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REAL VERSUS COMPLEX VOLUMES
ON REAL ALGEBRAIC SURFACES

ARNAUD MONCET

ABSTRACT. Let X be a real algebraic surface. The comparison between the
volume of D(R) and D(C) for ample divisors D brings us to define the concor-
dance a(X), which is a number between 0 and 1. This number equals 1 when
the Picard number p(Xgr) is 1, and for some surfaces with a "quite simple"
nef cone, e.g. Del Pezzo surfaces. For abelian surfaces, a(X) is 1/2 or 1, de-
pending on the existence or not of positive entropy automorphisms on X. In
the general case, the existence of such an automorphism gives an upper bound
for o(X), namely the ratio of entropies hiop(f| X (R))/ hiop(f|X(C)). More-
over a(X) is equal to this ratio when the Picard number is 2. An interesting
consequence of the inequality is the non-density of Aut(Xg) in Diff(X(R)) as
soon as a(X) > 0. Finally we show, thanks to this upper bound, that there
exist K3 surfaces with arbitrary small concordance, considering a deformation
of a singular surface of tridegree (2,2,2) in P! x P! x P!,

INTRODUCTION

Let X be a real projective variety with a fixed Riemannian metric. The goal of
this paper is to compare volumes of real subvarieties Y (R)) and of their complexified
ones Y (C). As will be seen, this is closely related to the question of comparing real
and complex dynamics of automorphisms of Xg.

0.1. The projective space. Consider the projective space X = P%, equipped
with the Fubini-Study metric. Let Y be a real subvariety of PdR of dimension k.
By Wirtinger’s formula (see [GH94, p. 31]), the volume of Y (C) satisfies

(1) volg(Y) = deg(Y) volc(PF).
For the volume of Y (R), the Cauchy-Crofton formula enables us to show that
(2) volr (V) < deg(Y) volg (P*)

and to characterize the case of equality (see appendix A). This gives the following:

Proposition 0.1. Let Y be a real k-dimensional algebraic subvariety of the pro-
jective space PdR. With respect to the Fubini-Study metric, we have

volr(Y) vole(Y)
3) olr(PY) = volg (PF)’

Furthermore the equality is reached if and only if Y is the union of deg(Y') real
projective subspaces.

Date: april 2011.
Key words and phrases. Real algebraic geometry, dynamics of automorphisms, topological
entropy, abelian surfaces, K3 surfaces, ample divisors.

1



REAL VERSUS COMPLEX VOLUMES ON REAL ALGEBRAIC SURFACES 2

As a consequence, if Vi (d) denotes the set of real subvarieties of PdR of dimen-
sion k and degree §, then for any Yy € Vi () we have

- By VOIR(Pk)
(4) YIEI%)EZ)((J)VOIR(Y) = Jvolg(P¥) = volo(PF)

VOlC (Yo)

0.2. The general case. Now X is an arbitrary d-dimensional real algebraic variety.
We assume that it is projective, smooth, irreducible and that the real locus X (R)
is not empty. Let Y be a k-dimensional real algebraic subvariety of X. Denote the
volume of Y (R) by volg (Y), and that of Y/(C) by volc(Y'), both with respect to a
fixed Riemannian metric on X (C).

Notation. Let V(Y) be the family of real algebraic subvarieties Z such that Y (C)
and Z(C) have the same homotopy class in Hog (X (C);Z). Then for K =R or C
we set
(5) mvolg (V) = Zrenva()lc/) volk (7).

When the Riemannian metric comes from the Fubini-Study metric on some P”

in which X is embedded, we get the inequality (3). Since two Riemannian metrics
are comparable (by compactness of X (C)), we obtain:

Proposition 0.2. Let X be a real algebraic variety, equipped with an arbitrary
Riemannian metric. For any k € N*, there exists a constant Cy > 0, depending on
the choice of the metric, such that

(6) mvolg (YY) < Cy mvolg(Y)
for all k-dimensional subvarieties Y of X.

Now we would like to know for which non-negative exponents o we can write
inequalities such as mvolg(Y) > Cy mvolc(Y)?, with Cj independent of Y. We
restrict ourselves to codimension 1 subvarieties, i.e. effective divisors. The no-
tion of homotopy class in Hag_o(X(C);Z) is dual to that of (first) Chern class
in H?(X (C); Z), which is preferred in what follows.

Definition 0.3. Let A(X) be the set of non-negative exponents « for which there
exist C' > 0 and ¢ € N* such that

(7) mvolg (D) > C'mvolc (D)

for all real ample divisors D whose Chern classes are g-divisible. The upper bound
of A(X) is the concordance of X, and is denoted by «(X). We say the concordance
is reached when «(X) is contained in A(X).

The set A(X), and thus the concordance a(X), only depend on X, and not on
the choice of a particular metric. All metrics will be Kéhler metrics, so that the
number volc(D) only depends on the Chern class of D; thus we write volg(D)
instead of mvolg (D).

As will be seen in section 1.3, the concordance a(X) can only take values be-
tween 0 and 1, and the set A(X) is an interval of the form [0, a(X)] or [0, a(X)),
whether the concordance is reached or not.
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0.3. Examples. The equation (4) implies that the concordance of the projective
space is 1. More generally we prove in section 1.4 that a(X) = 1 as soon as
the closed convex cone Nef(Xg) of real nef R-divisors is generated by finitely
many divisors D; with mvolg(D;) > 0. This is the case when the real Picard
number p(Xgr) is 1. As a special case, the concordance of a curve is always 1. Thus
non trivial cases (those with a(X) < 1) can only occur when both the dimension
and the Picard number are at least 2.

In this paper we focus on the case of surfaces, which already include many
interesting examples. Amongst them, tori are the simplest surfaces for which the
concordance is not always 1 (cf §3).

Theorem 0.4. Let X be a real abelian surface. The real Picard number p(Xgr) is
equal to 1, 2 or 3, and we have the following values for concordance.
(1) If p(Xr) =1, then a(X) = 1.
(2) If p(Xr) =2, then a(X) =1 or 1/2, depending on the existence or not of
real elliptic fibrations.
(3) If p(XRr) = 3, then a(X) =1/2.
In all cases the concordance is reached.

In part 4.3 we show that there exist surfaces with arbitrary small concordance.
More precisely we prove the following result.

Theorem 0.5. There is a family (X*),c(0,1) of real K3 surfaces embedded in (P13
such that limy_o a(X") = 0.

0.4. Dynamics of automorphisms. Let X be a real algebraic surface. We
denote by Aut(Xgr) the group of (real) automorphisms on X, that is biholo-
morphic maps f : X(C) — X(C) that commute with the action of the Galois
group Gal(C/R) = {id,c}. For K = R or C, the induced self-map on X (K) is
denoted by fk.

The dynamics of automorphisms on complex surfaces has been broadly studied
in the last decades (one may refer to the references given in the surveys [Canll]
and [Bed10]). Let us remember a few facts.

(1) The entropy hiop(fc) is entirely expressed in terms of the action on the
cohomology, according to [Gro03] and [Yom87]. Namely it is equal to the
logarithm of the spectral radius (called the spectral logradius in what fol-
lows) of the induced map f* on H?(X(C);R).

(2) Automorphisms which have positive entropy, also called hyperbolic type au-
tomorphisms, can only occur (once all periodic rational curves have been
contracted) on tori, K3 surfaces, Enriques surfaces and (non minimal) ra-
tional surfaces [Can99]. Moreover, examples are known on each of these
types of surfaces.

(3) For hyperbolic type automorphisms we have hy,, (fc) > log(A1g) [McMOT],
Ao ~ 1,17628081 beeing the Lehmer number. Moreover this bound is
reached on some rational surfaces [BK06] [McMO7] and on some (non pro-
jective) K3 surfaces [McMO09].

On the other hand the dynamics on X (R) is not as well understood, for we
do not dispose of equivalent tools to study it. For instance the entropy hiop(fr)
cannot be deduced from the action on cohomology; it is bounded from below by
the spectral radius of f5 on H'(X(R);R) [Man75|, and from above by hy., (fc),
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but may vary within this interval. In particular we see that, for hyperbolic type
automorphisms, the ratio hyo, (fR)/ hiop(fc) is a number between 0 and 1 (for tori
it always equals 1/2, cf Proposition 3.4). As proved by Bedford and Kim in [BK09|,
it may happen that this ratio is equal to 1, for some rational surfaces.

Question 1. Is there an example of real hyperbolic type automorphism on a K3
or Enriques surface for which hy,, (fr) = hiop(fc) ?

Question 2. Is there an example of real hyperbolic type automorphism on a sur-
face X for which hyp(fr) =07

In section 2 we use a theorem due to Yomdin [Yom87| in order to highlight
a link between concordance and this ratio of entropies (which is used to prove
Theorems 0.4 and 0.5).

Theorem 0.6. Let X be a real algebraic surface. Assume that there exists a real
hyperbolic automorphism f on X. Then

htop (fR)
(®) a(X) < oy (f0)°

Moreover this inequality becomes an equality when p(Xgr) = 2.

Corollary 0.7. Let f be a real automorphism of a real algebraic surface X. If
hiop(fr) > 0, then

9) hiop (fR) > A0 (X)),

where \1g denotes the Lehmer number, that is the largest root of the polynomial
20429 — 2" — 26— — 2t — 341,

When a(X) > 0, these results enables us to show non-density and discreteness
results for Aut(Xgr) in the group of diffeomorphisms of X (R), as well as in some
of its subgroups (§5).

Acknowledgments. This paper is issued from a PhD work under the direction of
S. Cantat, who submitted to me the idea of this study, supervised and encouraged
me during the preparation of this text. I am especially grateful to him for that, and
for his patience in rereading it many times and correcting some mistakes. I would
also like to thank S. Gouézel, Y. Ishii, F. Mangolte and A. Zorich for many useful
discussions. Finally I would like to thank L. DeMarco for having invited me to the
Workshop on Dynamics at UIC in may 2010, as well as all the organizers of this
conference.

1. FIRST PROPERTIES OF CONCORDANCE

1.1. Conventions and notations. In what follows, X denotes the ambient real
algebraic variety, and d its dimension. Moreover, X is always supposed to be
projective, smooth, irreducible and with non empty real locus. The set X(R) is
then a real analytic d-dimensional manifold, with a finite number of connected
components. By contrast, we make no particular asumption for subvarieties Y
of X. The antiholomorphic involution which defines the real structure on X is
denoted by ox, or simply by ¢ when no confusion is possible.

1Throughout the text, rational means rational over C.
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The cohomology groups H*(X(C);Z) are implicitly taken modulo torsion, so
that we can consider them as lattices in H*(X(C); R).

The complez Néron-Severi group of X, denoted by N!(X¢;Z), is the subgroup
of H3(X(C);Z) whose elements are Chern classes of divisors on X(C). By the
Lefschetz theorem on (1, 1)-classes (see [GH94, p. 163]), we have

(10) N'(Xc:2) = HY'(X(C);R) N HX(X(C); 2).

The real Néron-Severi group of X, denoted by N'(Xg;Z), is the subgroup
of N'(X¢;Z) whose elements are classes of real divisors. Recall that (see [Sil89,

§1.4])
(11) NY(XRr;Z) = {0 e N'(Xc;Z) | 070 = -0},

where o* denotes the involution on H2(X (C);Z) induced by the conjugation o.

Both N'(X¢;Z) and N'(Xg;Z) are free abelian groups of finite rank. Their
respective ranks are the complez and real Picard numbers of X, denoted by p(Xc¢)
and p(XR). For K = R or C, we denote by N*(Xk; R) the subspace of H (X (C); R)
spanned by N!(Xk; Z); it has dimension p(Xk).

When X is a surface, the intersection form gives rise to a non-degenerate qua-
dratic form on H?(X (C);R), with integral values on H?(X(C); Z). By the Hodge
index theorem, its signature on the subspace N!(Xk;R) is (1, p(Xk) — 1). Conse-
quently, the positive cone for the intersection form has two connected components,
one of which contains classes of ample divisors. This component is an open convex
cone in N!'(Xgk;R), denoted by Pos(Xk). Other convex cones in N'(Xk; R) have
their own interest and are used throughout this text, like the ample cone Amp(Xk),
the nef cone Nef( Xk ) which is its closure, the cone of curves NE(Xxk) (for surfaces
it is the same as the pseudo-effectif cone) which is the dual of the last one. For all
these notions, we refer to [Laz04].

1.2. Positivity of volumes. From now on, we fix a K&hler metric on the complex
manifold X (C). Its Kéhler form is denoted by .

1.2.1. Complex volumes. Let D be an effective divisor on X. The volume of D(C)
only depends on the (first) Chern class of D, denoted by [D]. More precisely,

1 d—1
(12) volg(D) = - 1)![11 ]-[D] > oO.
Proposition 1.1. There exists a positive constant K such that
(13) volg(D) > K

for all effective divisors D # 0.

Proof. As all Riemannian metrics are equivalent, it is enough to show the inequality
when the metric is the Fubini-Study metric on P D X. In this case the volume
of D(C) is proportional to the degree of D as a subvariety of P, which is a positive
integer. Thus we get the lower bound with K = volg(P?1) > 0. O

1.2.2. Real volumes. Let D be a real effective divisor on X. Although the volume
of D(C) is always positive, it may happen that volg (D) = 0 for some divisors D.
For instance on X = PdR, for any even degree ¢, the divisor Ds given by the

equation Z?:o Z]‘? = 0 has an empty real locus, hence volg(Ds) = 0. Yet this
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divisor is numerically (and even linearly) equivalent to D} given by Z;l:l ZJ‘5 =79,
and we have volg (Dj) > 0.

Thus what is important is not the positivity of volg (D), but that of mvolg (D).
Remember that mvolg (D) = max{volg(D’) | D’ € V(D)}, where V(D) is the set of
real effective divisors (numerically) equivalent to D. Since

(14) V(Dl + Dg) D) V(Dl) + V(Dg),

the fonction mvolg is superadditive on the set of real effective divisors. In partic-
ular, for all &k € N*,

(15) mvolg (kD) > kmvolgr (D).

Proposition 1.2. Let D be a real effective divisor such that the linear system |D)|
contains a pencil, i.e. h%(X,Ox (D)) > 2. Then mvolg (D) > 0.

Proof. Let (Dx)xepi(c)y be a real pencil in [D| (in this context, real means that
Dy = o(Dy)). By Bertini’s theorem [GH94, p.137], there is a finite set S C P!(C)
such that for all A ¢ S, the subvariety D,(C) is smooth away from the base
locus B of the pencil (Dx)xepi(c). Let P € X(R)\ (B UlUxes D,\). Then there
exists X in P}(R)\S such that the point P is on (the support of) the divisor Dj.
As D, is smooth at P, the real locus D)(R) contains an arc around P, and thus
mvolg (D) > volg (Dy) > 0. O

This proposition applies, for instance, when D is very ample. By contrast, it
may happen that mvolg (D) = 0 for some effective divisors which are not ample, as
shown in the two following examples. It is for this reason that we restrict ourselves
to ample divisors in the definition of concordance.

Ezxample 1.3. Let X be the variety obtained by blowing-up PdR at two (distinct)
complex conjugate points, and let E' be the exceptional fiber of the blow-up. Then
for any k € N*, we have V(KE) = {kE}, and so mvolg (kE) = 0, for E(R) is empty.
Nevertheless, observe that [E] is not in the closure of the cone Pos(Xgr), since its
self-intersection is negative.

Ezample 1.4. Let C be a real smooth quartic in P% such that C(R) is empty (for
instance the one given by Z3 + Z{ + Z3 = 0). Take 8 couples of complex conjugate
points (P;, P;) on C, in such a way that the linear class of }_,(P; 4+ P;) — Opz2(4)|c
is not a torsion point of PicO(C). Let 7 : X — P2 be the blow-up morphism above
these 16 points (defined over R), and let C” be the strict transform of C' in X. For
all divisors D in V(kC"), the curve m,D has degree 4k and passes through the 16
blowed-up points with multiplicity at least k. Then the choice of the points P;
implies that m.D = kC, hence D = kC’. So we see that mvolg(kC’) = 0 for
all k € N*. Here C’ is a nef divisor that is not ample, as an irreducible divisor with
self-intersection 0 (see [Laz04, §1.4]).

1.3. The interval A(X). Remember that (definition 0.3) A(X) is the set of ex-
ponents « > 0 for which there exist C' > 0 and ¢ € N* such that, for all real ample
divisors D with [D] ¢-divisible, we have mvolg (D) > C volg(D)®. This set depends
only on X, and not on the choice of the metric.

Lemma 1.5. Assume that o € A(X). Then € A(X) for all 0 < < a.
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Proof. By Proposition 1.1, there exists K > 0 such that mvolc(D) > K for all real
effective divisors D. When [D] is ¢-divisible, we then have

(16) mvolg (D) > Cvolg(D)* > CK* ?volg(D)”,

and so S is in A(X) too. O

As a consequence, A(X) is an interval of the form [0, a(X)] or [0,a(X)). By
definition, «(X) is the concordance of X.

Lemma 1.6. Let X be a real algebraic variety (with X(R) # 0). The concor-
dance a(X) is in the interval [0, 1].

Proof. Let a € A(X). By Proposition 0.2, there exists a positive C’ > 0 such
that mvolg (D) < C’volc(D) for all real ample divisors D. When [D] is also
g-divisible, we get, for all k € N*,

(17) Cvolc(kD)* < mvolg (kD) < C' volg(kD).
If a > 1, this contradicts limy—, o volg (kD) = +o0. O

1.4. Examples of varieties with concordance 1. We have seen in the intro-
duction that a(Pg) = 1. More generally, the concordance is 1 when the structure
of the nef cone is "simple".

Proposition 1.7. Let X be a real algebraic variety. Assume that the cone Nef(XR)
is polyhedral, with extremal rays spanned by classes [D;] such that mvolg(D;) > 0.
Then the concordance a(X) is 1, and it is reached.

Proof. Define C' = min; (mvolg (D;)/ volc(D;)) > 0. The classes [D,] span a finite
index subgroup of N} (Xg; Z). Denote by ¢ this index. Since Amp(Xr) C Nef(Xr),
every real ample divisor D with [D] ¢-divisible is equivalent to a divisor of the
form > ; k;D;, where the k;’s are non negative integers. Hence

mvolg (D) > ijmvolR(Dj)

J
Z C Z kj VOlc(Dj)
J
= Cvolg(D).
We can then conclude that 1 is contained in A(X). O

Corollary 1.8. All real algebraic varieties X with p(Xr) = 1 have concordance 1,
and this one is reached.

Corollary 1.9. Let X be a real Del Pezzo surface. The concordance of X is 1,
and it is reached.

Proof of Corollary 1.9. By definition, a surface is Del Pezzo when its anti-canonical
divisor —K x is ample. The cone of curves NE(XR) is then rational polyhedral, by
the cone theorem (see [Laz04, 1.5.33, 1.5.34]). Thus its dual cone Nef(Xg) is also
rational polyhedral.

Lemma 1.10. Let D be a nef divisor on a Del Pezzo surface X, which is not
numerically trivial. Then the linear system |D| contains a pencil.
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Proof. Tt’s a simple application of the Riemann-Roch formula:
1
(18) h%(X,0x(D))—h*(X,0x(D))+h*(X,0x(D)) = X(OX)+§(—Kx-D+D2).

As —Kx is ample and D is nef, then —Kx -D > 0 and D? > 0. By Serre duality,
we get h?(X,Ox (D)) = h°(X,O0x(Kx —D)) = 0, because D-(Kx — D) < 0 with D
nef. We conclude that h%(X,Ox (D)) > x(Ox) =1 (the last equality follows from
the rationality of X). O

Consequently we see, by Proposition 1.2, that the extremal rays of Nef(Xg) are
spanned by classes [D,] with mvolg (D;) > 0, and thus we can apply Proposition 1.7
to get the desired result. O

2. CONCORDANCE AND ENTROPY OF AUTOMORPHISMS

From now on, X is a real algebraic surface equipped with a K&hler metric, whose
Kahler form is denoted by k.

For any differentiable dynamical system g : M — M on a compact Riemannian
manifold, let hy,,(g) denote the topological entropy, and xtop(g) the topological
Liapunov exponent, that is

1
19 o = lim —log|Dg"|eo.?
(19) Xtop(9) = lim —log|Dg"|

This last one does not depend on the choice of the Riemannian metric.

When f € Aut(Xgr) is a real automorphism of X, we're going to look at both
differentiable dynamical systems fc : X(C) — X(C) and fr : X(R) = X(R).

We denote by f. the inverse of the map f* induced by f on H?(X(C);Z), so
that the operation f — f, is covariant. The linear map f, is an isometry for the
intersection form and preserves the Hodge structure: we say it is a Hodge isometry.
Furthermore it is also compatible with the direct image of divisors D, which means
that f.[D] = [f.D)]. Hence f. preserves the subgroups N!'(Xk;Z), for K = R or C.
We still denote by f, the restriction of f, to all the subgroups or subspaces (when
extended by R or C) that are preserved.

The spectral radius of f. (a priori on H?(X (C); R)) is denoted by A(f). By the
theorem of Gromov and Yomdin recalled in the introduction, we have

(20) hiop (fc) = log(A(f))-
This spectral radius is actually reached on the subspace N!(Xg;R) (cf remark 2.2).
2.1. Complex volume of the iterates of a divisor.

Theorem 2.1. Let f be an automorphism of a complex algebraic surface X . For
all ample divisors D, we have

(21) lim - log (vola(fD)) = huop(fc) = log(A(f)).

n—-+oco N
Proof. Wirtinger’s equality gives (cf (12))
(22) vole(fi' D) = fI[D] - [x].

2The notation ||Dgl|eo stands for maxge s ||[Dg(a)||, where the norm is taken with respect to
the Riemannian metric.
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If A(f) = 1, the sequence (|| fI'[D]||),cn has at most a polynomial growth (ac-

tually it is at most quadratic [Giz80]), as well as (volc(fI'D)),,cn- Hence
o1 ny
(23) JtimLlog (volo(£)) = 0 = log(A(f)).

If \(f) > 1, since [D] is in the ample cone, the sequence ({{}ﬂ) converges
neN

to the class 6 of a positive closed current, by [Can01]. In particular

volg(f'D)
and then lim,, 4o < log (volc(fI"D)) = log(A(f)). O

Remark 2.2. If moreover the surface X, the automorphism f and the divisor D are
defined over R, then the class # is in N'(Xgr;R) (as a limit of classes that are in
this closed subspace), and satisfies f.0 = A(f)0. Thus A(f) is an eigenvalue of f.
restricted to N'(Xg;R).

Remark 2.3. For varieties which have arbitrary dimension d, the formula

(25) lim ~ log (volo(f7' D)) = log(A(f))

n—-+oco N

still holds. Yet this is no more necessarily equal to the entropy, which is the
spectral logradius® on the whole cohomology, a priori distinct from the spectral
logradius log(A(f)) on H?(X(C); R).

2.2. An upper bound for real volume of the iterates of a divisor.

Theorem 2.4. Let [ be a real automorphism of a real algebraic surface X. For all
ample real divisors D, we have

1
(26) lim sup — log (mvolg (f'D)) < hyop(fr)-
n——+oo N
The proof of this result relies on Theorem 1.4 in [Yom87], which gives a lower
bound for entropy in terms of volume growth. It is here stated in the particular
case of dimension 1 submanifolds.

Theorem 2.5 (Yomdin). Let M be a compact Riemannian manifold, g : M — M
be a differentiable map and v : [0,1] — M be an arc, all of them of class C”,
with r > 1. Then

. 1 " 2
(27) lim sup — log (length(g" 0 7)) < htop(g) + — Xtop(9)-
n—+4oo N r
In particular when the reqularity is C°, then
1
(28) lim sup — log (length(g" o)) < hyop(g).
n—+4oo N

Looking carefully at the proof in [Yom87], one sees that this result can be im-
proved to the case when we consider a family of C"-arcs (y;); whose derivatives

3Recall that spectral logradius stands for the logarithm of the spectral radius.
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are uniformly bounded to the order r, i.e. there is a positive number K such
that ||'yj(k) (t)|| < K for all j, t € [0,1] and k < r. Under these asumptions we have

o . 2
20 timsup - dog (max fength(s” 0 55)} ) < hiap () + % xin ().

n—+oo N

We also use the following lemma, which can be found in [Gro87, 3.3].

Lemma 2.6 (Gromov). Let Y be the intersection of an algebraic affine curve in R¢
with [-1,1]%. For any r € N*, there exist at most mg C"-arcs v; : [0,1] = Y,
where mg is an integer depending only on d, r and deg(Y'), such that

(1) Y =U;7([0,1]);

(2) I @I <1 for all j, t € [0,1] etk <r;

(3) all v;’s are analytic diffeomorphisms from (0,1) to their images;
(4) the images of the v;’s can only meet on their boundaries.

Proof of Theorem 2.4. The inequality (26) does not depend on the choice of a par-
ticular metric on X, so we can consider an embedding X C P;l{ and take the metric
induced by Fubini-Study on X. The projective space P4(R) is covered by the (d+1)
cubes Q, k € {0,---,d}, given in homogeneous coordinates by |Z;| = max; |Z;]|.
Each of these @}, is located in the affine chart Uy = {Z; # 0} ~ R%, and in this
chart it is identified with [—1,1]%.

The degree of D as a subvariety of P4 only depends on the Chern class [D].
Therefore we can apply Lemma 2.6 to any divisor D’ € V(D), intersected with one
of the Q’s: any real locus of D' € V(D) is covered by at most mq C"-arcs yp- j,
the integer my = (d + 1)myg being independent of D’, such that nygc,)JHOO < K for
all k < r, where r is a fixed positive integer and K a positive constant (which comes
from the comparison of Euclidean and Fubini-Study metrics on [—1,1]¢). Now we
apply the inequality (29) to obtain

1 1
lim sup — log (mvolg (fI'D)) < limsup — log (m1 max {length(fg o 'YD’,j)})
"\d

n—+oo N n—+oco N

IN

hiop(fR) + %Xtop(fR)-

Since the regularity of both X (R) and fr is C°°, we may take the limit as r goes
to 400 and get the desired inequality. O

Remark 2.7. Yomdin’s theorem (and its version in family), as well as Gromov’s
lemma, still hold when we consider arbitrary dimensional submanifolds. Therefore
the proof of Theorem 2.4 can be transposed to the case X is a variety with upper
dimension.

2.3. An upper bound for concordance.

Theorem 2.8. Let X be a real algebraic surface, and let f be a real hyperbolic
type* automorphism of X. Then

htop (fR)
(30) a(X) < Tiop (fo)

4Recall that hyperbolic type just means that h¢op(fc) > 0.



REAL VERSUS COMPLEX VOLUMES ON REAL ALGEBRAIC SURFACES 11

Proof. Let a be an exponent in the interval A(X). This means there are ¢ € N*
and C > 0 such that mvolg(D) > Cvolc(D)* for all real ample divisors D
with [D] g-divisible. For such a divisor, f?[D] is also ¢-divisible for all n € N,
and by Theorems 2.1 and 2.4 we get

1
hiop(fm) > limsup — logmvolg(f;'D)
n——+oo N
1
> limsup — (log C' + alogvolc(fI'D))
n——+oo N
= ahtop(fC)'
Then we take the limit as @ — «(X) and we obtain (30). O

2.4. A lower bound for real volume of the iterates of a divisor.

Definition 2.9. Let M be a differentiable surface. A family I" of curves on M is
said to be very ample if for all P € M and for all directions D C T, M, there is a
curve v € I' on which P is a regular point and whose tangent direction at P is D.

Example 2.10. Let X be a real algebraic surface and D be a very ample real divisor
on X. Then the family V(D), as a family of curves on X (R)), is a very ample family
in the sense of definition 2.9.

Theorem 2.11. Let M be a compact Riemannian surface, g : M — M be a diffeo-
morphism of class C1T¢ (with € > 0) with positive entropy, and I’ be a very ample
family of curves on M. Then for all A < exp(hiop(g)), there exist a curve v €T
and a constant C' > 0 such that

(31) length(g" (7)) = CA"
for alln € N.
In other words, we have the following inequality:
1
(32) sup {Hm inf — log (1ength(g"(7)))} > hyop(9)-
~erT n—+oo nN

This has to be compared with a similar result due to Newhouse [New88|, who
considers manifolds of arbitrary dimension and non invertible maps, but gets the
inequality (32) with a limit superior instead of a limit inferior (asumptions on the
family T' are also lightly different). On the other hand, the lower bound (32) is
optimal when M and g are C*°, by Yomdin’s Theorem 2.5.

Corollary 2.12. Let f be a real automorphism of a real algebraic surface X. For
all A < exp(hyop(fr)) and all very ample real divisors D on X, there exists C' > 0
such that

(33) mvolg (fi'D) > CA\"
for alln € N.

The proof of Theorem 2.11 relies on a result due to Katok [KH95, S.5.9 p. 698],
which asserts that the entropy of surface diffeomorphisms is well approximated by
horseshoes. For definition and properties of horseshoes, we refer to [KH95, §6.5].
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Theorem 2.13 (Katok). Let M be a compact surface, and g : M — M be a
diffeomorphism of lass C**¢ (with ¢ > 0) with positive entropy. For any n > 0,
there exists a horseshoe A for some positive iterate g* of g such that

1 i
(34) htop (g) < E htop (g‘kj\) + UE

Proof of Theorem 2.11. Fix real numbers A and 7 such that 1 < A < exp(hop(9))
and 0 < 7 < hyp(g) — log(A). Let A be a horseshoe for G = ¢ satisfying the
inequality (34). Let A D A be a "rectangle" corresponding to this horesehoe, in
such a way that A = [,z G’(A). The set G(A) N A has ¢ connected compo-
nents Aq,---,A, which are "subrectangles" crossing entirely A downwards (see
figure 4). The restriction G5 is topologically conjugate to the full-shift on ¢ sym-
bols, by the conjugacy map
{15 T q}Z — A )
(Wjliez = ez G/ (Au;)-

In particular hs,, (Ga) = log(g). We denote by L the distance between the upper
and lower side of A.

G(A)

/\ G(v)

)

Ay Ay

FIGURE 1. An example of horseshoe, here with ¢ = 2.

Lemma 2.14. Let v C A be an arc crossing the rectangle A downwards. Then
length(G™(v)) > ¢"L for all n € N.

Proof. Tt is enough to remark that the arc G™(v) contains ¢" subarcs crossing A
downwards (see figure 4 for n = 1). This can be seen by induction on n. (]

Now fix a point P € A, P = ¢z G’(Ay,). Let v € T be a curve that goes
through P transversally to the stable variety W#*(P) (the horizontal one). For any
sequence (g5)jen € {1, -, ¢}, we set (see figure 2)

(35) Reyoc = [ GT(A).
7=0
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P W4(P)
|
7]

N i
W i [ Rao

R,

FIGURE 2. The rectangles R, and R., ., for the horseshoe of fig-
ure 4.

The sequence (R, ... -, )nen is a decreasing sequence of nested rectangles that
converge to the curve [,y G7I(A:,). If (en)nen = (wW—n)nen this curve is the
stable variety W?*(P) (intersected with A). Since 7 is transverse to it, there exist an
integer ng and a subarc 7 C 7 such that 4 crosses the rectangle Ry, ... o, down-
wards. (On figure 2, we may choose v/ C Rag.) Hence the arc G™ (v') C G™(7)
satisfies the asumptions of Lemma 2.14, and thus length(G™*"(vy)) > ¢"L for

all n € N. So if we set C' = min{qL (M , then

"o’ a )ogngno—l

length(g"™* (7)) > C'q" = C" exp(nhyop(gfy))
> C'exp(nk(hiop(9) — 1))

> O™
Since length(g" (7)) < ||Dg™ | length(g"™*(v)), we get the inequality (31) by Eu-
clidean division by k, where we have set C' = C’'(A\||Dg™!||o) ™% > 0. O

2.5. An exact formula for concordance when p(Xgr) = 2.

Theorem 2.15. Let X be a real algebraic surface with p(Xgr) = 2. Assume that
there exists a real hyperbolic type automorphism f on X. Then

_ hiy(fr)
htop (fC) -

Remark 2.16. As seen in section 0.4, the asumptions of the theorem imply that the
surface X is either a torus, either a K3 surface, either an Enriques surface. Indeed
the surface can’t be rational, for the canonical class, being preserved by f,, must
be trivial.

(36) a(X)

We shall use the following inequality, which follows from the fact that the
norm || ||, on R* satisfies the triangle inequality, with p = 1/a.

Lemma 2.17. Let o, x1,- - ,xs be non-negative numbers, with 0 < o < 1. Then

(37) (Z zk> < o
k=1 k=1

Proof of Theorem 2.15. By Theorem 2.8, it is enough to prove that any non-negative

exponent a < Ei"”—g?;g belongs to A(X). This is obvious when hy,,(fr) = 0, so we
op

suppose that fr has positive entropy, and we fix such an exponent «.
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Lemma 2.18. Let D be a very ample real divisor on X. There exists C > 0 such
that

(38) mvolg (fi'D) > Cvolc(fI'D)“
for alln € Z.

Proof. Since A(f)* = exp(ahip(fc)) < exp(hiop(fr)), there exists, by Corol-
lary 2.12, a positive number Cr such that mvolg (f2D) > CrA(f)™ for all n € N.
On the other hand there is a positive number C¢ such that vole(f'D) < CcA(f)"
for alln € N (cf (24)). It follows that mvolg (f'D) > C* volc(f'D)® for alln € N,
where we have set C* = Cr/C§.

Applying the same argument to f~!, there exists a positive number C'~ such
that mvolg (f, D) > C~ vole(f;™"D)* for all n € N. Hence we obtain the in-
equality (38), with C' = min(C*,C ™). O

Lemma 2.19. There are finitely many real ample divisors D1,--- , D, on X such
that any real ample divisor D on X is equivalent to one of the form Y ;_, frD;,,
withn € Z and ji, € {1,--- ,r}.

Proof. On the 2-dimensional space N'(Xg;R), the isometry f. has exactly two
eigenlines DT and D™, respectively associated with eigenvalues A\(f) and \(f)~*.
These lines are necessarily the isotropic directions of the intersection form. We
choose eigenvectors 7 € Dt and §~ € D~ in the closure of Pos(Xgr), so that
this cone is bordered by half-lines RT6% and RT0~. The cone Amp(Xgr) being
preserved by fi, it coincides with Pos(Xg). The entire points in this cone corre-
spond to classes of real ample divisors. Let 6; be such a point that we choose to
be primitive, and let 6, = f.0; (observe that 5 is also primitive). Denote by D
the closed convex cone of N'(Xg;R) bordered by half-lines RT0; and R™,. By
construction D\{0} is a fundamental domain for the action of f. on Amp(Xr) (see
figure 3).

FIGURE 3. The fundamental domain D\{0}

Denote by 63,04, - - - , 0, the entire points inside the parallelogram whose vertices
are 0, 01, 01 +02 and 6. Any point in D can be expressed uniquely as k16 +k2602+6;
or k161 + kab2, with (k1,k2) € N2 and j € {3,--- ,r}. For all real ample divisors D,
there is n € Z such that f,"[D] € D, so we are done by setting Dy,---, D, real
ample divisors whose classes are 61, ,0,. O
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We go back to the proof of Theorem 2.15. Let g be a positive integer such
that the divisors D} = ¢D1,---, D) = ¢D, are all very ample. By Lemma 2.18,
there exists a positive number C such that, for all j € {1,---,r} and n € Z,
we have mvolr(f['D}) > Cvolc(f;'D})*. Let D be a real ample divisor whose
Chern class is g¢-divisible. There are n € Z and ji,---,js € {1,---,r} such
that [D] = >, _, f[D},]. Then

mvolg (D) > vaolR(ffD;k)
k

> CY vole(fI'D),)*
k
> C (Z vola( ffD;k)> (by Lemma 2.17)
k
= CVOIC (D)a.
Hence we see that a belongs to A(X), and Theorem 2.15 is proved. O

Remark 2.20. Here, we are not able to say if the concordance is reached or not.

3. ABELIAN SURFACES

3.1. Preliminaries. A real abelian variety X is a real algebraic variety whose
underlying complex manifold X (C) is a complex torus C9/A. We shall say real
elliptic curve when g = 1, and real abelian surface when g = 2. As we still assume
that X(R) # (), we are brought to the case where the anti-holomorphic involu-
tion ox comes from the complex conjugation on CY, and the lattice A has the
form

(39) N ARCE VAR

where 7 € M,(C) is such that Jm(r) € GL,(R) and 2%Re(r) = (IOT 8), the

integer r being characterized by the fact that X (R) has 297" connected components
(cf [Sil89, §IV]).

A (real) homomorphism between two real abelian varieties is a holomorphic
map f: X = C9/A — X’ = CY /A’ which is compatible with the real structures
(i.e. ox/ 0 f = foox) and which respects the abelian group structures (this is equiv-
alent to f(0) = 0). Such a map lifts to a unique C-linear map F : C9 — CY such
that F(A) C A’, whose matrix has integer coefficients (for F(Z9) ¢ A'NRY = Z9).
We also talk about endomorphisms, isomorphisms and automorphisms of real
abelian varieties. Observe that in this context, automorphisms are asked to preserve
the origin.

A (real) isogeny between two real abelian varieties of same dimension is a ho-
momorphism of real abelian varieties that is surjective, which means its matrix has
maximal rank. Two real abelian varieties are said to be isogenous when there exists
an isogeny from one to the other (this is an equivalence relation, cf [BL99, 1.2.6]).

Remark 3.1. The real Picard number does not change by isogeny. Indeed, any
isogeny f : X — X' gives rise to a homomorphism f*: N'(XR;Z) — N'(Xg; Z)
which is injective, hence p(Xg) < p(Xr); the other inequality follows by symmetry
of the isogeny relation.



REAL VERSUS COMPLEX VOLUMES ON REAL ALGEBRAIC SURFACES 16

Lemma 3.2. Any real abelian surface X is isogenous to C?/A, where A has the
form

(40) A =7?®iSZ?,

the matriz S = (gl z3> being symmetric positive definite. We then have
3 Y2

(41) p(Xr) = 4 — dimq(Qy1 + Qy2 + Qya).

Proof. The existence of a real polarization on X = C9/A (see [Sil89, §IV.3]) implies
that the lattice A can be set on the form DZ? @ 7Z?, the matrix D being diagonal
with integer coefficients, and the matrix 7 being symmetric, with S = Jm(7) pos-
itive definite and 29Re(7) an integer matrix. Hence the dilation by 2 in C? gives
rise to a real isogeny from C?/A to C%/(Z? & iSZ?). The equality (41) comes
from [BL99, §1, 3.4] and [Sil89, §IV (3.4)]. O

Remark 3.3. As a consequence of (41), we see that the real Picard number p(Xgr)
is 1, 2 or 3. By contrast the complex Picard number p(X¢) can also achieve the
extra value 4, when X is isogenous to the square of an elliptic curve with complex
multiplication (cf [BL99, §2 7.1]).

Now observe the following fact, that is very specific to tori.

Proposition 3.4. Let f be an automorphism of a real abelian surface X. Then

(42) hiop (fe) = 20y (fR)-
Accordingly, a(X) < 1/2 as soon as X admits real hyperbolic type automorphisms.

Proof. We lift the automorphism f to a C-linear map F : C?> — C? whose matrix
is in SLo(Z) (replacing f by f?2 if neccesary). If F' has spectral radius 1, then it is
obvious that hip (fr) = hiop(fc) = 0. Otherwise, F' has two distinct eigenvalues A
and 71, with |A| > 1. As a R-linear map of C?, F has eigenvalues (A, \, A=}, A7 1)
(with multiplicities), thus hye, (fc) = 2log|A| (see for instance [BS02, 2.6.4]). Re-
stricted to R?, F has eigenvalues (A, A\™1), hence hyo, (fr) = log(|A]).

The last part is a consequence of Theorem 2.8. O

The aim of what follows is to prove the following theorem, that describes ex-
haustively the concordance for real abelian surfaces.

Theorem 3.5. Let X be a real abelian surface. We have the following alternative:

(1) p(Xr) =1 and o(X) = 1;

(2) p(Xr) =2 and
(a) if the intersection form represents 0 on N'(Xgr;Z), then a(X) =1,
(b) otherwise, a(X) =1/2;

(3) p(Xr) =3 and a(X) =1/2.

The concordance is reached in all cases. It equals 1/2 if and only if X admits real
hyperbolic type automorphisms.

We already dealt with the case p(Xgr) = 1 (cf Corollary 1.8), so we focus on the
last two cases.
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3.2. Invariance of the concordance under isogeny.

Proposition 3.6. Let X and X' be two isogenous real abelian varieties. Then
A(X) = A(X"), and consequently a(X) = a(X’).

Proof. Since the isogeny relation is symmetric, it is enough to show the inclu-
sion A(X) C A(X’). Let f: X’ — X be an isogeny. For K = R or C, denote
by fk the induced map from X'(K) to X (K). We take an arbitrary Ké&hler metric
on X, and then we take its pullback on X', so that f is locally an isometry for the
respective metrics.

Fix any a € A(X). There exist C > 0 and ¢ € N* such that any real ample
divisor D on X, whose Chern class is ¢-divisible, satisfies mvolg (D) > C vole(D)®.
Since f* : N'(Xgr;Z) — NY(XR;Z) is an injective homomorphism, its image has
finite index n. Let D’ be a real ample divisor on X’ whose class is ng-divisible.
Then there is a real ample divisor D on X with [D’] = [f* D], and furthermore [D]
is g-divisible.

Any point on the curve D(R) has exactly deg(fr) preimages, hence volg (f*D) =
deg(fr) volg (D) by the choice of the metrics. Since f* realizes a bijective map
between V(D) and V(D'), we deduce, taking the upper bound on V(D), that
mvolg (D) = deg(fr) mvolgr (D).

By the same argument, we also have volc(D') = deg(fc) volc(D). So if we
set " = Cdeg(fr)/deg(fc)”, we obtain mvolg(D’) > C’volc(D’)“. This shows
that the exponent « is contained in A(X"). O

3.3. Picard number 2.

3.3.1. Hyperbolic rank 2 lattices. By definition, a lattice is a free abelian group L
of finite rank, equipped with a non-degenerate symmetric bilinear form ¢ taking
integral values. We say the lattice is hyperbolic when the signature of the induced
quadratic form on L@ R is (1,rank(L) — 1). The determinant of the matrix of ¢ in
a base of L is the same for all bases. Its absolute value is a positive integer, named
discriminant of the lattice.

Let (L, ¢) be a rank 2 hyperbolic lattice. Then L ® R has exactly two isotropic
lines. The discriminant § is a perfect square if and only if the quadratic form
associated to ¢ represents 0, which means that there exists an non zero isotropic
point in L, or to say it otherwise both isotropic lines in L ® R are rational.

Suppose that ¢ is no perfect square. The study of Pell-Fermat equation then
implies the existence of a hyperbolic isometry of L, i.e. an isometry whose spectral
radius is greater than 1. Such an isometry span a finite index subgroup of the
isometries of L. To be more precise, the group SO(L, ¢) of direct isometries of L
(those with determinant 1) is an abelian group isomorphic to Z x Z/2Z, and any
infinite order element in SO(L, ¢) is hyperbolic.

Conversely if § is a perfect square, there is no hyperbolic isometry, and the
isometry group is finite. More precisely SO(L, ¢) = {id, —id} ~ Z/27Z.

Ezample 3.7. Let X be a real algebraic surface with p(Xg) = 2. Then the
group NY(XRr;Z), equipped with the intersection form, is a rank 2 hyperbolic lat-
tice.

3.3.2. Surfaces with real elliptic fibrations. Let X and Y be two complex algebraic
varieties. An elliptic fibration on X is a holomorphic map 7 : X — Y which is
proper and surjective, and such that the generic fiber is an elliptic curve. When the



REAL VERSUS COMPLEX VOLUMES ON REAL ALGEBRAIC SURFACES 18

varieties X, Y and the morphism 7 are defined over R, we talk about real elliptic
fibration.

Proposition 3.8. Let X be a real abelian surface with p(Xgr) = 2. The following
are equivalent:

(1) the intersection form on N'(Xr;Z) represents 0;

(2) there exists a real elliptic fibration on X ;

(3) X is isogenous to the product of two elliptic curves Ey and Es.

In this case, the concordance of X equals 1, and it is reached.

Remark 3.9. The elliptic curves FE; and Fy can’t be isogenous, for otherwise the
Picard number would be 3.

Proof. (1) = (2): Let 6 a non zero primitive point in N!'(Xgr;Z) such that 6% = 0.
After changing 6 into —0 if necessary, there exists a real effective and irreducible
divisor D whose class is 6 (here we use the fact that Nef(Xgr) is the closure
of Pos(Xgr), cf [Laz04, 1.5.17]). By the genus formula, the arithmetic genus of D
is 1. Since an abelian surface does not have any rational curve, D must be a real
elliptic curve. We may suppose that D goes through 0 (if not, we translate it and
obtain an equivalent divisor), and thus it is a real subtorus. Now the canonical
projection 7 : X — X/D is a real elliptic fibration.

(2) = (3) follows from the Poincaré reducibility theorem (see [Deb99, §VI 8.1]).

(3) = (1): Let f : X — E; x E3 be an isogeny. The effective divisor D given
by f*(E1 x {0}) has self-intersection 0, so the intersection form represents 0.

As the nef cone of Fy x Ey is spanned by [E; x {0}] and [{0} x E3], then the
interval A(E; x Es) is equal to [0, 1], by Proposition 1.7. By invariance under
isogeny, we also have A(X) = [0, 1]. O

3.3.3. Surfaces with no real elliptic fibration.

Theorem 3.10. Let X be a real abelian surface with p(Xgr) = 2. Assume that the
intersection form on NY(Xgr;Z) does not represent 0. Then

(1) there exists a real hyperbolic type automorphism on X ;

(2) the concordance of X equals 1/2 and it is reached.

We will use the following result (see for instance [X85, exposé VIII]):

Theorem 3.11 (Torelli theorem for tori). Let X be a real abelian surface, and
let ¢ be a Hodge isometry of H?(X (C);Z) which preserves the ample cone and has
determinant +1. Then there exists a complex automorphism [ of X(C), unique
up to a sign, such that f. = ¢. If moreover ¢ commutes with the involution o%,
then f or f? is a real automorphism.

Remark 3.12. To prove the last part, it is enough to remark that oxo foox = £f~1,
by the uniqueness part.

Lemma 3.13. Let L be an free abelian group of finite rank, L' be a finite index
subgroup of L and ¢' be an automorphism of L'. Then some positive iterate ¢'*
extends to an automorphism ¢ on L.

Proof. Denote by ¢ the exponent of the group L/L’, so that ¢L C L'. As ¢’
projects to an automorphism of L’/qL’ that has finite order k, then ¢'*(qL) C qL.
Let pg : L — qL be the isomorphism defined by ¢ + ¢f. Then the automor-
phism ¢ = ,uq_1 o¢ k| 4L © Mg satisfies the desired property. 0
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Proof of Theorem 3.10. Since the intersection form does not represent 0, there
exists a hyperbolic isometry ¢; of L1 = NY(Xgr;Z) (cf §3.3.1). Replacing ¢;
by ¢? if necessary, we may suppose that ¢; preserves the cone Amp(Xg) and
that det(¢1) = 1. Denote by L the orthogonal of L; in L = H?(X(C);Z),
and by L’ the direct sum L; @ Ls. The subgroup L’ has finite index in L, so
by Lemma 3.13, ¢¥ ®idy, extends to an automorphism ¢ on H2(X(C);Z), for
some k € N*. It is clear by construction that ¢ satisfies the asumptions of Theo-
rem 3.11. Thus there exists a real automorphism f on X such that f, = ¢2. Its
entropy is positive, as a multiple of the spectral logradius of ¢;.

The equality a(X) = 1/2 follows from Theorem 2.15 and Proposition 3.4. In
order to show the concordance is reached, we replace a by 1/2 = hyop (fr)/ hiop (fc)
inside the proof of Theorem 2.15 by using the following lemma, which improves the
inequality of Corollary 2.12. O

Lemma 3.14. Let f be a real automorphism of a real abelian surface X. Assume
that A = exp(hiop(fr)) > 1. Then for all very ample real divisors D on X, there
exists C' > 0 such that

(43) mvolg (f;' D) > CA"
for alln € N.

Proof. The automorphism f lifts to a linear self-map F of R2. Replacing f with f?
if necessary, F has eigenvalues A and A~'. We choose a scalar product on R?
such that the eigenlines Dt and D™, respectively associated to A and A~!, are
orthogonal. Then we take on X (R) the Riemannian metric induced by this scalar
product.

If necessary, we change D (by translation) into an equivalent divisor containing
the origin as a smooth point. Then the curve D(R) contains a smooth simple arc
through 0. Let 7 be the lift of 7 to R? containing the origin, and let p : R? — R?
be the projection on DT with direction D~. Then

mvol(f;'D) > length(f" (7)) = length(F"(7))
> length(po F"(¥))
A" length(p(3)).
Observe that length(p()) > 0. Indeed if it was zero, ¥ would be contained in D,
hence the curve D(R), being analytic, would contain the projection of D~ on the

torus R%/Z2. This could not be, because the last one is Zariski-dense, the line D~
being irrational. Thus we get the result with C' = length(p(7)). O

V

3.4. Picard number 3.

Lemma 3.15. Let X be a real abelian surface with p(Xr) = 3. There exists a real
elliptic curve E such that X is isogenous to ' X E.

Proof. Changing X by isogeny if necessary, X has the form C?/A, where A is like
in Lemma 3.2. As p(Xgr) = 3, then Qy; + Qy2 + Qys has dimension 1, so there ex-
ists m € IN* such that mys and mys are in Zy; (y1 # 0, for y1y2 — y3 = det(S) > 0).
Then the dilation by m in C? gives rise to an isogeny from X to E x E, where E
is the elliptic curve C/(Z & iy, Z). O

So we see it is enough to restrict ourselves to the case X = E x E = C2/A,
where E = C/(Z®7Z) is a real elliptic curve, with y = Jm(7) > 0 and 20Re(7) € Z,
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and A is the lattice Z?@7Z2. Furthermore, since the concordance is invariant under
isogeny, we can even suppose that Re(7) = 1/2, so that the curve E(R) has only
one connected component, which is identified with R/Z.

Observe that the group GLo(Z) acts on X and gives many examples of real
hyperbolic type automorphisms. A consequence from this fact and Proposition 3.4
is that we already have the inequality

(44) a(X) <1/2.

In order to compute volumes, we choose the standard euclidean metric on the
torus X = C2%/A, whose Kihler form is given by x = % (dz1 AN dz1 + dzo A dZ3). For
this metric, we have volg (F) = 1 and volg(E) = y. In the remaining part of this
section, we follow [Chr04].

Definition 3.16. A rational line on X is the projection of a line of C? given by
an equation az; = bzg with (a,b) € Z?. The number a/b € QU {oo} is the slope of
this rational line.

Ezxample 3.17. The curves H, V', and A, which respectively are the horizontal, the
vertical and the diagonal of F x FE. are rational lines with respective slopes 0, co
and 1. Their classes form a base of N'(Xg;Z) (one can use |[BL99, §1, 3.4] and
[Sil89, §IV (3.4)] to make this computation).

Lemma 3.18. Let D be a rational line on X. Then
(45) volg (D) = Cy/volc(D),
with C' = y~/? = volg (E)/+/volc(E).

Proof. Let a/b be the slope of D, with a and b coprime integers. We compute the
length of D(R) by the Pythagorean theorem:

(46) volg (D) = v a? + b2.

On the other hand, it is clear, from the form of &, that

(47) volg(D) = vole(E)(D-H+ D -V).
Then we easily check that D - H = a? and D -V = b?, hence
(48) volg(D) = y(a® + b?).

O

The group SLz(Z) acts by automorphisms on X, thus by isometries on N*(Xg; R).
This action preserves the ample cone Amp(Xg ), which here is the same as Pos(Xgr)
(see [Laz04, §1.5.B]).

If we identify the disk D = P(Amp(Xgr)) with the Poincaré half-plane H, by the
unique isometry matching the class of a rational line in 0D with the inverse of its
slope in 0H = R U {0}, then the induced action of PSL2(Z) on D corresponds to
the standard action by homographies on H. As a consequence we see that the tri-
angle T C D, whose vertices are P[H], P[V] and P[A], contains some fundamental
domain for the action of PSLy(Z) on D (see figure 5).

FIGURE 4. An example of horseshoe, here with g = 2.
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-1 0 1 2

FIGURE 5. A fundamental domain for the action of PSL2(Z) on H.
This domain is contained in the triangle corresponding to T, whose
vertices are co, 0 and 1.

Let D be a real ample divisor on X. There exists some f € SLy(Z) such
that P(f7!'[D]) € T. So there are non-negative numbers ki, ke and ks such
that f7'[D] = ki[H] + ko[V] + k3[A]. The numbers ki, ko and k3 are actually
integers, for ([H],[V],[A]) is a base of N'(Xg;Z). Hence the divisor D is equiva-
lent to k1 Dy + ko Do + k3 D3, where D = f(H), Dy = f(V) and D3 = f(A) are
rational lines. Then, by Lemma 3.18,

mvolR(D) Z Z k/’j VOlR(Dj)

Cijq/volc(Dj)

C [ k;*volo(D;)  (by Lemma 2.17)
J
C ij VOlc(Dj)
\/ J

= Cvolg(D)Y2,

We deduce that 1/2 € A(X). Thus the concordance is 1/2 and it is reached.
This ends up the proof of Theorem 3.5.

Y]

Y]

4. K3 SURFACES

4.1. Preliminaries. A real K3 surface is here a real algebraic surface X such
that H!(X(C);Z) = 0 and the canonical divisor K x is trivial.

4.1.1. Ezceptional curves. On a K3 surface, a complex irreducible curve C' with
negative self-intersection must have self-intersection —2, by the genus formula.
By contrast, when C' is a real curve that is irreducible over R and has negative
self-intersection, we can also have C? = —4. Indeed the curve C can have the
form F + o(E), where E is a complex (—2)-curve with E - o(E) = 0.

By extension, we call exceptional curve a real effective divisor which either has
self-intersection —2, either has the form F + o(FE), where E is a complex curve
with 2 = —2 and E - 0(FE) = 0 (this implies (E + o(E))? = —4). We denote
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by A C N'(XRg;Z) the set of classes of exceptional curves. By description of the
Kahler cone (cf [BHPV04, §VIIT (3.9)]),

(49) Amp(Xgr) ={0 € Pos(Xr) | 0-d > 0Vd € A}.

This cone coincides with one of the chambers of Pos(Xgr)\ Uyena d-. As a spe-

cial case, we see that the lack of exceptional curves is equivalent to the equal-
ity Amp(Xgr) = Pos(Xgr).

4.1.2. Torelli theorem. Let us recall the following result, that describes automor-
phisms of K3 surfaces (see [BHPV04, §VIII (11.1) & (11.4)], [Sil89, §VIII (1.7)]).

Theorem 4.1 (real Torelli theorem). Let X be a real K3 surface, and let ¢ be
a Hodge isometry of H?(X(C);Z) which preserves the ample cone. Then there
exists a unique complex automorphism f of X(C) such that f. = ¢. If moreover ¢
commutes with the involution o% , then f is a real automorphism.

Remark 4.2. The kernel of the representation Aut(Xgr) — O(N!(Xg;Z)) is fi-
nite, where O(N!(Xg;Z)) denotes the group of isometries of N!(Xgr;Z). Indeed,
the space H?(X (C); R) decomposes into the orthogonal direct sum V; & Vo @ Vi,
where V; = N!(Xg;R), V5 stands for the orthogonal of V; in HY(X(C);R),
and V3 = (H%2 @ H??)(X(C); R). The intersection form is negative definite on V5
and positive definite on V3. If f € Aut(Xg) is in the kernel of the representation,
then the induced map f. on H2(X(C);R) preserves the intersection form, so it
is contained in the compact set {idy, } ® O(V2) @ O(V3). Since the matrix of f,
must also have integer coefficients in a base of H2(X (C); Z), there are finitely many
possibilities for f., and thus for f by uniqueness in the Torelli theorem.

4.2. Picard number 2. When p(Xgr) = 2, the nef cone Nef(Xgr) has exactly two
extremal rays. We say this cone is rational if both rays are rational, i.e. if they
contain an element of N'(Xg;Z)\{0}.

Theorem 4.3. Let X be a real K3 surface with p(Xgr) = 2.

(1) If the intersection form on N'(Xg;Z) represents 0, or if there are excep-
tional curves on X, then the group Aut(Xr) is finite, the cone Nef(Xgr) is
rational and o(X) = 1, the concordance being reached.

(2) Otherwise X admits a real hyperbolic type automorphism f. Such an auto-

hiop (fR)

morphism span a finite index subgroup of Aut(Xgr), and a(X) = o)

Remark 4.4. The intersection form on N'(Xg;Z) represents 0 if and only if there
exists some real elliptic fibration (see [PSS71, Corollary 3 in §3]).

Proof. First case: the intersection form represents 0. The group O(N*(Xgr;Z)) is
finite (cf §3.3.1), and so is the kernel of Aut(Xgr) — O(N'(Xgr;Z)), hence Aut(Xgr)
must be finite. The extremal rays of Nef(Xgr) are either isotropic half-lines, either
orthogonal to the class of an exceptional curve: they are rational in both cases.
Second case: the intersection form does not represent 0 and there are exceptional
curves. We show that X has many exceptional curves. To be more precise, let d € A
be the class of such a curve, and let ¢’ be a hyperbolic isometry of N!(Xgr;Z).
Replacing ¢’ by a positive iterate if necessary, the isometry ¢’ ®©idy1(xg,z)+ extends
to an isometry ¢ on N*(X¢;Z) (cf Lemma 3.13). Note that we can’t apply the
Torelli theorem here, for ¢ does not preserve the ample cone (even if we suppose
that it preserves Pos(Xgr)). Nevertheless, for all n € Z, +¢™(d) is the class of an
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exceptional curve. Indeed, either d> = —2, in which case ¢"(d)? = —2, and by
Riemann-Roch, h°(X, Ox (¢"(d)) + h% (X, Ox (—¢"™(d)) > 2, so ¢"(d) or —¢"(d) is
the class of an effective divisor; either d = e — 0*e with e? = —2 and e - o%e = 0,

where e is the class of a complex effective divisor, and from the same argument it
comes that ¢™(e) or —¢™(e) is effective, so as £¢™(d) = £(¢"(e) — a*¢™(e)). Since
the cone Amp(Xg) is one of the chambers of Pos(Xg)\ Uzca d*, the extremal rays
of Nef(Xg) must be orthogonal to classes of exceptional curves, so they are rational.
The subgroup O(N!(Xg; Z)) whose elements fix or exchange these extremal rays is
finite, and so Aut(Xg) is finite as well.

In the first two cases, let RT[D] be an extremal ray of the cone Nef(Xgr). By
Riemann-Roch, h°(X,Ox (D)) > 2, thus mvolr(D) > 0 by Proposition 1.2. The
assertion about a(X) follows, using Proposition 1.7.

Third case: the intersection form does not represent 0 and there is no excep-
tional curve. Let ¢’ be a hyperbolic isometry of N!(Xgr;Z) that preserves the cone
Amp(Xgr) = Pos(Xgr). By the same argument as in the proof of Theorem 3.10,
some iterate ¢’* extends to a Hodge isometry ¢ of H?(X(C);Z) that commutes
with ¢*. Then by the Torelli theorem, there exists on X a real automorphism f
such that f, = ¢. The entropy of fc is positive as a multiple of the spectral lo-
gradius of ¢/. Now the representation Aut(Xgr) — O(N'(Xg;Z)) has finite kernel,
and the subgroup generated by f. has finite index in O(N!(Xgr;Z)) (cf §3.3.1). It
follows that f span a finite index subgroup of Aut(Xgr). The concordance formula
is a consequence of Theorem 2.15. (]

Ezample 4.5 (|Weh88]). Let Y be the 3-dimensional flag variety
(50) Y = {(P,L) e P2(C) x P>(C)" | P e L}.

Let X be a smooth hypersurface of Y such that the projections m; : X(C) — P?(C)
and 7y : X(C) — P?(C)" are ramified 2-coverings. Then X is a K3 surface, named
Wehler surface. Furthermore, generic Wehler surfaces have a rank 2 Néron-Severi
group, spanned by both classes of the fiber of each covering. The automorphism
group is then isomorphic to a free product Z/2Z x Z/2Z, the generators being
the involutions s; and ss of the coverings m and my. Furthermore, the automor-
phism f = s1 0 s9 has hyperbolic type.

If moreover the surface X is defined over R, then N'(Xgr;Z) = N} (Xc;Z), and
the automorphism f is real. So, by Theorem 2.15,

— htOP(fR) _ htop(fR)
hiop(fe) — log(7 +4v/3)

4.3. Deformation of K3 surfaces in P! x P! x P!. The following example was
first described by McMullen in [McMO02]. Fix a non zero real number ¢. Let X be
the hypersurface of P1(C)? defined in its affine part C® by

(52) (22 +1)(22 +1)(22 + 1) + tz12023 = 2.

(51) a(X)

It is a smooth surface of tridegree (2,2,2), hence a K3 surface [Maz92|, here
defined over R. We have three double (ramified) coverings 7} : X* — P! x P!
(with j € {1,2,3}), that consist in forgetting the j-th coordinate. These three cov-
erings give rise to three involutions s4 on X*, that span a subgroup of Aut(Xr)
which is a free product Z/2Z x Z/2Z x Z./27Z |Wan95|. Let f! be the automorphism

of X! obtained by composing these three involutions. Its entropy can be computed
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by the action on the subgroup of N'(Xg;Z) spanned by the fibers of the three
coverings. We obtain hy, (f&) = log(9 + 41/5) (see for instance [Canll]).

For parameter ¢t = 0, the complex surface X°(C) is not smooth, for there
are 12 singular points (oo, 44, +1i), (+i,00,+4) and (+i,+4,00). However these
points are not real, so the surface X*(R) remains smooth at ¢ = 0. Restricted
to X°(R), the birational map f° is an order 2 diffeomorphism, given by the for-
mula fO(z1,22,23) = (—x1, —22, —23). Consequently hs,,(fg) = 0.

Let X be the submanifold of P}(R)? x R defined by X = {(z,t) |z € X!(R)}.
The projection p : X — R is a locally trivial bundle whose fibers are the real sur-
faces X*(R). Thus there is an open neighborhood I. = (—¢,¢) around 0, and an
injective local diffeomorphism v : X°(R)x I. — X, such that pot) is the natural pro-
jection on the second coordinate. For all t € I, the map v induces a diffeomorphism
from X°(R) to X!(R), which enables us to conjugate f§ : X*(R) — X*(R) to a
diffeomorphism g on X°(R). This family of diffeomorphisms on X°(R) is a con-
tinuous family for the C*°-topology. As the map ¢° = f3 has entropy 0, it follows
that lims—,0 hyop (g") = 0, by continuity of the topological entropy on Diff**(X°(R.))
(see [Yom87] or [New89)] for the upper semicontinuity, and [KH95, Corollary S.5.13]
for the lower semicontinuity). Since the entropy does not change by conjugacy,
we also have lim;_,0 hsop (f&) = 0. On the other hand we obtain, by Theorem 2.8,

that a(X*) < hyop (fR)/ Dtop (fE) = hiop (fi)/ 10g(9 + 4/5) for ¢ # 0, and so we get

53 li Xt =o.
(53) (im o (XT)

To sum up, we have found a family (X7, f*);er.\ (o} of real K3 surfaces X" em-
bedded in (P')3, equipped with a real hyperbolic type automorphism f?, such that

(1) hyop(f&) is a positive constant;

(2) ast goes to 0, X*(R) degenerates in a smooth surface, and f§ in a 0-entropy
diffeomorphism;

(3) limy—o a(X*) = 0.

So we just proved the following:

Theorem 4.6. For any n > 0, there erists a real K3 surface in (PY)3 such
that a(X) < n.

5. NON-DENSITY OF AUTOMORPHISMS IN Diff (X (R))

Let X be areal algebraic surface. For any r € NU{oo}, we denote by Diff" (X (R.))
the group of C"-diffeomorphisms of the surface X (R), together with its C"-topology
(when r = 0, Diff’(X(R)) = Homeo(X (R)) stands for homeomorphisms). The
group Aut(Xgr) identifies with a subgroup of Diff" (X (R)). We would like to know
how this subgroup sits into the whole group of diffeomorphisms.

When Aut(Xgr) doesn’t have any positive entropy element, it obviously can’t be
dense in Diff**(X (R)). Indeed, there always exist positive entropy diffeomorphisms
on X (R), and these diffeomorphisms can’t be approached by any automorphism,
by continuity of the entropy. The following result is a declination of this idea.

Proposition 5.1. Let X be a real algebraic surface such that a(X) > 0. Then the
image of the group Aut(Xg) in Diff (X (R)) is not dense.
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Proof. Let g be a diffeomorphism of X (R) such that 0 < hyp(g) < a(X) log(A10).
Since the entropy varies continuously on Diff (X (R)), there exists a neighbor-
hood U of ¢ in Diff**(X(R)) such that the entropy of any diffeomorphism in U
remains in the open interval (0, a(X)log(A10)). By Corollary 0.7, this neighbor-
hood can’t contain any automorphism of X. (I

In [KMO09], Kollar and Mangolte established the non-density of Aut(Xgr) in
Homeo(X (R)) as soon as X (R) has the topology of a connected orientable sur-
face with genus > 2. By contrast, they proved, for surfaces birational to P%, the
density in Diff (X (R)) of the group of birational transformations with imaginary
indeterminacy points.

When the Kodaira dimension is 0, X (R) is naturally equipped with a canonical
volume form px, which comes from an everywhere non zero holomorphic 2-form on
some finite cover of X. Since each automorphism preserves px, the non-density is
obvious, as pointed out in [KM09]. Nethertheless we can prove, using exactly the
same argument, the non-density in diffeomorphisms which preserve the volume.

Proposition 5.1 bis. Let X be a real algebraic surface of Kodaira dimension 0
such that a(X) > 0. Then the image of the group Aut(Xw) in Diff 5 (X (R)) is not
dense, where Diff 7 (X(R)) denotes the subgroup of Diff (X (R)) whose elements
preserve the canonical volume form px.

Actually we can be more precise when the automorphism group Aut(Xc) is a
discrete group (for the uniform convergence topology), i.e. when the connected
component Aut(Xc)g of the identity is reduced to a single point. For instance,
this is the case for K3 and Enriques surfaces, but not for tori (for which Aut(Xc)o
consists in all translations).

Theorem 5.2. Let X be a real algebraic surface. Assume that o(X) > 0 and
Aut(X¢)o = {idx}. Then the image of the group Aut(Xg) in Diff (X (R)) is a
discrete subgroup.

Proof. Fix a > 0 such that oo € A(X). There are positive numbers ¢ and C such
that any real ample divisor D whose class is ¢-divisible satisfies

(54) mvolg (D) > Cvolc(D)®.

Let Dy be such a divisor, and let M > 1 be such that CM* > mvolg(Dy) (in
particular, volg (Do) < M).

Lemma 5.3. The set ' = {f € Aut(Xgr) | volc(f.Do) < M} is finite.

Proof of Lemma 5.3. Denote by © C N'(Xg;Z) the set of classes of ample divi-
sors D that satisfy vole (D) < M. This set is finite, because such classes are in the
compact set {6 € Nef(Xr) | 0 - [k] < M}, where x denotes the Kéhler form on X.

By [Lie78, 2.2] or [Fuj78, 4.8], the subgroup {f € Aut(Xr) | f«[Do] = [Do]} has
finitely many connected components, so in our case it is finite. It follows that the
set T'={f € Aut(XR) | f«[Do] € ©} is finite. O

As T'is finite and —SM° > ] = IDidx () ||oo, We can find a neighborhood U

mvolg (Do)
of idx (g in Diff' (X (R)) such that
(1) UNT = {idxym)};
(2) for all g € U, ||Dglleo < =SM°

mvolgr (Do) *
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Let f be a real automorphism of X such that the restricted map fr : X(R) = X(R)
isin U. Since the length of a curve is at most multiplied by ||Dfr||cc when we take
its image by fr, we obtain

(55) mVOlR(f*Do) < ||DfR||ooHlV01R(DO) < CM*“.

On the other hand, mvolg (f«Dg) > Cvolc(f.Do)%, so we get volc(f«Do) < M,
hence f € I Then by hypothesis on U, we get fr = idx(g). This implies
that Aut(Xg) is a discrete subgroup of Diff* (X (R)). O

APPENDIX A. CAUCHY-CROFTON FORMULA AND CONSEQUENCES

What is described here can be found in the manuscript [Chr04], except for the
proof of Lemma A.3, which contains some imprecision in that text.

There is a classical way, in integral geometry (see [San76]), to compute the
volume of a k-dimensional submanifold N of P4(R), just by taking the mean of
the number of intersections between N and k-codimensional projective subspaces.
In order to make it work, we choose both a metric on P4(R), and a probability
measure on the Grassmannian G(d — k,d) (that is the real algebraic variety of
(d — k)-dimensional projective subspaces of P4(R)), which are invariant under the
action of the orthogonal group O(d + 1). Namely we set the Fubini-Study metric
on P4(R), and the probability p1g— .4 on G(d — k,d) induced by the Haar measure
on O(d + 1) (the Grassmannian is homogeneous with respect to this group). Now
we can state the formula.

Theorem A.1 (Cauchy-Crofton formula). Let N be a k-dimensional submanifold
of P4(R). With respect to the Fubini-Study metric,

(56) vol(N) = vol(P*(R)) / 8(N N IT) dprg—g.a(10).
eG(d—k,d)
It is enough to check the formula when N is a k-symplex, and then to approach
an arbitrary submanifold by such symplices. A similar formula in the euclidean
context can be found in [San76, p. 245 (14.70)].

Corollary A.2. Let Y be a real k-dimensional algebraic subvariety of PdR. With
respect to the Fubini-Study metric,

(57) volg (Y) < deg(Y) volg (P*),
with equality if and only if Y is a union of deg(Y') real projective subspaces.

Proof of Corollary A.2. Observe that (Y (R)NII) < deg(Y) for allTI € G(d—k, d).
Thus we get the inequality (57) using the Cauchy-Crofton formula.

The equality is obviously reached when Y is the union of deg(Y') projective
subspaces. Now we prove this condition is necessary.

Lemma A.3. Let Y be a geometrically irreducible real k-dimensional algebraic
subvariety of PdR. If deg(Y') > 1, then there exists a real projective k-codimensional
subspace 11 such that the number of real points of Y NII, counted with mulitplicities,
is no more than deg(Y') — 2.

Proof. Observe that the asumptions imply 0 < k < n. By Bertini’s theorem (see
[Laz04, 3.3.1]), there exists a real projective subspace L of dimension d — k + 1 > 2,
such that the curve C'=Y N L is irreducible over C and deg(C) = deg(Y).
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First we suppose that there is no hyperplane of L containing the curve C'. We
choose two distinct complex conjugate points P and P on the curve C(C), and a real
hyperplane IT of L such that II(C) contains these two points. As C' is irreducible
and not contained in II, the intersection C' NIl = Y N II is a finite number of
points, including the complex points P and P. The number of complex points of
this intersection, counted with multiplicities, is exactly deg(Y’), and at least two
complex points are not real. The result follows.

Otherwise let L’ ¢ L be the minimal projective subspace that contains the
curve C. As deg(C) > 1, then dim(L’) > 2. By first step, we can choose a
hyperplane IT" C L’ such that $(CNII")(R) < §—2. Then we take any hyperplane IT
of L containing IT" and not L', and we are done. O

Let us go back to the proof of the case of equality. Let Y be a real k-dimensional
subvariety of P? that is not the union of real projective subspaces. We may assume
that Y is irreducible over R.. If it is not geometrically irreducible, then Y = Z U o(7),
with Z a complex subvariety that is not real, hence volg (Y) = 0 < deg(Y") volg (P¥).
Otherwise we can deduce from Lemma A.3 that there exists a real hyperplane I1
such that (Y NII)(R) < deg(Y) — 2 (with mutliplicities). This inequality re-
mains satisfied on a neighborhood of IT in the Grassmannian G(d — k,d). Such a
neighborhood has a positive probability for ji4— i, so the Cauchy-Crofton formula

implies volg (V) < deg(Y) volgr (P*). O
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