked with the structural 
parameters of the assembly. Power law reflects 
scaling properties of complex systems, meaning that 
they quantify the dependence between the scale of 
measurement (e.g. the frequency) and the measured 
property (e.g. the impedance). 

Of course, in the case of the 21-Bus network, this 
scaling invariance is hidden by the resonances but 
this is a starting point for considering an alternative 
and order-reduced mathematical representation. 
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Fig.5. Comparison between damped and reference 

network responses 

3.2. MODELLİNG OF THE İNTERMEDİATE FREQUENCİES 

BEHAVİOUR 

For real networks such as the 21-Bus network, it is 
obvious that the power law can not be analytically 
derived from the electrical equations which describe 
the lines. Indeed, there are too numerous lines and 
the the scaling invariance is hidden by the 
resonances at the intermediate frequencies. So, an 
alternative approach should be proposed for 
identifying the power law followed by the 
impedance. 
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Fig.6. Structure of the ideal network 

For that purpose, the intermediate frequency 
behaviour of an ideal network is first analysed. Its 
structure is given in Fig.6. It is inspired from a radial 
distribution network but it is built in such a way that 
it clearly exhibits a self-similar fractal structure [9]. 

At low frequencies, the behavior of the network is 
capacitive while at high frequencies it is inductive. If 
the network is excited in the intermediate 
frequencies range by a voltage source whose 
frequency is equal to the natural frequency of the ith 
lines, then the impedance of the ith lines is only 
limited by their resistance Ri while the upstream 
lines behave as capacitance and the downstream 
lines are inductive (see. Fig. 7). As the inductive 
behaviour of the downstream lines prevent any 
current propagation to the network terminals, the 
network can finally be reduced to a R-C circuit made 
of i cells. Its impedance is then given by the 
following recursive equation: 
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Fig.7. Ideal network behaviour at natural frequency 
ωi related to the ith lines 

Ref. [9] and [13] have shown that this recursive 
equation can be rewritten as: 

ηωω −∝ )()( jjZ   (2) 

Where [ ] fDa −=−= 1)ln(/)2ln(1η  and Df  is the 

fractal dimension of the Cantor fractal tree which 
has inspired the network of Fig.6. 

This proves that, at the intermediate frequencies, a 
self-similar network exhibits a scaling power law 
whose exponent is strictly linked to its structure. The 
principal interest of this mathematical representation 
is of course its parcimony.  

The point now is: do real networks exhibit such self 
similarities? For the ideal network, the scaling 
exponent has been given by its fractal dimension. 
The question then becomes: is it possible to compute 
a fractal dimension of a real network? 
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4. A FRACTAL-BASED GEOMETRICAL METHOD FOR 
COMPUTATION OF THE POWER-LAW EXPONENT 

4.1. INTRODUCTION TO FRACTAL COMPUTING  

Basically, fractals are mathematical objects which 
Euclidean measures (length, surface, and volume) 
are infinite. They are now widely used to better 
understand and represent physical systems which 
show self-similarities and scaling relations. The 
concept was introduced by B. Mandelbrot in the 70s 
[14]. 

Contrary to “regular” objects (segments, squares, 
spheres …) the dimension of fractals is not an 
integer but a real number [14],[15]. This number is 
defined by using the Hausdorff measure. 

Assume that F is a fractal object. F is optimally 
covered by a set of boxes Bi which have a size di ≤ ε 
in such a manner that any points belong to at least 
one box [14]. The covering is optimal in the sense of 
being economical. The Hausdorff measure is defined 
by [15]:  

( )∑
=+→

=
N

i

D
i

fdFHs
10

lim)(
ε

 (6) 

Df is called the Hausdorff dimension. It can be 
considered as the fractal dimension. 

Practically, it is difficult to achieve an optimal 
covering of the fractal object using boxes of 
different sizes. So the fractal dimension is 
approximated by another dimension called the box 
dimension Db. This latter one is computed using 
boxes of constant size d [16]. Then, (6) becomes: 

( ) bD

d
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0+→
=  (7) 

If the box dimension Db exists, the Hausdorff 
measure is constant and Db is given by the slope of 

))(log( dN  vs. )log(d  when d→0: 
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Even if the box dimension is an approximation, it is 
a powerful and helpful tool for characterizing 
fractals. It will now be shown how it can be applied 
to electrical networks. 

4.2. COMPUTING THE FRACTAL DIMENSION OF A POWER 

NETWORK 

Assuming that electrical networks are self-similar 
objects (at least over a given frequency range), it is 
proposed to build a fractal analogous. For that 

purpose, the Cantor set is chosen because of its 
radial feature. Each line of the network is then 
associated to a segment of the Cantor set. The length 
of the segment is chosen proportional to the value of 
the natural frequency of the line. In the case of the 
ideal network, the resulting Cantor set is shown in 
Fig.8. 
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Fig.8. Cantor fractal set analogous 

The Cantor set holds both geometric and frequency 
information. It is then expected that the fractal 
dimension of the analogous Cantor set be near to the 
exponent value of the power law characterizing the 
intermediate frequencies range. The fractal 
dimension is computed by the box counting method 
[16]. Because, the lengths of the same step segments 
can be different, the box size is chosen equal to the 
mean value of the segment lengths as expressed in 
(9) (see. Fig.9). i is referred to the step and j is the 
number of segments at the step #i. 
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Fig. 9. Box covering at the 3rd step 

ln(Ni) versus ln( id
)

) is plotted in Fig. 10. It gives a 

box dimension Db = 0,588. 
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Fig.10. Calculation of the box dimension Db 

The scaling exponent is calculated by: 
bD−= 1η . 

The comparison between the scaling law associated 
to this exponent and the impedance of the ideal 
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network is shown below. It proves the validity of the 
proposed approach to identify the power law 
behavior at the intermediate frequencies. 
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Fig.11. Scaling power law modelling 

4.3. APPLİCATİON TO THE 21-BUS NETWORK 

To further validate our approach, the 21-Bus 
network is now analysed. As shown in Section 3.1, 
the scaling behaviour is hidden by the resonances at 
the intermediate frequencies. So, it is proposed to 
first build an analogous Cantor set of the damped 
network. 

The first segment length is equal to f0,1, the natural 
frequency of the first line of the network. The 
second step of the Cantor set is built using f1,2, f1,21 
and f1,12 , the natural frequencies of lines 1-2, 1-21, 
and 1-12 respectively. The process is repeated until 
the last line of the network. Then, the fractal 
dimension is computed by the box counting method. 
It leads to a value of ηreal=0,509. 
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Fig.12. Damped frequency responses 

Modeling of the damped network is achieved by 
summing the frequency power law based on ηreal to 
the low frequency part (made of the sum of all the 
line capacitances) and the high frequency part (equal 
to the inductance of the line connected to the 
source). The frequency response given by this model 
is compared to the response of the damped network 
in Fig. 12. It clearly shows its accuracy over the 
whole frequency range. 

Only the inclusion of the resonances has now to be 
done. The real network frequency response in dB is 
noted H(jω) and its damped part is noted Hda(jω). It 
is assumed that the resonant part Hre(jω) is given by: 

)()()( ωωω jHjHjH dare −=  (16) 

The damped part is represented by the knowledge-
based model )( ωjH da

)
 described just before. The 

resonant part is modelled by a parametric ARMA 
model )( ωjH re

)
 [10]. Its identification leads to a 10-

order model. The results of the identification is 
shown in Fig.13. 
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Fig.13. Identification of the resonant part of the 21-
Bus network 

The complete model )( ωjH
)

 combining damped and 

resonant parts is compared to the frequency response 
of the 21-Bus network in Fig.14. It clearly appears 
as a good approximation. To see how this approach 
is powerful in reducing the order of the models 
while preserving a good degree of knowledge, we 
compare it to the full black box 24-order ARMA 
model as shown in Fig. 14. 

Of course, the full ARMA model matches more 
accurately the frequency response of the network 
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than the model derived from the power law. The full 
black-box model gives a maximal error of 2.2 % 
while the fractal approach gives 8.7 %. But this 
slight relaxing in accuracy allows dividing the 
number of parameters by two (from 12 to 24). Last 
but not least, none of the black-box model 
parameters give information about the physical 
structure of the network whereas some parameters of 
the alternative model are directly derived from 
physical considerations and give precious 
information on the network structure. 
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Fig.14. Final comparison of frequency responses 
including resonances 

5. CONCLUSION 

In this paper, the authors show how self-
similarities can be helpful for reduced-order 
dynamic modeling of power networks. At 
intermediate frequencies, a power law has been used 
to represent a constant phase angle average 
behaviour. The power exponent is measured by a 
box counting method applied to a Cantor set 
analogous to the electrical network. Applications to 
a 21-Bus power network shows how relevant is the 
proposed approach to provide reduced models over a 
wide range of frequencies while preserving a 
reasonable level of knowledge. 

Of course, further studies should be carried out to 
better include resonances, loads and propagation in 
the final model. But, these first results prove that it 
is possible to develop an original, simple and 
powerful modelling approach which makes strong 
links between network structure and performance. It 

is a first step toward a complete revision of electrical 
systems as a part of a more complex electricity 
system made of the convergence of power networks 
and ICT infrastructures. 
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