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1 Introduction

The boundary layer that develops over a disk rotating in an otherwise still fluid undergoes an abrupt
transition to turbulence at a non-dimensional radius of R ≃ 500, and has long served as a canonical configuration
for the study of three-dimensional boundary layers [1]. Based on a fully nonlinear analysis and a secondary
stability analysis [2], Pier [3] showed that it was possible to delay the onset of secondary perturbations, and
hence the transition, by replacing the natural flow state with the response to an appropriate harmonic forcing.

As a first step towards implementing this control strategy, the experiments reported here study the response
to a localized forcing applied with a prescribed frequency relative to the disk.

2 Experiments

2.1 Experimental setup

The experimental setup consists of a 50 cm diameter glass disk that is rotated at a constant angular speed Ωd.
The boundary layer on a rotating disk is of constant thickness, with the boundary layer unit given by δ =

√

ν/Ωd

(a typical value here is δ ≃ 550 µm), where ν is the kinematic viscosity. In the entire study, coordinates are
nondimensionalized based on δ and Ωd.

Figure 1: Experimental apparatus and
close up of the hot-wire probe and
spherical forcing element.

The forcing assembly consists of a hollow circular cylinder placed
above, and concentric with, the disk. The cylinder, whose angular speed
may be varied independently of the disk, has provisions for holding
pins or forcing elements that extend down into the disk boundary layer
and force the flow. In this study, we consider the response to forcing
by an isolated forcing element, corresponding to a radially localized
perturbation. Two different forcing elements (spherical and cylindrical)
were used to see the influence on the flow dynamics.

The azimuthal velocities are measured by a hot-wire anemometer,
which is positioned by a high-precision two-axes traversing mechanism.

2.2 Response to forcing

The rotation rate of the disk was chosen such that the non-
dimensional forcing radius was just below the theoretical onset of con-
vective instability. The forcing elements were rotated at various fre-
quencies ωf in the range 0 ≤ ωf ≤ 1.0, with ωf = 1 corresponding to
forcing that is stationary with respect to the disk surface.

Time-series of azimuthal velocity are recorded at different radial and
axial locations for a large number of forcing revolutions. To extract
those components that are periodic with respect to the forcing, phase-
locked averages are computed, which can be interpreted as the mean
perturbed flow in the frame of reference of the forcing device.

Figure 2 shows how a forcing at Rf = 250 produces perturbation ‘humps’ that propagate radially outwards,
along a trajectory with a nearly constant slope in the (R, θ)-plane. These slopes κ are found to increase with ωf

and to agree extremely well with predictions based on linear theory, as described in the next section.

3 Theoretical analysis

At the radial values of interest, the assumption of weak radial development is legitimate, and small-amplitude
perturbations are then written in normal-mode form as u(z) exp i(αr+βθ−ωt), where the radial wavenumber α,
the azimuthal mode number β and the frequency ω are governed by the local dispersion relation

ω = Ω(α, β; R),

obtained at each radial location R by solving the associated eigenvalue problem.
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Figure 2: Response to rotating forcing applied at Rf = 250 using two forcing elements located at θ′ = 0
and π. (a,b) Phase-locked average of azimuthal velocity time series for ωf = 1.0 (a) and 0.8 (b). Measurements
at R = 280, 300, . . . , 460 are each shifted vertically by ∆V = 0.1. (c) Experimentally determined slopes
κ = ∆θ′/∆R of the trajectories of perturbation maximum (open symbols) plotted together with the theoretical
predictions of the maximum (solid line) and leading and trailing edges (dotted lines). Also shown is the result
from experiments [4] with a roughness element fixed to the disk surface (filled circle).

Solving the dispersion relation for complex α with given real values of β and ω yields two spatial branches
α±(β, ω; R), with the α+ branch corresponding to a response developing radially outwards from the forcing.

Now, consider a localized forcing element at radial position rf rotating at a constant angular frequency ωf ,
For simplicity, we consider a local linear theory at R = rf , and assume that the perturbation due to the forcing
is steady in the frame of reference of the forcing element. Then, for r > rf , the full spatial response is given by

u(r, θ, z, t) ≃

∫

β

dβ u(z; β) exp i[α(β)(r − rf ) + βfθ′],

where α(β) ≡ α+(β, ω = βωf ; R = rf ) and θ′ = θ − ωf t is the azimuthal coordinate in the forcing frame; u

represents the associated spatial eigenmode. For r ≫ rf , the integral may be evaluated by the classical method
of stationary phase, and the maximum of the forced response is then expected to follow the ray θ′/r = κmax

where the slope κmax is given by

κmax = −
dα

dβ
(βmax) with

dαi

dβ
(βmax) = 0.

The leading and trailing edges of the localized perturbation may be similarly computed.

4 Discussion

Figure 2(c) shows the experimentally measured and theoretically calculated trajectories as a function of the
forcing frequency. Despite significant nonlinear effects in the experiment, the trajectory of the maximum of
the forced perturbation is found to be in good agreement with the predictions of the local linear theory, over
the range of ωf for which theory predicts an amplified response. The perturbation trajectory for ωf = 1 also
compares well with the results of experiments with a single roughness elements fixed to the disk surface [4].
Measurements using smaller forcing elements, expected to produce a linear response, will also be presented.
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