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Abstract. We consider the wave equation with a time-varying delay term in

the boundary condition in a bounded and smooth domain Ω ⊂ IRn. Under

suitable assumptions, we prove exponential stability of the solution. These
results are obtained by introducing suitable energies and suitable Lyapunov

functionals. Such analysis is also extended to a nonlinear version of the model.

1. Introduction. We are interested in the effect of a time–varying delay in bound-
ary stabilization of the wave equation in domains of IRn. Delay effects arise in many
pratical problems and it is well known that they can induce some unstabilities, see
[5, 6, 7, 23, 28].

Let Ω ⊂ IRn be an open bounded set with a boundary Γ of class C2. We assume
that Γ is divided into two parts ΓD and ΓN , i.e. Γ = ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅,
ΓD 6= ∅ and ΓN 6= ∅.

In this domain Ω, we consider the initial boundary value problem

utt(x, t)−∆u(x, t) = 0 in Ω× (0,+∞) (1)

u(x, t) = 0 on ΓD × (0,+∞) (2)

∂u

∂ν
(x, t) = −µ1ut(x, t)− µ2ut(x, t− τ(t)) on ΓN × (0,+∞) (3)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω (4)

ut(x, t− τ(0)) = f0(x, t− τ(0)) in ΓN × (0, τ(0)), (5)
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where ν(x) denotes the outer unit normal vector to the point x ∈ Γ and
∂u

∂ν
is the

normal derivative. Moreover, τ(t) > 0 is the time-varying delay, µ1 and µ2 are
positive real numbers and the initial datum (u0, u1, f0) belongs to a suitable space.

On the function τ we assume that there exists a positive constant τ such that

0 ≤ τ(t) ≤ τ , ∀ t > 0. (6)

Moreover, we assume
τ ′(t) < 1 ∀ t > 0, (7)

and
τ ∈W 2,∞([0, T ]), ∀ T > 0. (8)

Note that, if t < τ(t), then ut(x, t − τ(t)) is in the past and we need an initial
value in the past. Moreover, by (7) and the mean value theorem, we have

τ(t)− τ(0) < t,

which implies
t− τ(t) > −τ(0).

We thus obtain the initial condition (5).
We are interested in giving an exponential stability result for such a problem.

Let us denote by 〈v, w〉 or, equivalently, by v ·w the euclidean inner product between
two vectors v, w ∈ IRn.

We assume that there exists x0 ∈ IRn such that denoting by m the standard
multiplier

m(x) := x− x0, (9)

we have
m(x) · ν(x) ≤ 0 on ΓD (10)

and, for some positive constant δ,

m(x) · ν(x) ≥ δ on ΓN . (11)

It is well–known that if µ2 = 0, that is in absence of delay, the energy of problem
(1) − (4) is exponentially decaying to zero. See for instance Chen [2, 3], Lagnese
[16, 17], Lasiecka and Triggiani [18], Komornik and Zuazua [15], Komornik [13, 14],
Zuazua [29]. On the contrary, if µ1 = 0, that is if we have only the delay part in the
boundary condition on ΓN , system (1) − (4) becomes unstable. See, for instance
Datko, Lagnese and Polis [7].

The above problem, with both µ1, µ2 > 0 and a constant delay τ, has been studied
in one space dimension by Xu, Yung and Li [28], on networks by Nicaise and Valein
[24] and in higher space dimension by Nicaise and Pignotti [23]. Assuming that

µ2 < µ1, (12)

in [23] a stabilization result in general space dimension is given, by using a suitable
observability inequality obtained combining Carleman estimates for the wave equa-
tion by Lasiecka, Triggiani and Yao [19] and compactness-uniqueness arguments.

The case of time–varying delay has been studied by Nicaise, Valein and Fridman
[25] in one space dimension. In [25] an exponential stability result is given, under
the condition

µ2 <
√

1− dµ1 (13)

where d is a constant such that

τ ′(t) ≤ d < 1, ∀ t > 0. (14)
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Here, under the same conditions (13) − (14), we extend this result to general
space dimension. Moreover, we remove the hypothesis

τ(t) ≥ τ0 > 0, ∀ t > 0, (15)

assumed in [25], that is the delay may degenerate.
We will study also a nonlinear version of the above model. Consider the system

utt(x, t)−∆u(x, t) = 0 in Ω× (0,+∞) (16)

u(x, t) = 0 on ΓD × (0,+∞) (17)

∂u

∂ν
(x, t) = −β1(ut(x, t))− β2(ut(x, t− τ(t))) on ΓN × (0,+∞) (18)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω (19)

ut(x, t− τ(0)) = g0(x, t− τ(0)) in ΓN × (0, τ(0)), (20)

where βj : IR → IR, j = 1, 2, satisfy suitable growth assumptions. In particular we
assume

|βj(s)| ≤ cj |s|, ∀s ∈ IR, j = 1, 2, (21)

for some positive constants c1, c2 and

β2(s) · s ≥ 0, ∀s ∈ IR. (22)

From now on we fix c1, c2 as the smallest constants such that (21) holds. Moreover
we assume that β1 and β2 are continuous on IR and that they satisfy

∃ γ1 > 0, ∀x, y ∈ IR, (β1(x)− β1(y))(x− y) ≥ γ1(x− y)2, (23)

∃ γ2 > 0, ∀x, y ∈ IR, |β2(x)− β2(y)| ≤ γ2|x− y|. (24)

Note that (21) and (24) imply c2 ≤ γ2 and from (21) and (23) we deduce

β1(s) · s ≥ γ1s
2, ∀s ∈ IR. (25)

Under a suitable relation between the above coefficients we can give a well–
posedness result and an exponential stability estimate for problem (16)− (20). To
prove the well–posedness of the nonlinear model we need to assume (15). In our
opinion, this is only a technical assumption but at the moment we are not able to
remove it.

The paper is organized as follows. Well–posedness of the problems is analysed in
section 2 using semigroup theory. In subsection 2.1 we study the well-posedness of
problem (1)− (4), while in subsection 2.2 we concentrate on problem (16)− (20). In
section 3 and section 4 we prove the exponential stability of the linear and nonlinear
problems respectively.

2. Well-posedness of the problems. Using semigroup theory we can give the
well–posedness of problem (1)− (4) and problem (16)− (20).

2.1. Linear problem. Let us set

z(x, ρ, t) = ut(x, t− τ(t)ρ), x ∈ ΓN , ρ ∈ (0, 1), t > 0. (26)
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Then, problem (1)− (4) is equivalent to

utt(x, t)−∆u(x, t) = 0 in Ω× (0,+∞) (27)

τ(t)zt(x, ρ, t) + (1− τ ′(t)ρ)zρ(x, ρ, t) = 0 in ΓN × (0, 1)× (0,+∞) (28)

u(x, t) = 0 on ΓD × (0,+∞) (29)

∂u

∂ν
(x, t) = −µ1ut(x, t)− µ2z(x, 1, t) on ΓN × (0,+∞) (30)

z(x, 0, t) = ut(x, t) on ΓN × (0,∞) (31)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω (32)

z(x, ρ, 0) = f0(x,−ρτ(0)) in ΓN × (0, 1). (33)

To prove the well-posedness of (27)− (33) we require some assumptions between
τ , µ1 and µ2 (stated precisely below) and we have to distinguish two cases. First,
we assume also (15), i.e. we assume

0 < τ0 ≤ τ(t) ≤ τ̄ , ∀t > 0. (34)

In the second case we assume only (6). but we also require that

τ ∈W 3,∞([0, T ]), ∀ T > 0. (35)

2.1.1. First case. Assume for the moment that (34) holds.
If we denote by

U := (u, ut, z)
T
,

then

U ′ = (ut, utt, zt)
T

=

(
ut,∆u,

τ ′(t)ρ− 1

τ(t)
zρ

)T
.

Therefore, problem (27)− (33) can be rewritten as{
U ′ = A(t)U

U(0) = (u0, u1, f0(·,− · τ(0)))
T
,

(36)

in the Hilbert space H defined by

H := V × L2(Ω)× L2(ΓN × (0, 1)) (37)

equipped with the usual inner product

〈 u
v
z

 ,

 ũ
ṽ
z̃

〉
H

=

∫
Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)}dx+

∫
ΓN

∫ 1

0

z(x, ρ)z̃(x, ρ)dρdΓ. (38)

The operator A(t) is defined by

A(t)

 u
v
z

 :=

 v
∆u

τ ′(t)ρ−1
τ(t) zρ

 ,

with domain

D(A(t)) :=
{

(u, v, z)T ∈
(
E(∆, L2(Ω)) ∩ V

)
× V × L2(ΓN ;H1(0, 1)) :

∂u

∂ν
= −µ1v − µ2z(·, 1) on ΓN ; v = z(·, 0) on ΓN

}
,

(39)
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where, as usual,

V = H1
ΓD (Ω) = { u ∈ H1(Ω) : u = 0 on ΓD },

and

E(∆, L2(Ω)) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}.
Notice that the domain of the operator A(t) is independent of the time t, i.e.

D(A(t)) = D(A(0)), ∀t > 0. (40)

Recall that for a function u ∈ E(∆, L2(Ω)), then ∂u/∂ν belongs to H−1/2(ΓN )
and the next Green formula is valid (see section 1.5 of [9])∫

Ω

∇u∇wdx = −
∫

Ω

∆uwdx+ 〈∂u
∂ν

;w〉ΓN ,∀w ∈ H1
ΓD (Ω), (41)

where 〈·; ·〉ΓN means the duality pairing between H−1/2(ΓN ) and H1/2(ΓN ).

Note further that for (u, v, z)T ∈ D(A(t)),
∂u

∂ν
belongs to L2(ΓN ), since z(·, 1) is

in L2(ΓN ).
A general theory for equations of type (36) has been developed using semigroup

theory [11, 12, 26]. The simplest way to prove existence and uniqueness results is to
show that the triplet {A,H, Y }, with A = {A(t) : t ∈ [0, T ]} for some fixed T > 0
and Y = D(A(0)), forms a CD-system (or constant domain system, see [11, 12]).
More precisely, the following theorem gives some existence and uniqueness results
and is proved in Theorem 1.9 of [11] (see also Theorem 2.13 of [12] or [1])

Theorem 2.1. Assume that
(i) Y = D(A(0)) is a dense subset of H,
(ii) (40) holds,
(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H and

the family A = {A(t) : t ∈ [0, T ]} is stable with stability constants C and m inde-
pendent of t (i.e. the semigroup (St(s))s≥0 generated by A(t) satisfies ‖St(s)u‖H ≤
Cems‖u‖H, for all u ∈ H and s ≥ 0),

(iv) ∂tA belongs to L∞∗ ([0, T ], B(Y, H)), which is the space of equivalent classes
of essentially bounded, strongly measurable functions from [0, T ] into the set B(Y, H)
of bounded operators from Y into H.

Then, problem (36) has a unique solution U ∈ C([0, T ], Y ) ∩ C1([0, T ],H) for
any initial datum in Y .

Our goal is then to check the above assumptions for problem (36).

Lemma 2.2. D(A(0)) is dense in H.

Proof. The proof is the same as the one of Lemma 2.1 of [25], we give it for the
sake of completeness. Let (f, g, h)> ∈ H be orthogonal to all elements of D(A(0)),
namely

0 =

〈 u
v
z

 ,

 f
g
h

〉
H

=

∫
Ω

{∇u(x)∇f(x) + v(x)g(x)}dx

+

∫
ΓN

∫ 1

0

z(x, ρ)h(x, ρ)dρdΓ,

for all (u, v, z)> ∈ D(A(0)).
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We first take u = 0 and v = 0 and z ∈ D(ΓN × (0, 1)). As (0, 0, z)> ∈ D(A(0)),
we get ∫

ΓN

∫ 1

0

z(x, ρ)h(x, ρ)dρdΓ = 0.

Since D(ΓN × (0, 1)) is dense in L2(ΓN × (0, 1)), we deduce that h = 0.
In the same manner, by taking u = 0, z = 0 and v ∈ D(Ω) we see that g = 0.
The above orthogonality condition is then reduced to

0 =

∫
Ω

∇u∇fdx, ∀(u, v, z)> ∈ D(A(0)).

By restricting ourselves to v = 0 and z = 0, we obtain∫
Ω

∇u(x)∇f(x)dx = 0, ∀(u, 0, 0)> ∈ D(A(0)).

But we easily check that (u, 0, 0)> ∈ D(A(0)) if and only if u ∈ D(∆) = {u ∈
E(∆, L2(Ω))∩ V : ∂u

∂ν = 0 on ΓN}, the domain of the Laplace operator with mixed
boundary conditions. Since it is well known that D(∆) is dense in V (equipped
with the inner product < ., . >V ), we conclude that f = 0.

Assuming

µ2 ≤
√

1− dµ1, (42)

we will show that A(t) generates a C0 semigroup on H and using the variable
norm technique of Kato from [11] and Theorem 2.1, that problem (36) has a unique
solution.

Let ξ be a positive real number such that

µ2√
1− d

≤ ξ ≤ 2µ1 −
µ2√
1− d

. (43)

Note that, from (42), such a constant ξ exists.
Let us define on the Hilbert space H the following time-dependent inner product〈 u

v
z

 ,

 ũ
ṽ
z̃

〉
t

:=

∫
Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)}dx

+ξτ(t)

∫
ΓN

∫ 1

0

z(x, ρ)z̃(x, ρ)dρdΓ.

(44)

Using this time-dependent inner product and Theorem 2.1 we obtain the following
existence and uniqueness result:

Theorem 2.3. Assume (8), (14), (34), (42) and fix ξ such that (43) holds. Then for
any initial datum U0 ∈ D(A(0)) there exists a unique solution

U ∈ C([0,+∞),D(A(0))) ∩ C1([0,+∞),H)

of system (36).

Proof. We first notice that

‖φ‖t
‖φ‖s

≤ e
c

2τ0
|t−s|, ∀t, s ∈ [0, T ], (45)
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where φ = (u, v, z)> and c is a positive constant. Indeed, for all s, t ∈ [0, T ], we
have

‖φ‖2t − ‖φ‖
2
s e

c
τ0
|t−s| =

(
1− e

c
τ0
|t−s|

)∫
Ω

(|∇u(x)|2 + v2)dx

+ξ
(
τ(t)− τ(s)e

c
τ0
|t−s|

)∫
ΓN

∫ 1

0

z(x, ρ)2dρdΓ.

We notice that 1 − e
c
τ0
|t−s| ≤ 0. Moreover τ(t) − τ(s)e

c
τ0
|t−s| ≤ 0 for some c > 0.

Indeed,
τ(t) = τ(s) + τ ′(a)(t− s), where a ∈ (s, t),

and thus,
τ(t)

τ(s)
≤ 1 +

|τ ′(a)|
τ(s)

|t− s| .

By (8), τ ′ is bounded and therefore,

τ(t)

τ(s)
≤ 1 +

c

τ0
|t− s| ≤ e

c
τ0
|t−s|,

by (34), which proves (45).
Now we calculate 〈A(t)U,U〉t for a fixed t. Take U = (u, v, z)T ∈ D(A(t)). Then,

〈A(t)U,U〉t =

〈 v
∆u

τ ′(t)ρ−1
τ(t) zρ

 ,

 u
v
z

〉
t

=

∫
Ω

{∇v(x)∇u(x) + v(x)∆u(x)}dx− ξ
∫

ΓN

∫ 1

0

(1− τ ′(t)ρ)zρ(x, ρ)z(x, ρ)dρdΓ.

So, by Green’s formula,

〈A(t)U,U〉t =

∫
ΓN

∂u

∂ν
(x)v(x)dΓ− ξ

∫
ΓN

∫ 1

0

(1− τ ′(t)ρ)zρ(x, ρ)z(x, ρ)dρdΓ. (46)

Integrating by parts in ρ, we get∫
ΓN

∫ 1

0

zρ(x, ρ)z(x, ρ)(1− τ ′(t)ρ)dρdΓ =

∫
ΓN

∫ 1

0

1

2

∂

∂ρ
z2(x, ρ)(1− τ ′(t)ρ)dρdΓ

=
τ ′(t)

2

∫
ΓN

∫ 1

0

z2(x, ρ)dρdΓ +
1

2

∫
ΓN

{z2(x, 1)(1− τ ′(t))− z2(x, 0)}dΓ.

(47)
Therefore, from (46) and (47),

〈A(t)U,U〉t =

∫
ΓN

∂u

∂ν
(x)v(x)dΓ− ξ

2

∫
ΓN

{z2(x, 1)(1− τ ′(t))− z2(x, 0)}dΓ

−ξτ
′(t)

2

∫
ΓN

∫ 1

0

z2(x, ρ)dρdΓ

= −
∫

ΓN

(µ1v(x) + µ2z(x, 1))v(x)dΓ− ξ

2

∫
ΓN

{z2(x, 1)(1− τ ′(t))− z2(x, 0)}dΓ

−ξτ
′(t)

2

∫
ΓN

∫ 1

0

z2(x, ρ)dρdΓ

= −µ1

∫
ΓN

v2(x)dΓ− µ2

∫
ΓN

z(x, 1)v(x)dΓ− ξ

2

∫
ΓN

z2(x, 1)(1− τ ′(t))dΓ

+
ξ

2

∫
ΓN

v2(x)dΓ− ξτ ′(t)

2

∫
ΓN

∫ 1

0

z2(x, ρ)dρdΓ,
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from which follows, using Cauchy-Schwarz’s inequality and (14),

〈A(t)U,U〉t ≤
(
−µ1 +

µ2

2
√

1− d
+
ξ

2

)∫
ΓN

v2(x)dΓ

+

(
µ2

√
1− d
2

− ξ(1− d)

2

)∫
ΓN

z2(x, 1)dΓ + κ(t) 〈U,U〉t ,
(48)

where

κ(t) =
(τ ′(t)2 + 1)

1
2

2τ(t)
. (49)

Now, observe that from (43),

−µ1 +
µ2

2
√

1− d
+
ξ

2
≤ 0,

µ2

√
1− d
2

− ξ(1− d)

2
≤ 0.

Then,

〈A(t)U, U〉t − κ(t) 〈U, U〉t ≤ 0, (50)

which means that the operator Ã(t) = A(t)− κ(t)I is dissipative.

Moreover κ′(t) = τ ′′(t)τ ′(t)

2τ(t)(τ ′(t)2+1)
1
2
− τ ′(t)(τ ′(t)2+1)

1
2

2τ(t)2 is bounded on [0, T ] for all

T > 0 (by (8) and (34)) and we have

d

dt
A(t)U =

 0
0

τ ′′(t)τ(t)ρ−τ ′(t)(τ ′(t)ρ−1)
τ(t)2 zρ


with τ ′′(t)τ(t)ρ−τ ′(t)(τ ′(t)ρ−1)

τ(t)2 bounded on [0, T ] by (8) and (34). Thus

d

dt
Ã(t) ∈ L∞∗ ([0, T ], B(D(A(0)), H)), (51)

the space of equivalence classes of essentially bounded, strongly measurable func-
tions from [0, T ] into B(D(A(0)), H).

Now, we will show that λI −A(t) is surjective for fixed t > 0 and λ > 0. Given
(f, g, h)T ∈ H, we seek U = (u, v, z)T ∈ D(A(t)) solution of

(λI −A(t))

 u
v
z

 =

 f
g
h

 ,

that is verifying 
λu− v = f
λv −∆u = g

λz + 1−τ ′(t)ρ
τ(t) zρ = h.

(52)

Suppose that we have found u with the appropriated regularity. Then,

v := λu− f ∈ V (53)

and we can determine z. Indeed, by (39),

z(x, 0) = v(x), for x ∈ ΓN , (54)

and, from (52),

λz(x, ρ) +
1− τ ′(t)ρ
τ(t)

zρ(x, ρ) = h(x, ρ), for x ∈ ΓN , ρ ∈ (0, 1). (55)
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Then, by (54) and (55), we obtain

z(x, ρ) = v(x)e−λρτ(t) + τ(t)e−λρτ(t)

∫ ρ

0

h(x, σ)eλστ(t)dσ,

if τ ′(t) = 0, and

z(x, ρ) = v(x)e
λ
τ(t)

τ′(t) ln(1−τ ′(t)ρ)

+e
λ
τ(t)

τ′(t) ln(1−τ ′(t)ρ)
∫ ρ

0

h(x, σ)τ(t)

1− τ ′(t)σ
e
−λ τ(t)

τ′(t) ln(1−τ ′(t)σ)
dσ,

otherwise. So, from (53),

z(x, ρ) = λu(x)e−λρτ(t) − f(x)e−λρτ(t)

+τ(t)e−λρτ(t)

∫ ρ

0

h(x, σ)eλστ(t)dσ, on ΓN × (0, 1),
(56)

if τ ′(t) = 0, and

z(x, ρ) = λu(x)e
λ
τ(t)

τ′(t) ln(1−τ ′(t)ρ) − f(x)e
λ
τ(t)

τ′(t) ln(1−τ ′(t)ρ)

+e
λ
τ(t)

τ′(t) ln(1−τ ′(t)ρ)
∫ ρ

0

h(x, σ)τ(t)

1− τ ′(t)σ
e
−λ τ(t)

τ′(t) ln(1−τ ′(t)σ)
dσ, on ΓN × (0, 1)

(57)
otherwise.

In particular, if τ ′(t) = 0

z(x, 1) = λu(x)e−λτ(t) + z0(x), x ∈ ΓN , (58)

with z0 ∈ L2(ΓN ) defined by

z0(x) = −f(x)e−λτ(t) + τ(t)e−λτ(t)

∫ 1

0

h(x, σ)eλστ(t)dσ, x ∈ ΓN , (59)

and, if τ ′(t) 6= 0

z(x, 1) = λu(x)e
λ
τ(t)

τ′(t) ln(1−τ ′(t))
+ z0(x), x ∈ ΓN , (60)

with z0 ∈ L2(ΓN ) defined by

z0(x) = −f(x)e
λ
τ(t)

τ′(t) ln(1−τ ′(t))

+e
λ
τ(t)

τ′(t) ln(1−τ ′(t))
∫ 1

0

h(x, σ)τ(t)

1− τ ′(t)σ
e
−λ τ(t)

τ′(t) ln(1−τ ′(t)σ)
dσ, x ∈ ΓN .

(61)

It remains to find u. By (53) and (52), the function u satisfies

λ(λu− f)−∆u = g,

that is

λ2u−∆u = g + λf. (62)

Problem (62) can be reformulated as∫
Ω

(λ2u−∆u)wdx =

∫
Ω

(g + λf)wdx, ∀w ∈ H1
ΓD (Ω). (63)

Integrating by parts,∫
Ω

(λ2u−∆u)wdx =

∫
Ω

(λ2uw +∇u∇w)dx−
∫

ΓN

∂u

∂ν
wdΓ

=

∫
Ω

(λ2uw +∇u∇w)dx+

∫
ΓN

(µ1v + µ2z(x, 1))wdΓ.
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If τ ′(t) = 0, by (53) and (58), we have∫
Ω

(λ2u−∆u)wdx =

∫
Ω

(λ2uw +∇u∇w)dx

+

∫
ΓN

{µ1(λu− f)w + µ2(λue−λτ(t) + z0)w}dΓ,

and if τ ′(t) 6= 0, by (53) and (60),∫
Ω

(λ2u−∆u)wdx =

∫
Ω

(λ2uw +∇u∇w)dx

+

∫
ΓN

{µ1(λu− f)w + µ2(λue
λ
τ(t)

τ′(t) ln(1−τ ′(t))
+ z0)w}dΓ.

Therefore, (63) can be rewritten as∫
Ω

(λ2uw +∇u∇w)dx+

∫
ΓN

(µ1 + µ2e
−λτ(t))λuwdΓ

=

∫
Ω

(g + λf)wdx+ µ1

∫
ΓN

fwdΓ− µ2

∫
ΓN

z0wdΓ, ∀w ∈ H1
ΓD (Ω),

(64)
if τ ′(t) = 0, and∫

Ω

(λ2uw +∇u∇w)dx+

∫
ΓN

(µ1 + µ2e
λ
τ(t)

τ′(t) ln(1−τ ′(t))
)λuwdΓ

=

∫
Ω

(g + λf)wdx+ µ1

∫
ΓN

fwdΓ− µ2

∫
ΓN

z0wdΓ, ∀w ∈ H1
ΓD (Ω),

(65)
otherwise. As the left-hand side of (64) or (65) is coercive on H1

ΓD
(Ω), the Lax-

Milgram lemma guarantees the existence and uniqueness of a solution u ∈ H1
ΓD

(Ω)
of (64) or (65).

If we consider w ∈ D(Ω) in (64) or (65), u solves in D′(Ω)

λ2u−∆u = g + λf, (66)

and thus u ∈ E(∆, L2(Ω)).
Using Green’s formula (41) in (64) and using (66), we obtain, if τ ′(t) = 0∫

ΓN

(µ1 + µ2e
−λτ(t))λuwdΓ + 〈∂u

∂ν
;w〉ΓN = µ1

∫
ΓN

fwdΓ− µ2

∫
ΓN

z0wdΓ,

from which follows

∂u

∂ν
+ (µ1 + µ2e

−λτ(t))λu = µ1f − µ2z0 on ΓN . (67)

Therefore, from (67),

∂u

∂ν
= −µ1v − µ2z(·, 1) on ΓN ,

where we have used (53) and (58).
We find the same result if τ ′(t) 6= 0.
So, we have found (u, v, z)T ∈ D(A(t)) which verifies (52), and thus λI −A(t) is

surjective for some λ > 0 and t > 0. Again as κ(t) > 0, this proves that

λI − Ã(t) = (λ+ κ(t))I −A(t) is surjective (68)

for any λ > 0 and t > 0.
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Then, (45), (50) and (68) imply that the family Ã = {Ã(t) : t ∈ [0, T ]} is a stable
family of generators in H with stability constants independent of t, by Proposition
1.1 from [11]. Therefore, the assumptions (i)-(iv) of Theorem 2.1 are verified by
(40), (45), (50), (51), (68) and Lemma 2.2, and thus, the problem{

Ũ ′ = Ã(t)Ũ

Ũ(0) = U0

has a unique solution Ũ ∈ C([0, +∞), D(A(0)))∩C1([0, +∞),H) for U0 ∈ D(A(0)).
The requested solution of (36) is then given by

U(t) = eβ(t)Ũ(t)

with β(t) =
∫ t

0
κ(s)ds, because

U ′(t) = κ(t)eβ(t)Ũ(t) + eβ(t)Ũ ′(t)

= κ(t)eβ(t)Ũ(t) + eβ(t)Ã(t)Ũ(t)

= eβ(t)(κ(t)Ũ(t) + Ã(t)Ũ(t))

= eβ(t)A(t)Ũ(t) = A(t)eβ(t)Ũ(t)
= A(t)U(t),

which concludes the proof.

2.1.2. The general case. In this subsection (6) only holds, so τ may be also degen-
erate, i.e. τ(t) = 0 for some times t. Moreover we assume (35). Taking

τε(t) = τ(t) + ε, ∀ 0 < ε < ε0

then
0 < ε ≤ τε(t) ≤ τ̄ + ε, (69)

i.e. τε satisfies (34). Therefore, by Theorem 2.3, there exists a unique solution

Uε = (uε, vε, zε)T ∈ C([0,+∞),D(Aε(t))) ∩ C1([0,∞),H)

for Uε,0 ∈ D(Aε(0)), of problem{
U ′ε = Aε(t)Uε
Uε(0) = (u0, u1, f0(·,− · τε(0)))

T
= Uε,0,

(70)

where the operator Aε(t) is defined by

Aε(t)

 u
v
z

 :=

 v
∆u

τ ′
ε(t)ρ−1
τε(t)

zρ

 =

 v
∆u

τ ′(t)ρ−1
τ(t)+ε zρ

 ,

with domain
D(Aε(t)) = D(A(t)).

The aim is then to take the limit of (uε)0<ε<ε0 when ε tends to 0.
To pass at the limit, we need to have more regularity on the solution and, for

that purpose, we use Theorem 2.13 of [11] (see also Theorem 3.2.3 of [1]).
We now fix 0 < ε < ε0. We consider the family of Hilbert spaces

X = X0 = H, X1 =
(
V ∩H3/2(Ω)

)
× V × L2(ΓN ;H1(0, 1)),

X2 =
(
V ∩H3/2(Ω)

)
×
(
V ∩H3/2(Ω)

)
× L2(ΓN ;H2(0, 1)),

with the usual norms

‖.‖0 = ‖.‖H , ‖.‖1 = ‖.‖X1
, ‖.‖2 = ‖.‖X2

.
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We can easily check that

X2↪→X1↪→X0 = X

and

‖.‖0 ≤ ‖.‖1 ≤ ‖.‖2 .
Let Y = D(Aε(t)). Y is a dense subset of X = X0 = H and a subset of X1.
Indeed, by a result of Lions and Magenes [21], if u ∈ H1

ΓD
(Ω), ∆u ∈ L2(Ω) and

∂u/∂ν ∈ L2(ΓN ), then u ∈ H3/2(Ω). Consequently

D(Aε(t)) ∩X1 = D(Aε(t)) = Y, ∀t ∈ [0, T ].

The family of operators Aε = {Aε(t) : t ∈ [0, T ]} is a stable family of generators
in X = H with stability constants independent of t (see the previous subsection).

We have that

d

dt
Aε(t) ∈ L∞∗ ([0, T ], B(D(Aε(0)), X)) ∩ L∞∗ ([0, T ], B(D(Aε(0)) ∩X2, X1)),

d2

dt2
Aε(t) ∈ L∞∗ ([0, T ], B(D(Aε(0)) ∩X2, X)),

because

d

dt
Aε(t)U =

 0
0

τ ′′(t)(τ(t)+ε)ρ−τ ′(t)(τ ′(t)ρ−1)
(τ(t)+ε)2 zρ

 ,

and
d2

dt2Aε(t)U = 0
0

[τ ′′′(τ+ε)ρ+τ ′′τ ′ρ−τ ′′(τ ′ρ−1)−τ ′(τ ′′ρ)](τ+ε)2+2τ ′(τ+ε)[τ ′′(τ+ε)ρ−τ ′(τ ′ρ−1)]
(τ+ε)4 zρ

 ,

and by (6) and (8).

Finally, again with a result of [21] and as τ ′(t)ρ−1
τ(t)+ε is bounded on [0, T ] by (6) and

(8), if φ ∈ D(Aε(t)) and Aε(t)φ ∈ X, then φ ∈ X1 with

‖φ‖1 ≤ ν(‖Aε(t)φ‖0 + ‖φ‖0),

and, if φ ∈ D(Aε(t)) and Aε(t)φ ∈ X1, then φ ∈ X2 with

‖φ‖2 ≤ ν(‖Aε(t)φ‖1 + ‖φ‖0).

Introduce now the space D2(0) defined by

D2(0) = {φ ∈ D(A(0)) ∩X2 : −A(0)φ ∈ D(A(0))} .

Therefore, by the result of [11] (see also [1]), for all initial data Uε,0 ∈ D2(0),
there exists a unique solution Uε ∈ C1([0, T ],H)∩C([0, T ],D(Aε(0))) of (70) which
satisfies, moreover,

d2

dt2
Uε ∈ C([0, T ],H).

We then have more regularity of the solution with more regular initial data.
Therefore, we can give a sense to the derivative of the stronger energy Ẽε defined
as follows:

Ẽε(t) =
1

2

∫
Ω

(
(∆uε)

2
+ (∇uε,t)2

)
dx+

qτε(t)

2

∫
ΓN

∫ 1

0

u2
ε,tt(x, t−τε(t)ρ)dρdΓ, (71)
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for (u0, u1, f0(·,− · τε(0)))T ∈ D2(0), where q is a suitable positive constant. Then

the derivative of Ẽε gives

Ẽ′ε(t) =

∫
Ω

(uε,tttuε,tt +∇uε,t∇uε,tt) dx+
qτ ′ε(t)

2

∫
ΓN

∫ 1

0

u2
ε,tt(x, t− τε(t)ρ)dρdΓ

+qτε(t)

∫
ΓN

∫ 1

0

uε,tt(x, t− τε(t)ρ)uε,ttt(x, t− τε(t)ρ)(1− τ ′ε(t)ρ)dρdΓ.

By Green’s formula and integrating by parts in ρ, we obtain

Ẽ′ε(t) =

∫
ΓN

∂uε,t
∂ν

uε,ttdΓ− q
2

∫
ΓN

u2
ε,tt(x, t−τε(t))(1−τ ′ε(t))dΓ+

q

2

∫
ΓN

u2
ε,tt(x, t)dΓ.

Since uε satisfies (70),

∂uε,t
∂ν

= −µ1uε,tt(t)− µ2uε,tt(t− τε(t))(1− τ ′ε(t)),

and we obtain

Ẽ′ε(t) =
(q

2
− µ1

)∫
ΓN

u2
ε,tt(t)dΓ− µ2(1− τ ′ε(t))

∫
ΓN

uε,tt(x, t− τε(t))uε,tt(x, t)dΓ

−q
2

∫
ΓN

u2
ε,tt(x, t− τε(t))(1− τ ′ε(t))dΓ.

By Cauchy-Schwarz’s inequality, we get, for α > 0,

Ẽ′ε(t) ≤
(
q

2
− µ1 +

αµ2(1− τ ′ε(t))
2

)∫
ΓN

u2
ε,tt(t)dΓ

+

(
µ2(1− τ ′ε(t))

2α
− q(1− τ ′ε(t))

2

)∫
ΓN

u2
ε,tt(x, t− τε(t))dΓ.

Assume now that there exists d < 1 such that

− d

1− d
≤ τ ′(t) ≤ d < 1, ∀t > 0, (72)

and that (42) holds. If we set τ ′min = mint∈[0,T ] τ
′(t), then (72) implies

1− d ≤ 1

1− τ ′min
. (73)

By (42) and (73), we have

µ2 ≤
1√

1− τ ′min
µ1,

which implies
µ2

α
≤ 2µ1 + µ2α(τ ′min − 1),

with α = 1√
1−τ ′

min

. Consequently we can choose q > 0 such that

µ2

α
≤ q ≤ 2µ1 + µ2α(τ ′min − 1),

and thus

Ẽ′ε(t) ≤ 0.

Under the assumption (72), we have

Ẽε(t) ≤ Ẽε(0), ∀t > 0,
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i.e., for all 0 < ε < ε0 and t > 0,∫
Ω

(
(uε,tt)

2
+ (∇uε,t)2

)
dx+ qτε(t)

∫
ΓN

∫ 1

0

u2
ε,tt(x, t− τε(t)ρ)dρdΓ

≤
∫

Ω

(
(∆u0)

2
+ (∇u1)

2
)
dx+ q(τ(0) + ε)

∫
ΓN

∫ 1

0

f2
0,t(x,−(τ(0) + ε)ρ)dρdΓ.

(74)
Therefore, assuming that (f0,t(x,−(τ(0)+ε)ρ)0<ε<ε0 is bounded on L2(ΓN×(0, 1)),
the sequence (uε)ε is bounded on H1((0, T );V )∩H2((0, T );L2(Ω)), and thus, there
exists u ∈ H1((0, T );V ) ∩H2((0, T );L2(Ω)) such that, up to a subsequence,

uε ⇀ u in H1((0, T );V ) ∩H2((0, T );L2(Ω)).

The limit u then satisfies (1) in D′(Ω × (0, T )) and (2), (4). Moreover u satisfies
(3) since uε,t |ΓN → ut |ΓN in L2((0, T )×ΓN ) and by using Lebesgue’s convergence
theorem. In the same manner, we find that u verifies (5), since, by change of variable
and by (74) we have∫

ΓN

∫ t

t−(τ(t)+ε)

u2
ε,tt(x, t)dtdΓ ≤ C, ∀t ∈ [0, T ],

and thus ∫
ΓN

∫ 0

−τ(0)

u2
ε,tt(x, t)dtdΓ ≤ C, ∀t ∈ [0, T ].

In conclusion we have proved the next existence result.

Theorem 2.4. Assume (6), (14), (35), (42), (72) and let (f0,t(x,−(τ(0)+ε)ρ)0<ε<ε0

be bounded on L2(ΓN × (0, 1)). Then, for all initial data U0 ∈ D2(0), there exists a
unique solution u ∈ H1((0, T );V ) ∩H2((0, T );L2(Ω)) of (70).

2.2. Nonlinear problem. Here we restrict ourselves to the case where (34) holds.
As previously, if we set z(x, ρ, t) as in (26), problem (16)− (20) is equivalent to

utt(x, t)−∆u(x, t) = 0 in Ω× (0,+∞) (75)

τ(t)zt(x, ρ, t) + (1− τ ′(t)ρ)zρ(x, ρ, t) = 0 in ΓN × (0, 1)× (0,+∞) (76)

u(x, t) = 0 on ΓD × (0,+∞) (77)

∂u

∂ν
(x, t) = −β1(ut(x, t))− β2(z(x, 1, t)) on ΓN × (0,+∞) (78)

z(x, 0, t) = ut(x, t) on ΓN × (0,∞) (79)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω (80)

z(x, ρ, 0) = g0(x,−ρτ(0)) in ΓN × (0, 1). (81)

Then problem (75)− (81) can be rewritten as{
U ′ = A(t)U

U(0) = (u0, u1, g0(·,− · τ(0)))
T (82)

where the operator A is defined by

A(t)

 u
v
z

 :=

 v
∆u

τ ′(t)ρ−1
τ(t) zρ

 ,
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with domain

D(A(t)) :=
{

(u, v, z)T ∈
(
E(∆, L2(Ω)) ∩ V

)
× V × L2(ΓN ;H1(0, 1)) :

∂u

∂ν
= −β1(v)− β2(z(·, 1)) on ΓN ; v = z(·, 0) on ΓN

}
.

(83)

Notice that the domain of the operator A(t) is independent of the time t, i.e.
(40) holds. Note further that for (u, v, z)T ∈ D(A(t)), ∂u/∂ν belongs to L2(ΓN ),
by (21) and since z(·, 1) is in L2(ΓN ).

We observe that the operator A(t) defined before is nonlinear (due to the domain
(83) of the operator A(t)) and therefore the technique developed in Section 2 can not
be applied here. For nonlinear operators A(t) similar results exist (see [4, 8, 10, 20])
but for maximal operators A(t) with one inner product independent of t. For our
system we need a variant of such results for maximal monotone operators A(t) for
a time-dependent inner product depending “smoothly” on t.

We have the following result from [10] (see also [22]):

Theorem 2.5. Let X be a real separable Hilbert space. For a fixed T > 0 and any
time t ∈ [0, T ] we assume that there exists an inner product 〈., .〉t on X depending
“smoothly” on t in the following sense: there exists c > 0 such that

‖u‖t
‖u‖s

≤ ec|t−s|, ∀u ∈ X, ∀t, s ∈ [0, T ]. (84)

Assume furthermore that:
(i) for all t ∈ [0, T ], A(t) is a maximal monotone operator for the inner product

〈., .〉t;
(ii) the domain D(A(t)) of A(t) is independent of t, for all t ∈ [0, T ];
(iii) there exists a positive constant K such that

‖A(t)u−A(s)u‖0 ≤ K |t− s| (1 + ‖u‖0 + ‖A(s)u‖0) , ∀u ∈ D(A(t)), ∀s, t ∈ [0, T ],
(85)

where here ‖.‖0 = ‖.‖t=0. Then for all v ∈ D(A(t)) the evolution equation{
u′ +A(t)u = 0 for 0 ≤ t ≤ T
u(0) = v

(86)

has a unique solution u ∈ C([0, T ];X) such that u(t) belongs to D(A(t)) for all
t ∈ [0, T ], its strong derivative u′(t) = −A(t)u(t) exists and is continuous except at
a countable numbers of values t.

Therefore to prove the existence and uniqueness of the solution of (82), we define
an inner product depending “smoothly” on t.

For that, we assume that

γ2 ≤ γ1

√
1− d (87)

holds, where γ1, γ2 is defined by (23) and (24).
Let ξ be a positive real number such that

γ2√
1− d

≤ ξ ≤ 2γ1 −
γ2√
1− d

. (88)

Note that, from (87), such a constant ξ exists.
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Let us define on the Hilbert space H the following time-dependent inner product〈 u
v
z

 ,

 ũ
ṽ
z̃

〉
t

:=

∫
Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)}dx

+ξτ(t)

∫
ΓN

∫ 1

0

z(x, ρ)z̃(x, ρ)dρdΓ,

(89)

where ξ is defined by (88).
Note that if β1 and β2 are linear, i.e. βi(s) = µis with µi > 0, the assumptions

(42) and (87), and (43) and (88) are exactly the same.
The aim of this section is then to prove the following theorem:

Theorem 2.6. Assume (8), (14), (21), (22), (23), (24), (34), (87) hold. Moreover as-
sume that β2 is nondecreasing. For any initial datum U0 ∈ D(A(0)), then there
exists a unique solution

U ∈ C([0,+∞),D(A(t))) ∩ C1([0,+∞),H)

of problem (82).

To prove Theorem 2.6, we thus check that (84) holds and that

Ã−(t) = −Ã(t) = −A(t) + κ(t)I (90)

satisfies the assumptions (i) to (iii) of Theorem 2.5, where κ is defined by (49).
The proof of (84) is the same that in Theorem 2.3, so we omit it.

We clearly have (ii) for Ã−(t) since D(A(t)) = D(Ã−(t)).
Therefore, it remains to show (i) and (iii), which is the aim of the three following

lemmas.

Lemma 2.7. Assume (14), (23), (24), (87) and (88) hold. Then Ã−(t) is a mono-
tone operator in H for the inner product 〈., .〉t for any fixed t ≥ 0, i.e.:〈

Ã−(t)φ1 − Ã−(t)φ2, φ1 − φ2

〉
t
≥ 0, ∀φ1, φ2 ∈ D(Ã−(t)). (91)

Proof. First, from the definition of A(t), for φi = (ui, vi, zi)
T ∈ D(A(t)),

〈A(t)φ1 −A(t)φ2, φ1 − φ2〉t =∫
Ω

{(∇v1 −∇v2)(∇u1 −∇u2) + (∆u1 −∆u2)(v1 − v2)}dx

+ξ

∫
ΓN

∫ 1

0

(
∂z1

∂ρ
− ∂z2

∂ρ

)
(z1 − z2) (τ ′(t)ρ− 1)dρdΓ.

So, by Green’s formula,

〈A(t)φ1 −A(t)φ2, φ1 − φ2〉t =

∫
ΓN

(v1 − v2)
∂

∂ν
(u1 − u2)dΓ

+ξ

∫
ΓN

∫ 1

0

(
∂z1

∂ρ
− ∂z2

∂ρ

)
(z1 − z2) (τ ′(t)ρ− 1)dρdΓ.
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Integrating by parts in ρ, we get∫
ΓN

∫ 1

0

(
∂z1

∂ρ
− ∂z2

∂ρ

)
(z1 − z2) (τ ′(t)ρ− 1)dρdΓ

=
1

2

∫
ΓN

∫ 1

0

(τ ′(t)ρ− 1)
∂

∂ρ
(z1 − z2)2dρdΓ

= −τ
′(t)

2

∫
ΓN

∫ 1

0

(z1 − z2)2dρdΓ +
τ ′(t)− 1

2

∫
ΓN

(z1(x, 1)− z2(x, 1))2dΓ

+
1

2

∫
ΓN

(z1(x, 0)− z2(x, 0))2dΓ.

Therefore

〈A(t)φ1 −A(t)φ2, φ1 − φ2〉t =∫
ΓN

(v1 − v2)
∂

∂ν
(u1 − u2)dΓ− ξτ ′(t)

2

∫
ΓN

∫ 1

0

(z1 − z2)2dρdΓ

−ξ(1− τ
′(t))

2

∫
ΓN

(z1(x, 1)− z2(x, 1))2dΓ +
ξ

2

∫
ΓN

(z1(x, 0)− z2(x, 0))2dΓ.

As φi ∈ D(A(t)) for i = 1, 2, we obtain

〈A(t)φ1 −A(t)φ2, φ1 − φ2〉t =

−
∫

ΓN

(z1(x, 0)− z2(x, 0))(β1(z1(x, 0))− β1(z2(x, 0)))dΓ

−
∫

ΓN

(z1(x, 0)− z2(x, 0))(β2(z1(x, 1))− β2(z2(x, 1)))dΓ

−ξτ
′(t)

2

∫
ΓN

∫ 1

0

(z1 − z2)2dρdΓ

−ξ(1− τ
′(t))

2

∫
ΓN

(z1(x, 1)− z2(x, 1))2dΓ +
ξ

2

∫
ΓN

(z1(x, 0)− z2(x, 0))2dΓ.

From (23), (24) and Cauchy-Schwarz’s inequality

〈A(t)φ1 −A(t)φ2, φ1 − φ2〉t ≤
(
ξ

2
− γ1 +

γ2

2
√

1− d

)∫
ΓN

(z1(x, 0)− z2(x, 0))2dΓ

+

(
γ2

√
1− d
2

− ξ(1− d)

2

)∫
ΓN

(z1(x, 1)− z2(x, 1))2dΓ

−ξτ
′(t)

2

∫
ΓN

∫ 1

0

(z1 − z2)2dρdΓ.

By (88) and the definition (49) of κ, we get

〈A(t)φ1 −A(t)φ2, φ1 − φ2〉t
≤ κ(t)ξτ(t)

∫
ΓN

∫ 1

0

(z1 − z2)2dρdΓ ≤ κ(t) 〈φ1 − φ2, φ1 − φ2〉t .

By the definition (90) of Ã−(t), we obtain (91).

Lemma 2.8. Assume that (8), (21), (22), (23) and (34) hold. Moreover assume

that β2 is nondecreasing. Then Ã−(t) is a maximal operator in H, i.e. for all

(f, g, h)T ∈ H, there exists (u, v, z)T ∈ D(Ã−(t)) such that

(I + Ã−(t))(u, v, z)T = (f, g, h)T . (92)
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Proof. Given (f, g, h)T ∈ H, we seek U = (u, v, z)T ∈ D(Ã−(t)) solution of
(1 + κ(t))u− v = f
(1 + κ(t))v −∆u = g

(1 + κ(t))z + 1−τ ′(t)ρ
τ(t) zρ = h.

(93)

In the beginning of this proof we follow the proof of Theorem 2.3. Suppose that we
have found u with the appropriated regularity. Then v is given by

v := (1 + κ(t))u− f ∈ V, (94)

and z by

z(x, ρ) = (1 + κ(t))u(x)e−(1+κ(t))ρτ(t) − f(x)e−(1+κ(t))ρτ(t)

+τ(t)e−(1+κ(t))ρτ(t)

∫ ρ

0

h(x, σ)e(1+κ(t))στ(t)dσ on ΓN × (0, 1),
(95)

if τ ′(t) = 0, and

z(x, ρ) = (1 + κ(t))u(x)e
(1+κ(t))

τ(t)

τ′(t) ln(1−τ ′(t)ρ) − f(x)e
(1+κ(t))

τ(t)

τ′(t) ln(1−τ ′(t)ρ)

+e
(1+κ(t))

τ(t)

τ′(t) ln(1−τ ′(t)ρ)
∫ ρ

0

h(x, σ)τ(t)

1− τ ′(t)σ
e
−(1+κ(t))

τ(t)

τ′(t) ln(1−τ ′(t)σ)
dσ

(96)
on ΓN × (0, 1) otherwise.

In particular, if τ ′(t) = 0

z(x, 1) = (1 + κ(t))u(x)e−(1+κ(t))τ(t) + z0(x), x ∈ ΓN , (97)

with z0 ∈ L2(ΓN ) defined by

z0(x) = −f(x)e−(1+κ(t))τ(t) + τ(t)e−(1+κ(t))τ(t)

∫ 1

0

h(x, σ)e(1+κ(t))στ(t)dσ, x ∈ ΓN ,

(98)
and, if τ ′(t) 6= 0

z(x, 1) = (1 + κ(t))u(x)e
(1+κ(t))

τ(t)

τ′(t) ln(1−τ ′(t))
+ z0(x), x ∈ ΓN , (99)

with z0 ∈ L2(ΓN ) defined by

z0(x) = −f(x)e
(1+κ(t))

τ(t)

τ′(t) ln(1−τ ′(t))

+e
(1+κ(t))

τ(t)

τ′(t) ln(1−τ ′(t))
∫ 1

0

h(x, σ)τ(t)

1− τ ′(t)σ
e
−(1+κ(t))

τ(t)

τ′(t) ln(1−τ ′(t)σ)
dσ, x ∈ ΓN .

(100)
By (93), as in the proof of Theorem 2.3, the function u satisfies

(1 + κ(t))2u−∆u = g + (1 + κ(t))f, (101)

which can be reformulated as∫
Ω

((1 + κ(t))2u−∆u)wdx =

∫
Ω

(g + (1 + κ(t))f)wdx, ∀w ∈ H1
ΓD (Ω). (102)

Integrating by parts and since (u, v, z)T ∈ D(A(t)), we obtain∫
Ω

((1 + κ(t))2uw +∇u∇w)dx+

∫
ΓN

(β1(v) + β2(z(x, 1)))wdΓ

=

∫
Ω

(g + (1 + κ(t))f)wdx,

for all w ∈ H1
ΓD

(Ω).
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Assume that τ ′(t) = 0. Using (94) and (97), we get

γ(u,w) = F (w), ∀w ∈ H1
ΓD (Ω), (103)

where the form γ (linear on w but not on u) is defined by

γ(u,w) =

∫
Ω

((1 + κ(t))2uw +∇u∇w)dx

+

∫
ΓN

(
β1((1 + κ(t))u− f) + β2((1 + κ(t))ue−(1+κ(t))τ(t) + z0)

)
wdΓ,

and the linear form F is defined by

F (w) =

∫
Ω

(g + (1 + κ(t))f)wdx.

Introducing the (nonlinear) mapping

B : V → V ′ : u→ Bu,
where Bu(w) = γ(u,w), we see that (103) is equivalent to

Bu = F,

since F clearly belongs to V ′. This means that the solvability of (103) is equivalent
to the surjectivity of B. This surjectivity is obtained using Corollary II.2.2 of [27],
which states that B is surjective if B is monotone, hemicontinuous, bounded and
coercive. Let us then check these properties.

We first prove that B is monotone, i.e.

[Bu− Bv](u− v) ≥ 0, ∀u, v ∈ V. (104)

In view of the definition of B,

[Bu− Bv](u− v) =

∫
Ω

(
(1 + κ(t))2(u− v)2 + |∇(u− v)|2

)
dx

+

∫
ΓN

(β1((1 + κ(t))u− f)− β1((1 + κ(t))v − f)) (u− v)dΓ

+

∫
ΓN

(
β2((1 + κ(t))ue−(1+κ(t))τ(t) + z0)

−β2((1 + κ(t))ve−(1+κ(t))τ(t) + z0)
)

(u− v)dΓ.

By (23), ∫
ΓN

(β1((1 + κ(t))u− f)− β1((1 + κ(t))v − f)) (u− v)dΓ

=
1

1 + κ(t)

∫
ΓN

(β1((1 + κ(t))u− f)− β1((1 + κ(t))v − f))

. (((1 + κ(t))u− f)− ((1 + κ(t))v − f)) dΓ ≥ 0,

and as β2 is nondecreasing,∫
ΓN

(
β2((1 + κ(t))ue−(1+κ(t))τ(t) + z0)

−β2((1 + κ(t))ve−(1+κ(t))τ(t) + z0)
)

(u− v)dΓ

=
e(1+κ(t))τ(t)

1 + κ(t)

∫
ΓN

(
β2((1 + κ(t))ue−(1+κ(t))τ(t) + z0)

−β2((1 + κ(t))ve−(1+κ(t))τ(t) + z0)
)

.
(

((1 + κ(t))ue−(1+κ(t))τ(t) + z0)− ((1 + κ(t))ve−(1+κ(t))τ(t) + z0)
)
dΓ ≥ 0.
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This two estimates clearly imply (104).
The boundedness of B follows from the properties (21) satisfied by β1 and β2,

the fact that 1 + κ(t) is bounded by (34) and (8), Cauchy-Schwarz’s inequality and
a trace theorem (reminding that f and z0 are fixed).

The hemicontinuity of B means that the function s→ B(u+sw)(w) is continuous
for each u, w ∈ V . As

B(u+ sw)(w) =

∫
Ω

((1 + κ(t))2(u+ sw)w +∇(u+ sw)∇w)dx

+

∫
ΓN

(β1((1 + κ(t))(u+ sw)− f) + β2((1 + κ(t))(u+ sw)e−(1+κ(t))τ(t) + z0))wdΓ,

this follows from the continuity of β1 and β2.
It remains to check the coerciveness of B, i.e.

Bu(u)

‖u‖V
→∞ if ‖u‖V → +∞. (105)

From the definition of B, we have, since 1 + κ(t) > 1,

Bu(u) ≥ ‖u‖2V +

∫
ΓN

β1((1+κ(t))u−f)udΓ+

∫
ΓN

β2((1+κ(t))ue−(1+κ(t))τ(t)+z0)udΓ.

We deduce, by (25) and (22)

Bu(u) ≥ ‖u‖2V +
1

1 + κ(t)

∫
ΓN

β1((1 + κ(t))u− f)fdΓ

−e
(1+κ(t))τ(t)

1 + κ(t)

∫
ΓN

β2((1 + κ(t))ue−(1+κ(t))τ(t) + z0)z0dΓ.

By Cauchy-Schwarz’s inequality, (34), (21), a trace theorem and the fact that 1+κ(t)
is bounded, we obtain that there exists C > 0 such that∣∣∣∣ 1

1 + κ(t)

∫
ΓN

β1((1 + κ(t))u− f)fdΓ

∣∣∣∣ ≤ C (‖u‖H1(Ω) + ‖f‖H1(Ω)

)
‖f‖H1(Ω)

and ∣∣∣∣e(1+κ(t))τ(t)

1 + κ(t)

∫
ΓN

β2((1 + κ(t))ue−(1+κ(t))τ(t) + z0)z0dΓ

∣∣∣∣
≤ C

(
‖u‖H1(Ω) + ‖z0‖H1(Ω)

)
‖z0‖H1(Ω) .

Then

Bu(u) ≥ ‖u‖2V − C
((
‖u‖H1(Ω) + ‖f‖H1(Ω)

)
‖f‖H1(Ω)

+
(
‖u‖H1(Ω) + ‖z0‖H1(Ω)

)
‖z0‖H1(Ω)

)
,

which implies (105).
Therefore, by Corollary II.2.2 of [27], there exists u ∈ V solution of (103). If

τ ′(t) 6= 0, we obtain the same result by similar arguments. This function u satisfies
(101) by choosing test function in D(Ω) and then satisfies

∂u

∂ν
= −β1(v)− β2(z(., 1)) on ΓN

by Green’s formula.
So we have found (u, v, z)T ∈ D(Ã−(t)) which verifies (92).

It remains to show (iii) of Theorem 2.5 to finish the proof of Theorem 2.6. This
is the aim of the following lemma.
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Lemma 2.9. Assume that (8), (14) and (34) hold. Then (85) holds.

Proof. Let φ = (u, v, z)T ∈ D(Ã−(t)). By definition (90) of Ã−(t), we have∥∥∥Ã−(t)φ− Ã−(s)φ
∥∥∥

0
= ‖(κ(t)− κ(s))φ− (A(t)φ−A(s))φ‖0
≤ |κ(t)− κ(s)| ‖φ‖0 + ‖A(t)φ−A(s)φ‖0 .

(106)

As

κ′(t) =
τ ′′(t)τ ′(t)

2τ(t)(τ ′(t)2 + 1)
1
2

− τ ′(t)(τ ′(t)2 + 1)
1
2

2τ(t)2

is bounded on [0, T ] for all T > 0 (by (34) and (8)), by the mean value theorem
there exists K > 0 such that

|κ(t)− κ(s)| ‖φ‖0 ≤ K |t− s| ‖φ‖0 . (107)

Moreover

‖A(t)φ−A(s)φ‖20 = ξτ(0)

∫
ΓN

∫ 1

0

(
τ ′(t)ρ− 1

τ(t)
− τ ′(s)ρ− 1

τ(s)

)2

z2
ρdρdΓ.

In addition (
τ ′(t)ρ− 1

τ(t)

)′
=
τ ′′(t)τ(t)ρ− τ ′(t)2ρ+ τ ′(t)

τ(t)2

is bounded on [0, T ] for all T > 0 by (34) and (8). By the mean value theorem, we
then obtain that there exists K > 0 such that

‖A(t)φ−A(s)φ‖20 ≤ K
2 |t− s|2 ξτ(0)

∫
ΓN

∫ 1

0

z2
ρ(x, ρ)dρdΓ.

Moreover by (34) and (14) (
τ(t)

τ ′(t)ρ− 1

)2

≤ τ̄2

(1− d)2
.

Therefore

‖A(t)φ−A(s)φ‖20 ≤
(
Kτ̄

1− d

)2

|t− s|2 ξτ(0)

∫
ΓN

∫ 1

0

(
τ ′(t)ρ− 1

τ(t)
zρ(x, ρ)

)2

dρdΓ.

This leads to

‖A(t)φ−A(s)φ‖20 ≤
(
Kτ̄

1− d

)2

|t− s|2 ‖A(t)φ‖20 ,

and thus to

‖A(t)φ−A(s)φ‖0 ≤
(
Kτ̄

1− d

)
|t− s| ‖A(t)φ‖0 .

By definition (90) of Ã−(t), we have

‖A(t)φ‖0 ≤
∥∥∥Ã−(t)φ

∥∥∥
0

+ κ(t) ‖φ‖0 ,

with κ(t) bounded on [0, T ]. Consequently there exists C > 0 such that

‖A(t)φ−A(s)φ‖0 ≤ C |t− s|
(∥∥∥Ã−(t)φ

∥∥∥
0

+ ‖φ‖0
)
. (108)

Therefore (106), (107) and (108) imply (85).
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Proof of Theorem 2.6. The assumptions of Theorem 2.5 were verified for Ã−(t) and
the inner product 〈., .〉t defined by (89). Consequently the evolution equation{

Ũ ′ + Ã−(t)Ũ = 0

Ũ(0) = U0 ∈ D(A(t)),
(109)

has a unique solution Ũ ∈ C([0, T ];H) such that Ũ(t) belongs to D(Ã−(t)) for all

t ∈ [0, T ], its strong derivative Ũ ′(t) = −Ã−(t)Ũ(t) exists and is continuous except
at a countable numbers of values t.

The requested solution of (82) is then given by

U(t) = eβ(t)Ũ(t)

with β(t) =
∫ t

0
κ(s)ds .

3. Stability result for the linear problem . In this section, we will give an
exponential stability result for problem (1) − (4) under the assumption (13). We
define the energy of system (1)− (4) as

E(t) :=
1

2

∫
Ω

{u2
t + |∇u|2}dx+

ξ

2
τ(t)

∫ 1

0

∫
ΓN

u2
t (x, t− τ(t)ρ)dρdΓ, (110)

where ξ is a positive constant such that

2µ1 −
µ2√
1− d

− ξ > 0, and ξ − µ2√
1− d

> 0. (111)

Note that from (13) such a constant ξ exists. We have the following identity.

Proposition 1. For any regular solution of problem (1)− (4) we have

E′(t) = −µ1

∫
ΓN

u2
t (x, t)dΓ−

∫
ΓN

µ2ut(x, t)ut(x, t− τ(t))dΓ

−ξ
2

∫
ΓN

u2
t (x, t− τ(t))(1− τ ′(t))dΓ +

ξ

2

∫
ΓN

u2
t (x, t)dΓ.

(112)

Proof. Differentiating (110) we obtain

E′(t) =

∫
Ω

{ututt +∇u∇ut}dx+
ξ

2
τ ′(t)

∫ 1

0

∫
ΓN

u2
t (x, t− τ(t)ρ)dρdΓ

+ξτ(t)

∫
ΓN

∫ 1

0

ut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ,

and then, applying Green’s formula,

E′(t) =

∫
ΓN

ut
∂u

∂ν
dΓ +

ξ

2
τ ′(t)

∫ 1

0

∫
ΓN

u2
t (x, t− τ(t)ρ)dρdΓ

+ξτ(t)

∫
ΓN

∫ 1

0

ut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ.

(113)
Now, observe that, if τ(t) 6= 0,

ut(x, t− τ(t)ρ) = −τ−1(t)∂ρ(u(x, t− τ(t)ρ)),

and

utt(x, t− τ(t)ρ) = τ−2(t)∂ρρ(u(x, t− τ(t)ρ)).
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Therefore,∫ 1

0

ut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

= −τ−3(t)

∫ 1

0

∂ρ(u(x, t− τ(t)ρ))∂ρρ(u(x, t− τ(t)ρ))(1− τ ′(t)ρ)dρ.
(114)

By integration by parts, (114) becomes∫ 1

0

ut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

= −1

2
τ ′(t)τ−3(t)

∫ 1

0

(∂ρ(u(t− τ(t)ρ)))2dρ

−τ
−1(t)

2
u2
t (x, t− τ(t))(1− τ ′(t)) +

τ−1(t)

2
u2
t (x, t)

= −1

2
τ ′(t)τ−1(t)

∫ 1

0

u2
t (x, t− τ(t)ρ)dρ

−τ
−1(t)

2
u2
t (x, t− τ(t))(1− τ ′(t)) +

τ−1(t)

2
u2
t (x, t).

(115)

Using (113), (115) and the boundary condition (3) on ΓN , we have

E′(t) = −µ1

∫
ΓN

u2
t (x, t)dΓ− µ2

∫
ΓN

ut(x, t)ut(x, t− τ(t))dΓ

+
ξ

2

∫
ΓN

u2
t (x, t)dΓ− ξ

2

∫
ΓN

u2
t (x, t− τ(t))(1− τ ′(t))dΓ.

(116)

So, for any time t such that τ(t) 6= 0, the identity (112) is proved.
Now, let t be such that τ(t) = 0. Then, from (113) we have

E′(t) = −(µ1 + µ2)

∫
ΓN

u2
t (x, t)dΓ +

ξ

2
τ ′(t)

∫
ΓN

u2
t (x, t)dΓ. (117)

Therefore, identity (112) is proved for all times t > 0.

Proposition 2. Assuming (14), for any regular solution of problem (1) − (4) the
energy decays and there exists a positive constant C such that

E′(t) ≤ −C
∫

ΓN

{u2
t (x, t) + u2

t (x, t− τ(t))}dΓ. (118)

Proof. In the case of τ(t) 6= 0, from (116), applying Cauchy-Schwarz’s inequality,
we obtain

E′(t) ≤ −µ1

∫
ΓN

u2
t (x, t)dΓ +

1√
1− d

µ2

2

∫
ΓN

u2
t (x, t)dΓ

+
√

1− d µ2

2

∫
ΓN

u2
t (x, t− τ(t))dΓ

−ξ
2

(1− τ ′(t))
∫

ΓN

u2
t (x, t− τ(t))dΓ +

ξ

2

∫
ΓN

u2
t (x, t)dΓ,

from which easily follows (118) recalling (111). In the case of τ(t) = 0, from (117)
easily follows (118) observing that by (111)
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ξ < 2µ1 <
2(µ1 + µ2)

d
.

Remark 1. The choice to apply Cauchy-Schwarz’s inequality with a factor
√

1− d
in the proof of the above proposition is made in order to give the stability result
under the best assumption between µ1 and µ2.

Now, let us introduce the Lyapunov functional

Ê(t) = E(t) + γ

{∫
Ω

[2m · ∇u+ (n− 1)u]utdx+ E(t)

}
, (119)

where γ is a positive small constant that we will choose later on, m, defined by (9),
satisfies (10) and (11), and E(t) is defined by

E(t) := ξτ(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)dρdΓ. (120)

Note that, from Poincaré’s Theorem, the functional Ê is equivalent to the energy
E, that is there exist two positive constant d1, d2 such that

d1Ê(t) ≤ E(t) ≤ d2Ê(t), ∀ t ≥ 0. (121)

Moreover, we denote by ES(·) the standard energy for wave equation without
delay, that is

ES(t) :=
1

2

∫
Ω

(u2
t (x, t) + |∇u(x, t)|2)dx. (122)

The following estimate holds true.

Lemma 3.1. For any regular solution of problem (1)− (4),

d

dt

{∫
Ω

[2m · ∇u+ (n− 1)u]utdx

}
≤ −C0ES(t) + C

{∫
ΓN

[u2
t (x, t) + u2

t (x, t− τ(t))]dΓ

}
,

(123)

for suitable positive constants C0, C.

Proof. The standard multiplier identity gives

d

dt

{∫
Ω

[2m · ∇u+ (n− 1)u]utdx

}
= −

∫
Ω

{u2
t + |∇u|2}dx

+

∫
Γ

(m · ν)(u2
t − |∇u|2)dΓ +

∫
Γ

[2m · ∇u+ (n− 1)u]
∂u

∂ν
dΓ.

(124)

Therefore, using (2) and (10) , we obtain

d

dt

{∫
Ω

[2m · ∇u+ (n− 1)u]utdx

}
≤ −

∫
Ω

{u2
t + |∇u|2}dx

+

∫
ΓN

(m · ν)(u2
t − |∇u|2)dΓ +

∫
ΓN

[2m · ∇u+ (n− 1)u]
∂u

∂ν
dΓ.

(125)
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From (125) and Young’s inequality, recalling that by (11) m · ν ≥ δ on ΓN , we have

d

dt

{∫
Ω

[2m · ∇u+ (n− 1)u]utdx

}
≤ −

∫
Ω

{u2
t + |∇u|2}dx

+

∫
ΓN

(m · ν)u2
tdΓ− δ

∫
ΓN

|∇u|2dΓ +
c

ε

∫
ΓN

(
∂u

∂ν

)2

dΓ

+ε

∫
ΓN

(|∇u|2 + u2)dΓ,

(126)

for some positive constants ε, c. From (126), using the trace’s inequality and
Poincaré’s Theorem, for ε small enough we deduce

d

dt

{∫
Ω

[2m · ∇u+ (n− 1)u]utdx

}
≤ −C0ES(t)

+C

∫
ΓN

u2
tdΓ + C

∫
ΓN

(
∂u

∂ν

)2

dΓ,
(127)

for suitable positive constants C0, C. Therefore, using the boundary condition (3)
and Cauchy-Schwarz’s inequality in (127), we obtain (123).

We can also estimate the component E(·) in the Lyapunov functional (119).

Lemma 3.2. For any regular solution of problem (1)− (4),

d

dt
E(t) ≤ −2E(t) + ξ

∫
ΓN

u2
tdΓ . (128)

Proof. Differentiating (120) we have

d

dt
E(t) = ξτ ′(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)dρdΓ

−2ξτ ′(t)τ(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρρu2
t (x, t− τ(t)ρ)dρdΓ

+2ξτ(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ.

(129)
Now, let us suppose τ(t) 6= 0 and integrate by parts the last term in (129). As∫ 1

0

e−2τ(t)ρut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

= −τ−3(t)

∫ 1

0

e−2τ(t)ρ∂ρ(u(x, t− τ(t)ρ))∂ρρ(u(x, t− τ(t)ρ))(1− τ ′(t)ρ)dρ,

we obtain∫ 1

0

e−2τ(t)ρut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

= −τ
′(t)τ−3(t)

2

∫ 1

0

e−2τ(t)ρ(∂ρ(u(x, t− τ(t)ρ)))2dρ

−τ−2(t)

∫ 1

0

e−2τ(t)ρ(∂ρ(u(x, t− τ(t)ρ)))2(1− τ ′(t)ρ)dρ

−τ
−3(t)

2

[
e−2τ(t)ρ(∂ρ(u(x, t− τ(t)ρ)))2(1− τ ′(t)ρ)

]1
0

(130)
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and then∫ 1

0

e−2τ(t)ρut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

= −τ
′(t)τ−1(t)

2

∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)dρ

−
∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

−τ
−1(t)

2
e−2τ(t)u2

t (x, t− τ(t))(1− τ ′(t)) +
τ−1(t)

2
u2
t (x, t).

(131)

Now, substituting identity (131) in (129), we obtain

d

dt
E(t) = ξτ ′(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)dρdΓ

−2ξτ ′(t)τ(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρρu2
t (x, t− τ(t)ρ)dρdΓ

−ξτ ′(t)
∫

ΓN

∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)dρdΓ

−2ξτ(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ

−ξe−2τ(t)

∫
ΓN

u2
t (x, t− τ(t))(1− τ ′(t))dΓ + ξ

∫
ΓN

u2
t (x, t)dΓ,

(132)

and so

d

dt
E(t) = −2ξτ(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)dρdΓ

−ξe−2τ(t)

∫
ΓN

u2
t (x, t− τ(t))(1− τ ′(t))dΓ + ξ

∫
ΓN

u2
t (x, t)dΓ

(133)

from which immediately follows estimate (128) for t such that τ(t) 6= 0. In the case
of τ(t) = 0, note that from (129) we have

d

dt
E(t) = ξτ ′(t)

∫
ΓN

∫ 1

0

e−2τ(t)ρu2
t (x, t− τ(t)ρ)dρdΓ

≤ ξd
∫

ΓN

∫ 1

0

u2
t (x, t)dρdΓ = ξd

∫
ΓN

u2
t (x, t)dΓ

= ξd

∫
ΓN

u2
t (x, t)dΓ− 2E(t).

(134)

Then, even in this case, we obtain (128).

Now, we can deduce the exponential stability estimate for problem (1)− (5).

Theorem 3.3. Assume (13) and (14). There exist positive constants C1, C2 such
that for any solution of problem (1)− (5),

E(t) ≤ C1E(0)e−C2t, ∀t ≥ 0. (135)
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Proof. From Proposition 2, Lemma 3.1 and Lemma 3.2, we have

d

dt
Ê(t) ≤ −C

{∫
ΓN

[u2
t (x, t) + u2

t (x, t− τ(t))]dΓ

}
+γ

(
−C0ES(t) + C̃

∫
ΓN

[u2
t (x, t) + u2

t (x, t− τ(t))]dΓ− 2E(t)

)
.

(136)

Then, for γ sufficiently small, we can estimate

d

dt
Ê(t) ≤ −γC0ES(t)− 2γE(t). (137)

Now, observe that by assumption (6) on τ(t), we can deduce

E(t) ≥ ξτ(t)

∫
ΓN

∫ 1

0

e−2τu2
t (x, t− τ(t)ρ)dρdΓ

≥ cξτ(t)

2

∫
ΓN

∫ 1

0

u2
t (x, t− τ(t)ρ)dρdΓ,

(138)

for some positive constant c.
Therefore, from (137) and (138),

d

dt
Ê(t) ≤ −γC0ES(t)− 2γE(t) ≤ −cE(t) ≤ −CÊ(t), (139)

for suitable positive constants c, C, where we used also the first inequality in (121).
This clearly implies

Ê(t) ≤ e−CtÊ(0),

and so, using (121),

E(t) ≤ C1e
−C2tE(0),

for suitable constants C1, C2 > 0.

4. Nonlinear stability result. In this section we consider the problem (16)−(20)
with β1, β2 satisfying (21), (25). Moreover we assume

γ1 >
c2√
1− d

, (140)

where γ1, c2 are the constants in (21) and (25) (which comes from (21) and (23))
and d is as in (14).

We define the energy associated to the problem as in (110) with the constant ξ
such that

2γ1 −
c2√
1− d

− ξ > 0 and ξ − c2√
1− d

> 0. (141)

Note that, from assumption (140), such a constant ξ exists.
Notice that (87) implies (140), since c2 ≤ γ2. Moreover the existence of ξ verifying

(88) guarantees that ξ verifies (141), since again c2 ≤ γ2.
The following identity holds true.

Proposition 3. For any regular solution of problem (16)− (19) we have

E′(t) = −
∫

ΓN

ut(x, t)β1(ut(x, t))dΓ−
∫

ΓN

ut(x, t)β2(ut(x, t− τ(t)))dΓ

−ξ
2

∫
ΓN

u2
t (x, t− τ(t))(1− τ ′(t))dΓ +

ξ

2

∫
ΓN

u2
t (x, t)dΓ.

(142)

Proof. The proof is analogous to the one of Proposition 1, so we omit the details.
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Proposition 4. For any regular solution of problem (16)− (19) the energy decays
and there exists a positive constant C such that

E′(t) ≤ −C
∫

ΓN

{u2
t (x, t) + u2

t (x, t− τ(t))}dΓ. (143)

Proof. In the case of τ(t) 6= 0, from (142), we obtain, by (21) and (25),

E′(t) ≤ −γ1

∫
ΓN

u2
t (x, t)dΓ +

∫
ΓN

c2|ut(x, t)||ut(x, t− τ(t))|dΓ

−ξ
2

(1− τ ′(t))
∫

ΓN

u2
t (x, t− τ(t))dΓ +

ξ

2

∫
ΓN

u2
t (x, t)dΓ.

Then, applying Cauchy-Schwarz’s inequality, we have

E′(t) ≤ −γ1

∫
ΓN

u2
t (x, t)dΓ +

ξ

2

∫
ΓN

u2
t (x, t)dΓ

−ξ
2

(1− τ ′(t))
∫

ΓN

u2
t (x, t− τ(t))dΓ +

c2

2
√

1− d

∫
ΓN

u2
t (x, t)dΓ

+
√

1− d c2
2

∫
ΓN

u2
t (x, t− τ(t))dΓ.

(144)

From (144) estimate (143) easily follows recalling that ξ satisfies (141).
If t is such that τ(t) = 0, then from (142) we deduce

E′(t) = −
∫

ΓN

ut(x, t)β1(ut(x, t))dΓ−
∫

ΓN

ut(x, t)β2(ut(x, t))dΓ

+
ξ

2
τ ′(t)

∫
ΓN

u2
t (x, t)dΓ.

Then, from (25) and (22)

E′(t) ≤ −(γ1 −
ξ

2
d)

∫
ΓN

u2
t (x, t)dΓ,

and this clearly gives (143) observing that by (141)

γ1 >
ξ

2
+

c2

2
√

1− d
>
ξ

2
>
ξ

2
d.

Now, let Ê be the Lyapunov functional introduced in (119) with a small enough
positive constant γ and let E be defined as in (120).

Even in this case Lemma 3.1 holds true. Indeed inequality (127) is obtained
without using the boudary condition (3) on ΓN . From (127) we easily deduce
estimate (123) for suitable positive constants C0, C, using the boundary condition
(18) and the assumptions (21) on the functions β1, β2.

We can estimate also the component E(·) in the Lyapunov functional (119) as in
the previous case, and so analogously to the linear case, we can deduce an expo-
nential stability estimate for problem (16)− (20).

Theorem 4.1. Assume (140). There exist positive constants D1, D2 such that for
any solution of problem (16)− (20),

E(t) ≤ D1E(0)e−D2t, ∀t ≥ 0. (145)
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