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Error estimate for Godunov approximation

of locally constrained conservation laws

Clément Cances∗ Nicolas Seguin†

June 10, 2011

Abstract

We consider a model of traffic flow with unilateral constraint on the flux introduced byR. M. Colombo

and P. Goatin (J. Differ. Equ. 234(2):654–675, 2007), for which the convergence of numerical approx-
imation using monotone Finite Volume schemes has been performed by B. Andreianov et al. (Numer.
Math. 115:609–645, 2010). We derive for this problem some new BV -estimate, and make use of it to pro-
vide an error estimate of optimal order h

1/2 for the Godunov approximation of the problem. Numerical
illustrations are then provided to illustrate the optimality of the result.

keywords: Locally constrained scalar conservation laws, monotone finite volume scheme, BV -estimate,
error estimate.

AMS 35L65, 65M15, 76M12, 90B20

1 Presentation of the continuous problem

Recently, R. M. Colombo and P. Goatin [12] analyzed the following model of traffic flow, inspired from
the so-called LWR model [19, 23], with a constraint on the flux:











∂tu+ ∂xf(u) = 0 for (x, t) ∈ R× R+,

u(x, 0) = u0(x) for x ∈ R,

f(u)(0, t) ≤ F (t) for t ∈ R+,

(1)

where f is supposed to be Lipschitz continuous on [0, 1] and bell-shaped, i.e. there exists u ∈ (0, 1) such that

f(0) = f(1) = 0, f ≥ 0, f ′(u)(u− u) > 0 for a.e. u ∈ [0, 1], (2)

and where the constraint F satisfies

0 ≤ F (t) ≤ f(u), for a.e. t ∈ R
+.

This constraint F models toll gates or lights. In the case where the flow is not constrained, i.e. F ≡
f(u), then it is well known that the good notion of solution for the problem (1) is the notion of entropy
solution [21, 26, 17]. In the case where the constraint becomes active, i.e. F (t) < f(u) on a non negligible
set of R+, then it is shown in [12] that a non-classical shock with zero speed can appear at the interface
{x = 0}, so that the constraint can be satisfied. It has then be pointed out by B. Andreianov, P. Goatin

and N. Seguin [3] that the problem (1) can be immersed in the framework of scalar conservation laws
with discontinuous flux functions, that has been widely studied during the last years. Among the numerous
references available on this topic, let us mention that Adimurthi and G.D. Veerappa Gowda [1] exhibited
that such scalar conservation laws with discontinuous flux function admits an infinite number of solutions.
More precisely, for the problem

{

∂tu+ ∂xf(u) = 0 for (x, t) ∈ R× R+,

u(x, 0) = u0(x) for x ∈ R,
(3)
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prescribing that the solution u satisfies the “classical” entropy condition away from {x = 0}, i.e. that for all
κ ∈ R,

∂t|u− κ|+ ∂xΦκ(u) ≤ 0, in D′(R⋆ × R+), (4)

where
Φκ(u) = sign(u− κ)(f(u)− f(κ)), (5)

and is a weak solution, implying that
f(uL) = f(uR), (6)

where uL and uR respectively denote the traces of u on {x = 0} from {x < 0} and {x > 0}, i.e.

uL(t) = lim
ǫ→0+

1

ǫ

∫ 0

−ǫ

u(x, t)dx, uR(t) = lim
ǫ→0+

1

ǫ

∫ ǫ

0

u(x, t)dx, (7)

then some undercompressive waves can be generated by the interface {x = 0}. An additional criterion is
required to ensure the uniqueness of the solution to the problem (3)–(6). This additional condition can be
prescribed by requiring that the traces (uL(t), uR(t)) belong to a so-called L1-dissipative germ G(t). We now
give a simple definition of a L1-dissipative germ.

Definition 1.1 A subset G of [0, 1]2 is said to be a L1-dissipative germ corresponding to the function f if it
satisfies

{

f(uL) = f(uR), ∀(uL, uR) ∈ G,

ΦκR
(uR)− ΦκL

(uL) ≤ 0, ∀(uL, uR) ∈ G, ∀(κL, κR) ∈ G.

We refer to the recent contribution of B. Andreianov, K. H. Karlsen and N. H. Risebro [2] for an
extensive discussion on the use of L1-dissipative germs in the more general case of scalar conservation laws
with discontinuous flux functions. We just describe now the L1-dissipative germ involved in the problem (1).
For t ∈ R

+, we denote by A(t) (resp. B(t)) the unique value in [0, 1] such that

A(t) ≥ u (resp. B(t) ≤ u), F (t) = f(A(t)) = f(B(t)). (8)

Then, following [3], the L1-dissipative germ G(t) corresponding to the problem (1), represented in Figure 1,
is given by

G(t) = G1(t) ∪ G2(t) ∪ G3(t),

where

• G1(t) = (A(t), B(t)),

• G2(t) = {(c, c) ∈ [0, 1]2 | f(c) ≤ F (t)},

• G3(t) = {(cL, cR) ∈ [0, 1]2 | cL < cR and f(cL) = f(cR) ≤ F (t)}.

u

F (t)

0 B(t) A(t)

u

f(u)

1

uR

uL

1

A(t)

B(t)

B(t)0 1A(t)

(A(t), B(t))

Figure 1: Graphical representation of the values A(t) and B(t) corresponding to the constraint F (t), and
graphical representation of the corresponding L1-dissipative germ G(t). An example of L1-dissipative germ
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Remark 1.1 Notice that the existence of the traces uL, uR ∈ L∞(R+) defined in (7) is a consequence of the
work of E. Yu. Panov [22] and of the condition (2).

Definition 1.2 A function u ∈ L∞(R× R+; [0, 1]) is said to be a solution of the problem (1) if:

1. for all κ ∈ [0, 1], for all ψ ∈ D+(R× R+) such that ψ(0, ·) = 0,

∫ +∞

0

∫

R

|u(x, t)− κ|∂tψ(x, t)dxdt +

∫

R

|u0(x) − κ|ψ(x, 0)dx

+

∫ +∞

0

∫

R

Φκ(u)(x, t)∂xψ(x, t)dxdt ≥ 0; (9)

2. for almost every t ∈ R+, (uL(t), uR(t)) ∈ G(t).

Remark 1.2 In [3], three equivalent notions of solutions are proposed for the problem (1). Here, we choose
to focus on only one of them, which will be the one that we be used in the sequel.

We now state an existence and uniqueness result for the solution u of the problem (1). The time continuity
of the solution u prescribed below is a consequence of the result stated in [9].

Theorem 1 ([12, 3]) Let u0 ∈ L∞(R; [0, 1]), and let F ∈ L∞(R+; [0, f(u)]), then there exists a unique u
solution to the problem (1) in the sense of the Definition 1.2, which furthermore can be assumed to belong to
C(R+, L1

loc(R)). Moreover, if v is another solution corresponding to the initial data v0 ∈ L∞(R; [0, 1]) such
that (u0 − v0) ∈ L1(R), then one has, for all t ∈ R

+,

‖u(·, t)− v(·, t)‖L1(R) ≤ ‖u0 − v0‖L1(R).

2 Godunov approximation of the problem and main result

2.1 The Godunov approximation

In this section, we introduce the Godunov approximation of the problem (1). For the sake of simplicity, we
choose to deal with uniform discretization of R×R+. Nevertheless, note that all the following results can be
adapted to the case of non-uniform approximations.

Let h > 0, we denote, for all i ∈ Z,

xi = ih, xi+1/2 = (i+ 1/2)h.

For all i ∈ Z, we denote by

u0i+1/2 =
1

h

∫ xi+1

xi

u0(x)dx.

Let k > 0, we denote by tn = nk (n ∈ N), and by

Fn =
1

k

∫ tn+1

tn
F (t)dt, An = max{s ∈ [0, 1] | f(s) = Fn}, Bn = min{s ∈ [0, 1] | f(s) = Fn}.

We define the Godunov scheme by

un+1
i+1/2 − uni+1/2

k
h+Gn

i+1(u
n
i+1/2, u

n
i+3/2)−Gn

i (u
n
i−1/2, u

n
i+1/2) = 0, (10)

where Gn
i is the Godunov solver through the edge xi, given by

• the classical Godunov G solver if i 6= 0, i.e.

Gn
i (a, b) = G(a, b) =







min
s∈[a,b]

f(s) if a ≤ b,

max
s∈[b,a]

f(s) if b ≤ a;
(11)

3



• the constrained Godunov Gn
0 solver if i = 0, i.e.

Gn
0 (a, b) = min (Fn, G(a, b)) . (12)

Proposition 2.1 The constrained Godunov solver (12) coincides with the Godunov solver for the constrained
problem.

Proof: Consider u0(x) = aχx<0 + bχx>0. First, solving the Riemann problem with constraint, i.e.

{

∂tv + ∂xf(v) = 0 in R× R+,

v|t=0
= aχx<0 + bχx>0 in R

provides that either either the solution v is continuous at x = 0 and t > 0, with v(0, t) = c that does not
depend on t, or we have a contact discontinuity f(a) = f(b) and a < b. In any case, t 7→ f(v)(0, t) is constant
on R

⋆
+, and is exactly given by the formula (11).

Assume first that f(v)(0, t) ≤ Fn, then, clearly, v satisfies (9). Moreover, (v(0−, t), v(0+, t)) either belongs
to G2(t) or G3(t) (that do not depend on time, since F ≡ Fn). Therefore, v is the unique solution of the
problem (1) for the constant constraint F ≡ Fn.

Assume now that f(v(0, t)) > Fn, then one deduces from the formula (11) and from the fact that f is
bell-shaped (2) that a ≥ Bn and b ≤ An. In this case, define u as the solution of two distinct initial boundary
value problems







∂tu+ ∂xf(u) = 0 in R− × R+

u|t=0
= a in R−

u|x=0
= An in R+,







∂tu+ ∂xf(u) = 0 in R+ × R+

u|t=0
= b in R+

u|x=0
= Bn in R+.

Now, it is easy to check that at both side of the interface, the boundary is characteristic so that the boundary
condition is fulfilled is a strong sense. Clearly, u satisfies (9), and its traces on the interface belong to G3(t),
thus u is the unique solution to the problem (1) for the constant constraint F ≡ Fn, and the flux at the
interface is exactly given by Fn. �

It is well-known (and easy to check) that the function (a, b) 7→ G(a, b) is Lf -Lipschitz continuous with
respect to both variables, and that G is non-decreasing w.r.t. its first variable, and non-increasing w.r.t. its
second variable.

All along this paper, we assume that the following CFL condition is fulfilled:

2Lfk

h
≤ 1. (13)

In the following, we also assume that the time step is bounded. Without loss of generality, we impose that

k ≤ 1. (14)

Definition 2.1 We denote by uh the so-called approximate solution, defined almost everywhere by

uh(x, t) = uni+1/2 if (x, t) ∈ (xi, xi+1)× [tn, tn+1).

We now state the L∞ stability of the scheme. We refer to [3, Proposition 4.2] for the proof of Proposi-
tion 2.2.

Proposition 2.2 Under the CFL condition (13), then

0 ≤ uh ≤ 1 a.e. in R× R+.
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2.2 Convergence of the scheme and error estimate

We state here the following convergence result, which is the main result of [3].

Theorem 2 ([3]) Let F ∈ L∞(R+; [0, f(u)]), and let u0 ∈ L∞(R; [0, 1]), then, under the CFL condition

2Lfk

h
≤ 1− ξ, with ξ ∈ (0, 1), (15)

then the discrete solution uh defined in Definition 2.1 converges in L1
loc(R×R

+) towards the unique solution
u to the problem in the sense of Definition 1.2 as h tends to 0.

Remark 2.1 Note that the CFL condition (15) is stronger than (13), so that some numerical diffusion
stabilizes the scheme. However, we will deduce from this work that, if the data are sufficiently regular (roughly
speaking in BVloc), then the scheme still converges under the CFL condition (13).

Assumption 1 The functions A and B defined in (8) belong to BVloc(R+).

In the sequel, we denote by ωR the subset of R× R
+ given by

ωR = {(x, t) ∈ R× R
+ | |x| ≤ R− Lf t}. (16)

Because the solution u propagates with finite speed lower of equal to Lf , for (x, t) ∈ ωR, u(x, t) depends only
on the restriction (u0)|[−R,R]

of u0 to [−R,R].

Theorem 3 Let u0 ∈ BVloc(R), let u be the unique solution of the problem (1), and let uh be the discrete
solution given by its Godunov approximation. Then, under the CFL condition (13) and Assumption 1, for
all R > 0, there exists C depending only u0, f , A,B and R such that

∫∫

ωR

|uh(x, t) − u(x, t)|dxdt ≤ Ch1/2. (17)

The proof of Theorem 3 is based on the doubling variable technique introduced by S. N. Kružkov [17]
for proving the uniqueness of the solution of the entropy solution of a multidimensional scalar conservation
law, and then used by N. N. Kuznetsov [18] in order to obtain some error estimate for the approximation
of scalar conservation laws by monotone Finite Differences methods.

In order to obtain the optimal convergence rate 1/2 in (17), it is necessary to show that

(i) the exact solution u belongs to BVloc(R× R+),

(ii) the approximate solution uh is uniformly bounded with respect to the discretization in BVloc(R×R+).

2.3 Outline of the paper

In Section 3, we introduce additional unknowns unL, u
n
R corresponding to artificial traces of the discrete

solution on the interface {x = 0}.
We will derive in Section 4 an uniform (with respect to the approximation step h) estimate for the local

total variation of the approximate solution uh. As a direct consequence, this will yield an estimate on the
local total variation of the exact solution u.

In Section 6, we use the doubling variable technique for obtaining the error estimate (17).

3 Discrete traces on the interface

In this section, we seek to introduce, for all n ∈ N, two artificial discrete traces unL, u
n
R such that (unL, u

n
R)

belongs to the approximate germ Gn, defined by

Gn = Gn
1 ∪ Gn

2

with
Gn
1 = (An, Bn), Gn

2 = {(c, c) ∈ [0, 1]2 | f(c) < Fn},

and then to derive some properties on them.
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Proposition 3.1 For all n ∈ N, there exists (unL, u
n
R) ∈ Gn such that

Gn
0 (u

n
−1/2, u

n
1/2) = G(un−1/2, u

n
L) = G(unR, u

n
−1/2) = f(unL) = f(unR). (18)

In the case where G(un−1/2, u
n
1/2) < Fn ≤ f(u), one has either unL = unR = un−1/2 or unL = unR = un1/2.

Moreover, the case unL = An and unR = Bn only occurs when un1/2 ≤ An and un−1/2 ≥ Bn.

Proof: We can prove the above Proposition by a case by case study. For reader’s convenience, we drop the
index n. Let u−1/2 and u1/2 belong to [0, 1], then we define by u⋆−1/2 ∈ [u, 1] and u⋆1/2 ∈ [0, u] by

f(u⋆−1/2) = f(u−1/2), f(u⋆1/2) = f(u1/2).

1. Assume that 0 ≤ u−1/2 < Bn.

(a) If u1/2 ≤ u⋆−1/2, then uL = uR = u−1/2 satisfies (18).

(b) If u1/2 > u⋆−1/2, then uL = uR = u1/2 satisfies (18).

2. Assume that Bn ≤ u−1/2 ≤ 1.

(a) If 0 ≤ u1/2 ≤ An, then uL = An and uR = Bn satisfies (18).

(b) If An < u1/2 ≤ 1, then uL = uR = u1/2 satisfies (18).

�

Remark 3.1 Note that unL, u
n
R are not in general unique. Indeed, assume that un−1/2 < Bn, and that un1/2 =

un,⋆−1/2, then, as (unL, u
n
R), one can either choose (un−1/2, u

n
−1/2) or (un1/2, u

n
1/2). However, the flux f(unL) =

f(unR) through the interface {x = 0} is unique.

In the sequel, we denote by uL,h and uR,h the functions defined by

uL,h(t) := unL, uR,h(t) = unR for t ∈ [tn, tn+1). (19)

4 BV estimates

4.1 BV estimate on the approximate constraint

Lemma 4.1 Under Assumption 1, the functions Ah, Bh defined respectively by Ah(t) = An, Bh(t) = Bn if
t ∈ [tn, tn+1) belong to BVloc(R+), and, for all T > 0,

TV[0,T ](Ah −Bh) = TV[0,T ](Ah) + TV[0,T ](Bh) ≤ TV[0,T ](A) + TV[0,T ](B) + 1. (20)

Proof: Assume first that the functions A,B are smooth, so F = f(A) = f(B) is Lipschitz continuous. Then,
for all n ∈ N, there exists t̃n ∈ (tn, tn+1) such that Fn = F (t̃n). Hence,

An = A(t̃n), Bn = B(t̃n).

Thus, denoting by N the index of the time step where tN ≤ T < tN+1, one gets that

TV[0,T ](Ah) =

N−1
∑

n=0

|An+1 − An| =

N−1
∑

n=0

|A(t̃n+1)−A(t̃n)|

=

N−2
∑

n=0

|A(t̃n+1)−A(t̃n)|+ |A(t̃N )−A(t̃N−1)|.

Since
|A(t̃N )−A(t̃N−1)| ≤ 1− u,

and
N−2
∑

n=0

|A(t̃n+1)−A(t̃n)| ≤ TV[0,T ](A),
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one obtains that
TV[0,T ](Ah) ≤ TV[0,T ](A) + (1− u).

Similarly, we can state that
TV[0,T ](Bh) ≤ TV[0,T ](B) + u,

so that the estimate (20) holds for smooth functions A,B. Assume now that A,B only belong to BVloc(R+),
then there exists some sequences (Aν)ν∈N

and (Bν)ν∈N
of smooth functions (obtained for exemple by convo-

lution with smoothing kernels) such that

Aν → A, Bν → B a.e. in R+as ν → ∞,

TV[0,T ](Aν) ≤ TV[0,T ](A), TV[0,T ](Bν) ≤ TV[0,T ](B),

and
Aν,h → Ah, Bν,h → Bh a.e. in R+as ν → ∞.

Then we can pass to the limit and extend (20) to functions A,B merely in BVloc(R+). �

4.2 Space BV estimate on the approximate solution

In the sequel, we introduce a modified total variation, that takes the discrete traces into account:

T V(uh(·, t
n)) =

∑

i6=0

∣

∣

∣
uni+1/2 − uni−1/2

∣

∣

∣
+
∣

∣

∣
un−1/2 − unL

∣

∣

∣
+
∣

∣

∣
un1/2 − unR

∣

∣

∣
,

while the classical total variation of uh(·, t
n) is given by

TV (uh(·, t
n)) =

∑

i∈Z

∣

∣

∣
uni+1/2 − uni−1/2

∣

∣

∣
.

We first state the following technical lemma.

Lemma 4.2 Let (c, d) ∈ [0, 1] such that c ≥ d. Then, for all (a, b) ∈ [d, 1]× [0, c], one has

||c− a|+ |d− b| − |a− b|| ≤ c− d.

Proof: Denote by Ψ(a, b) = |c − a| + |d − b| − |a − b|. The proof is performed using a case by case study,
summarized in the following tabular. Note that only 4 cases are used in the proof of Lemma 4.2, but the
other cases will be used later. In this tabular, we denote by a⊤b = max(a, b) and a⊥b = min(a, b).

a ∈ [0, d] a ∈ [d, c] a ∈ [c, 1]

b ∈ [0, d] Ψ(a, b) = c+ d− 2(a⊤b) Ψ(a, b) = c+ d− 2a Ψ(a, b) = d− c

b ∈ [d, c] Ψ(a, b) = c− d Ψ(a, b) = c− d− 2(a− b)+ Ψ(a, b) = 2b− (d+ c)

b ∈ [c, 1] Ψ(a, b) = c− d Ψ(a, b) = c− d Ψ(a, b) = 2(a⊥b)− (c+ d)

(21)

�

Lemma 4.3 For all t ≥ 0, one has

|T V(uh(·, t)) − TV (uh(·, t))| ≤ 1.
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Proof: Let t ∈ [tn, tn+1). Assume that (unL, u
n
R) ∈ Gn

2 , then T V(uh(·, t)) = TV (uh(·, t)). We now focus on
the case where (unL, u

n
R) = (An, Bn). As seen in Proposition 3.1, this implies that un−1/2 ≥ Bn and un1/2 ≤ An.

Since
T V(uh(·, t))− TV (uh(·, t)) = |un−1/2 −An|+ |un1/2 −Bn| − |un−1/2 − un1/2|,

then using the lemma 4.2 with a = un−1/2, b = un1/2, c = An, d = Bn provides the result. �

Denote by Λ ⊂ N the set of the times steps where the constraint is saturated, i.e.

p ∈ Λ ⇔ G(up−1/2, u
p
1/2) ≥ F p,

by

Λ = {p ∈ N | p /∈ Λ, p+ 1 ∈ Λ}, Λ = {p ∈ Λ | p+ 1 /∈ Λ},
◦

Λ = Λ \ Λ,

and by
Υ = N \ (Λ ∪ Λ) = {p ∈ N | p /∈ Λ, (p+ 1) /∈ Λ},

so that we have

N = Υ ∪
◦

Λ ∪ Λ ∪ Λ.

Lemma 4.4 Let p ∈ Υ, then, under the CFL condition (13),

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)).

Proof: Since p /∈ Λ, then uh(·, t
p+1) is the solution computed by the classical Godunov scheme without

constraint. Hence, it follows from classical computations (see e.g. [15] or Lemma 5.7 in [14]) that

∑

i∈Z

|up+1
i+1/2 − up+1

i−1/2| ≤
∑

i∈Z

|upi+1/2 − upi−1/2|. (22)

Now, since p ∈ Υ then, thanks to Proposition 3.1, for q ∈ {p, p+ 1}, either uqL = uqR = uq−1/2 or uqL = uqR =

uq1/2. As a consequence,

T V(uh(·, t
q)) =

∑

i∈Z

|uqi+1/2 − uqi−1/2|. (23)

Lemma 4.4 is so a direct consequence of (22) and (23). �

Lemma 4.5 Let p ∈ Λ, then, under the CFL condition (13),

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) + (Ap+1 −Bp+1).

Proof: Since p /∈ Λ, then, as previously,

∑

i∈Z

|up+1
i+1/2 − up+1

i−1/2| ≤
∑

i∈Z

|upi+1/2 − upi−1/2| = T V(uh(·, t
p)).

Since (up+1
L , up+1

R ) = (Ap+1, Bp+1), then

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) +Rp+1, (24)

where
Rp+1 = |up+1

−1/2 −Ap+1|+ |up+1
1/2 − Bp+1| − |up+1

1/2 − up+1
−1/2|. (25)

Since p+ 1 ∈ Λ, then one has, thanks to Proposition 3.1,

up+1
−1/2 ≥ Bp+1 and up+1

1/2 ≤ Ap+1.

Hence we can apply Lemma 4.2 to claim that

Rp+1 ≤ Ap+1 − Bp+1.

�

8



We investigate now the cases where the constraint at the time step tp is saturated, i.e. if p ∈
◦

Λ ∪ Λ. In
these cases, (upL, u

p
R) = (Ap, Bp), and adapting once again the computations of [14, Lemma 5.7], we get that,

under the CFL condition (13),

∑

i>0

∣

∣

∣
up+1
i+1/2 − up+1

i−1/2

∣

∣

∣
+ |up+1

1/2 −Bp| ≤
∑

i>0

∣

∣

∣
upi+1/2 − upi−1/2

∣

∣

∣
+ |up1/2 −Bp|.

∑

i<0

∣

∣

∣
up+1
i+1/2 − up+1

i−1/2

∣

∣

∣
+ |up+1

−1/2 −Ap| ≤
∑

i<0

∣

∣

∣
upi+1/2 − upi−1/2

∣

∣

∣
+ |up−1/2 −Ap|.

As a direct consequence of the inequalities stated above, one has

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) +Rp+1, (26)

where
Rp+1 = |up+1

−1/2 − up+1
L | − |up+1

−1/2 −Ap|+ |up+1
1/2 − up+1

R | − |up+1
1/2 −Bp|. (27)

Lemma 4.6 Let p ∈
◦

Λ, then, under the CFL condition (13),

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) + |(Ap+1 −Bp+1)− (Ap −Bp)|.

Proof: Since p + 1 ∈ Λ, one has (up+1
L , up+1

R ) = (Ap+1, Bp+1). Replacing in (27) leads to, thanks to the
triangle inequality,

Rp+1 ≤ |Ap+1 −Ap|+ |Bp+1 −Bp|

Since
Ap+1 ≥ Ap ⇔ Bp+1 ≤ Bp,

one obtains that

Rp+1 ≤ |Ap+1 − Ap|+ |Bp+1 −Bp| = |(Ap+1 −Bp+1)− (Ap −Bp)|. (28)

We conclude by using (28) in (26). �

Lemma 4.7 Let p ∈ Λ, then, under the CFL condition (13),

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) + (Bp+1 − Ap+1) + |Ap+1 −Ap|+ |Bp+1 −Bp|.

Proof: Since, thanks to Proposition 3.1, up+1
L = up+1

R ∈ {up+1
−1/2, u

p+1
1/2 }, then the expression (27) turns to

Rp+1 ≤ Rp+1
1 + |Ap+1 −Ap|+ |Bp+1 −Bp|,

with
Rp+1

1 = |up+1
1/2 − up+1

−1/2| − |up+1
−1/2 −Ap+1| − |up+1

1/2 −Bp+1|

Since p+ 1 /∈ Λ, we known from the case by case study carried out in Proposition 3.1 that up+1
−1/2 ≤ Bp+1 or

up+1
1/2 ≥ Ap+1. We deduce from the first column and the last line of (21) that Rp+1

1 ≤ Bp+1 −Ap+1. �

Lemma 4.8 Assume that u0 ∈ BV (R), then, under the CFL condition (13) and Assumption 1, there exists
C depending only on A,B and T (but neither on h nor on k) such that

TV (uh(·, T )) ≤ TV (u0) + C. (29)

Proof: Let n ∈ N be such that T ∈ [tn, tn+1), then

T V(uh(·, T )) = T V(uh(·, 0)) +
n−1
∑

p=0

(

T V(uh(·, t
p+1))− T V(uh(·, t

p))
)

.
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From Lemmata 4.4, 4.5, 4.6 and 4.7, we deduce that

T V(uh(·, t
p+1)) − T V(uh(·, t

p)) ≤



























0, if p ∈ Υ,

Ap+1 −Bp+1, if p ∈ Λ,

|(Ap+1 −Bp+1)− (Ap −Bp)|, if p ∈
◦

Λ,

Bp+1 −Ap+1 + |(Ap+1 −Bp+1)− (Ap −Bp)| if p ∈ Λ.

Therefore,

T V(uh(·, T )) ≤ T V(uh(·, 0)) +
∑

p≤n−1
p∈Λ

|(Ap+1 −Bp+1)− (Ap −Bp)|

+
∑

p≤n−1
p∈Λ

(Ap+1 −Bp+1) +
∑

p≤n−1

p∈Λ

(Bp+1 −Ap+1). (30)

Since for all p, q ∈ Λ with p < q, there exists r ∈ Λ such that p < r < q, and since |Ap+1 − Bp+1| ≤ 1, it
follows that

∑

p≤n−1
p∈Λ

(Ap+1 −Bp+1) +
∑

p≤n−1

p∈Λ

(Bp+1 −Ap+1) ≤ 1 +
∑

p≤n−1
p∈Λ

|(Ap+1 −Bp+1)− (Ap −Bp)|. (31)

Thus taking (31) into account in (30) yields

T V(uh(·, T )) ≤ T V(uh(·, 0)) + 1 + 2
∑

p≤n−1
p∈Λ

|(Ap+1 −Bp+1)− (Ap −Bp)|

≤ T V(uh(·, 0)) + 1 + 2TV[0,T ](Ah −Bh).

We conclude by using Lemmas 4.1 and 4.3. �

Proposition 4.9 Let u0 ∈ BV (R), then, under the CFL condition (13) and Assumption 1, there exists C
depending only on u0, T, A,B such that, for all ξ > 0,

∫ T

0

∫

R

|uh(x+ ξ, t)− uh(x, t)|dxdt ≤ Cξ.

Proof: It follows from Lemma 4.8 that the function uh(·, t) has a bounded variation for all t ∈ [0, T ], thus
there exists C depending only on u0, A,B, T such that

∫

R

|uh(x+ ξ, t)− uh(x, t)|dx ≤ Cξ.

We conclude by integrating w.r.t. to t ∈ [0, T ]. �

4.3 Time BV estimate one the approximate solution

Lemma 4.10 Let u0 ∈ BV (R), then, one has

∑

i∈Z

|un+1
i+1/2 − uni+1/2| ≤

2Lfk

h
T V(uh(·, t

n)). (32)

Proof: The scheme (10) can be rewritten

un+1
i+1/2 − uni+1/2 =

k

h

(

G(uni−1/2, u
n
i+1/2)− f(uni+1/2)−

(

G(uni+1/2, u
n
i+3/2)− f(uni+1/2)

))

if i /∈ {−1, 0},

un+1
−1/2 − un−1/2 =

k

h

(

G(un−3/2, u
n
−1/2)− f(un−1/2)−

(

G(un−1/2, u
n
L)− f(un−1/2)

))

,

un+1
1/2 − un1/2 =

k

h

(

G(unR, u
n
1/2)− f(un1/2)−

(

G(un1/2, u
n
3/2)− f(un1/2)

))

.
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Using the fact that G is Lf -Lipschitz continuous w.r.t. each of its variables, we obtain that

|un+1
i+1/2 − uni+1/2| ≤

Lfk

h

(

|uni−1/2 − uni+1/2|+ |uni+1/2 − uni+3/2|
)

if i /∈ {−1, 0}, (33)

|un+1
−1/2 − un−1/2| ≤

Lfk

h

(

|unL − un−1/2|+ |un−1/2 − un−3/2|
)

, (34)

|un+1
1/2 − un1/2| ≤

Lfk

h

(

|un1/2 − unR|+ |un3/2 − un1/2|
)

. (35)

Summing (33) for i ∈ Z \ {−1, 0} with (34) and (35) yields (32). �

Proposition 4.11 Let u0 ∈ BV (R), then, under the CFL condition (13), (14) and Assumption 1, for all
T > 0, there exists C depending only on A,B, T, u0 and Lf such that, for all τ ∈ (0, T ),

∫ T−τ

0

∫

R

|uh(x, t+ τ)− uh(x, t)|dxdt ≤ Cτ. (36)

Proof: One has (with a slight abuse of notation, since ∂tuh is a bounded Radon measure on R× [0, T ] which
is not absolutely continuous w.r.t. to the Lebesgue measure)

∫

R

∫ T

0

|∂tuh(x, t)| dxdt =
∑

i∈Z

⌊T/k⌋
∑

n=0

|un+1
i+1/2 − uni+1/2|h.

Then it follows from Lemmata 4.10 and 4.8 that

∫

R

∫ T

0

|∂tuh(x, t)| dxdt ≤ C

⌊T/k⌋
∑

n=0

k.

Using (14), we obtain that
∫

R

∫ T

0

|∂tuh(x, t)| dxdt ≤ C. (37)

The inequality (36) is a classical consequence of the previous estimate (see e.g. [4]). �

4.4 BV estimates on the exact solution

Letting now h tend to 0, since we know, thanks to Theorem 2, that uh tends to the unique solution u (at
least under the more restrictive CFL condition (15)) we obtain the following regularity result on the exact
solution u.

Proposition 4.12 Let u be the exact solution to the problem corresponding to u0 ∈ BV (R). Then, under
Assumption 1, then, for all T > 0, u ∈ BV (R× [0, T ]).

Remark 4.1 Because of the finite speed propagation property, the solution u to the problem depends, on the
set ωR defined in (16), only on the restriction of the initial data u0 to [−R,R]. So, if u0 ∈ BVloc(R), extending
u0 by a constant outside of [−R,R] will not affect the solution u on ωR. Thus the Proposition 4.12 can be
generalized in the following way. If u0 ∈ BVloc(R), then, under Assumption 1, u belongs to BVloc(R× R+).

5 Entropy formulations for the discrete solution

5.1 Discrete entropy inequalities

Using the discrete traces unL, u
n
R introduced in Section 3, the scheme can be rewritten under the form

H
(

un+1
i+1/2, u

n
i+1/2, u

n
i−1/2, u

n
i+3/2

)

= 0, ∀i /∈ {−1, 0},

H
(

un+1
−1/2, u

n
−1/2, u

n
−3/2, u

n
L

)

= 0,
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H
(

un+1
1/2 , u

n
1/2, u

n
R, u

n
3/2

)

= 0,

where, under the CFL condition (13), the function H is non-decreasing w.r.t. its first argument, and non-
increasing w.r.t. its three last arguments. As a consequence, if (a, b, c, d) ∈ [0, 1]4 satisfies

H(a, b, c, d) = 0,

then, thanks to the fact that, for all κ ∈ [0, 1],

H(κ, κ, κ, κ) = 0,

then it follows from classical computations (see e.g. [14]) that

H(a⊤κ, b⊤κ, c⊤κ, d⊤κ)−H(a⊥κ, b⊥κ, c⊥κ, d⊥κ) ≤ 0, (38)

where a⊤κ = max(a, κ) and a⊥κ = min(a, κ). In the sequel, we denote by

Φκ(a, b) = G(a⊤κ, b⊤κ)−G(a⊥κ, b⊥κ).

Note that for all a ∈ [0, 1], for all κ ∈ [0, 1], Φκ(a, a) = Φκ(a), where the notation Φκ(a) has been introduced
in (5). The following proposition follows from (38).

Proposition 5.1 For all κ ∈ [0, 1], one has

|un+1
i+1/2 − κ| − |uni+1/2 − κ|

k
h+Φκ(u

n
i+1/2, u

n
i+3/2)− Φκ(u

n
i−1/2, u

n
i+1/2) ≤ 0, ∀i ∈ Z \ {−1, 0}, (39)

|un+1
−1/2 − κ| − |un−1/2 − κ|

k
h+ Φκ(u

n
−1/2, u

n
L)− Φκ(u

n
−3/2, u

n
−1/2) ≤ 0, (40)

|un+1
1/2 − κ| − |un1/2 − κ|

k
h+Φκ(u

n
1/2, u

n
3/2)− Φκ(u

n
R, u

n
1/2) ≤ 0. (41)

Lemma 5.2 For all κ ∈ [0, 1],
Φκ(u

n
−1/2, u

n
L)− Φκ(u

n
L) ≥ 0, (42)

Φκ(u
n
R)− Φκ(u

n
R, u

n
1/2) ≥ 0. (43)

Proof: We only prove (42), since the proof of (43) is similar. Here again, for readers convenience, we drop
the index n. We denote by I(a, b) the interval [a, b] if a ≤ b and [b, a] otherwise.

Firstly, if κ /∈ I(u−1/2, uL), then, using that G(u−1/2, uL) = f(uL), one has

Φκ(u−1/2, uL) = Φκ(uL).

Consider now the case where κ ∈ I(u−1/2, uL). Since G(u−1/2, uL) = f(uL), the function a 7→ G(a, uL) is
constant on I(u−1/2, uL). Assume that u−1/2 ≥ uL, then

Φκ(u−1/2, uL) = G(u−1/2, κ)−G(κ, uL) = G(u−1/2, κ)− f(uL).

Since G is non-increasing w.r.t. its second argument, G(u−1/2, κ) ≥ f(κ), hence one has

Φκ(u−1/2, uL) ≥ f(κ)− f(uL) = Φκ(uL).

Similarly, if u−1/2 ≤ uL, one obtains Φκ(u−1/2, uL) ≥ f(uL)− f(κ) = Φκ(uL). �

We now state the straightforward corollary, obtained by subtracting (42) to (40) and (43) to (41).

Corollary 5.3 For all κ ∈ [0, 1],

|un+1
−1/2 − κ| − |un−1/2 − κ|

k
h+Φκ(u

n
L)− Φκ(u

n
−3/2, u

n
−1/2) ≤ 0, (44)

|un+1
1/2 − κ| − |un1/2 − κ|

k
h+Φκ(u

n
1/2, u

n
3/2)− Φκ(u

n
R) ≤ 0. (45)
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5.2 Continuous entropy inequalities

For a C1(R× R+;R) function ϕ, we denote by

‖∇ϕ‖ = ‖∂tϕ‖∞ + ‖∂xϕ‖∞.

Recall that when ϕ is compactly supported, i.e. if ϕ ∈ C1
c ((−R,R)× [0, T )), then there exists C depending

only on R, T such that
‖ϕ‖∞ ≤ C‖∇ϕ‖.

Lemma 5.4 Let T > 0, and let ϕ ∈ D+((−R,R)× [0, T )), then there exists C depending only on u0, f , A,
B, R and T such that, for all κ ∈ [0, 1],

∫

R+

∫

R
−

|uh − κ|∂tϕdxdt+

∫

R
−

|u0 − κ|ϕ(·, 0)dx

+

∫

R+

∫

R
−

Φκ(uh)∂xϕdxdt−

∫

R+

Φκ(uL,h)ϕ(0, ·)dt ≥ −C‖∇ϕ‖h. (46)

∫

R+

∫

R+

|uh − κ|∂tϕdxdt+

∫

R+

|u0 − κ|ϕ(·, 0)dx

+

∫

R+

∫

R+

Φκ(uh)∂xϕdxdt +

∫

R+

Φκ(uR,h)ϕ(0, ·)dt ≥ −C‖∇ϕ‖h. (47)

Proof: We only prove (46) since the proof of (47) is similar. Let ϕ ∈ D+((−R,R)× [0, T )), we denote by

ϕn
i = ϕ(xi, t

n), ϕn
i+1/2 = ϕ(xi+1/2, t

n), ∀i ∈ Z, ∀n ∈ N.

Multiplying equations (39),(44),respectively by kϕn+1
i+1/2, kϕ

n+1
−1/2, and summing on i < −1 yields, after reor-

ganization of the sums,
T1 + T2 + T3 + T4 ≥ 0, (48)

with

T1 =
∑

n∈N

∑

i<0

|uni+1/2 − κ|(ϕn+1
i+1/2 − ϕn

i+1/2)h+
∑

i<0

|u0i+1/2 − κ|ϕ0
i+1/2h

T2 =
∑

n∈N

k
∑

i<0

Φκ(u
n
i−1/2, u

n
i+1/2)(ϕ

n+1
i+1/2 − ϕn+1

i−1/2)h

T3 = −
∑

n∈N

kΦκ(u
n
L)ϕ

n+1
0

T4 = −
∑

n∈N

kΦκ(u
n
L)(ϕ

n+1
i−1/2 − ϕn+1

0 ).

Firstly, it is easy to check that
|T4| ≤ C‖∇ϕ‖h, (49)

and that
∣

∣

∣

∣

∣

T3 +

∫

R+

Φκ(uL,h)ϕ(0, ·)dt

∣

∣

∣

∣

∣

≤ C‖∇ϕ‖h, (50)

It follows from Propositions 4.9 and 4.11 (we use here classical computations that we can deduce for example
from [10]) and the CFL condition (13) that

∣

∣

∣

∣

∣

T1 −

∫

R+

∫

R
−

|uh − κ|∂tϕdxdt−

∫

R
−

|u0 − κ|ϕ(·, 0)dx

∣

∣

∣

∣

∣

≤ Ch‖∇ϕ‖, (51)

∣

∣

∣

∣

∣

T2 −

∫

R+

∫

R
−

Φκ(uh)∂xϕdxdt

∣

∣

∣

∣

∣

≤ Ch‖∇ϕ‖. (52)

Then (46) follows from (48)–(52). �

As a direct consequence of Lemma 5.4, following the idea of R. Eymard et al. [13], exploited by F.

Bouchut and B. Perthame [6], we can state the following proposition.
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Proposition 5.5 There exist positive local Radon measures µL,h, µR,h belonging to (Cc(R× R+))
′ such that

there exists C depending only on R,Lf

µL,h(ωR) ≤ Ch, µR,h(ωR) ≤ Ch, (53)

and such that, for all ϕ ∈ C1
c (R× R+), one has

∫

R+

∫ 0

−∞

|uh − κ|∂tϕdxdt+

∫ 0

−∞

|u0 − κ|ϕ(·, 0)dx

+

∫

R+

∫ 0

−∞

Φκ(uh)∂xϕdxdt −

∫

R+

Φκ(uL,h)ϕ(0, ·)dt ≥ −〈µL,h, |∂tϕ|+ |∂xϕ|〉 , (54)

∫

R+

∫ +∞

0

|uh − κ|∂t − ϕdxdt +

∫ +∞

0

|u0 − κ|ϕ(·, 0)dx

+

∫

R+

∫ +∞

0

Φκ(uh)∂xϕdxdt+

∫

R+

Φκ(uR,h)ϕ(0, ·)dt ≥ −〈µR,h, |∂tϕ|+ |∂xϕ|〉 . (55)

In section 6, we will use the doubling variable technique introduced by S. N. Krǔzkov [17] and adapted to
this frame by N. N. Kuznetsov [18]. For this reason, we will assume that the exact solution u depends on the
variable (y, s) instead of (x, t). Since u admits strong traces uL, uR ∈ L∞(R+; [0, 1]) on {y = 0}×R+ (either
thanks to Proposition 4.12 or to [22]), then u satisfies the following entropy inequalities : ∀ψ ∈ D+(R×R+),

∫

R+

∫

R
−

|u− κ|∂sψdyds+

∫

R
−

|u0 − κ|ψ(·, 0)dy

+

∫

R+

∫

R
−

Φκ(u)∂yψdyds−

∫

R+

Φκ(uL)ψ(0, ·)ds ≥ 0, (56)

∫

R+

∫

R+

|u− κ|∂sψdyds+

∫

R+

|u0 − κ|ψ(·, 0)dy

+

∫

R+

∫

R+

Φκ(u)∂yψdyds+

∫

R+

Φκ(uR)ψ(0, ·)ds ≥ 0. (57)

6 Proof of Theorem 3

The proof of the error estimate is based on the doubling variable technique, introduced by Kružkov [17] for
proving the uniqueness of the entropy solution to a multidimensional scalar conservation law. It has been
later adapted by Kuznetsov [18] to derive error estimates on the solutions provided by monotone finite
difference schemes. Then we first need to introduce approximation of the units.

6.1 Approximation of the unit

Because of the presence of the interface {x = 0}, we need to introduce a family of non-even smoothing
kernels (ρǫ)ǫ>0. It is built as follows. Let ρ ∈ D+(R) such that supp(ρ) ⊂ [0, 1],

∫

R
ρ(a)da = 1 and such that

(x− 1/2)ρ′(x) ≤ 0. Let ǫ ∈ (0, 1], we denote by ρǫ(x) =
1
ǫρ
(

x
ǫ

)

, so that supp(ρǫ) ⊂ [0, ǫ], and
∫

R

|ρ′ǫ(a)|da =
2

ǫ
ρ(1/2). (58)

6.2 An estimate on the exact solution near the interface

It follows from Proposition 4.12 that for all T > 0, the exact solution u to the problem belongs to BV (R ×
(0, T )). As a consequence, for all x ∈ R and for almost all t ∈ (0, T ), u admits strong traces (from the left
and from the right) on {x} × (0, T ). We choose to define

γu(x, t) =







esslim
µ→0+

u(x+ µ, t) if x < 0,

esslim
µ→0+

u(x− µ, t) if x > 0,
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Figure 2: The functions ψx,µ and χT,ν

i.e.

lim
µ→0+

1

µ

∫ T

0

∫ x+µ

x

|u(x, t)− γu(x, t)|dxdt = 0 if x < 0, (59)

lim
µ→0+

1

µ

∫ T

0

∫ x

x−µ

|u(x, t)− γu(x, t)|dxdt = 0 if x > 0. (60)

Recall that the traces on {x = 0} are defined from both side as uL and uR.

Lemma 6.1 For all κ ∈ [0, 1], for all θ ∈ D+(R+), then
∫ T

0

θ(t) (Φκ(uL(t))− Φκ(γu(x, t))) dt ≤ |x|T (‖θ‖∞ + ‖∂tθ‖∞) if x < 0,

∫ T

0

θ(t) (Φκ(uR(t))− Φκ(γu(x, t))) dt ≥ −|x|T (‖θ‖∞ + ‖∂tθ‖∞) if x > 0,

Proof: We perform the proof for x < 0, the case x > 0 being similar. For µ ∈ (0,−x), we denote by

ψx,µ =

(

1,
x−

ǫ
,
(x− x)+

ǫ

)

.

For T > 0 and ν ∈ (0, T ), we denote by

χT,ν(t) = min

(

1,
(T − t)+

ν

)

.

It follows for classical density results that we can consider the function

ψ : (x, t) 7→ θ(t)ψx,µ(x)χT,ν (t)

as test function in (9). This yields

1

µ

∫ T

0

θ(t)χT,ν (t)

(

∫ 0

−µ

Φκ(u)(x, t)dx −

∫ x+µ

x

Φκ(u)(x, t)dx

)

dt

≤

∫ T

0

∫ 0

x

|u(x, t)− κ|χT,ν(t)∂tθ(t)ψx,µ(x)dxdt

−
1

ν

∫ T

T−ν

∫ 0

x

|u(x, t)− κ|θ(t)ψx,µ(x)dxdt +

∫ 0

x

|u0(x) − κ|θ(0)ψx,µ(x)dx.

Since u belongs to C(R+;L
1
loc(R)) (see [9]), one can let tend ν to 0. This leads to

1

µ

∫ T

0

θ(t)

(

∫ 0

−µ

Φκ(u)(x, t)dx −

∫ x+µ

x

Φκ(u)(x, t)dx

)

dt

≤

∫ T

0

∫ 0

x

|u(x, t)− κ|∂tθ(t)ψx,µ(x)dxdt

+

∫ 0

x

(|u0(x) − κ|θ(0)− |u(x, T )− κ|θ(T ))ψx,µ(x)dx. (61)
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Now, letting µ tend to 0 in (61) provides, thanks to the definition (59) of γu(x, t) that

∫ T

0

θ(t) (Φκ(uL(t))− Φκ(γu(x, t))) dt

≤

∫ T

0

∫ 0

x

|u(x, t)− κ|∂tθ(t)dxdt +

∫ 0

x

(|u0(x)− κ|θ(0)− |u(x, T )− κ|θ(T )) dx. (62)

We conclude the proof by noticing that since 0 ≤ κ, u0(x), u(x, t) ≤ 1, and since θ ≥ 0, one has

∫ T

0

∫ 0

x

|u(x, t)− κ|∂tθ(t)dxdt ≤ |x|T ‖∂tθ‖∞,

∫ 0

x

(|u0(x) − κ|θ(0)− |u(x, T )− κ|θ(T )) dx ≤ |x|T ‖θ‖∞.

�

Now, we give an integrated version of the previous lemma.

Proposition 6.2 Let u be the unique solution to the problem (1), then for all κ ∈ [0, 1], for all θ ∈ D+(R+),

∫ T

0

∫

R
−

(Φκ(uL(t))− Φκ(u(x, t))) θ(t)ρǫ(−x)dxdt ≤ ǫT (‖θ‖∞ + ‖∂tθ‖∞) , (63)

∫ T

0

∫

R+

(Φκ(uR(t))− Φκ(u(x, t))) θ(t)ρǫ(x)dxdt ≥ −ǫT (‖θ‖∞ + ‖∂tθ‖∞) . (64)

Proof: Since the proof of (63) and (64) are similar, we only explicit the proof of (63). Since almost every
point (x, t) ∈ R× (0, T ) is a Lebesgue point, one has

u(x, t) = γu(x, t) a.e. in R× (0, T ).

Hence, since x 7→ ρǫ(−x) is compactly supported in (−ǫ, 0), it follows from Lemma 6.1 that

∫ T

0

∫

R
−

(Φκ(uL(t))− Φκ(u(x, t))) θ(t)ρǫ(−x)dxdt

=

∫ 0

−ǫ

(

∫ T

0

(Φκ(uL(t))− Φκ(γu(x, t))) θ(t)dt

)

ρǫ(−x)dx

≤ T (‖θ‖∞ + ‖∂tθ‖∞) ǫ

∫ 0

−ǫ

ρǫ(−x)dx = T (‖θ‖∞ + ‖∂tθ‖∞) ǫ.

�

6.3 The case where Fh ≡ F

In this section, we first assume that for almost all t ∈ [tn, tn+1), F (t) = Fn. In this case, note that
(uL,h(t), uR,h(t)) ∈ G(t).

Let ϕ ∈ D+((−R,R)× [0, T )), then we define the functions ξL, ξR by

ξL(x, t, y, s) = ϕ(x, t)ρǫ(x− y)ρǫ(s− t), ξR(x, t, y, s) = ϕ(x, t)ρǫ(y − x)ρǫ(s− t),

for some ǫ > 0 that will be fixed later, and where ρǫ is the approximation of the unit introduced in Section 6.1.
The functions ξL and ξR are built so that

ξL(x, t, y, 0) = ξR(x, t, y, 0) = 0, ∀(x, y, t) ∈ R
2 × R+, (65)

ξL(x, t, 0, s) = 0, ∀(x, t, s) ∈ R− × (R+)
2
, ξR(x, t, 0, s) = 0, ∀(x, t, s) ∈ (R+)

3
. (66)

Let us choose κ = u(y, s) in (54) and integrate on R− × R+ w.r.t. (y, s), and κ = uh(x, t) in (56) and
integrate on R− × R+ w.r.t. (x, t), and then sum both contributions. This provides

DL
1 +DL

2 +DL
3 +DL

4 ≥ DL
5 , (67)

16



where

DL
1 =

∫

R+

∫

R
−

∫

R+

∫

R
−

|uh(x, t)− u(y, s)|∂tϕ(x, t)ρǫ(x − y)ρǫ(s− t)dxdt,

DL
2 =

∫

R+

∫

R
−

∫

R
−

|u0(x) − u(y, s)|ϕ(x, 0)ρǫ(x− y)ρǫ(s)dxdyds,

DL
3 =

∫

R+

∫

R
−

∫

R+

∫

R
−

Φu(y,s)(uh(x, t))∂xϕ(x, t)ρǫ(x − y)ρǫ(s− t)dxdtdyds,

DL
4 = −

∫

R+

∫

R
−

∫

R+

Φu(y,s)(uL,h(t))ϕ(0, t)ρǫ(−y)ρǫ(s− t)dtdyds,

DL
5 = −

∫

R+

∫

R
−

〈µL,h, (|∂tϕ|+ |∂xϕ|) ρǫ(· − y)ρǫ(s− ·)〉 dyds

−

∫

R+

∫

R
−

〈µL,h, ϕ (|ρ′ǫ(·,−y)|ρǫ(s− ·) + ρǫ(· − y)|ρ′ǫ(s− ·)|)〉 dyds

Among the above terms, only DL
4 is original in the sense that its treatment has not already been performed

in the already mentioned works [18, 15, 14]. Let us first recall the classical results concerning the other terms.
It follows from Fubini-Tonelli theorem and from estimate (53) that

∫

R+

∫

R
−

〈µL,h, (|∂tϕ|+ |∂xϕ|) ρǫ(· − y)ρǫ(s− ·)〉 dyds ≤ Ch‖∇ϕ‖.

On the other hand, thanks to (58), one has
∫

R+

∫

R
−

〈µL,h, ϕ (|ρ′ǫ(·,−y)|ρǫ(s− ·) + ρǫ(· − y)|ρ′ǫ(s− ·)|)〉 dyds ≤ C
h

ǫ
‖ϕ‖∞,

hence

DL
5 ≥ −C

(

h‖∇ϕ‖+
h

ǫ
‖ϕ‖∞

)

. (68)

Let us now consider the term D1. Obviously, one has

DL
1 ≤ DL

1,1 +DL
1,2, (69)

where

DL
1,1 =

∫

R+

∫

R
−

|uh(x, t) − u(x, t)|∂tϕ(x, t)dxdt,

DL
1,2 =

∫

R+

∫

R
−

∫

R+

∫

R
−

|u(x, t)− u(y, s)||∂tϕ(x, t)|ρǫ(x− y)ρǫ(s− t)dxdtdyds.

Using the fact that u belongs to BV (suppϕ) (cf. Proposition 4.12), one thus obtains that

DL
1,2 ≤ Cǫ‖∂tϕ‖∞, (70)

where C only depends on suppϕ, u0, f , A,B.
In order to estimate DL

2 , we mimic the method proposed in [13, 10, 20], i.e. we choose

(y, s) 7→ ψ(x, t, y, s) = ϕ(x, 0)ρǫ(x− y)

∫ ∞

s

ρǫ(τ)dτ

as test function in (56) for κ = u0(x) and integrate with respect to x ∈ R−. This provides that

DL
2 ≤ DL

2,1 +DL
2,2 +DL

2,3, (71)

where

DL
2,1 =

∫

R
−

∫

R
−

|u0(y)− u0(x)|ϕ(x, 0)ρǫ(x− y)dxdy,

DL
2,2 = −

∫

R
−

∫

R+

∫

R
−

Φu0(y)(u(y, s))ϕ(x, 0)ρ
′
ǫ(x− y)

∫ ∞

s

ρǫ(τ)dτdydsdx.

DL
2,3 = −

∫

R
−

∫

R+

∫

R
−

(

Φu0(x)(u(y, s))− Φu0(y)(u(y, s))
)

ϕ(x, 0)ρ′ǫ(x− y)

∫ ∞

s

ρǫ(τ)dτdydsdx.
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Since u0 ∈ BV (R−), one has
DL

2,1 ≤ Cǫ‖ϕ‖∞. (72)

Since b 7→ Φb(a) is Lf -Lipschitz continuous, since supp
(

s 7→
∫∞

s
ρǫ(τ)dτ

)

⊂ [0, ǫ] and 0 ≤
∫∞

s
ρǫ(τ)dτ ≤ 1,

one has

|DL
2,3| ≤ Lf ǫ‖ϕ‖∞

∫

R
−

∫

R
−

|u0(x) − u0(y)||ρ
′
ǫ(x− y)|dxdy.

Now, a 7→
ǫ|ρ′ǫ(a)|

2ρ(1/2)
is an approximation of the unit, therefore

|DL
2,3| ≤ Cǫ. (73)

Integrating DL
2,2 be parts with respect to the variable x provides

DL
2,2 =

∫

R
−

∫

R+

∫

R
−

Φu0(y)(u(y, s))∂xϕ(x, 0)ρǫ(x− y)

∫ ∞

s

ρǫ(τ)dτdydsdx

+

∫

R+

∫

R
−

Φu0(y)(u(y, s))ϕ(0, 0)ρǫ(−y)

∫ ∞

s

ρǫ(τ)dτdyds.

Using again that supp
(

s 7→
∫∞

s ρǫ(τ)dτ
)

⊂ [0, ǫ] and 0 ≤
∫∞

s ρǫ(τ)dτ ≤ 1, one obtains that

|DL
2,2| ≤ Cǫ(‖ϕ‖∞ + ‖∇ϕ‖). (74)

Concerning DL
3 , one has

DL
3 ≤ DL

3,1 +DL
3,2, (75)

with, thanks to the fact that a 7→ sign(a− b)(f(a)− f(b)) is Lf -Lipschitz continuous,

DL
3,1 =

∫

R+

∫

R
−

Φu(x,t)(uh(x, t))∂xϕ(x, t)dxdt,

DL
3,2 = Lf

∫

R+

∫

R
−

∫

R+

∫

R
−

|u(x, t)− u(y, s)||∂xϕ(x, t)|ρǫ(x− y)ρǫ(s− t)dxdtdyds.

Therefore, we obtain that
DL

3,2 ≤ Cǫ‖∂xϕ‖∞. (76)

We can now focus on the term D4. Here again, we can write

DL
4 = DL

4,1 +DL
4,2, (77)

where,

DL
4,1 = −

∫

R+

∫

R+

ΦuL(s)(uL,h(t))ϕ(0, t)ρǫ(s− t)dtds,

DL
4,2 =

∫

R+

∫

R
−

∫

R+

(

ΦuL,h(t)(uL(s))− ΦuL,h(t)(u(y, s))
)

ϕ(0, t)ρǫ(−y)dtdyds.

It follows from Proposition 6.2 that
DL

4,2 ≤ Cǫ‖∇ϕ‖. (78)

Thus it follows from (67)–(78) that

∫

R+

∫

R
−

|uh(x, t)− u(x, t)|∂tϕ(x, t)dxdt +

∫

R+

∫

R
−

Φu(x,t)(uh(x, t))∂xϕ(x, t)dxdt

−

∫

R+

∫

R+

ΦuL(s)(uL,h(t))ϕ(0, t)ρǫ(s− t)dtds ≥ −C‖∇ϕ‖

(

h+ ǫ+
h

ǫ

)

. (79)
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Similar calculations carried out for (x, t, y, s) ∈ (R+)
4 with the test function ξR yield

∫

R+

∫

R+

|uh(x, t)− u(x, t)|∂tϕ(x, t)dxdt +

∫

R+

∫

R+

Φu(x,t)(uh(x, t))∂xϕ(x, t)dxdt

+

∫

R+

∫

R+

ΦuR(s)(uR,h(t))ϕ(0, t)ρǫ(s− t)dtds ≥ −C‖∇ϕ‖

(

h+ ǫ+
h

ǫ

)

. (80)

Adding (79) and (80) provides

∫

R+

∫

R

|uh(x, t)− u(x, t)|∂tϕ(x, t)dxdt

+

∫

R+

∫

R
−

Φu(x,t)(uh(x, t))∂xϕ(x, t)dxdt +Rǫ,h(ϕ) ≥ −C‖∇ϕ‖

(

h+ ǫ+
h

ǫ

)

, (81)

where

Rǫ,h(ϕ) =

∫

R+

∫

R+

[

ΦuR(s)(uR,h(t))− ΦuL(s)(uL,h(t))
]

ϕ(0, t)ρǫ(s− t)dtds.

Lemma 6.3 Let G be a L1-dissipative germ corresponding to the function f , then, for all (cL, cR) ∈ G, for
all (κL, κR) ∈ [0, 1]2,

ΦκR
(cR)− ΦκL

(cL) ≤ Lfdist1 ((κL, κR),G) ,

where
dist1 ((κL, κR),G) = min

(aL,aR)∈G
(|κL − aL| − |κR − aR|) .

Proof: Let (aL, aR) ∈ G, then, thanks to the dissipative character of G, one has

ΦaR
(cR)− ΦaL

(cL) ≤ 0.

Now, since κ 7→ Φκ(s) is Lf -Lipschitz continuous for all s ∈ [0, 1], we obtain that

ΦκR
(cR)− ΦκL

(cL) ≤ Lf (|κL − aL| − |κR − aR|) .

Since G is closed in [0, 1]2, the above relation thus still holds for the minimum w.r.t. (aL, aR) ∈ G. �

Lemma 6.4 There exists C depending only on f, T,A,B such that

Rǫ,h(ψ) ≤ Cǫ‖ψ‖∞, ∀ψ ∈ Cc([0, T );R).

Proof: Using the fact that Φκ(u) = Φu(κ), it follows from Lemma 6.3 that

ΦuR(s)(uR,h(t))− ΦuL(s)(uL,h(t)) ≤ Lf max
{

dist1 ((uL(s), uR(s)),G(t)) , dist1 ((uL,h(t), uR,h(t)),G(s))
}

.

Now, its appears clearly that if (uL(s), uR(s)) ∈ G(t) or (uL,h(t), uR,h(t)) ∈ G(s), then

ΦuR(s)(uR,h(t))− ΦuL(s)(uL,h(t)) ≤ 0.

Assume now that (uL(s), uR(s)) /∈ G(t) and (uL,h(t), uR,h(t)) /∈ G(s). This implies that either

F (t) > F (s) and (uL(s), uR(s)) = (A(s), B(s)), (82)

or
F (t) < F (s) and (uL,h(t), uR,h(t)) = (A(t), B(t)). (83)

In the first case (82), one has

dist1((uL(s), uR(s));G(t)) ≤ |A(t)−A(s)|+ |B(t) −B(s)|,

while in the second case (83), one has

dist1((uL,h(t), uR,h(t));G(s)) ≤ |A(t)−A(s)| + |B(t)−B(s)|.

19



Hence,
ΦuR(s)(uR,h(t))− ΦuL(s)(uL,h(t)) ≤ Lf (|A(t)−A(s)|+ |B(t) −B(s)|) . (84)

Now, for ψ ∈ Cc([0, T );R), recalling that supp(ρǫ) ⊂ [0, ǫ], one has

Rǫ,h(ψ) ≤ Lf‖ψ‖∞

(

sup
τ∈[0,ǫ]

∫ T

0

|A(t+ τ) −A(t)|dt+ sup
τ∈[0,ǫ]

∫ T

0

|B(t+ τ) −B(t)|dt

)

,

thus we obtain
Rǫ,h(ψ) ≤ LfTV[0,T+1](A−B)ǫ‖ψ‖∞.

�

Using Lemma 6.4 in (81) provides that

∫

R+

∫

R

|uh(x, t) − u(x, t)|∂tϕ(x, t)dxdt +

∫

R+

∫

R

Φu(x,t)(uh(x, t))∂xϕdxdt ≤ C‖∇ϕ‖

(

h+ ǫ+
h

ǫ

)

. (85)

In order to conclude the proof of Theorem 3, it only remains to choose a convenient ϕ, that is

ϕ(x, t) =







ζ(|x| − Lf t)
T − t

T
if (x, t) ∈ R× [0, T ],

0 if t ≥ T.

where
ζ(r) = max (0,min(1, R+ 1− r)) , ∀r ∈ R

+.

6.4 The general case

Denote by ũ the unique solution to the problem corresponding to the constraint Fh. Then it has been proven
previously that

∫∫

ωR

|uh − ũ|dxdt ≤ Ch1/2.

In order to achieve the proof of Theorem 3, it only remains to show that

∫∫

ωR

|u− ũ|dxdt ≤ Ch1/2.

In fact, one has even something better, thanks to the following Proposition, proved in Appendix of [3].

Proposition 6.5 ([3]) Let F, F̆ ∈ L∞(R+; [0, f(u)]), and let u, ŭ be the solutions corresponding respectively
to the constraint F, F̆ and to a similar initial data u0. Then,

∫ T

0

∫

R

|u− ŭ|dxdt ≤ 2

∫ T

0

|F − F̆ |dt.

Since A is supposed to belong to BV (0, T ), then F = f(A) also belongs to BV (0, T ). As a consequence,
there exists C depending only on A, f, T such that

‖F − Fh‖L1(0,T ) ≤ Ch.

We deduce from the above estimate and from Proposition 6.5 the following corollary that achieves the proof
of Theorem 3.

Corollary 6.6 Under Assumption 1, there exists C depending only on A, f, T such that

∫∫

ωR

|u− ũ|dxdt ≤ Ch.
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7 Numerical illustration

We now present some numerical simulations in order to illustrate the error estimate (17). Two conservation
laws are investigated: the first one is based on the flux (called the hat flux in the following)

f(u) = 1/2− |u− 1/2|

which has the particularity of having linear two parts and the second one is based on the flux (called the
GNL flux — as genuinely non linear — in the following)

f(u) = u(1− u)

which is strictly concave. While the present work is devoted to the analysis of the Godunov scheme, we also
present the results obtained with the Rusanov scheme:

G(a, b) =
f(a) + f(b)

2
−

max(|f ′(a)|, |f ′(b)|)

2
(b − a)

and the constraint is still handled using the trick (12). The initial data for the test case is

u(x, 0) =

{

0.4 if − 1/2 ≤ x < 0,

0.5 if 0 ≤ x ≤ 1/2,

and the final time is 0.3. For each flux, the constraint is set to F = 0.2 and is activated (see Figure 3, left).
For the hat flux, the solution is composed of a left-going shock wave, a nonclassical stationary shock and a
right-going linear wave. For the GNL flux, the solution is composed of a left-going shock wave, a nonclassical
stationary shock and a right-going shock wave. The rates of convergence are displayed in Figure 3, right.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

Exact solution for the hat flux
Exact solution for the GNL flux

Figure 3: Left: Exact solutions for each flux (u vs x). Right: Rates of convergence for each flux and each
numerical scheme (L1 error vs h in Log-scale)

They are the same for both numerical schemes, which let us think that our result should be extended for
any monotone numerical scheme. For the hat flux, the measured rate is 1/2 (and therefore it attests the
optimality of our result) while the measured rate is 1 for the GNL flux. Note that in the latter case, it means
that the constraint does not alter the classical rate of convergence.

8 Concluding remarks

8.1 A posteriori error estimate

As noticed by D. Kröner and M. Ohlberger [16], the doubling variable approach used for obtaining error
estimates provides a posteriori estimators, i.e. that for all compact subset K of R × R+, there exists ηK
depending only f,K, u0, A,B (but not on the exact solution u) such that

∫∫

K

|uh(x, t)− u(x, t)|dxdt ≤ ηK(uh).

Since the right-hand side in the above estimate is fully computable, this permits the localization of the error,
and an adaptive mesh refinement strategy. We refer to [16] for more details on both the derivation of the a
posteriori estimator and the mesh refinement algorithm.
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8.2 Optimality of the result

The order h1/2 is optimal in the sense that it can be recovered in some particular cases. Indeed, choosing
f(u) = 1/2− |u − 1/2|, F ≡ 1/2 (this means that A ≡ B ≡ 1/2, so that the constraint is always inactive),
and u0 in BV (R) such that 0 ≤ u0 ≤ 1/2. Then the problem turns to be the standard linear equation
∂tu + ∂xu = 0, and the Godunov scheme becomes the upwind scheme. It is well known that in this case,
the error behaves as h1/2, as illustrated in Figure 3. In the case where f is uniformly concave, the numerical
experiments provide an error of order h.

8.3 The case of discontinuous flux function

Consider the case of a scalar conservation law with discontinuous flux function, i.e.

∂tu+ ∂xf(x, u) = 0,

where f(x, u) = fL(u) if x < 0 and f(x, u) = fR(u) if x > 0, with fL, fR bell-shaped reaching their maximum
respectively in uL,uR. As pointed out by Adimurthi and Veerappa Gowda [1], an infinite number of
L1-contractive semi-groups can be built for such an equation, and a criterion has to be taken into account
in order to select one. We refer to the recent contributions of R. Bürger et al. [7], B. Andreianov et
al. [2] and references therein for an overview of this topic, and in particular to the resolution of the Riemann
problem arising at the interface, thanks to which we can define the Godunov scheme, and its discrete solution
uh. In the case where fL 6= fR, no BV estimate is available on u (neither on uh), but we can prove that the
Temple function

(x, t) 7→ Φu(u(x, t), x) :=







sign(u(x, t)− uL)(fL(u(x, t)) − fL(uL)) if x < 0,

sign(u(x, t)− uR)(fR(u(x, t))− fR(uR)) if x > 0

belong to BVloc(R × R+) (see e.g. [24, 5, 8]). By the use of numerical diffusion introduced by the scheme
(see [11, 25, 13, 10, 20]), it is still possible to derive an error estimate. Indeed, all the tools introduced in
the paper, excepted in Section 4, can be adapted to the case of discontinuous flux functions. Nevertheless,
the theoretical convergence speed will depend on the continuity modulus of the function (Φu)

−1
, and will be

furthermore degraded by the fact that no strong BV -estimate is available on the exact solution itself.
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