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Abstract This article aims at analyzing the observability properties of time-discrete
approximation schemes of abstract parabolic equations ż+Az = 0, where A is a self-
adjoint positive definite operator with dense domain and compact resolvent. We ana-
lyze the observability properties of these diffusive systems for an observation opera-
tor B ∈ L(D(Aν), Y ) with ν < 1/2. Assuming that the continuous system is observ-
able, we prove uniform observability results for suitable time-discretization schemes
within the class of conveniently filtered data. We also propose a HUM type algorithm
to compute discrete approximations of the exact controls. Our approach also applies
to sequences of operators which are uniformly observable. In particular, our results
can be combined with the existing ones on the observability of space semi-discrete
systems, yielding observability properties for fully discrete approximation schemes.
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1 Introduction

Let X be a Hilbert space endowed with the norm ‖ · ‖X and let A : D(A) → X be a
positive definite self-adjoint operator with dense domain and compact resolvent.

We consider the following abstract system:

ż(t) + Az(t) = 0, t ∈ [0, T ], z(0) = z0. (1.1)

Here and henceforth, a dot (˙) denotes differentiation with respect to the time t . The
element z0 ∈ X is called the initial state, and z = z(t) is the state of the system.

Such equations are often used as models for diffusive systems and especially heat
equations.

Assume that Y is another Hilbert space equipped with the norm ‖ · ‖Y . We de-
note by L(X,Y ) the space of bounded linear operators from X to Y , endowed with
the classical operator norm. Let B ∈ L(D(Aν),Y ), with ν ≤ 1/2, be an observation
operator, and define the output function

y(t) = Bz(t). (1.2)

To give a sense to (1.2), we will assume that B is an admissible observation operator,
i.e. for every T > 0 there exists a constant KT > 0 such that any solution of system
(1.1) with initial data z0 ∈ D(A) satisfies

∫ T

0
‖Bz(t)‖2

Y dt ≤ KT ‖z0‖2
X. (1.3)

Under this assumption, the output function y in (1.2) is well-defined as a function in
L2((0, T );Y) for any solution of (1.1) with initial data z0 ∈ X.

Actually, this property is automatically satisfied when B ∈ L(D(Aν),Y ) with
ν ≤ 1/2 (see, e.g., [25] and Theorem 2.2 below), which we will always assume in
the following.

The exact observability property for system (1.1)–(1.2) can be formulated as fol-
lows:

Definition 1.1 System (1.1)–(1.2) is exactly observable in time T ∗ if there exists
k∗ > 0 such that any solution of system (1.1) with initial data z0 ∈ X satisfies

k∗‖z(T ∗)‖2
X ≤

∫ T ∗

0
‖Bz(t)‖2

Y dt. (1.4)

Moreover, system (1.1)–(1.2) is said to be exactly observable if it is exactly observ-
able in some time T ∗ > 0.

Inequalities (1.3) and (1.4) are relevant in controllability theory due to the duality
argument given by the Hilbert Uniqueness Method (HUM in short), see [18] and
Sect. 4.

In the following, we assume that (1.4) holds for the continuous system. Such re-
sults have been proved, often by means of Carleman estimates, for various models
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including the heat equation [10, 12, 16], the Stokes equations [9], and some other
singular models such as [3, 7, 20, 24].

This article aims at studying the admissibility and observability properties for
time-discrete approximation schemes of (1.1)–(1.2), and corresponding controllabil-
ity properties.

To be more precise, we consider a linear time-discretization of (1.1)–(1.2), which
takes the general form

{
zk+1 = T�tz

k, k ∈ N,

z0 = z0,
yk = Bzk, (1.5)

where �t > 0 is the time-discretization parameter, zk is an approximation of z at
time k�t , and T�t is an approximation of exp(−(�t)A), in a sense we will make
precise below.

Since we assume A to be a positive definite self-adjoint operator with compact
resolvent, its spectrum is explicitly given by an increasing sequence (μj )j∈N of pos-
itive real numbers with limj μj = +∞ and corresponding eigenvectors (�j )j such
that

A�j = μj�j .

Besides, one can further impose the sequence (�j )j∈N to be an orthonormal basis
of X.

We can now present more precisely the assumptions on T�t . We shall assume that
the discrete operators T�t preserve the eigenvectors, and that there exists a function
f : [0,R) → R+ such that, for any �t > 0,

∀j ∈ N, s.t. μj <
R

�t
,

{
T�t�j = exp(−(�t)λj,�t )�j ,

where λj,�t = 1
�t

f ((�t)μj ),
(1.6)

or, in a more concise form, T�t = exp(−f ((�t)A)). Such assumptions are of a very
general nature and are satisfied for many time-discrete approximation schemes, for
instance the Euler implicit and explicit methods, the Crank-Nicolson scheme, the
θ -methods, the Runge-Kutta discretizations. . . see, e.g., the textbook [4] and the ex-
amples presented in Sect. 2.1. In other words, the function f describes the action of a
given numerical method, and R corresponds to the limit of stability for the numerical
method.

We also assume that f is smooth (actually C2 is sufficient), and that

lim
η→0

f (η)

η
= 1 and ∀η ∈ (0,R), f (η) > 0. (1.7)

The first assumption is equivalent to the consistency of the scheme. The second one
ensures that the numerical scheme damps out every frequency, which is needed for
numerical stability.

In the following, we assume that the discrete operators T�t satisfy these condi-
tions.
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We investigate the admissibility and observability properties which are needed for
controllability purposes (see [18] and [27, 28]).

• Uniform admissibility: To find positive constants T and KT such that for all
�t > 0, any solution z of (1.5) with initial data z0 in an appropriate class X�t

satisfies

�t

	T/�t
∑
k=0

∥∥Bzk
∥∥2

Y
≤ KT ‖z0‖2

X. (1.8)

Note that, using that k �→ ‖zk‖2
X decays, one easily checks that, if (1.8) holds for

some (T̃ ,K
T̃
), it holds as well for any time T , taking KT = K

T̃
(1 + T/T̃ ).

• Uniform observability: To find positive constants T ∗ and k∗ such that for all
�t > 0, any solution z of (1.5) with initial data z0 in an appropriate class X�t

satisfies

k∗
∥∥z	T ∗/�t
∥∥2

X
≤ �t

	T ∗/�t
∑
k=0

∥∥Bzk
∥∥2

Y
. (1.9)

Of course, our interest is to make the class X�t as big as possible. However,
X�t = X is out of reach in general, even when R = ∞ (see [26]). But at least we
want X�t →�t→0 X in some sense, in order to recover the admissibility and observ-
ability properties (1.3) and (1.4) of the continuous system when �t → 0.

We emphasize that inequalities (1.8)–(1.9) shall hold uniformly in �t . Indeed, this
is needed for controllability issues to ensure the convergence of the discrete controls
(see [28] and the examples therein). Precise statements will be given in Sect. 4.

It is by now well-known that discretization processes may create high frequency
spurious solutions which might lead to non-uniform observability properties.

For time semi-discrete approximations of parabolic systems, the only work we are
aware of is [26], which is based on the spectral estimates proved in [16, 17]. Using
a standard duality argument, one can easily check that the results in [26] read as
an observability inequality similar to (1.9) in a class of filtered data in the special
case where the operator A = −�D is the Laplace operator with Dirichlet boundary
conditions in some smooth bounded domain � and B is the restriction operator to ω.
In [26], we emphasize that it is also proved that filtering the initial data is needed to
obtain uniform observability results for time semi-discrete heat equations.

Let us also mention that the space semi-discrete heat equation in 1-d has been
studied in [19] using, as in [8], Müntz Szász type theorem. In this case, observability
properties hold uniformly with respect to the space mesh-size [19]. A more general
result has been derived in [14], which provides a weak observability inequality in a
very general setting inspired by [15]. The weak observability property in [14] suffices
to derive an explicit numerical method for computing approximations of exact con-
trols for the continuous system. We will actually follow the methodology in [14] and
derive weak forms of (1.9) for time semi-discrete systems, which still are relevant for
the exact controllability problem.

Note however that the results presented below and in [14] are more precise than
the ones in [15] (see also [1]). These references are indeed dealing with the linear



On the observability of abstract time-discrete linear parabolic 167

quadratic regulator (LQR) problem, which rather corresponds to an optimal control
approach (in particular, the final point is not fix).

Note that the counterexample of Kavian in [28] also emphasizes the need of fil-
tering the initial data to obtain uniform observability results for space semi-discrete
approximations of the heat equation in the 2-d square.

Let us also mention that several works have been devoted to analyze observabil-
ity and controllability properties for space semi-discrete wave equations [13, 28]. In
the context of time semi-discrete and fully discrete conservative equations, we refer
to [6], which deals with very general time-approximation schemes for conservative
linear systems, and closely related to the question addressed here.

Let us now introduce, for s ∈ R+, the following filtered space:

C(s) = span
{
�j : the corresponding μj satisfies μj ≤ s

}
. (1.10)

We are now in position to state the main result of our paper:

Theorem 1.2 Let A be a self-adjoint positive definite operator with dense domain
and compact resolvent, and B ∈ L(D(Aν),Y ), with ν < 1/2. Let T�t be a numeri-
cal scheme satisfying (1.6) and (1.7). Also assume that system (1.1)–(1.2) is exactly
observable in some time T ∗. Set

β = min{2,1 − 2ν}. (1.11)

Then, given any δ∈(0,R), there exist strictly positive constants Kδ, kδ and Cδ such
that, for all �t > 0, any solution zk of (1.5) with initial data z0 ∈ C(δ/�t) satisfies

kδ

∥∥z	T ∗/�t
∥∥2
X

≤ �t

	T ∗/�t
∑
k=0

∥∥Bzk
∥∥2

Y
+ Cδ(�t)β‖z0‖2

X ≤ Kδ‖z0‖2
X. (1.12)

The admissibility inequality in (1.12) can be derived as in the continuous case, see
Theorem 2.2. We will also explain in Remark 2.3 why filtering the data are needed
when looking at the admissibility properties of (1.5).

Note that the observability inequality in (1.12) is a weak form of (1.9), due to the
presence of the term (�t)β‖z0‖2

X . We will explain in Sect. 3.3 why such a term is
needed in our general setting, even after filtering the initial data.

However the weak observability inequality (1.12) is sufficient to derive an effi-
cient computational technique for controllability problems. This method is inspired
by previous works on space semi-discrete heat equations [14] and on Tychonov reg-
ularization techniques for wave equations [5, 11, 28].

One of the interesting features of our approach is that it can be applied to fami-
lies of operator which are uniformly observable. In particular, we can derive uniform
(in both space and time-discretization parameters) observability properties for fully
discrete approximation schemes under the condition that the space semi-discrete ap-
proximation schemes are uniformly observable with respect to the space discretiza-
tion parameter.

We will present such applications derived for the finite difference 1-d heat equa-
tion, for which observability properties hold uniformly with respect to the space
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mesh size (see [19]). We will also exhibit an example of application of our results
to the observability properties of fully discrete schemes derived from the finite ele-
ment method, for which, to our knowledge, only weak observability properties have
been proved so far in a general setting, see [14].

This article is organized as follows. In Sect. 2, we present some examples of time-
discrete schemes, which fit the abstract framework presented above, and we state a
discrete admissibility result. In Sect. 3, we prove Theorem 1.2. In Sect. 4, we show
that Theorem 1.2 can be applied to derive controllability properties. In Sect. 5, we
present applications of Theorem 1.2 to the study of the observability properties of
fully discrete approximation schemes of (1.1)–(1.2). Finally, we end up with some
further comments.

2 Preliminaries

We will first present several well-known schemes which fit the abstract framework
proposed here. Second, we will derive some basic estimates on λj,�t , which will be
useful all along the paper. Third, we will focus on the admissibility inequality in the
discrete setting and prove a precise admissibility result.

2.1 Examples of numerical schemes

This subsection presents several time-discrete approximation schemes (see for in-
stance [4] for the analysis of their convergence properties) which enter in the ab-
stract framework presented above in (1.6)–(1.7). Routines computations are left to
the reader.

• The θ -methods: Set θ ∈ [0,1]. The θ -method is given by

zk+1 − zk

�t
= −A(θzk+1 + (1 − θ)zk), k ∈ N, z0 = z0.

This is a generalization of the Crank-Nicolson method (θ = 1/2) and the Euler meth-
ods (θ = 0 for the explicit Euler method and θ = 1 for the implicit Euler method).

The operator T�t is then given by

T�t = (I + θ(�t)A)−1(I − (1 − θ)(�t)A).

Thus, the function fθ is defined by

fθ :
[

0,
1

1 − θ

)
→ R+, η �→ ln

(
1 + θη

1 − (1 − θ)η

) (
Rθ = 1

1 − θ

)
.

In particular, for the implicit Euler method, θ = 1 and Rθ = ∞.

• The Runge-Kutta methods: Assume q ∈ N
∗. The Runge-Kutta time-discrete

schemes take the form of

zk+1 = zk + �t
∑

1≤i≤q

biκi with κi = −A

(
zk + �t

q∑
j=1

aij κj

)
, ∀i ∈ {1, . . . , q},

with appropriate real numbers (bi)1≤i≤q and (aij )1≤i,j≤q , verifying
∑q

i=1 bi = 1.
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For instance, we can consider the (explicit) fourth-order Runge-Kutta method given
by q = 4, b = (1/6,2/6,2/6,1/6) and

(aij )i,j =

⎛
⎜⎜⎜⎝

0 0 0 0
1
2 0 0 0

0 1
2 0 0

0 0 1 0

⎞
⎟⎟⎟⎠ .

In this case, the operator T�t is defined by

T�t = I − (�t)A + (�t)2

2
A2 − (�t)3

6
A3 + (�t)4

24
A4,

and the function f simply is

f : [0, α] → R+, η �→ − ln

(
1 − η + η2

2
− η3

6
+ η4

24

)
(R = α),

where α is solution of 1 − α
2 + α2

6 − α3

24 = 0.

We refer to [4] for more examples of explicit and implicit Runge-Kutta methods.

2.2 Rough estimates on λj,�t

We shall state some basic estimates:

Proposition 2.1 Given any δ∈(0,R), there exist positive constants mδ, Mδ and Sδ

such that for all 0 < μj ≤ δ/�t , the estimates

mδ ≤ λj,�t

μj

≤ Mδ, |λj,�t − μj | ≤ (�t) Sδμ
2
j , (2.1)

hold uniformly in �t .

Proof The first inequality is a consequence of assumption (1.7). Indeed, (1.7) guar-
antees the continuity of the function η �→ f (η)/η on (0, δ] extended by 1 at η = 0,
and this function does not vanish on [0, δ].

The second inequality in (2.1) is a consequence of Taylor’s formula. Indeed, as-
sumption (1.7) implies f (0) = 0 and f ′(0) = 1 and therefore

|λj,�t − μj | = 1

�t
|f (μj�t) − μj�t | ≤ sup

ζ∈[0,δ]
{|f ′′(ζ )|}μ

2
j (�t)

2
. �
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2.3 Admissibility

For convenience, we introduce the Hilbert spaces Xs = D(As) for s ≥ 0 and Xs =
X∗−s for s < 0, endowed, respectively, with the norms ‖ · ‖s defined for z = ∑

j aj�j

by

‖z‖2
s =

∑
j

|aj |2μ2s
j .

Note that, for s = 0, X0 = X and ‖.‖0 = ‖.‖X .
We now prove the following theorem, which in particular easily implies the ad-

missibility property stated in Theorem 1.2.

Theorem 2.2 Assume that B ∈ L(D(Aν),Y ), with ν ≤ 1/2. Then there exists a posi-
tive constant K0 such that any solution of (1.1) with initial data z0 ∈ Xν−1/2 satisfies

∫ ∞

0
‖Bz(t)‖2

Y ≤ K0‖z0‖2
ν−1/2. (2.2)

Besides, given any δ∈(0,R), there exists a positive constant Kδ , which only depends
on ‖B‖L(D(Aν),Y ), f and δ, such that for any �t > 0, any solution z of (1.5) with
initial data z0 ∈ C(δ/�t) satisfies

�t

∞∑
k=0

∥∥Bzk
∥∥2

Y
≤ Kδ‖z0‖2

ν−1/2. (2.3)

Proof The continuous case is classical and is left to the reader. It may also be deduced
from our result in the discrete setting.

Let z be a solution of (1.5) with initial data z0 = ∑
j aj�j ∈ C(δ/�t). Then

zk =
∑

μj ≤δ/�t

aj exp(−(�t)kλj,�t )�j .

In particular, for all k ∈ N, zk belongs to D(Aν) since it is a finite combination of
eigenvectors of A. Thus

∥∥Bzk
∥∥2

Y
≤ ‖B‖2

L(D(Aν),Y )

∑
μj ≤δ/�t

|aj |2μ2ν
j exp(−2(�t)kλj,�t ).

Therefore, inequality (2.3) holds uniformly in �t within the class C(δ/�t) if, for j

such that μj�t ≤ δ, the quantity

�t

∞∑
k=0

μj exp(−2(�t)kλj,�t ) = (�t)μj

1 − exp(−2(�t)λj,�t )

is bounded uniformly in �t (recall that, from (1.7), for μj < δ/�t , λj,�t > 0). This
is indeed the case since the function η �→ η/(1 − exp(−2f (η))) is continuous on
(0, δ] and can be extended continuously by 1/2 in η = 0 due to (1.7). �
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Remark 2.3 When R < ∞ (recall that R, given by (1.6), describes the stability of
the numerical method (1.5)), it is natural to consider only initial data in the class
C(δ/�t) for δ < R. But, when R = ∞, for instance for the Euler implicit method,
this condition might seem too restrictive. This is actually not the case. For instance,
if B = A1/2, then the continuous system (1.1)–(1.2) is admissible. However, for the
solution zk = exp(−λj,�tk�t)�j of (1.5), we have

‖z0‖2
X = 1 and �t

	T/�t
∑
k=0

∥∥A1/2zk
∥∥2

X
= (�t)μj

1 − e−2T λj,�t

1 − e−2(�t)λj,�t
.

But, with the Euler implicit method, (�t)λj,�t = ln(1 + (�t)μj ), and then, if
μj�t � δ, we have (�t)λj,�t � ln(1 + δ) and

�t

	T/�t
∑
k=0

∥∥A1/2zk
∥∥2

X
�

�t→0

δ

1 − 1/(1 + δ)2
−→
δ→∞+∞.

This indicates that filtering processes are needed in general to ensure uniform admis-
sibility properties, even in the case R = ∞.

3 Observability

In this section, we prove the observability estimate in Theorem 1.2, the admissibil-
ity one being a straightforward consequence of Theorem 2.2. Below, we present the
proof of Theorem 1.2 using two lemmas whose proofs are postponed to Sects. 3.1
and 3.2. We will also comment our observability result in Sect. 3.3.

In the following, we shall make explicit all the dependences on the time discretiza-
tion parameter �t , and then the constants will always be independent of �t .

Proof of Theorem 1.2 First, we introduce the linear operator A�t defined by

A�t�j = λj,�t�j , ∀j ∈ N s.t. μj�t < R,

which satisfies the following property: for any z0 ∈ C(R/�t),

exp(−(�t)kA�t )z0 = T
k
�tz0. (3.1)

The first step of our proof establishes a link between the (time continuous) semi-
groups generated by −A�t and −A.

Lemma 3.1 Assume that B ∈ L(D(Aν),Y ) with ν < 1/2.
Then, given any δ∈(0,R) and any T > 0, there exists a positive constant Cδ,T ,

which only depends on δ, T , f and ‖B‖L(D(Aν),Y ), such that for any �t > 0, for any
z0 ∈ C(δ/�t), the following estimates hold:

∥∥e−T A�t z0
∥∥2

X
≤ 2

∥∥e−T Az0
∥∥2

X
+ Cδ,T (�t)2‖z0‖2

X,

∫ T

0

∥∥Be−tAz0
∥∥2

Y
dt ≤ 2

∫ T

0

∥∥Be−tA�t z0
∥∥2

Y
dt + Cδ,T (�t)1−2ν‖z0‖2

X.

(3.2)



172 S. Ervedoza, J. Valein

In a second step, we need to evaluate precisely the difference between the contin-
uous integral in (3.2) and the discrete integral in (1.12).

Lemma 3.2 Assume that B ∈ L(D(Aν),Y ) with ν < 1/2.
Then, given any δ∈(0,R) and T > 0, there exists a positive constant Cδ,T , which

only depends on δ, T , f and ‖B‖L(D(Aν),Y ), such that for any �t > 0, for any z0 ∈
C(δ/�t), the following estimate holds:

∫ T

0

∥∥Be−tA�t z0
∥∥2

Y
dt ≤ 2�t

	T/�t
∑
k=0

∥∥BT
k
�t z0

∥∥2
Y

+ Cδ,T (�t)1−2ν‖z0‖2
X. (3.3)

The proof of Theorem 1.2 then follows directly from the combination of Lem-
mas 3.1 and 3.2 and the observability property (1.4) for system (1.1)–(1.2) in time
T = T ∗. Indeed, if (1.4) holds, i.e. if there exists a positive constant k∗ such that

k∗
∥∥e−T ∗Az0

∥∥2
X

≤
∫ T ∗

0

∥∥Be−tAz0
∥∥2

Y
dt,

then, applying Lemmas 3.1 and 3.2 with T = T ∗, we obtain the existence of positive
constants kδ and Cδ such that (1.12) holds. �

3.1 Proof of Lemma 3.1

Proof of Lemma 3.1 In this subsection, we work under the assumptions of Lemma 3.1,
and δ∈(0,R) is fixed.

Expand z0 ∈ C(δ/�t) as z0 = ∑
μj �t≤δ aj�j . Then for any t > 0,

e−tAz0 =
∑

μj �t≤δ

aj e
−μj t�j , e−tA�t z0 =

∑
μj �t≤δ

aj e
−λj,�t t�j .

Therefore, using the inequality

∀(a, b) ∈ R
2+,

∣∣e−a − e−b
∣∣ ≤ |a − b|e− inf{a,b},

and the estimates (2.1), we obtain, for any s ∈ R,

∥∥(e−tA − e−tA�t
)
z0

∥∥2
s

≤
∑

μj �t≤δ

|aj |2μ2s
j

(
e−tμj − e−tλj,�t

)2

≤
∑

μj �t≤δ

|aj |2μ2s
j t2|μj − λj,�t |2e−2t inf{λj,�t ,μj }

≤ S2
δ (�t)2

∑
μj �t≤δ

|aj |2μ2s+4
j t2e−2tμj inf{mδ,1}. (3.4)
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In particular, this implies

∥∥e−T Az0 − e−T A�t z0
∥∥2

X
≤ S2

δ (�t)2T 2‖z0‖2
X sup

μj �t≤δ

{
μ4

j e
−2T μj inf{mδ,1}}.

Since η �→ η4e−2ηα , with α > 0, is bounded on R+, it follows that there exists a
constant C such that

∥∥e−T Az0 − e−T A�t z0
∥∥2

X
≤ C(�t)2‖z0‖2

X, (3.5)

from which we deduce the first estimate in (3.2).
To study the second estimate in (3.2), we use B ∈ L(D(Aν),Y ):

∥∥B
(
e−tA − e−tA�t

)
z0

∥∥2
Y

≤ ‖B‖2
L(D(Aν),Y )

∥∥(e−tA − e−tA�t
)
z0

∥∥2
ν
, t > 0.

Hence, from (3.4) we deduce that

∫ T

0

∥∥B
(
e−tA − e−tA�t

)
z0

∥∥2
Y

dt

≤ ‖B‖2
L(D(Aν),Y )S

2
δ (�t)2

∑
μj �t≤δ

|aj |2μ2ν+4
j

∫ T

0

(
t2e−2tμj inf{mδ,1})dt.

But, for a > 0,

0 ≤
∫ T

0
t2e−ta dt ≤ 2

a3
.

Therefore we obtain

∫ T

0

∥∥B
(
e−tA − e−tA�t

)
z0

∥∥2
Y

dt

≤ ‖B‖2
L(D(Aν),Y )

S2
δ

4 inf{mδ,1}3

∑
μj �t≤δ

|aj |2(�t)2μ2ν+1
j . (3.6)

But, when (�t)μj ≤ δ, μ2ν+1
j (�t)2 ≤ δ2ν+1(�t)1−2ν , and then (3.6) implies that

there exists a constant C such that

∫ T

0

∥∥B
(
e−tA − e−tA�t

)
z0

∥∥2
Y

dt ≤ C(�t)1−2ν‖z0‖2
X. (3.7)

The second estimate in (3.2) follows. �
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3.2 Proof of Lemma 3.2

Proof of Lemma 3.2 First, let us recall the following classical estimates on Riemann
sums for a function g ∈ W 1,1(0, T ):∣∣∣∣∣

∫ T

0
g(t) dt − �t

	T/�t
∑
k=0

g(k�t)

∣∣∣∣∣ ≤
	T/�t
∑

k=0

∫ ∫

[k�t,(k+1)�t]2

χ{s<t}|ġ(s)|ds dt

≤ �t

∫ T

0
|ġ|dt. (3.8)

Therefore, for any z0 ∈ C(δ/�t), taking the smooth function

g(t) = ‖B exp(−tA�t )z0‖2
Y

in (3.8), we obtain∣∣∣∣∣
∫ T

0

∥∥Be−tA�t z0
∥∥2

Y
dt − �t

	T/�t
∑
k=0

∥∥Be−k(�t)A�t z0
∥∥2

Y

∣∣∣∣∣
≤ 2�t

∫ T

0

∣∣〈Be−tA�t z0,Be−tA�t A�tz0
〉
Y

∣∣dt

≤ 1

2

∫ T

0

∥∥Be−tA�t z0
∥∥2

Y
dt + 2(�t)2

∫ T

0

∥∥Be−tA�t A�tz0
∥∥2

Y
dt. (3.9)

But, according to Proposition 2.1, for any z = ∑
j aj�j ∈ C(δ/�t),

‖Bz‖2
Y ≤ ‖B‖2

L(D(Aν),Y )

∑
j

|aj |2μ2ν
j ≤ ‖B‖2

L(D(Aν),Y )

m2ν
δ

∑
j

|aj |2λ2ν
j,�t .

It follows that the operator B is continuous from the space D(Aν
�t ) ∩ C(δ/�t) en-

dowed with the norm ‖Aν
�t · ‖X to Y and its corresponding operator norm is uni-

formly bounded with respect to �t .
Therefore, from Theorem 2.2, there exists a constant K0 independent of �t such

that

(�t)2
∫ T

0

∥∥e−tA�t A�tz0
∥∥2

Y
dt ≤ K0(�t)2

∑
μj �t≤δ

|aj |2λ2(ν−1/2)
j,�t λ2

j,�t

≤ K0M
2ν+1
δ (�t)2

∑
μj �t≤δ

|aj |2μ2ν+1
j , (3.10)

where we again used (2.1). Since ν < 1/2, μ2ν+1
j (�t)2 ≤ δ2ν+1(�t)1−2ν , estimate

(3.9) implies the existence of a constant Cδ such that

1

2

∫ T

0

∥∥Be−tA�t z0
∥∥2

Y
dt

≤ �t

	T/�t
∑
k=0

∥∥Be−k(�t)A�t z0
∥∥2

Y
+ Cδ(�t)1−2ν‖z0‖2

X, (3.11)

and the proof of Lemma 3.2 is complete, due to (3.1). �
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3.3 Comments

On the necessity of the remaining term An interesting case to be considered corre-
sponds to the case B = exp(−A). This operator B obviously is a smoothing operator:
for all ν < 0, B ∈ L(D(Aν),X).

In this case, the continuous model (1.1) is exactly observable in any time T ∗ > 1,
since

∥∥∥∥e−T A

(∑
j

aj�j

)∥∥∥∥
2

X

=
∑
j

|aj |2e−2μj T ,

∫ T

0

∥∥∥∥e−Ae−tA

(∑
j

aj�j

)∥∥∥∥
2

X

dt =
∑
j

|aj |2 e−2μj

2μj

(1 − e−2μj T ).

But in the discrete case, this is more intricate:

∥∥∥∥e−T A�t

(∑
j

aj�j

)∥∥∥∥
2

X

=
∑
j

|aj |2e−2λj,�t T ,

�t

T/�t∑
k=0

∥∥∥∥e−Ae−k(�t)A�t

(∑
j

aj�j

)∥∥∥∥
2

X

=
∑
j

|aj |2e−2μj (�t)

(
1 − e−2λj,�t T

1 − e−2λj,�t (�t)

)
.

Hence, when considering for instance the Euler implicit method, and μj�t � δ,
which corresponds to λj,�t�t � ln(1 + δ), we have

∥∥e−T A�t �j

∥∥2
X

� exp

(
− 2

�t
T ln(1 + δ)

)
,

�t

T/�t∑
k=0

∥∥e−Ae−k(�t)A�j

∥∥2
X

� exp

(
− 2δ

�t

)
(�t)

1 − 1/(1 + δ)2
.

Therefore, in that case, (1.9) cannot be satisfied uniformly with respect to �t in the
class C(δ/�t) for any δ, T such that δ > T ln(1 + δ). These explicit computations
actually show that, in this case, there exist positive constants Cδ , C2,δ and kδ such
that, for z0 ∈ C(δ/�t),

kδ

∥∥z	T ∗/�t
∥∥2
X

≤ �t

	T ∗/�t
∑
k=0

∥∥Bzk
∥∥2

Y
+ Cδe

−C2,δ/�t‖z0‖2
X,

whereas our results yield a remaining term of the form (�t)2‖z0‖2
X .

To sum up, this example shows that, in general, a remaining term in (1.12) cannot
be avoided.

The case R = ∞ and B ∈ L(X,Y ) In that case, if we further assume that
limδ→∞ f (δ) = +∞, we can prove that (1.12) holds uniformly with respect to the
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time discretization parameter �t > 0 for any solution of (1.5) without any filtering
condition. Under this assumption, the admissibility property in (1.12) is obvious since
B is continuous on X.

Let us now deal with the observability inequality in (1.12). Choose first δ = 1 and
apply Theorem 1.2. Then, consider a solution zk of (1.5) with initial data z0 ∈ X.
Define π1/�t as the orthogonal projection in X on C(1/�t). Then (1.12) applies to
π1/�t z

k . But

�t

	T ∗/�t
∑
k=0

∥∥Bπ1/�t z
k
∥∥2

Y
≤ 2�t

	T ∗/�t
∑
k=0

∥∥Bzk
∥∥2

Y
+ 2�t

	T ∗/�t
∑
k=0

∥∥B(I − π1/�t )z
k
∥∥2

Y

and then we only have to check that there exists a constant C such that

max

{∥∥(I − π1/�t )z
	T ∗/�t
∥∥2

X
,�t

	T ∗/�t
∑
k=0

∥∥B(I − π1/�t )z
k
∥∥2

Y

}
≤ C(�t)‖z0‖2

X.

(3.12)
Writing z0 = ∑

j aj�j ,

∥∥(I − π1/�t )z
k
∥∥2

X
=

∑
μj �t≥1

|aj |2e−2k(�t)λj,�t .

But, since lim+∞ f = +∞ and f is strictly positive on R
∗+, inf[1,∞) f = c > 0 and

then
∥∥(I − π1/�t )z

k
∥∥2

X
≤

∑
μj �t≥1

|aj |2e−2kc ≤ e−2kc‖z0‖2
X,

which easily implies (3.12).

4 Controllability

In this section, we apply Theorem 1.2 to derive controllability properties for time
semi-discrete schemes. We first recall briefly how to obtain controllability results
from (1.3)–(1.4) in the continuous setting. Then we modify the methodology of the
continuous case to deal with the time semi-discrete one.

4.1 The continuous setting

Let us consider the following controllability problem: Given u0 ∈ X, to find a control
function v ∈ L2((0, T );Y) such that the solution of

u̇ + Au = B∗v, t ∈ (0, T ), u(0) = u0 ∈ X, (4.1)
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satisfies

u(T ) = 0. (4.2)

This problem might be solved for several v ∈ L2((0, T );Y), and it is then natural
to try to find, among all possible controls, the one of minimal L2((0, T );Y)-norm.
This control is the so-called HUM-control vHUM (see [18]), and can be computed as
follows. Consider the functional, defined for ψT ∈ X by

JT (ψT ) = 1

2

∫ T

0
‖Bψ(t)‖2

Y dt + 〈ψ(0), u0〉X, (4.3)

where ψ is the solution of the adjoint (backward) equation

ψ̇ − Aψ = 0, t ∈ (0, T ), ψ(T ) = ψT . (4.4)

When estimates (1.3)–(1.4) hold, the functional JT is well-defined, continuous,
strictly convex and coercive with respect to the norm

‖ψT ‖2
obs =

∫ T

0
‖Bψ(t)‖2

Y dt.

We thus define X̄ as the completion of X for ‖ · ‖obs. On X̄, using the admissibility
inequality (1.3) and the density of X in X̄, we can define a unique continuous map
� : X̄ → L2((0, T );Y) which coincides on X with the map ψT �→ Bψ(t). Com-
bined with the observability inequality (1.4) which guarantees that the map which
associates ψT ∈ X̄ to ψ(0) is continuous, we can thus consider the functional JT in
(4.3) on X̄.

Now, the functional JT is coercive on X̄ and thus the existence of a minimizer
ϕT ∈ X̄ for JT is guaranteed. The HUM-control is then explicitly given by

vHUM(t) = �ϕT . (4.5)

Note that, when ϕT ∈ X, the HUM control is then simply given by vHUM(t) = Bϕ(t),
where ϕ is the corresponding solution of (4.4).

4.2 The time semi-discrete setting: results

In this subsection, we propose a numerical method which computes a discrete ap-
proximation of an exact control for the continuous system (4.1). For this purpose, it
is natural to consider the controllability properties for the semi-discrete problem:

uk+1 = T�tu
k + (�t)πδ/�tB

∗vk+1
�t , 0 ≤ k�t ≤ T , u0 = u0,�t , (4.6)

where δ∈(0,R), the operator πδ/�t is the orthogonal projection in X on C(δ/�t) and
u0,�t ∈ C(δ/�t) is an approximation of u0 ∈ X. In the following, δ∈(0,R) is fixed.

Assume that the system (1.1)–(1.2) is exactly observable in some time T ∗. In the
following, we fix T = T ∗.
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Following the methodology of the continuous setting, we introduce, in the same
spirit as in [14], the functional JT,�t defined for ψT ∈ C(δ/�t) by

JT,�t (ψT ) = �t

2

	T/�t
∑
k=1

∥∥Bψk
∥∥2

Y
+ 1

2
(�t)β‖ψT ‖2

X + 〈ψ0, u0,�t 〉X, (4.7)

where β is as in (1.11) and ψk denotes the solution of the backward problem

ψk = T�tψ
k+1, 0 ≤ k ≤ �T/�t�, ψ	T/�t
 = ψT . (4.8)

Then the following proposition is an easy consequence of Theorem 1.2:

Proposition 4.1 For each �t > 0, the functional JT,�t defined in (4.7) has a unique
minimizer ϕT,�t ∈ C(δ/�t).

Moreover, setting ϕk
�t the corresponding solution of (4.8) and vk

�t = Bϕk
�t , the

solution of (4.6) satisfies

u	T/�t
 = πδ/�tu
	T/�t
 = −(�t)βϕT,�t . (4.9)

Besides, there exists a positive constant C such that for all �t > 0,

�t

2

	T/�t
∑
k=1

∥∥Bϕk
�t

∥∥2
Y

+ 1

2
(�t)β‖ϕT,�t‖2

X ≤ C‖u0,�t‖2
X. (4.10)

This proposition gives an approximate controllability result for the discrete
schemes. But the size of the error done on the final state (the target state here is 0)
is of order (�t)β/2, and goes to zero when the time discretization parameter �t > 0
goes to zero.

The proof of Proposition 4.1 is based on the HUM duality process, and will be
described in the next subsection.

It is natural to think that, if the continuous system (1.1)–(1.2) is exactly observable
and if u0,�t converges to u0 in X, then the sequence of discrete controls v�t given
by Proposition 4.1 converges to a control for (4.1). We will prove that this is indeed
the case, up to extractions.

To state our results properly, we need to introduce the classical extension oper-
ators E�t which extend discrete functions f�t = (f k)0≤k�t≤T as piecewise affine
continuous functions on [0, T ]:

E�t(f�t )(t) =
(

f k+1 − f k

�t

)
(t − k�t) + f k, ∀t ∈ [k�t, (k + 1)�t].

Theorem 4.2 Assume that B ∈ L(D(Aν),Y ) with ν < 1/2 and that system (1.1)–
(1.2) is exactly observable in some time T . Consider u0 ∈ X and (u0,�t ) a sequence
of elements of X such that u0,�t ∈ C(δ/�t) for all �t > 0, for some δ > 0 indepen-
dent of �t , and (u0,�t ) → u0 in X as �t → 0. For �t > 0, let v�t be the discrete
control computed in Proposition 4.1.
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Then the sequence (E�tv�t ) is bounded in L2((0, T );Y) and any weak accumula-
tion point v in L2((0, T );Y) of the sequence (E�tv�t ) is a control for (4.1). Besides,
the corresponding solutions (u�t ) of (4.6) converge in the following sense:

⎧⎨
⎩

E�tu�t −→
�t→0

u, in C([0, T ];X−1/2),

E�tu�t −⇀
�t→0

u, in L∞((0, T );X) − w∗,

where u satisfies (4.1) and (4.2).

4.3 Proof of Proposition 4.1

Proof of Proposition 4.1 For any �t > 0, the functional JT,�t defined in (4.7) is ob-
viously strictly convex. Moreover, from Theorem 1.2, JT,�t is coercive, and therefore
has a unique minimizer ϕT,�t in the closed (finite dimensional) vector space C(δ/�t).

To get the uniform bound (4.10), we use that

JT,�t (ϕT,�t ) ≤ JT,�t (0) = 0,

which obviously implies (4.10) due to Theorem 1.2 and the uniform observability
inequality (1.12).

Since ϕT,�t is the minimizer of JT,�t in C(δ/�t), the Fréchet derivative of
JT,�t vanishes at ϕT,�t . This implies that any solution of (4.8) with initial data
ψT ∈ C(δ/�t) satisfies:

0 = �t

	T/�t
∑
k=1

〈Bϕk
�t ,Bψk〉Y + (�t)β〈ψT ,ϕT,�t 〉X + 〈ψ0, u0,�t 〉X. (4.11)

Now, let us consider a solution u of (4.6). Then for all ψ , we have〈
ψ	T/�t
, u	T/�t
〉 − 〈ψ0, u0〉

=
�T/�t�∑

k=0

〈
ψk+1, uk+1〉 − 〈ψk,uk〉

=
�T/�t�∑

k=0

〈
ψk+1,T�tu

k + (�t)πδ/�tB
∗vk+1

�t

〉 − 〈ψk,uk〉

=
�T/�t�∑

k=0

〈
T�tψ

k+1 − ψk,uk
〉 + �t

	T/�t
∑
k=1

〈vk
�t ,Bπδ/�tψ

k〉Y .

In particular, when ψ is a solution of (4.8) with ψT ∈ C(δ/�t), one has

〈
ψT ,u	T/�t
〉 = 〈ψ0, u0〉 + �t

	T/�t
∑
k=1

〈vk
�t ,Bψk〉Y . (4.12)

Choosing vk
�t = Bϕk

�t , identities (4.11) and (4.12) give (4.9). �



180 S. Ervedoza, J. Valein

Also note that, due to the choice of v�t , (4.10) implies that

�t

	T/�t
∑
k=1

∥∥vk
�t

∥∥2
Y

≤ C‖u0,�t‖2
X. (4.13)

This estimate will be crucial next.

4.4 Convergence results

Proof of Theorem 4.2 Inequality (4.13) implies that the sequence (E�tv�t ) is uni-
formly bounded in L2((0, T );Y), and therefore there exists v ∈ L2((0, T );Y) such
that, up to a subsequence, E�tv�t ⇀ v in L2((0, T );Y) as �t → 0. It follows that
E�tB

∗v�t ⇀ B∗v in L2((0, T );X−ν) as �t → 0. Using the density of finite linear
combination of eigenfunctions in X, we easily see that

E�tπδ/�tB
∗v�t −⇀

�t→0
B∗v, in L2((0, T );X−ν). (4.14)

Besides, inequality (4.10) implies that (�t)β/2ϕT,�t is bounded in X, and thus,
by (4.9) and (4.10),

∥∥πδ/�tu
	T/�t
∥∥

X
≤ C(�t)β/2‖u0,�t‖X −⇀

�t→0
0. (4.15)

Therefore Theorem 4.2 mainly deals with convergence properties of the discrete
solutions of (4.6) toward the solution of the continuous system (4.1).

We thus need the following lemma:

Lemma 4.3 (Convergence) Assume that u0,�t ∈ C(δ/�t) strongly converges to
u0 ∈ X as �t → 0, and that E�tg�t ∈ L2((0, T );X−1/2) weakly converges to g

in L2((0, T );X−1/2) as �t → 0.
Then, if for all �t > 0, u�t denotes the solution of

uk+1 = T�tu
k + (�t)πδ/�tg

k+1
�t , 0 ≤ k�t ≤ T , u0 = u0,�t , (4.16)

the following convergence results hold:

⎧⎨
⎩

E�tu�t −→
�t→0

u in C([0, T ];X−1/2),

E�tu�t −⇀
�t→0

u in L∞((0, T );X) − w∗,
(4.17)

where u satisfies

u̇ + Au = g, in (0, T ), u(0) = u0. (4.18)

Indeed, assuming Lemma 4.3 which will be proved hereafter, Theorem 4.2 easily
follows since the convergences in (4.15) and (4.17) imply u(T ) = 0. �

Proof The proof of Lemma 4.3 is classical. The main idea is to derive some a priori
estimates on the discrete solution, and then pass to the limit.
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We first show that (E�tu�t ) is uniformly bounded in L∞((0, T );X). Taking the
inner product in X of (4.16), we obtain

∥∥uk+1
�t

∥∥2
X

= ∥∥T�tu
k
�t

∥∥2
X

+ 2�t
〈
T�tu

k
�t , πδ/�tg

k+1
�t

〉
X

+ (�t)2
∥∥πδ/�tg

k+1
�t

∥∥2
X
.

(4.19)

Note then that

∥∥T�tu
k
�t

∥∥2
X

=
∥∥∥∥uk

�t − �t

(
I − T�t

�t

)
uk

�t

∥∥∥∥
2

X

= ∥∥uk
�t

∥∥2
X

− 2�t

〈
uk

�t ,

(
I − T�t

�t

)
uk

�t

〉
X

+ (�t)2
∥∥∥∥
(

I − T�t

�t

)
uk

�t

∥∥∥∥
2

X

.

(4.20)

But, due to the explicit expression of (I − T�t )/�t on the basis �j , one can check
that (I − T�t)/�t defines a self-adjoint positive definite operator which commutes
with A.

Below, we show

∥∥T�tu
k
�t

∥∥2
X

≤ ∥∥uk
�t

∥∥2
X

− �t

∥∥∥∥
(

I − T�t

�t

)1/2

uk
�t

∥∥∥∥
2

X

. (4.21)

To verify this, since uk
�t belongs to C(δ/�t), and due to the orthogonality proper-

ties of the eigenvectors, it is sufficient to prove that estimate (4.21) holds for any
eigenvector �j with μj�t ≤ δ,

∥∥T�t�j

∥∥2
X

≤ ‖�j‖2
X − �t

∥∥∥∥
(

I − T�t

�t

)1/2

�j

∥∥∥∥
2

X

.

Moreover,

−2�t

〈
�j ,

(
I − T�t

�t

)
�j

〉
X

+ (�t)2
∥∥∥∥
(

I − T�t

�t

)
�j

∥∥∥∥
2

X

= −2(1 − e−λj,�t (�t)) + (1 − e−λj,�t (�t))2.

Since λj,�t (�t) ≥ 0,

−2�t

〈
�j ,

(
I − T�t

�t

)
�j

〉
X

+ (�t)2
∥∥∥∥
(

I − T�t

�t

)
�j

∥∥∥∥
2

X

≤ −�t

∥∥∥∥
(

I − T�t

�t

)1/2

�j

∥∥∥∥
2

X

,

which leads to (4.21), in view of (4.20).
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For the second term in (4.19), we use Cauchy’s inequality: for any α > 0,

∣∣2�t
〈
T�tu

k
�t , πδ/�tg

k+1
�t

〉
X

∣∣ ≤ α2�t
∥∥A1/2

T�tu
k
�t

∥∥2
X

+ 1

α2
�t

∥∥gk+1
�t

∥∥2
−1/2.

Moreover, as uk
�t belongs to C(δ/�t), there exists a positive constant Cδ such that

for all k ∈ N,

∥∥A1/2
T�tu

k
�t

∥∥2
X

≤ Cδ

∥∥∥∥
(

I − T�t

�t

)1/2

uk
�t

∥∥∥∥
2

X

.

Indeed, for �j such that μj�t ≤ δ:

∥∥A1/2
T�t�j

∥∥2
X

= μje
−2(�t)λj,�t ,

∥∥∥∥
(

I − T�t

�t

)1/2

�j

∥∥∥∥
2

X

= 1 − e−(�t)λj,�t

�t
,

and the quantity (
(�t)μj

1 − e−(�t)λj,�t

)
e−2(�t)λj,�t

is bounded by a constant which depends only on the filtering parameter δ > 0.
Thus we obtain

∣∣2�t
〈
T�tu

k
�t , πδ/�tg

k+1
�t

〉∣∣ ≤ α2Cδ�t

∥∥∥∥
(

I − T�t

�t

)1/2

uk
�t

∥∥∥∥
2

X

+ 1

α2
�t

∥∥gk+1
�t

∥∥2
−1/2, (4.22)

for any α > 0.
For the last term in (4.19), we notice that for all ϕ ∈ C(δ/�t),

(�t)2‖ϕ‖2
X ≤ (�t)δ‖ϕ‖2−1/2. (4.23)

Again, this can be deduced directly from the properties of the eigenvectors �j satis-
fying μj�t ≤ δ, since ‖�j‖2−1/2 = 1/μj and ‖�j‖2

X = 1.

Therefore, combining (4.19), (4.21), (4.22) and (4.23), we obtain, for any α > 0,

∥∥uk+1
�t

∥∥2
X

− ∥∥uk
�t

∥∥2
X

+ �t

∥∥∥∥
(

I − T�t

�t

)1/2

uk
�t

∥∥∥∥
2

X

≤ α2Cδ�t

∥∥∥∥
(

I − T�t

�t

)1/2

uk
�t

∥∥∥∥
2

X

+
(

1

α2
+ δ

)
�t

∥∥gk+1
�t

∥∥2
−1/2.

By choosing α such that α2Cδ = 1/2, we thus obtain

‖uk+1
�t ‖2

X − ‖uk
�t‖2

X

�t
+ 1

2

∥∥∥∥
(

I − T�t

�t

)1/2

uk
�t

∥∥∥∥
2

X

≤
(

1

α2
+ δ

)∥∥gk+1
�t

∥∥2
−1/2.
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It then follows that there exists a constant C independent of �t > 0 such that

∥∥uk
�t

∥∥2
X

≤ ∥∥u0
�t

∥∥2
X

+ C�t

	T/�t
∑
k=0

∥∥gk+1
�t

∥∥2
−1/2, 0 ≤ k�t ≤ T ,

�t

	T/�t
∑
k=0

∥∥∥∥
(

I − T�t

�t

)1/2

uk
�t

∥∥∥∥
2

X

≤ ∥∥u0
�t

∥∥2
X

+ C�t

	T/�t
∑
k=0

∥∥gk+1
�t

∥∥2
−1/2.

(4.24)

But (u0
�t ) is bounded in X and (E�tg�t ) is bounded in L2((0, T );X−1/2). Thus

we deduce from (4.24) that (E�tu�t ) is bounded in L∞((0, T );X) and that
E�t((

I−T�t

�t
)1/2uk

�t ) is bounded in L2((0, T );X).
We now prove that ( d

dt
(E�tu�t )) is uniformly bounded in L2((0, T );X−1/2). To

prove this, recall that u�t is solution of (4.16) and that (πδ/�tg
k+1
�t ) is bounded in

L2((0, T );X−1/2). Recall now that d
dt

(E�tu�t ) equals (T�t−I
�t

)uk
�t + πδ/�tg

k+1
�t on

(k�t, (k + 1)�t). But, if z = ∑
μj �t≤δ aj�j ∈ C(δ/�t),

∥∥∥∥
(

I − T�t

�t

)
z

∥∥∥∥
2

−1/2
=

∑
μj �t≤δ

|aj |2
∣∣∣∣1 − e−λj,�t (�t)

�t

∣∣∣∣
2 1

μj

=
∑

μj �t≤δ

|aj |2
(

1 − e−λj,�t (�t)

�t

)(
1 − e−f (μj (�t))

μj�t

)

≤ sup
η∈[0,δ]

{(
1 − e−f (η)

η

)}∥∥∥∥
(

I − T�t

�t

)1/2

z

∥∥∥∥
2

X

.

Thus, since E�t((
I−T�t

�t
)1/2u�t ) is bounded in L2((0, T );X) from (4.24),

E�t((
T�t−I

�t
)u�t ) is bounded in L2((0, T );X−1/2).

Since d
dt

(E�tu�t ) and E�tu�t are bounded in the spaces L2((0, T );X−1/2) and
L∞((0, T );X) respectively, and since the embedding X ⊂ X−1/2 is compact, we ob-
tain (see [23]) that E�tu�t converges strongly to u in C([0, T ],X−1/2) and weakly-*
in L∞(0, T ,X) as �t → 0.

We can then compute u(0). On one hand, E�tu�t (0) → u(0) in X−1/2 as �t → 0.
But we also have E�tu�t (0) = u0,�t → u0 in X as �t → 0, and then u(0) = u0.

Since d
dt

(E�tu�t ) is bounded in L2((0, T );X−1/2), we can also conclude that
d
dt

(E�tu�t ) ⇀ u̇ in L2((0, T );X−1/2) as �t → 0.

Besides, since, for ϕ ∈ X2, (T�t−I
�t

)πδ/�tϕ → −Aϕ strongly in X as �t → 0, we

obtain by duality that (T�t−I
�t

)E�tu�t (t) ⇀ −Au(t) in L2((0, T );X−2) as �t → 0.
Then, passing to the limit in (4.16), the limit function u satisfies (4.18). �

Remark 4.4 When R = ∞, that is when the time-discrete scheme under consider-
ation is unconditionnally stable, as in [26], one can consider, instead of (4.6), the
semi-discrete problem

uk+1 = T�tu
k + (�t)B∗vk+1

�t .
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The HUM duality process is then the same as before, and Theorem 4.2 can easily be
adapted to this case.

5 Fully discrete schemes

5.1 General setting

In this section, we consider time-discrete approximation schemes for families of op-
erators (A,B). In particular, the operators A and B can depend on an extra parameter,
which may correspond to a space discretization parameter.

It will then be convenient to denote by C(δ/�t)[A] the filtered class C(δ/�t)

corresponding to the operator A.
To state our results, we introduce the following class of operators:

Definition 5.1 For any (ν,KB,T ∗, k∗) ∈ (−∞,1/2) × (R∗+)3, we define the class
F (ν,KB,T ∗, k∗) of operators (A,B) satisfying:

• The operator A is self-adjoint, positive definite with dense domain and compact
resolvent.

• The operator B belongs to L(D(Aν);Y) with ‖B‖L(D(Aν);Y) ≤ KB .
• The pair of operators (A,B) satisfies the observability inequality (1.4) in time T ∗

with positive constant k∗ > 0.

In this class, Theorem 1.2 applies and provides uniform admissibility and observ-
ability results for any of the time semi-discrete approximation schemes described by
(1.5). Indeed, all the constants in Theorem 1.2 are explicit and only depend on ν, KB ,
T ∗, k∗, f and δ. We can then state:

Theorem 5.2 Set (ν,KB,T ∗, k∗) ∈ (−∞,1/2)× (R∗+)3. Let (Ai,Bi)i∈I be a family
of operators in F (ν,KB,T ∗, k∗). Set β as in (1.11). Then, for any δ∈(0,R), there
exist positive constants Kδ, kδ and Cδ such that, for any �t > 0 and i ∈ I , any so-
lution zk of (1.5)i with initial data z0 ∈ C(δ/�t)[Ai] satisfies (1.12)i , where (1.5)i
corresponds to system (1.5) with T�t = T�t,i = exp(−f ((�t)Ai)) and (1.12)i cor-
responds to (1.12) with B = Bi .

We now explain how Theorem 5.2 can be used when dealing with fully-discrete
approximation schemes of (1.1)–(1.2). First, we introduce the space semi-discrete
approximation scheme of (1.1)–(1.2). For h > 0, the approximation space is a finite
dimensional subspace Xh, endowed with the norm ‖ · ‖h, on which the continuous
model (1.1)–(1.2) is approximated by

żh + Ahzh = 0, 0 ≤ t ≤ T , zh(0) = zh,0 ∈ Xh, yh(t) = Bhzh(t), (5.1)

where Ah and Bh are approximations of A and B in the discrete setting. In the fol-
lowing, we denote by Ch(δ/�t) the filtered class C(δ/�t)[Ah].

Thus, if one wants to study fully discrete approximation schemes of (1.1)–(1.2)
deduced from (5.1) and their admissibility and observability properties, Theorem 5.2
suggests the following two-steps strategy:
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1. Study the time continuous system (5.1) for every mesh-size h and prove the exis-
tence of (ν,KB,T ∗, k∗) ∈ (−∞,1/2)× (R∗+)3 such that for all h > 0, (Ah,Bh) ∈
F (ν,KB,T ∗, k∗) uniformly. In particular, one shall have, for all h > 0 and any
solution of (5.1),

k∗‖zh(T
∗)‖2

h ≤
∫ T ∗

0
‖Bhzh‖2

Yh
dt. (5.2)

2. Apply then Theorem 5.2 to obtain admissibility and observability results for the
following fully discrete schemes

zk+1
h = T�t,hz

k
h, 0 ≤ k ≤ �T/�t�, z0

h = zh,0 ∈ Xh, (5.3)

where T�t,h = exp(−f ((�t)Ah)): setting β as in (1.11), for any δ ∈ (0,R), there
exist positive constants Kδ, kδ and Cδ such that, for any �t > 0 and h > 0, any
solution zk

h of (5.3) with initial data zh,0 ∈ Xh ∩ Ch(δ/�t) satisfies

kδ

∥∥z
	T ∗/�t

h

∥∥2
h

≤ �t

	T ∗/�t
∑
k=0

∥∥Bhz
k
h

∥∥2
Yh

+ Cδ(�t)β‖zh,0‖2
h ≤ Kδ‖zh,0‖2

h.

Note that, if ‖Ah‖L(Xh) ≤ δ/�t , then Xh ∩ Ch(δ/�t) = Xh and no filtering condition
is required. This corresponds to a CFL type condition since ‖Ah‖L(Xh) usually is of
the form C/hα for some positive α.

In the following, we give some precise examples of applications.

5.2 The 1-d heat equation

Consider the following system

⎧⎪⎨
⎪⎩

∂t z(x, t) − ∂2
xxz(x, t) = 0, 0 < x < 1, t > 0,

z(0, t) = z(1, t) = 0, t > 0,

z(x,0) = z0(x), 0 < x < 1.

(5.4)

System (5.4) obviously has the form (1.1) by taking A = −∂2
xx with Dirichlet bound-

ary conditions, of domain D(A) = H 1
0 (0,1) ∩ H 2(0,1) on X = L2(0,1). For (a, b)

a subset of (0,1), we define the output function by

y(t) = z|(a,b)(t), ∀t > 0,

where z|(a,b) means the restriction of z to the interval (a, b). This obviously defines
a continuous observation operator B from X = L2(0,1) to Y = L2(a, b).

It is classical that this system is observable in any time T ∗ > 0, see for in-
stance [22].

Now, we consider the space semi-discrete approximation scheme of (5.4) derived
by the finite-difference method. More precisely, for N ∈ N

∗ given and h = 1/(N +1),
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we consider the following scheme:

⎧⎪⎨
⎪⎩

żj − zj+1−2zj +zj−1

h2 = 0, 0 < t < T, j = 1, . . . ,N,

z0 = zN+1 = 0, 0 < t < T,

zj (0) = zj,0, j = 1, . . . ,N.

(5.5)

Here, zj (t) denotes the approximation of the solution z of (5.4) at the point xj = jh.
System (5.5) is a system of N linear differential equations. Moreover, if we denote

the unknown zh(t) = (zj (t))
T
1≤j≤N , the system (5.5) can be rewritten in vector form

as (5.1) with Ah ∈ MN(R). This matrix Ah can be easily deduced from (5.5), and
is self-adjoint and positive definite. The approximation space is then Xh = R

N , with
corresponding norm

‖zh‖2
h = h

N∑
j=1

|zj |2.

As a discretization of the output, we choose

Bhzh = (zj )j∈{�a/h�,...,	b/h
}.

The range of the operator Bh is the space Yh = R
	b/h
−�a/h� with the norm

‖zh‖2
Yh

= h

	b/h
∑
j=�a/h�

|zj |2.

Following [19] (which was dealing with a boundary observability rather than a
distributed one), one can indeed prove the following discrete observability inequality
in any time T ∗: there exists k∗ > 0 independent of h > 0 such that, for any h > 0, any
solution zh of (5.5) satisfies

k∗‖zh(T
∗)‖2

h ≤
∫ T ∗

0
‖Bhzh‖2

Yh
dt. (5.6)

Consequently, for any T ∗ > 0, there exists k∗ > 0 such that the pairs (Ah,Bh)

belong to F (0,1, T ∗, k∗), and thus applying Theorem 5.2, we obtain: for any δ ∈
(0,R), there exist positive constants kδ and Cδ such that for all �t > 0 and h > 0,
any zh,0 ∈ Xh ∩ Ch(δ/�t) satisfies

kδ

∥∥T
	T ∗/�t

�t,h zh,0

∥∥2
h

≤ �t

	T ∗/�t
∑
k=0

∥∥BhT
k
�t,hzh,0

∥∥2
Yh

+ Cδ(�t)‖zh,0‖2
h,

where T�t,h = exp(−f ((�t)Ah)).

5.3 The finite element method

In the literature, there are very few results concerning exact observability properties
for general space semi-discrete dissipative systems. However, as in our case, there are
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results of “weak” observability properties which have been proved to hold in many
situations [14]. We now explain how these weak observability results can also be
combined with our results to derive weak observability properties for fully discrete
schemes.

Let us introduce the finite element method for (1.1) (see [21] for more details).
Let (Xh)h>0 be a family of finite dimensional spaces, which are embedded into X

by a map ρh : Xh → X such that ρh(Xh) ⊂ D(A1/2). For h > 0, the space Xh is
endowed with the inner product 〈·, ·〉h = 〈ρh·, ρh·〉X , induced by ρh. For h > 0, we
define Ah : Xh → Xh by:

〈Ahϕh,ψh〉h = 〈
A1/2ρhϕh,A

1/2ρhψh

〉
X
, ∀(ϕh,ψh) ∈ X2

h. (5.7)

This operator Ah corresponds to the space discrete approximation of A given by the
finite element method and is obviously self-adjoint and positive definite.

Assume now that B : X → Y is continuous, and consider the observation operators
Bh defined by Bh = Bρh. Remark then that ‖Bh‖L(Xh,Y ) ≤ ‖B‖L(X,Y ) uniformly
in h.

We now make precise the assumptions we have on ρh. The embedding ρh de-
scribes the finite element approximation we have chosen. In particular we shall as-
sume that the family of spaces (Xh)h approximates D(A1/2) in the following sense:
there exist C > 0 and θ > 0 such that{

‖(IdX − ρhρ
∗
h)ϕ‖X ≤ Ch2θ‖Aϕ‖X, ∀ϕ ∈ D(A),

‖A1/2(IdX − ρhρ
∗
h)ϕ‖X ≤ Chθ‖Aϕ‖X, ∀ϕ ∈ D(A).

(5.8)

Note that estimates (5.8) are, in particular, satisfied for θ = 1, when using regular
mesh (in the sense of finite elements) for the Laplace operator with Dirichlet bound-
ary conditions (see [21] for instance).

For the space semi-discrete approximation schemes

żh + Ahzh = 0, 0 ≤ t ≤ T , zh(0) = zh,0 ∈ Xh, yh(t) = Bhzh(t), (5.9)

the results in [14] yield:

Theorem 5.3 Assume that (1.1)–(1.2) is exactly observable in some time T ∗ and B ∈
L(X,Y ). Under the condition (5.8), for all h > 0 small enough, there exist k∗ > 0,
C > 0 and γ > 0 independent of h such that any solution zh of (5.9) with initial data
zh,0 satisfies

k∗‖zh(T
∗)‖2

h ≤
∫ T ∗

0
‖Bhzh(t)‖2

Y dt + Chγ ‖zh,0‖2
h. (5.10)

Note that [14] gives more general results under more general assumptions on A

and B . We refer to [14] for more details.
Remark that the difference between (5.10) and (5.2) is the term hγ ‖ψh,T ‖2

h. As in
Theorem 4.2, this is sufficient for controllability purposes [14].

As the constants in (5.10) are independent of h, we can follow the proof of The-
orem 1.2 (see Lemmas 3.1–3.2 and Theorem 2.2) to obtain weak observability esti-
mates for fully discrete approximations of (1.1)–(1.2).



188 S. Ervedoza, J. Valein

Theorem 5.4 For any δ ∈ (0,R), there exist positive constants Kδ , kδ and Cδ such
that for all �t > 0 and h > 0, for any zh,0 ∈ Xh ∩ Ch(δ/�t),

kδ

∥∥T
	T ∗/�t

�t,h zh,0

∥∥2
h

≤ �t

	T ∗/�t
∑
k=0

∥∥BhT
k
�t,hzh,0

∥∥2
Y

+ Cδ[(�t) + hγ ]‖zh,0‖2
h, (5.11)

where T�t,h = exp(−f ((�t)Ah)).

The estimate (5.11) is a weak observability inequality due to the presence of the
term Cδ[(�t) + hγ ]‖zh,0‖2

h.
As a direct application, one can for instance tackle the following problem.
Let d ≥ 1 be an integer, � a smooth bounded convex domain of R

d , � = ∂�,
c ∈ L∞(�) a nonnegative function. Consider the following system

⎧⎪⎨
⎪⎩

∂t z − �z + c(x)z = 0, in (0, T ) × �,

z(x, t) = 0, on [0, T ] × �,

z(0, x) = z0(x) in �,

(5.12)

where z0 ∈ L2(�).
Equation (5.12) obviously has the form (1.1) where the self-adjoint operator A is

defined by Az = −�z + c(x)z on D(A) = H 1
0 (�) ∩ H 2(�) and X = L2(�). For

ω a subset of �, we define the output function by y(t) = z|ω(t),∀t > 0, where z|ω
denotes the restriction of z to ω. This defines a continuous observation operator B

from X = L2(�) to Y = L2(ω).
It is well-known that system (5.12) observed by y(t) = z|ω(t) is observable in any

time T ∗ > 0, see [10, 16].
We then consider triangulations Th of the domain � which we assume to be regular

in the sense of [21]. Roughly speaking, this assumption imposes that the triangles of
(Th) are not too flat. In this case, estimates (5.8) hold with θ = 1 (see [21]). Estimate
(5.11) is then verified for the solutions of the corresponding fully discrete schemes,
uniformly with respect to both discretization parameters �t and h.

6 Comments

1. In this article, we assumed A to be self-adjoint, positive definite with dense do-
main and compact resolvent. One can actually weaken the hypothesis of positivity
of A and replace it by the following one: there exists α ∈ R+ such that A + αI is
positive definite. Indeed, the admissibility and observability properties for systems

ż + Az = 0, z(0) = z0, y(t) = Bz(t), (6.1)

and

˙̃z + (A + αI)z̃ = 0, z̃(0) = z0, ỹ(t) = Bz̃(t), (6.2)

are linked by the change of variable z̃(t) = e−αt z(t). Since system (6.2) fits the
abstract setting of this article, one can derive immediately admissibility and ob-
servability properties for system (6.1).
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2. Note that in [26], the study of the controllability of the heat equation discretized
in time is done for several time-discretization schemes, and yields better results
than ours, obtaining the discrete observability inequality (1.9) for the Euler im-
plicit method with a bounded operator when taking initial data in C(1/(�t)2−ε)

(ε > 0). Though, the study in [26] is based on a good knowledge of the spectrum
of the Laplace operator, and in particular the spectral inequality obtained in [17],
which are not proved so far in the space discrete setting. However, recently, in the
1-d case, this issue has been successfully addressed in [2] by means of discrete
Carleman estimates.

Besides, as shown by the example in Sect. 3.3, the extra term in (1.12) is needed
when no further assumptions is available. In this sense, our approach is more ro-
bust: it can be applied directly to any observable parabolic systems (even Stokes
equations), and does not require the explicit knowledge of the eigenvalues and
eigenvectors. This is indeed an interesting feature since it allows to derive instan-
taneously uniform observability properties for fully discrete dissipative systems
from the ones of the space semi-discrete (and time continuous) schemes.

3. In this article, we need the assumption B ∈ L(D(Aν),Y ) with ν < 1/2. There are
several cases of interests in which this condition is not satisfied, for instance when
considering the classical problem of the observability of the heat equation by the
normal derivative on the boundary. It would then be interesting to address the case
B ∈ L(D(A),Y ) with more details.
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