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Stabilization of second order evolution equations with unbounded feedback with time-dependent delay

Introduction

Time-delay often appears in many biological, electrical engineering systems and mechanical applications, and in many cases, delay is a source of instability [START_REF] Hale | Introduction to functional differential equations[END_REF]. In the case of distributed parameter systems, even arbitrarily small delays in the feedback may destabilize the system (see e.g. [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF][START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF][START_REF] Rebarber | Robustness with respect to delays for exponential stability of distributed parameter systems[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF]). The stability issue of systems with delay is, therefore, of theoretical and practical importance.

There are only a few works on Lyapunov-based technique for Partial Differential Equations (PDEs) with delay. Most of these works analyze the case of constant delays. Thus, stability conditions and exponential bounds were derived for some scalar heat and wave equations with constant delays and with Dirichlet boundary conditions without delay in [START_REF] Wang | Stability in abstract functional-differential equations. II. Applications[END_REF][START_REF] Wang | Exponential stability and inequalities of solutions of abstract functional differential equations[END_REF]. Stability and instability conditions for the wave equations with constant delay can be found in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF]. The stability of linear parabolic systems with constant coefficients and internal constant delays has been studied in [START_REF] Huang | An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays[END_REF] in the frequency domain. Moreover we refer to [START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF] for the stability of second order evolution equation with constant delay in unbounded feedbacks.

Recently the stability of PDEs with time-varying delays was analyzed in [START_REF] Caraballo | Method of Lyapunov functionals construction in stability of delay evolution equations[END_REF][START_REF] Fridman | Exponential stability of linear distributed parameter systems with time-varying delays[END_REF][START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF][START_REF] Orlov | Stability of linear retarded distributed parameter systems of parabolic type. Chapter in[END_REF] via Lyapunov method. In the case of linear systems in a Hilbert space, the conditions of [START_REF] Caraballo | Method of Lyapunov functionals construction in stability of delay evolution equations[END_REF][START_REF] Fridman | Exponential stability of linear distributed parameter systems with time-varying delays[END_REF][START_REF] Orlov | Stability of linear retarded distributed parameter systems of parabolic type. Chapter in[END_REF] assume that the operator acting on the delayed state is bounded (which means that this condition can not be applied to boundary delays for example). The stability of the 1-d heat and wave equations with boundary time-varying delays have been studied in [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF] via Lyapunov functional.

The aim of this paper is to consider an abstract setting similar to [START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF] and as large as possible in order to contain a quite large class of problems with timevarying delay feedbacks (which contains in particular the results of [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF] for the wave equation).

Before going on, let us present our abstract framework. Let H be a real Hilbert space with norm and inner product denoted respectively by . H and (., .) H . Let A : D(A) → H be a self-adjoint operator with a compact inverse in H, which is positive (in the sense that is (Ax, x) > 0 for all x ∈ D(A), x = 0). Let V := D(A 1/2 ) be the domain of A 1/2 . We further assume that D(A) is dense in V . Denote by D(A 1/2 ) the dual space of D(A 1/2 ) obtained by means of the inner product in H.

Further, for i = 1, 2, let U i be a real Hilbert space (which will be identified to its dual space) with norm and inner product denoted respectively by . Ui and (., .) Ui , and let B i ∈ L(U i , D(A 1/2 ) ).

We consider the system described by

   ω(t) + Aω(t) + B 1 u 1 (t) + B 2 u 2 (t -τ (t)) = 0, t > 0, ω(0) = ω 0 , ω(0) = ω 1 , u 2 (t -τ (0)) = f 0 (t -τ (0)), 0 < t < τ (0), where t ∈ [0, ∞) represents the time, τ (t) > 0 is the time-varying delay, ω : [0, ∞) → H is the state of the system, ω is the time derivative of ω, u 1 ∈ L 2 ([0, ∞), U 1 ), u 2 ∈ L 2 ([-τ (0), ∞), U 2 ) are the input functions and finally (ω 0 , ω 1 , f 0 (• -τ (0))) are the initial data chosen in a suitable space (see below). The time-varying delay τ (t) satisfies (2)

∃ d < 1, ∀t > 0, τ (t) ≤ d < 1, and (3) 
∃ M > 0, ∀t > 0, 0 < τ 0 ≤ τ (t) ≤ M.
Moreover, we assume that

(4) ∀ T > 0, τ ∈ W 2, ∞ ([0, T ]).
Most of the linear equations modeling the vibrations of elastic structures with distributed control with delay can be written in the form [START_REF] Valein | Nonlinear waves in networks[END_REF], where ω stands for the displacement field. In many problems, coming in particular from elasticity, the inputs u i are given in the feedback form u i (t) = B * i ω(t), which corresponds to collocated actuators and sensors. We obtain in this way the closed loop system (5)

   ω(t) + Aω(t) + B 1 B * 1 ω(t) + B 2 B * 2 ω(t -τ (t)) = 0 in V , t > 0, ω(0) = ω 0 , ω(0) = ω 1 , B * 2 ω(t -τ (0)) = f 0 (t -τ (0)), 0 < t < τ (0)
. The abstract second order evolution equations without delay or with constant delay of type [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF] have been studied in [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF] and [START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF] respectively. In these two papers, the exponential stability (or polynomial stability) is shown, under some conditions, via an observability inequality for solution of corresponding conservative system. In our case, for time-varying delay, this method can not be applied due to the loss of the time translation invariance. Hence we introduce new abstract Lyapunov functionals with exponential terms and an additional term, which take into account the dependence of the delay with respect to time. For the treatment of other problems with Lyapunov technique see [START_REF] Fridman | Exponential stability of linear distributed parameter systems with time-varying delays[END_REF][START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF][START_REF] Orlov | Stability of linear retarded distributed parameter systems of parabolic type. Chapter in[END_REF].

Recall that, without delay, according to the Russell's principle ( [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]), if the decay of the energy is uniformly exponential, then the system is exactly controllable (with controls supported in the set where the feedback mechanism is active). Note also the result of [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF] for abstract second order evolution equations with bounded feedbacks without delay.

Moreover, contrary to [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF], the existence results do not follow from standard semi-group theory because the spatial operator depends on time due to the time-varying delay. Therefore we use the variable norm technique of Kato [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF].

Hence the first natural question is the well-posedness of this system. In section 2 we will give a sufficient condition that guarantees that this system (5) is well-posed, where we closely follow the approach developed in [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF] for the 1-d heat and wave equations. Secondly, we may ask if this system is dissipative. We show in section 3 that the condition

(6) ∃ 0 < α < √ 1 -d, ∀u ∈ V, B * 2 u 2 U2 ≤ α B * 1 u 2 U1
guarantees that the energy decays. Note further that if (6) is not satisfied, there exist cases where some instabilities may appear (see [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF][START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] for the wave equation with constant delay). Hence this assumption seems realistic. In a third step, again under the condition (6), we prove the exponential decay of the system (5) by introducing an appropriate Lyapunov functional. Moreover we give the dependence of the decay rate with respect to the delay, in particular we show that if the delay increases the decay rate decreases. This is the content of section 4.

Finally we finish this paper by considering in section 5 different examples where our abstract framework can be applied. To our knowledge, all the examples, with the exception of the first one, are new.

Well-posedness of the system

We aim to show that system (5) is well-posed. For that purpose, we use semigroup theory and an idea from [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF]. Let us introduce the auxiliary variable z(ρ, t) = B * 2 ω(t -τ (t)ρ) for ρ ∈ (0, 1) and t > 0. Note that z satisfies the following transport equation

   τ (t) ∂z ∂t + (1 -τ (t)ρ) ∂z ∂ρ = 0, 0 < ρ < 1, t > 0 z(0, t) = B * 2 ω(t) z(ρ, 0) = B * 2 ω(-τ (0)ρ) = f 0 (-τ (0)ρ).
Therefore, the system ( 5) is equivalent to

(7)        ω(t) + Aω(t) + B 1 B * 1 ω(t) + B 2 z(1, t) = 0, t > 0, τ (t) ∂z ∂t + (1 -τ (t)ρ) ∂z ∂ρ = 0, t > 0, 0 < ρ < 1, ω(0) = ω 0 , ω(0) = ω 1 , z(ρ, 0) = f 0 (-τ (0)ρ), 0 < ρ < 1, z(0, t) = B * 2 ω(t), t > 0.
If we introduce

U := (ω, ω, z) T , then U satisfies U = ( ω, ω, ż) T = ω, -Aω(t) -B 1 B * 1 ω(t) -B 2 z(1, t), τ (t)ρ -1 τ (t) ∂z ∂ρ T .
Consequently the system (5) may be rewritten as the first order evolution equation

(8) U = A(t)U U (0) = (ω 0 , ω 1 , f 0 (-τ (0).)),
where the time dependent operator A(t) is defined by

A(t)   ω u z   =   u -Aω -B 1 B * 1 u -B 2 z(1) τ (t)ρ-1 τ (t) ∂z ∂ρ   , with domain (9) D(A(t)) := {(ω, u, z) ∈ V ×V ×H 1 ((0, 1), U 2 ); z(0) = B * 2 u, Aω+B 1 B * 1 u+B 2 z(1) ∈ H}.
We note that the domain of the operator A(t) is independent of the time t, i.e. Now, we introduce the Hilbert space

H = V × H × L 2 ((0, 1), U 2 )
equipped with the usual inner product (11)

  ω u z   ,   ω ũ z   = A 1 2 ω, A 1 2 ω H + (u, ũ) H + 1 0 (z(ρ), z(ρ)) U2 dρ.
A general theory for equations of type (8) has been developed using semigroup theory [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. The simplest way to prove existence and uniqueness results is to show that the triplet {A, H, Y }, with A = {A(t) : t ∈ [0, T ]} for some fixed T > 0 and Y = D(A(0)), forms a CD-system (or constant domain system, see [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF]). More precisely, the following theorem gives some existence and uniqueness results (for proof see Theorem 1.9 of [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF] and also Theorem 2.13 of [START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF] or [START_REF] Valein | Nonlinear waves in networks[END_REF]).

Theorem 2.1 [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF] Our goal is then to check the above assumptions for system [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF]. Let us suppose that

(12) ∃ 0 < α ≤ √ 1 -d, ∀u ∈ V, B * 2 u 2 U2 ≤ α B * 1 u 2 U1 ,
where d is given by [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF]. Note that the choice of α is possible since d < 1 by (2).

The following lemma gives a sufficient condition to obtain (i):

Lemma 2.2 Assume that X = {u ∈ V : B 1 B * 1 u + B 2 B * 2 u ∈ H} is dense in H. Then (13) D(A(0)) is dense in H. Proof. Let (f, g, h) ∈ H be orthogonal to all elements of D(A(0)), namely 0 =   ω u z   ,   f g h   = (ω, f ) V + (u, g) H + 1 0 (z(ρ), h(ρ)) U2 dρ, for all (ω, u, z) ∈ D(A(0)).
We first take ω = 0 and u = 0 and z ∈ D((0, 1), U 2 ). As (0, 0, z) ∈ D(A(0)), we get

1 0 (z(ρ), h(ρ)) U2 dρ = 0. Since D((0, 1), U 2 ) is dense in L 2 ((0, 1), U 2 ), we deduce that h = 0.
In a second step, by taking ω = 0, z = B * 2 u and u ∈ X, we see that (0, u, B * 2 u) T ∈ D(A(0)) and therefore (u, g) H = 0, for all u ∈ X. As X is dense in H by hypothesis, we deduce that g = 0.

The above orthogonality condition is then reduced to

0 = (ω, f ) V , ∀(ω, u, z) ∈ D(A(0)).
By restricting ourselves to u = 0 and z = 0, we obtain

(ω, f ) V = 0, ∀(ω, 0, 0) ∈ D(A(0)).
But we easily check that (ω, 0, 0) ∈ D(A(0)) if and only if ω ∈ D(A). Since D(A) is dense in V (equipped with the inner product < ., . > V ), we conclude that f = 0.

Remark 2.3 As, by [START_REF] Komornik | Rapid boundary stabilization of the wave equation[END_REF], the kernel

ker(B * 1 ) of B * 1 is included in X, if ker(B * 1 ) is dense in H, then D(A(0)) is dense in H.
Now, we will show that the operator A(t) generates a C 0 -semigroup in H and, by using the variable norm technique of Kato from [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF], we will prove that system (8) (and then ( 5)) has a unique solution.

For that purpose, we introduce the following time-dependent inner product on

H   ω u z   ,   ω ũ z   t = A 1 2 ω, A 1 2 ω H + (u, ũ) H + qτ (t) 1 0 (z(ρ), z(ρ)) U2 dρ,
where q is a positive constant chosen such that ( 14)

1 √ 1 -d ≤ q ≤ 2 α - 1 √ 1 -d
with associated norm denoted by . t . This choice of q is possible since 0 < α ≤ √ 1 -d by [START_REF] Komornik | Rapid boundary stabilization of the wave equation[END_REF]. This new inner product is clearly equivalent to the usual inner product (11) on H. Theorem 2.4 Under the assumptions (2), ( 3), ( 4), ( 12) and ( 13), for an initial datum U 0 ∈ D(A(t)), there exists a unique solution

U ∈ C([0, +∞), D(A(t))) ∩ C 1 ([0, +∞), H)
to system [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF].

Proof. We first notice that ( 15)

φ t φ s ≤ e c 2τ 0 |t-s| , ∀t, s ∈ [0, T ],
where φ = (ω, u, z) and c is a positive constant. Indeed, for all s, t ∈ [0, T ], we have

φ 2 t -φ 2 s e c τ 0 |t-s| = 1 -e c τ 0 |t-s| A 1 2 ω 2 H + u 2 H +q τ (t) -τ (s)e c τ 0 |t-s| 1 0 z(ρ) 2 U2 dρ.
We note that 1 -e

c τ 0 |t-s| ≤ 0. Moreover τ (t) -τ (s)e c τ 0 |t-s| ≤ 0 for some c > 0. Indeed, τ (t) = τ (s) + τ (a)(t -s), where a ∈ (s, t),
and thus,

τ (t) τ (s) ≤ 1 + | τ (a)| τ (s) |t -s| .
By (4), τ is bounded and therefore, there exists c > 0 such that

τ (t) τ (s) ≤ 1 + c τ 0 |t -s| ≤ e c τ 0 |t-s| , by (3) 
, which proves [START_REF] Lagnese | Note on boundary stabilization of wave equations[END_REF].

We now prove that A(t) is dissipative up to a translation for a fixed t > 0. Take U = (ω, u, z) ∈ D(A(t)). Then

A(t)U, U t =   u -Aω -B 1 B * 1 u -B 2 z(1) τ (t)ρ-1 τ (t) ∂z ∂ρ   ,   ω u z   t = A 1 2 u, A 1 2 ω H -(Aω + B 1 B * 1 u + B 2 z(1), u) H -q 1 0 ∂z ∂ρ (ρ), z(ρ) U2 (1 -τ (t)ρ)dρ. Since Aω + B 1 B * 1 u + B 2 z(1) ∈ H, we obtain A(t)U, U t = A 1 2 u, A 1 2 ω H -Aω, u V , V -B 1 B * 1 u, u V , V -B 2 z(1), u V , V -q 1 0 ∂z ∂ρ (ρ), z(ρ) U2 (1 -τ (t)ρ)dρ = Aω, u V , V -Aω, u V , V -B * 1 u 2 U1 -(z(1), B * 2 u) U2 -q 1 0 ∂z ∂ρ (ρ), z(ρ) U2 (1 -τ (t)ρ)dρ,
by duality. By integrating by parts in ρ, we obtain

1 0 ∂z ∂ρ (ρ), z(ρ) U2 (1 -τ (t)ρ)dρ = 1 0 1 2 ∂ ∂ρ z 2 U2 (1 -τ (t)ρ)dρ = τ (t) 2 1 0 z 2 U2 dρ + 1 2 z(1) 2 U2 (1 -τ (t)) - 1 2 B * 2 u 2 U2 .
Therefore

A(t)U, U t = -B * 1 u 2 U1 -(z(1), B * 2 u) U2 - q 2 z(1) 2 U2 (1 -τ (t)) + q 2 B * 2 u 2 U2 - q τ (t) 2 1 0 z 2 U2 dρ.
By Young's inequality and ( 12), we find

A(t)U, U t ≤ α 2 √ 1 -d + qα 2 -1 B * 1 u 2 U1 + √ 1 -d 2 - q(1 -d) 2 z(1) 2 U2 +κ(t) U, U t ,
where ( 16)

κ(t) = ( τ (t) 2 + 1) 1/2 2τ (t) . Observe that α 2 √ 1-d + qα 2 -1 ≤ 0 and √ 1-d 2 -q(1-d)

2

≤ 0 since q satisfies (14). This shows that ( 17)

A(t)U, U t -κ(t) U, U t ≤ 0,
which means that the operator

Ã(t) = A(t) -κ(t)I is dissipative. Moreover κ(t) = τ (t) τ (t) 2τ (t)( τ (t) 2 +1) 1 2 -τ (t)( τ (t) 2 +1) 1 2 2τ (t) 2
is bounded on [0, T ] for all T > 0 (by ( 3) and ( 4)) and we have

d dt A(t)U =   0 0 τ (t)τ (t)ρ-τ (t)( τ (t)ρ-1) τ (t) 2 z ρ   with τ (t)τ (t)ρ-τ (t)( τ (t)ρ-1) τ (t) 2
bounded on [0, T ] by ( 3) and (4). Thus

(18) d dt Ã(t) ∈ L ∞ * ([0, T ], B(D(A(0)), H)),
the space of equivalence classes of essentially bounded, strongly measurable functions from [0, T ] into B(D(A(0)), H).

Let us now prove that λI -A(t) is surjective for a fixed t > 0 and any λ > 0.

Let (f, g, h) T ∈ H. We look for U = (ω, u, z) T ∈ D(A(t)) solution of

(λI -A(t))   ω u z   =   f g h   or equivalently (19)    λω -u = f λu + Aω + B 1 B * 1 u + B 2 z(1) = g λz + 1-τ (t)ρ τ (t) ∂z ∂ρ = h.
Suppose that we have found ω with the appropriate regularity. Then, we have

u = -f + λω ∈ V.
We can then determine z. Indeed z satisfies the differential equation

λz + 1 -τ (t)ρ τ (t) ∂z ∂ρ = h
and the boundary condition

z(0) = B * 2 u = -B * 2 f + λB * 2 ω. Therefore z is ex- plicitely given by z(ρ) = λB * 2 ωe -λτ (t)ρ -B * 2 f e -λτ (t)ρ + τ (t)e -λτ (t)ρ ρ 0 e λτ (t)σ h(σ)dσ, if τ (t) = 0, and 
z(ρ) = λB * 2 ωe λτ (t) τ (t) ln(1-τ (t)ρ) -B * 2 f e λτ (t) τ (t) ln(1-τ (t)ρ) +τ (t)e λτ (t) τ (t) ln(1-τ (t)ρ) ρ 0 h(σ) 1 -τ (t)σ e -λτ (t) τ (t) ln(1-τ (t)σ) dσ,
otherwise. This means that once ω is found with the appropriate properties, we can find z and u. In particular, we have, if τ (t) = 0,

(20) z(1) = λB * 2 ωe -λτ (t) + z 0 ,
where z 0 = -B * 2 f e -λτ (t) + τ (t)e -λτ (t) 1 0 e λτ (t)σ h(σ)dσ is a fixed element of U 2 depending only on f and h, and, otherwise [START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF] z

(1) = λB * 2 ωe λτ (t) τ (t) ln(1-τ (t)) + z 0 , where z 0 = -B * 2 f e λτ (t) τ (t) ln(1-τ (t)) +τ (t)e λτ (t) τ (t) ln(1-τ (t)) 1 0 h(σ) 1-τ (t)σ e -λτ (t) τ (t) ln(1-τ (t)
) dσ is a fixed element of U 2 depending only on f and h.

It remains to find ω. By [START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF], ω must satisfy

λ 2 ω + Aω + λB 1 B * 1 ω + B 2 z(1) = g + B 1 B * 1 f + λf,
and thus by [START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF],

λ 2 ω + Aω + λB 1 B * 1 ω + λe -λτ (t) B 2 B * 2 ω = g + B 1 B * 1 f + λf -B 2 z 0 =: q,
where q ∈ V , if τ (t) = 0, and by ( 21)

λ 2 ω + Aω + λB 1 B * 1 ω + λe λτ (t) τ (t) ln(1-τ (t)) B 2 B * 2 ω = g + B 1 B * 1 f + λf -B 2 z 0 =: q,
where q ∈ V otherwise. Assume τ (t) = 0. We take then the duality brackets ., . V , V with φ ∈ V :

λ 2 ω + Aω + λB 1 B * 1 ω + λe -λτ (t) B 2 B * 2 ω, φ V , V = q, φ V , V .
Moreover:

λ 2 ω + Aω + λB 1 B * 1 ω + λe -λτ (t) B 2 B * 2 ω, φ V , V = λ 2 ω, φ V , V + Aω, φ V , V + λ( B 1 B * 1 ω, φ V , V + e -λτ (t) B 2 B * 2 ω, φ V , V ) = λ 2 (ω, φ) H + A 1 2 ω, A 1 2 φ H + λ((B * 1 ω, B * 1 φ) U1 + e -λτ (t) (B * 2 ω, B * 2 φ) U2 )
because ω ∈ V ⊂ H. Consequently, we arrive at the problem

(22) λ 2 (ω, φ) H + A 1 2 ω, A 1 2 φ H + λ((B * 1 ω, B * 1 φ) U1 + e -λτ (t) (B * 2 ω, B * 2 φ) U2 ) = q, φ V , V , ∀φ ∈ V.
The left hand side of ( 22) is continuous and coercive on V. Indeed, we have

λ 2 (ω, φ) H + A 1 2 ω, A 1 2 φ H + λ((B * 1 ω, B * 1 φ) U1 + e -λτ (t) (B * 2 ω, B * 2 φ) U2 ) ≤ λ 2 ω H φ H + A 1 2 ω H A 1 2 φ H + λ( B * 1 ω U1 B * 1 φ U1 +e -λτ (t) B * 2 ω U2 B * 2 φ U2 ) ≤ Cλ 2 ω V φ H + A 1 2 2 ω V φ V +λ( B * 1 2 L(V, U1) ω V φ V + e -λτ (t) B * 2 2 L(V, U2) ω V φ V ) ≤ C ω V φ V , and for φ = ω ∈ V λ 2 ω 2 H + A 1 2 ω, A 1 2 ω H + λ( B * 1 ω 2 U1 + e -λτ (t) B * 2 ω 2 U2 ) ≥ A 1 2 ω 2 H ≥ C ω 2 V .
Therefore, this problem [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF] has a unique solution ω ∈ V by Lax-Milgram's lemma. We can easily prove the same results in the case where τ (t) = 0.

Moreover Aω + B 1 B * 1 u + B 2 z(1) = g + λf -λ 2 ω ∈ H.
In summary, we have found (ω, u, z) T ∈ D(A(t)) satisfying [START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF]. Again as κ(t) > 0, this proves that [START_REF] Orlov | Stability of linear retarded distributed parameter systems of parabolic type. Chapter in[END_REF] λI -Ã(t) = (λ + κ(t))I -A(t) is surjective for some λ > 0 and t > 0.

Then, ( 15), ( 17) and [START_REF] Orlov | Stability of linear retarded distributed parameter systems of parabolic type. Chapter in[END_REF] imply that the family à = { Ã(t) : t ∈ [0, T ]} is a stable family of generators in H with stability constants independent of t, by Proposition 1.1 from [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF]. Therefore, the assumptions (i)-(iv) of Theorem 2.1 are verified by [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF], ( 13), ( 15), ( 17), ( 18) and ( 23), and thus, the problem

Ũ = Ã(t) Ũ Ũ (0) = U 0 has a unique solution Ũ ∈ C([0, +∞), D(A(0))) ∩ C 1 ([0, +∞), H) for U 0 ∈ D(A(0)).
The requested solution of ( 8) is then given by

U (t) = e β(t) Ũ (t) with β(t) = t 0 κ(s)ds, because U (t) = κ(t)e β(t) Ũ (t) + e β(t) Ũ (t) = κ(t)e β(t) Ũ (t) + e β(t) Ã(t) Ũ (t) = e β(t) (κ(t) Ũ (t) + Ã(t) Ũ (t)) = e β(t) A(t) Ũ (t) = A(t)e β(t) Ũ (t) = A(t)U (t),
which concludes the proof.

The decay of the energy

We now restrict the hypothesis [START_REF] Komornik | Rapid boundary stabilization of the wave equation[END_REF] to obtain the decay of the energy. For that, we suppose that (6) holds, namely

∃ 0 < α < √ 1 -d, ∀u ∈ V, B * 2 u 2 U2 ≤ α B * 1 u 2 U1
, where d is the one from (2). Note that is possible since d < 1 by (2).

Let us choose the following energy ( 24)

E(t) := 1 2 A 1 2 ω 2 H + ω 2 H + qτ (t) 1 0 B * 2 ω(t -τ (t)ρ) 2 U2 dρ ,
where q is a positive constant satisfying

(25) 1 √ 1 -d < q < 2 α - 1 √ 1 -d ,
that exists by [START_REF] Fridman | Exponential stability of linear distributed parameter systems with time-varying delays[END_REF]. Note that this energy corresponds to the time-dependent inner product on H defined before.

Proposition 3.1 If (2), ( 3), ( 4), ( 6) and ( 13) hold, then for all (ω 0 , ω 1 , f 0 (-τ.)) T ∈ D(A(t)), the energy of the corresponding regular solution of ( 5) is non-increasing and there exists a positive constant C depending only on α, d and q such that (26)

E (t) ≤ -C B * 1 ω(t) 2 U1 + B * 2 ω(t -τ (t)) 2 U2 .
Proof. Deriving (24), we obtain

E (t) = A 1 2 ω, A 1 2 ω H + ( ω, ω) H + q τ (t) 2 1 0 B * 2 ω(t -τ (t)ρ) 2 U2 dρ +qτ (t) 1 0 (B * 2 ω(t -τ (t)ρ), B * 2 ω(t -τ (t)ρ)) U2 (1 -τ (t)ρ)dρ. Since ω = -(Aω + B 1 B * 1 ω + B 2 B * 2 ω(t -τ (t))) ∈ H, E (t) = Aω, ω V ,V -ω, Aω + B 1 B * 1 ω + B 2 B * 2 ω(t -τ (t)) V, V + q τ (t) 2 1 0 B * 2 ω(t -τ (t)ρ) 2 U2 dρ +qτ (t) 1 0 (B * 2 ω(t -τ ρ), B * 2 ω(t -τ (t)ρ)) U2 (1 -τ (t)ρ)dρ.
Then

E (t) = Aω, ω V ,V -ω, Aω V, V -ω, B 1 B * 1 ω V, V -ω, B 2 B * 2 ω(t -τ (t)) V, V + q τ (t) 2 1 0 B * 2 ω(t -τ (t)ρ) 2 U2 dρ +qτ (t) 1 0 (B * 2 ω(t -τ (t)ρ), B * 2 ω(t -τ (t)ρ)) U2 (1 -τ (t)ρ)dρ = -B * 1 ω 2 U1 -(B * 2 ω, B * 2 ω(t -τ (t))) U2 + q τ (t) 2 1 0 B * 2 ω(t -τ (t)ρ) 2 U2 dρ +qτ (t) 1 0 (B * 2 ω(t -τ (t)ρ), B * 2 ω(t -τ (t)ρ)) U2 (1 -τ (t)ρ)dρ.
Moreover, recalling that z(ρ, t) = B * 2 ω(t-τ (t)ρ) and thus z ρ (ρ, t) = -τ (t)B * 2 ω(tτ (t)ρ), we see that

1 0 (B * 2 ω(t -τ (t)ρ), B * 2 ω(t -τ (t)ρ)) U2 (1 -τ (t)ρ)dρ = - 1 τ (t) 1 0 z(ρ, t), ∂z ∂ρ (ρ, t) U2 (1 -τ (t)ρ)dρ = - 1 2τ (t) 1 0 ∂ ∂ρ z(ρ, t) 2 U2 (1 -τ (t)ρ)dρ = - τ (t) 2τ (t) 1 0 z(ρ, t) 2 U2 dρ - 1 -τ (t) 2τ (t) z(1, t) 2 U2 + 1 2τ (t) z(0, t) 2 U2 = - τ (t) 2τ (t) 1 0 B * 2 ω(t -τ (t)ρ) 2 U2 dρ - 1 -τ (t) 2τ (t) B * 2 ω(t -τ (t)) 2 U2 + 1 2τ (t) B * 2 ω(t) 2 U2 .
Consequently,

E (t) = -B * 1 ω 2 U1 -(B * 2 ω, B * 2 ω(t -τ (t))) U2 - q(1 -τ (t)) 2 B * 2 ω(t -τ (t)) 2 U2 + q 2 B * 2 ω(t) 2 U2 .
Young's inequality, (2) and ( 6) yield

E (t) ≤ α 2 √ 1 -d + qα 2 -1 B * 1 ω 2 U1 + √ 1 -d 2 - q(1 -d) 2 B * 2 ω(t -τ (t)) 2 U2 .
Therefore, this estimate leads to

E (t) ≤ -C B * 1 ω(t) 2 U1 + B * 2 ω(t -τ (t)) 2 U2
with

C = min 1 - qα 2 - α 2 √ 1 -d , q(1 -d) 2 - √ 1 -d 2 
which is positive according to the assumption [START_REF] Rebarber | Robustness with respect to delays for exponential stability of distributed parameter systems[END_REF].

Remark 3.2

The choice to apply Young's inequality with a factor √ 1 -d in the proof of the above proposition is made in order to give the stability result under the best assumption between α and d. Remark 3.3 In the case where the delay is constant in time (and thus d = 0), we recover some results from [START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF]. 6) is not satisfied, there exist cases where instabilities may appear, see [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF][START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] for the wave equation with constant (in time) delay. Hence this condition appears to be quite realistic.

Remark 3.4 If (

Exponential stability

In this section, we prove, under some assumptions, the exponential stability of (5) by using an appropriate abstract Lyapunov functional, defined by ( 27)

E(t) = E(t) + γ (E 2 (t) + (Mω(t), ω(t)) H ) ,
where γ is a positive small constant that will be chosen later on, E is the standard energy defined by [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] with q verifying (25) and E 2 is defined by

(28) E 2 (t) := qτ (t) 1 0 e -2δτ (t)ρ B * 2 ω(t -τ (t)ρ) 2 U2 dρ,
where δ is a fixed positive real number. Moreover, the operator M : V → H satisfies the following assumptions

(29) ∃C 0 , C 1 , C 2 > 0, d dt (Mω(t), ω(t)) H ≤ -C 0 E 0 (t) + C 1 B * 1 ω(t) 2 U1 + C 2 B * 2 ω(t -τ (t)) 2 
U2 , for all solutions ω of ( 5) with initial data in D(A(0)) and where E 0 is the natural energy for the problem without delay

E 0 (t) := 1 2 A 1 2 ω(t) 2 H + ω(t) 2 H , and 
(30) ∃C > 0, ∀t > 0, |(Mω(t), ω(t)) H | ≤ CE 0 (t).
First we note that the energies E and E are equivalent, under (30).

Lemma 4.1 Assume ( 2), ( 3), ( 4), ( 6), ( 13) and (30). For γ small enough, there exists a positive constant C 3 (γ) such that

(31) (1 -Cγ)E(t) ≤ E(t) ≤ C 3 (γ)E(t)
, where 1 -Cγ > 0.

Proof. It is easy to see that

E(t) ≤ C 3 (γ)E(t),
with C 3 (γ) = max(1 + γC, 1 + 2γ) by ( 30), since e -2δτ (t)ρ ≤ 1.

For the second inequality of (31), we note that, since γE 2 (t) ≥ 0 and by ( 30),

E(t) ≥ E(t) -CγE 0 (t) ≥ (1 -Cγ)E(t),
and thus we obtain (31) with 1 -Cγ > 0 for γ small enough (γ < 1/C).

To prove the exponential decay of ( 5), we need the following lemma:

Lemma 4.2 Assume ( 2), ( 3), ( 4), ( 6) and [START_REF] Komornik | Exact controllability and stabilization[END_REF]. Then

(32) d dt E 2 (t) ≤ -2δE 2 (t) + q B * 2 ω(t) 2 U2 .
Proof. Direct calculations show that

d dt E 2 (t) = τ (t) τ (t) E 2 (t) + qτ (t) 1 0 (-2δ τ (t)ρ)e -2δτ (t)ρ B * 2 ω(t -τ (t)ρ) 2 U2 dρ + J,
where J is equal to

J := 2qτ (t) 1 0 e -2δτ (t)ρ (B * 2 ω(t -τ (t)ρ), B * 2 ω(t -τ (t)ρ)) U2 (1 -τ (t)ρ)dρ.
Recalling that z(ρ, t) = B * 2 ω(t -τ (t)ρ) and then z ρ (ρ, t) = -τ (t)B * 2 ω(t -τ (t)ρ), we see that

J = -2q 1 0 e -2δτ (t)ρ z(ρ, t), ∂z ∂ρ (ρ, t) U2 (1 -τ (t)ρ)dρ.
By integrating by parts in ρ, we obtain

J = -J + 2q 1 0 e -2δτ (t)ρ z(ρ, t) 2 U2 (-2δτ (t)(1 -τ (t)ρ) -τ (t))dρ -2qe -2δτ (t) z(1, t) 2 U2 (1 -τ (t)) + 2q z(0, t) 2 U2 , which yields J = q 1 0 e -2δτ (t)ρ B * 2 ω(t -τ (t)ρ) 2 U2 (-2δτ (t)(1 -τ (t)ρ) -τ (t))dρ -qe -2δτ (t) B * 2 ω(t -τ (t)) 2 U2 (1 -τ (t)) + q B * 2 ω(t) 2 U2 .
Consequently

d dt E 2 (t) = -2δE 2 (t) -q(1 -τ (t))e -2δτ (t) B * 2 ω(t -τ (t)) 2 U2 + q B * 2 ω(t) 2 U2 .
We thus get (32) by ( 2). Now, we are able to state the main result of this paper:

Theorem 4.3 Assume that ( 2), ( 3), ( 4), ( 6), ( 13), ( 29) and (30) hold. Then there exist positive constants ν and K such that

E(t) ≤ Ke -νt E(0), ∀t > 0,
for all solutions of ( 5) with initial data in D(A(0)).

Proof. We have, by the definition ( 27) of E,

d dt E(t) = d dt E(t) + γ d dt E 2 (t) + γ d dt (Mω(t), ω(t)) H .
By ( 26), ( 29) and (30),

d dt E(t) ≤ α 2 √ 1 -d + qα 2 -1 B * 1 ω(t) 2 U1 + √ 1 -d 2 - q(1 -d) 2 B * 2 ω(t -τ (t)) 2 U2 -2δγE 2 (t) + γq B * 2 ω(t) 2 U2 -γC 0 E 0 (t) + γC 1 B * 1 ω(t) 2 U1 +γC 2 B * 2 ω(t -τ (t)) 2 U2 .
Using [START_REF] Fridman | Exponential stability of linear distributed parameter systems with time-varying delays[END_REF], we obtain

d dt E(t) ≤ α 2 √ 1 -d + qα 2 -1 + γ(qα + C 1 ) B * 1 ω(t) 2 U1 + √ 1 -d 2 - q(1 -d) 2 + γC 2 B * 2 ω(t -τ (t)) 2 U2 -2δγE 2 (t) -γC 0 E 0 (t).
We take now γ small enough, more precisely we take γ > 0 such that

γ ≤ min 1 -α 2 √ 1-d -qα 2 qα + C 1 , q(1-d) 2 - √ 1-d 2 C 2 . Note that (1 -α 2 √ 1-d -qα 2 )/(qα + C 1 ) and ( q(1-d) 2 - √ 1-d 2 )/C 2 are positive by the choice (25) of q. Then d dt E(t) ≤ -γ(2δE 2 (t) + C 0 E 0 (t)).
As τ (t) ≤ M (by ( 3)), we have

d dt E(t) ≤ -γ C 0 E 0 (t) + 2δe -2δM qτ (t) 1 0 B * 2 ω(t -τ (t)ρ) 2 U2 dρ ,
and then, in view of definition of E, there exists a constant γ > 0 (depending on γ and δ: γ ≤ γ min(C 0 , 4δe -2δM )) such that

d dt E(t) ≤ -γ E(t).
By applying Lemma 4.1, we arrive at

d dt E(t) ≤ - γ C 3 (γ) E(t). Therefore E(t) ≤ E(0)e -γ C 3 (γ) t , ∀t > 0,
and Lemma 4.1 allows to conclude the proof:

E(t) ≤ 1 1 -Cγ E(t) ≤ 1 1 -Cγ E(0)e -γ C 3 (γ) t ≤ C 3 (γ) 1 -Cγ E(0)e -γ C 3 (γ) t .
Remark 4.4 In the proof of Theorem 4.3, we note that we can explicitly calculate the decay rate ν of the energy, given by

ν = γ C 3 (γ) min C 0 , 4δe -2δM , with C 3 (γ) = max(1 + γC, 1 + 2γ), γ < 1 C , γ ≤ 1 -α 2 √ 1-d -qα 2 qα + C 1 and γ ≤ q(1-d) 2 - √ 1-d 2 C 2
(by Lemma 4.1 and Theorem 4.3), where C, C 0 , C 1 , C 2 are given by ( 29) and (30), α is defined by ( 6), q by (25) and δ is a positive real number. Recalling that M is the upper bound of τ , if the delay τ becomes larger, the decay rate is slower. Moreover, we can choose δ such that the decay of the energy is as quick as possible for given parameters. For that purpose, we note that the function δ → 4δe -2δM admits a maximum at δ = 1 2M and that this maximum is 2 M e . Thus the larger decay rate of the energy is given by

ν max = γ C 3 (γ) min C 0 , 2 M e .

Examples

We end up this paper by considering different examples for which our abstract framework can be applied. To our knowledge, all the examples, with the exception of the first one, are new. In all examples, we assume that the delay function τ satisfies the assumptions (2) to (4).

The wave equation

The one dimensional wave equation

In this subsection, we show that our abstract framework apply to the 1-d wave equation:

(33)

           ∂ 2 u ∂t 2 (x, t) -a ∂ 2 u ∂x 2 (x, t) = 0, 0 < x < π, t > 0, u(0, t) = 0, t > 0, a ∂u ∂x (π, t) = -α 1 ∂u ∂t (π, t) -α 2 ∂u ∂t (π, t -τ (t)), t > 0, u(x, 0) = u 0 (x), ∂u ∂t (x, 0) = u 1 (x), 0 < x < π, ∂u ∂t (π, t -τ (0)) = f 0 (t -τ (0)), 0 < t < τ (0),
where α 1 , α 2 > 0, a > 0. This system have been studied in [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF], we also refer to [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] for a constant delay. First, we rewrite this system in the form [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]. For that purpose, we introduce H = L 2 (0, π) and the operator A : D(A) → H defined by

Aϕ = -a d 2 dx 2 ϕ
where D(A) = {ϕ ∈ H 2 (0, π) ∩ V ; ∂ϕ ∂x (π) = 0} and V = {H 1 (0, π) ; ϕ(0) = 0}. The operator A is self-adjoint and positive with a compact inverse in H. We now define U = U 1 = U 2 = R and the operators B i : U → D(A 

B i k = √ α i k δ π , i = 1, 2.
It is easy to verify that B * i (ϕ) = √ α i ϕ(π) for ϕ ∈ D(A 1/2 ) and thus

B i B * i (ϕ) = α i ϕ(π)δ π for ϕ ∈ D(A 1/2
) and i = 1, 2. Then the system (33) can be rewritten in the form [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]. We notice that ( 12) is equivalent to

(34) ∃ 0 < α ≤ √ 1 -d, α 2 ≤ α α 1 .
Taking α = α 2 /α 1 , (34) is equivalent to

(35) α 2 2 ≤ (1 -d)α 2 1 ,
which is the condition (10) from [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF]. In Lemma 3.1 from [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF], it is proved that D(A(0)) is dense in H. Consequently, under the condition (35), by Theorem 2.4, this system is well-posed and by Proposition 3.1 the energy decays for α 2 2 < (1 -d)α 2 1 . To prove the exponential stability of (33), we introduce the Lyapunov functional [START_REF] Wang | Stability in abstract functional-differential equations. II. Applications[END_REF] with the operator M : V → H defined by (36) Mu = 2x ∂u ∂x .

Then [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] holds with C 0 = 2, C 1 = π(1 + 2aα 2 1 ) and C 2 = 2aπα 2 2 (see (48) from [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF]) and (30) holds with C = 2π max(1, 1/a). Therefore, our abstract framework applies here and system (33) is exponentially stable under the previous hypotheses. We then recover the results from [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF].

The multidimensional wave equation

In this subsection, we study the stability of the wave equation with boundary time varying delay. Let Ω ⊂ R n (n ≥ 1) be an open bounded set with a boundary Γ of class C 2 . We assume that Γ is divided into two parts Γ D and Γ N , i.e. Γ = Γ D ∪ Γ N , with Γ D ∩ Γ N = ∅ and Γ D = ∅. Moreover we assume that

Γ 2 N ⊆ Γ 1 N = Γ N .
In this domain Ω, we consider the initial boundary value problem (37)

           ∂ 2 u ∂t 2 (x, t) -∆u(x, t) = 0 in Ω × (0, +∞) u(x, t) = 0 on Γ D × (0, +∞) ∂u ∂ν (x, t) = -α 1 ∂u ∂t (x, t)χ Γ 1 N -α 2 ∂u ∂t (x, t -τ (t))χ Γ 2 N on Γ N × (0, +∞) u(x, 0) = u 0 (x), ∂u ∂t (x, 0) = u 1 (x) in Ω ∂u ∂t (x, t -τ (0)) = f 0 (x, t -τ (0)) in Γ 2 N × (0, τ (0)),
where ν(x) denotes the outer unit normal vector to the point x ∈ Γ and ∂u/∂ν is the normal derivative. Note that system (37) have been studied for instance in [START_REF] Chen | Control and stabilization for the wave equation in a bounded domain[END_REF][START_REF] Komornik | Rapid boundary stabilization of the wave equation[END_REF][START_REF] Komornik | Exact controllability and stabilization[END_REF][START_REF] Komornik | A direct method for the boundary stabilization of the wave equation[END_REF][START_REF] Lagnese | Note on boundary stabilization of wave equations[END_REF][START_REF] Lasiecka | Uniform exponential energy decay of wave equations in a bounded region with L 2 (0, ∞; L 2 (Γ))-feedback control in the Dirichlet boundary conditions[END_REF] without delay and in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] with a constant delay. Let us denote by v • w the Euclidean inner product between two vectors v, w ∈ R n . We assume that there exists x 0 ∈ R n such that denoting by m the standard multiplier m(x) := x -x 0 , we have First, we rewrite this system in the form [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]. For this purpose, we introduce H = L 2 (Ω) and the operator A : D(A) → H defined by

Aϕ = -∆ϕ where D(A) = {ϕ ∈ H 2 (Ω) ∩ V : ∂ϕ ∂ν = 0 on Γ N }, where, as usual, V = H 1 Γ D (Ω) = { ϕ ∈ H 1 (Ω) : ϕ = 0 on Γ D }.
The operator A is self-adjoint and positive with a compact inverse in H. We now define

U 1 = L 2 (Γ 1 N ), U 2 = L 2 (Γ 2 N ) and the operators B * i : V → U i as (40) B * i ϕ = √ α i ϕ |Γ i N , i = 1, 2,
for some positive constants ε, c. Using the trace inequality and then Poincaré's Theorem, we have, for some c , c > 0,

Γ N u 2 dΓ ≤ c u 2 H 1 (Ω) ≤ c Ω |∇u| 2 dx.
This estimate in (44) yields, for ε small enough (ε < min(δ, 1/(2c ))),

d dt Ω [2m • ∇u + (n -1)u]u t dx ≤ -C 0 E 0 (t) +C Γ N u 2 t dΓ + C Γ N ∂u ∂ν 2 dΓ, (45) 
for suitable positive constants C 0 , C. Therefore, using the boundary condition (37) and Cauchy Schwarz's inequality in (45), we obtain [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF]. Therefore, our abstract framework still applies and system (37) is exponentially stable under the above assumptions.

The beam equation

In this subsection, we show that our abstract framework can be applied to the 1-d beam equation:

(46)                  ∂ 2 ω ∂t 2 (x, t) + ∂ 4 ω ∂x 4 (x, t) = 0, 0 < x < 1, t > 0, ω(0, t) = ∂ω ∂x (0, t) = 0, t > 0, ∂ 2 ω ∂x 2 (1, t) = 0, t > 0, ∂ 3 ω ∂x 3 (1, t) = α 1 ∂ω ∂t (1, t) + α 2 ∂ω ∂t (1, t -τ (t)), t > 0, ω(x, 0) = ω 0 (x), ∂ω ∂t (x, 0) = ω 1 (x), 0 < x < 1, ∂ω ∂t (1, t -τ (0)) = f 0 (t -τ (0)), 0 < t < τ (0),
where α 1 , α 2 > 0. First, we rewrite this system in the form [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]. For that purpose, we introduce H = L 2 (0, 1) and the operator A : D(A) → H defined by

Aϕ = d 4 dx 4 ϕ where D(A) = {ϕ ∈ H 4 (0, 1) ∩ V ; ∂ 2 ϕ ∂x 2 (1) = ∂ 3 ϕ ∂x 3 (1) = 0} and V = {ϕ ∈ H 2 (0, 1) ; ϕ(0) = ∂ϕ ∂x (0) = 0}
, which is a self-adjoint and positive operator with a compact inverse in H. We now define U = U 1 = U 2 = R and the operators

B i : U → D(A 1 
2 ) given by

B i k = √ α i k δ 1 , i = 1, 2.
It is easy to verify that B * i (ϕ) = √ α i ϕ(1) for ϕ ∈ D(A 1/2 ) and thus

B i B * i (ϕ) = α i ϕ(1)δ 1 for ϕ ∈ D(A 1/2
) and i = 1, 2. Then the system (46) can be rewritten in the form [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]. We notice that ( 12) is equivalent to (34) and by taking α = α 2 /α 1 , (34) is equivalent to (35). By Lemma 2.2 and Remark 2.3, (13) holds, because D(0, 1) ⊂ ker(B * 1 ) and D(0, 1) is dense in H. Hence, under the condition (35), this system is well-posed by Theorem 2.4 and the energy decays by Proposition 3.1 for α 2 2 < (1 -d)α 2 1 . To prove the exponential stability of (46), we introduce the Lyapunov functional [START_REF] Wang | Stability in abstract functional-differential equations. II. Applications[END_REF] with the operator M : V → H defined by (36).

The following lemma shows that ( 29) and (30) hold.

Lemma 5.2 The conditions ( 29) and (30) hold.

Proof. Condition (30) follows directly from Young's inequality:

|(Mω, ω) H | = 2 1 0 x ∂ω ∂x (x, t) ∂ω ∂t (x, t)dx ≤ 1 0 ∂ω ∂x (x, t) 2 + ∂ω ∂t (x, t) 2 dx.
For the other assertion, we note that

d dt (Mω, ω) H = 1 0 2x ∂ 2 ω ∂x∂t (x, t) ∂ω ∂t (x, t) -2x ∂ω ∂x (x, t) ∂ 4 ω ∂x 4 (x, t) dx.
But, by integrating by parts, we obtain

2 1 0 x ∂ 2 ω ∂x∂t (x, t) ∂ω ∂t (x, t)dx = - 1 0 ∂ω ∂t (x, t) 2 dx + ∂ω ∂t (1, t) 2 . 
Moreover, again integrating by parts yields 

( 10 )

 10 D(A(t)) = D(A(0)), ∀t > 0.

1 2 )

 2 given by

  ) • ν(x) ≤ 0 on Γ D and, for some positive constant δ,(39) m(x) • ν(x) ≥ δ > 0 on Γ N .In the particular case whereΩ = O 1 \O 2 ,O 1 and O 2 being convex sets such that O 2 ⊂ O 1 , the above assumptions (38), (39) hold with Γ N = ∂O 1 and Γ D = ∂O 2 for any x 0 ∈ O 2 .

4 Ω 2 Γ

 42 (∆u) 2 dx -n Ω (∆u) 2 dx + Γ (m • ν)(∆u) 2 dΓ -∂ ∂ν (m • ∇u)∆udΓ + 2 Γ ∂∆u ∂ν (m • ∇u)dΓ,by Green's formula. For the last term of (48), we use again two times Green's formula, ∇u + (n -1)u)u t dx =m • ∇u) + (n -1)u) dΓ.As u = ∂u/∂ν = 0 on Γ D , ∇u = 0 on Γ D and∂ ∂ν (m • ∇u) = m • ν ∂ 2 u ∂ν 2 = (m • ν)∆u on Γ D .Therefore the boundary conditions of (47) impliesd dt Ω (2m • ∇u + (n -1)u) u t dx =m • ∇u) + (n -1)u) dΓ.

  {A(t) : t ∈ [0, T ]} is stable with stability constants C and m independent of t (i.e. the semigroup (S t (s)) s≥0 generated by A(t) satisfies, for all t ∈ [0, T ], S t (s)u H ≤ Ce ms u H , for all u ∈ H and s ≥ 0),

	Assume that
	(i) Y = D(A(0)) is a dense subset of H,
	(ii) (10) holds,
	(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H
	and the family A = (iv) ∂ t A belongs to L ∞ * ([0, T ], B(Y, H)), the space of equivalent classes of es-
	sentially bounded, strongly measurable functions from [0, T ] into the set B(Y, H)
	of bounded operators from Y into H.
	Then, problem (8) has a unique solution U ∈ C([0, T ], Y ) ∩ C 1 ([0, T ], H) for
	any initial data in Y .

  It suffices to take ≤ 2/C, to obtain Moreover again two applications of Green's formula lead to

	Therefore, the boundary conditions satisfied by ω lead to
	d dt Ω (2m • ∇u) ∆ 2 udx = 2 (Mω, ω) H = -1 0	∂ω ∂t Ω ∆(m•∇u)∆udx-2 (x, t) 2 dx + ∂ω ∂t	(1, t) Γ ∂ ∂ν	2 (m•∇u)∆udΓ+2 -3 1 0 ∂ 2 ω ∂x 2 (x, t) Γ ∂∆u 2 dx ∂ν (m•∇u)dΓ,
	-2 ∆(m • ∇u)∆u = 2(∆u) 2 + m • ∇(∆u)∆u = 2(∆u) 2 + By Young's inequality, we have with	∂ω ∂x 1 2 m • ∇((∆u) 2 ). (1, t) ∂ 3 ω ∂x 3 (1, t).
				-2	∂ω ∂x	(1, t)	∂ 3 ω ∂x 3 (1, t) ≤	∂ω ∂x	(1, t)	2	+	1 ∂ 3 ω ∂x 3 (1, t)	2	, ∀ > 0.
	Moreover by trace inequality and Poincaré's inequality, there exists a constant
	C > 0 such that				
														∂ω ∂x	(1, t)	2	≤ C	0	1	∂ 2 ω ∂x 2 (x, t)
		-2	∂ω ∂x	(1, t)	∂ 3 ω ∂x 3 (1, t) ≤ C	0	1	∂ 2 ω ∂x 2 (x, t)	2	dx +	2α 2 1	∂t ∂ω	(1, t)	2
																+	2α 2 2	∂ω ∂t	(1, t -τ (t))
	Therefore it holds	
	1 dt 0 d (Mω, ω) H ≤ -x ∂ω ∂x (x, t) ∂ 4 ω ∂x 4 (x, t)dx = -+ 1 0 ∂ω ∂t (x, t) 0 ∂ω 1 ∂x (1, t) ∂ω ∂x (x, t) ∂ 3 ω ∂x 3 (1, t), ∂ 3 ω ∂x 3 (x, t)dx -1 ∂ 2 ω 0 ∂x 2 (x, t) 1 x ∂ 2 ω ∂x 2 (x, t) 2 dx 0 + 1 + 2α 2 1 ∂ω ∂t (1, t) 2 + 2α 2 2 ∂ω ∂t (1, t -τ (t))	∂ 3 ω ∂x 3 (x, t)dx
	with													
	d dt and 1 0	1 (Mω, ω) H ≤ -0 x ∂ 2 ω ∂x 2 (x, t) ∂ 3 ω ∂x 3 (x, t)dx = -1 0 ∂ω ∂t (x, t) 1 2 0 ∂ω ∂x (x, t) ∂ 3 ω ∂x 3 (x, t)dx = -1 0 ∂ 2 ω ∂x 2 (x, t) 1 ∂ 2 ω ∂x 2 (x, t) 2 + ∂ 2 ω ∂x 2 (x, t) 2 dx + 2 2 dx+ ∂ω ∂x (1, t) +C 2 α 2 ∂ω ∂t (1, t -τ (t))	1 2 dx + C 1 α 1 ∂ 2 ω ∂x 2 (1, t) ∂ 2 ω ∂x 2 (1, t)-∂ω ∂ω 2 ∂t ∂x (0, t) , (1, t) ∂ 2 ω 2 ∂x 2 (0, t).
	Consequently					
		0	1	x	∂ω ∂x	(x, t)	∂ 4 ω ∂x 4 (x, t)dx =	3 2	0	1	∂ 2 ω ∂x 2 (x, t)	2	dx -	∂ω ∂x	(1, t)	∂ 2 ω ∂x 2 (1, t)
													+	∂ω ∂x	(0, t)	∂ 2 ω ∂x 2 (0, t) -	1 2	∂ 2 ω ∂x 2 (1, t)	2	+	∂ω ∂x	(1, t)	∂ 3 ω ∂x 3 (1, t).

2

dx.

Thus, by the dissipation condition at 1 of (46), 2

. 2 dx -(3 -C ) 2 , ∀ > 0

dΓ +ε Γ N (|∇u| 2 + u 2 )dΓ,

, with C 1 , C 2 > 0, which corresponds to[START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF].Therefore, by our abstract framework the system (46) is exponentially stable under the above assumptions.5.3 The plate equationIn this subsection, we study the stability of the plate equation with boundary time-varying delay. Let Ω ⊂ R n (n ≥ 1) be an open bounded set with a

where ϕ |Γ i N is the trace operator for ϕ. The operator B i : U i → V is then defined by duality:

Thus the system (37) can be rewritten in the form [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]. We notice that ( 12) is equivalent to (34) and then, as previously, to (35).

Note that the domain of the operator A(t) defined in ( 9) is here

The hypothesis (13) holds thanks to Lemma 2.2 and Remark 2.3 because D(Ω) ⊂ ker(B * 1 ) and D(Ω) is dense in L 2 (Ω). Consequently, under the condition (35), this system is well-posed by Theorem 2.4 and the energy decays by Proposition 3.1 for α 2 2 < (1 -d)α 2 1 . To prove the exponential stability of (37), we introduce the Lyapunov functional [START_REF] Wang | Stability in abstract functional-differential equations. II. Applications[END_REF] with the operator M : V → H defined by

Then we can easily prove that (30) holds by Poincaré's inequality. Moreover:

Lemma 5.1 Condition (29) holds.

Proof. Let u ∈ H 2 (Ω). Then the standard multiplier identity gives (43)

From (43) and Young's inequality, recalling (38) and that by (39

We assume that Γ is divided into two parts Γ D and Γ N , i.e. Γ = Γ D ∪ Γ N , with Γ D ∩ Γ N = ∅ and Γ D = ∅. Moreover we assume that

In this domain Ω, we consider the initial boundary value problem (47)

We assume that (38) holds with the standard multiplier m(x) := x -x 0 , for some x 0 ∈ R n . Note that the hypothesis (39) is not necessary.

To rewrite this system in the form (5), we introduce H = L 2 (Ω) and the operator A : D(A) → H given by

The operator A is self-adjoint and positive with a compact inverse in H. The operators B * 1 and B * 2 are here given by (40) and B 1 , B 2 by (41) with

). Thus the system (47) can be rewritten in the form [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]. We notice that ( 12) is equivalent to (34) and then, as previously, to (35).

By Lemma 2.2 and Remark 2.3, we see that (13) holds because D(Ω) ⊂ ker(B * 1 ) and D(Ω) is dense in L 2 (Ω). Therefore, under the hypothesis (35), this system is well-posed by Theorem 2.4 and the energy decays by Proposition 3.1 for α 2 2 < (1 -d)α 2 1 . To prove the exponential stability of (47), we introduce the Lyapunov functional [START_REF] Wang | Stability in abstract functional-differential equations. II. Applications[END_REF] with the operator M : V → H defined by (42). Then we can easily prove that (30) holds by Poincaré's theorem. Moreover:

By Green's formula, we find

By (38), we obtain

From Young's inequality, we deduce that

with C, c > 0. We conclude the proof of this lemma by using a trace inequality, Poincaré's inequality and the boundary condition of (47).

In conclusion, our abstract framework applies again and system (47) is exponentially stable under the previous hypotheses.