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Trace et valeurs propres extrêmes d'un produit de matrices de Toeplitz. Le cas singulier

Trace et valeurs propres extrêmes d'un produit de matrices de Toeplitz. Le cas singulier. Dans un premier théorème nous donnons un développement asymptotique de la trace de la matrice

Ensuite nous étudions le cas particulier α 1 > 0 et α 2 < 0. Nous obtenons alors l'asymptotique de la trace des puissances entières de T N (f 1 )T -1 N (f 2 ) et nous en déduisons la limite lorsque N tend vers l'infini des valeurs propres de cette matrice ce qui nous permet de donner un principe de grandes déviations pour une famille de formes quadratiques de processus aléaoires gaussiens stationnaires.

Introduction

Si f ∈ L 1 (T) on appelle matrice de Toeplitz d'ordre N et de symbole f , et on note T N (f ), la matrice définie par (T N (f )) k+1,l+1 = f (l -k) pour 0 ≤ k ≤ N et 0 ≤ l ≤ N , où h(s) désigne le coefficient de Fourier d'ordre s de la fonction h. On dira que le symbole f est régulier si la fonction f est strictement positive sur le tore, et que le symbole f est singulier si la fonction f admet des zéros ou des pôles sur le tore. Une bonne approche des matrices de Toeplitz peut se trouver dans [START_REF] Böttcher | Introduction to large Toepltitz truncated matrices[END_REF].

Un problème de l'étude des matrices de Toeplitz est d'établir la trace du produit de deux matrices de Toeplitz, ou même d'une puissance d'un produit de matrice de Toepliz. Cette étude intervient autant dans le domaine de l'analyse (recherche des valeurs propres) que des la probabilités ( théorèmes de limite centrale, principes de grandes déviations). Le problème de l'étude de Tr (T N (f )T N (g)) s est un grand classique de la littérature consacrée aux matrices de Toeplitz et à l'étude des processus aléatoires Gaussiens. Il a été en particulier étudié par Avram ( [START_REF] Avram | On biliner forms in Gaussian random variables and Toeplitz matrices[END_REF])dans le cas régulier ou pour une puissance deux, et par Fox et Taqqu ( [START_REF] Fox | Central limit theorems for quadratic forms in random variables having long-range dependence[END_REF], [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependents stationary Gaussian time series[END_REF]), dans un cadre plus général. Il faut aussi citer Grenander et Szegô [START_REF] Grenander | Toeplitz forms and their applications[END_REF], Ibragimov [START_REF] Ibrahimov | On estimation of the spectral function of a stationary gaussian process[END_REF], Rosenblatt [START_REF] Rosenblatt | Asymptotic behavior of eigenvalues of Toeplitz forms[END_REF], Taniguchi [START_REF] Taniguchi | On the second order asymptotic efficiency of estimators of Gaussian ARMA processes[END_REF], Dalhaus [START_REF] Dalhaus | Efficient parameter estimation for self-similar processes[END_REF], Giraitis et Surgalis [START_REF] Giraitis | A central limit theorem theorem for quadratic forms in strongly dependent linear varaibles and its applications to asymptotical normalityof Whittle's estimate[END_REF], Ginovyan [START_REF] Ginovyan | Asymptotically efficient nonparametric estimation of functionals on spectral density of stationary gaussian process[END_REF], Taniguchi and Kakizawa [START_REF] Taniguchi | Asymptotic theory of statistical inference for time series[END_REF], Ginovyan et Sahakyan [START_REF] Ginovyan | Error bounds for approximations of traces of products of truncated Toeplitz operators[END_REF], [START_REF] Ginovyan | Limits theorems for Toeplitz quadratic functionals of continuous-time stationnary process[END_REF] et [START_REF] Ginovyan | On the central limit theorem for Toeplitz quadratic forms of stationnary sequence[END_REF], et Lieberman et Philips [START_REF] Lieberman | On the central limit theorem for Toeplitz quadratic forms of stationnary sequences[END_REF]. Un bon résumé des principaux acquis peut se trouver dans [START_REF] Ginovyan | A note on approximations of traces of products of truncated Toeplitz matrices[END_REF].

La question qui peut également se poser est de connaître la trace de T N (f )T -1 N (g) s . Une façon de faire peut consister à se ramener à la trace de T N (f )T N (g -1 ) s , mais cette méthode n'est pas toujours satisfaisante, surtout dans le cas singulier. Dans cet article nous proposons un développement asymptotique d'ordre 1 ou 2, suivant les cas, de Tr T N (f 1 )T -1 N (f 2 ) dans le cas où f 1 (θ) = |1 -e iθ | 2α 1 c 1 (θ) et f 2 (θ) = |1 -e iθ | 2α 2 c 2 (θ) avec - 1 2 < α 1 , α 2 < 1 2 et où c 1 et c 2 sont deux fonctions régulières sur le tore. Les méthodes que nous utilisons sont différentes de celles de Fox et Taqqu, mais utilisent des travaux antérieurs (voir [START_REF] Rambour | Théorèmes de trace de type Szegö dans le cas singulier[END_REF] et [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF]). Nous mettons en évidence les différents cas qui peuvent se présenter, et la suite de notre travail est consacrée à l'étude du cas α 1 ∈]0, 1 2 [ et α 2 ∈] -1 2 , 0[ (cas 1) ii)). Nous donnons dans ce cas une expression asymptotique de Tr T N (f 1 )T -1 N (f 2 ) s et aussi de Tr T N (f 1 )T N (f -1 2 ) s (ce qui revient à donner Tr T N (f 1 )T -1 N (f 2 ) s pour 0 < α 1 , α 2 < 1 2 complétant ainsi des résultats de Taniguchi( [START_REF] Taniguchi | On the second order asymptotic efficiency of estimators of Gaussian ARMA processes[END_REF], [START_REF] Taniguchi | Asymptotic theory of statistical inference for time series[END_REF] et de Lieberman et Phillips [START_REF] Lieberman | On the central limit theorem for Toeplitz quadratic forms of stationnary sequences[END_REF]. Nous étudions ensuite les conséquences de ces résultats pour les valeurs propres de T N (f 1 )T N (f -1

2 ) et nous en déduisons un résultat probabiliste. Dans le cas d'une matrice de Toeplitz le comportement des valeurs propres obéit à certains principes bien connus. On sait par exemple que si λ = M . Cette propriété n'est évidemment plus vraie pour un produit de matrices de Toeplitz ni à plus forte raison pour le produit d'une matrice de Toeplitz avec une matrice hermitienne. Si on étudie une forme quadratique W N définie par W N = 1 N X (N ) * M N X (N ) avec (X n ) un processus stationnaire centré gaussien et la matrice M N une matrice hermitienne (voir, entre autre, [START_REF] Sato | Large deviation results for statistics of short and long-memory Gaussian process[END_REF], [START_REF] Bercu | Large deviations for quadratic forms of stationnary gaussian process[END_REF] et [START_REF] Bercu | Sharp large deviations for gaussian quadratic forms with applications[END_REF])on ne peut donc pas alors appliquer le théorème de Gârtner-Ellis ( [START_REF] Dembo | Large devitions techniques and applications[END_REF]) pour obtenir un principe de grandes déviations pour W N . Dans le cas où M N = T N (f ) et où f, g ∈ L ∞ (T) ( g étant la densité spectrale de X (N ) ) [START_REF] Bercu | Large deviations for quadratic forms of stationnary gaussian process[END_REF] et [START_REF] Bercu | Sharp large deviations for gaussian quadratic forms with applications[END_REF] donnent des solutions à ce problème. Cela leur permet notamment de donner un principe de grandes déviations dans l'étude du rapport de vraissemblance de deux processus gaussiens stationnaires ( [START_REF] Coursol | Remarques sur l'approximation de la vraisemblance d'un processus gaussien stationnaire[END_REF], [START_REF] Coursol | Sur la formule de chernoff pour deux processus gaussiens stationnaires[END_REF], [START_REF] Dacunha-Castelle | Remarque sur l'étude asymptotique du rapport de vraisemblance de deux processus gaussiens stationnaires[END_REF], [START_REF] Bouaziz | Testing Gaussian sequences and asymptotic inversion of Toeplitz operators[END_REF] [START_REF] Barone | Optimal importance sampling for some quadratic forms of A.R.M.Aprocess[END_REF]) dans le cas où les densités spectrales sont régulières. Supposons maintenant que X (N ) admette pour densité spectrale une fonction

f 1 et que M N = T -1
N (f 2 ). Dans le cas α 1 positif et α 2 négatif en notant µ = 0 et lim

N →+∞ sup 1≤i≤N µ (N ) i = f 1 f 2 ∞ .
Nous pouvons alors obtenir sur un intervalle maximal la limite de la suite de fonctions (voir [START_REF] Grenander | Toeplitz forms and their applications[END_REF])

L N (t) = 1 N ln E(e N tW N ) = - 1 2N ln det I N -2tT 1/2 N (f 1 )T -1 N (f 2 )T 1/2 N (f 1 ) = - 1 2N N i=1 ln(1 -2tµ (N ) i ).
Toujours dans le cas 1) ii) avec α 1 > 0 et α 2 < 0 nous retrouvons un théorème de limite centrale similaire à celui donné par Fox et Taqqu dans [START_REF] Fox | Central limit theorems for quadratic forms in random variables having long-range dependence[END_REF] mais dans lequel nous pouvons considérer la forme quadratique X (N ) * T N (f 2 ) -1 X (N ) au lieu de X (N ) * T N (f 2 ).X (N ) . Dans un prochain travail nous nous attacherons à développer les cas différents du cas 1) ii) qui interviennent dans le théorème 1. Nous aurons deux objectifs : d'abord établir des expressions asymptotiques pour les traces de

T N (f 1 )T -1 N (f 2 )
s puis utiliser ces expressions pour donner des théorèmes de limites centrales pour des formes quadratiques du type X (N ) * T N (f 2 ) -1 X (N ) ou X N est un processus aléatoire centré gaussien stationnaires de densité spectrale f 1 .

2 Principaux résultats 2.1 Trace de produits de matrices de Toeplitz.

Dans la suite nous noterons χ la fonction définie par χ(θ) = e iθ . Pour tous les réels ν positifs nous considérerons aussi les ensembles A(T, ν) = {h ∈ L 2 (T)/ k∈Z |k| ν ĥ(k) < ∞}, où ĥ(k) désigne le coefficient d'ordre k de la fonction h. Théorème 1 On considère deux fonctions f 1 et f 2 définies sur le tore T par

f 1 = |1 -χ| 2α 1 c 1 et f 2 = |1-χ| 2α 2 c 2 où c 1 et c 2 sont deux fonctions régulières dans A(T, 3 2 ) et -1 2 < α 1 , α 2 < 1 2 .
On a alors les résultats suivants :

1. Si α 2 ∈] -1 2 , 0[ i) dans le cas ou 1 2 > α 2 -α 1 > 0 Tr T N (f 1 )T -1 N (f 2 ) = Tr T N f 1 f 2 + O(N 2α 2 -2α 1 ), ii) dans le cas ou 0 > α 2 -α 1 > -1 Tr T N (f 1 )T -1 N (f 2 ) = Tr T N f 1 f 2 + f 1 (0) ln f -1 2 , 1 f 2 2,1/2 + C 1 (f 1 , f 2 ) + O(N max(2α 2 -2α 1 ,-1)) ).
Si les fonctions f 1 et f 2 sont des fonctions paires on a

C 1 (f 1 , f 2 ) = -2(α 2 + 1) ln f -1 2 , f 1 f 2 2,1/2 -ln f -1 2 , 1 f 2 2,1/2 f 1 (0) -ln f 1 , 1 f 2 2,1/2 . 2. Si α 2 ∈]0, 1 2 [ i) Dans le cas où 1 2 < α 2 -α 1 < 1 on a Tr T N (f 1 )T -1 N (f 2 ) = N 2α 2 -2α 1 C 2 (f 1 , f 2 ) + o(N 2α 2 -2α 1 )
ii) Dans le cas où -

1 2 < α 2 -α 1 < 1 2 on a a) Si α 1 < 0 Tr T N (f 1 )T -1 N (f 2 ) = Tr T N f 1 f 2 + N 2α 2 -2α 1 C 3 (f 1 , f 2 ) + o(N 2α 2 -2α 1 ) b) Si α 1 > 0 Tr T N (f 1 )T -1 N (f 2 ) = Tr T N f 1 f 2 + 1 1/2 Gα 2 (x)dx 2N 2α 2 f 1 (0) c 2 (1)Γ 2 (α 2 ) + o(N 2α 2 ) avec Gα 2 (x) = x 0 t 2α 2 -2 (1 -t) 2α 2 -1 -t 2α 2 (1 -t) 2α 2 -2 dtdx + x 2α 2 -1 (2α 2 -1)
, 

et x ∈ [1/2, 1]. Remarque 1 Les constantes C i (f 1 , f 2 ) 1 ≤ i ≤ 3,
Tr T N (f 1 )T -1 N (f 2 ) s -Tr T N f 1 f 2 s = (-1) s-1 Ψ (s-1) 1 (0) (s -1)! + o(1). avec Ψ 1 (t) = f 1 (0) ln f -1 2,t , 1 f 2,t 2,1/2 -C 1 (f 1 , f 2,t ).
Corollaire 1 On considère deux fonctions h 1 et h 2 paires définies sur le tore T par

h 1 = |1 -e iθ | 2α 1 d 1 et h 2 = |1 -e iθ | 2α 2 d 2 où d 1 et d 2 sont deux fonctions régulières appartenant à A(T, 3 
2 ). On suppose de plus que 1 2 > α 1 , α 2 > 0. Nous pouvons alors écrire, pour tout entier s ≥ 1

Tr (T N h 1 T N h 2 ) s = N 2π 2π 0 ((h 1 h 2 )(θ)) s dθ + o(N ).

Quelques applications aux grandes déviations et aux valeurs propres

Dans tout ce paragraphe nous considérons encore

f 1 = |1 -χ| 2α 1 c 1 et f 2 = |1 -χ| 2α 2 c 2 deux fonctions paires avec α 1 positif et α 2 négatif et c 1 , c 2 deux fonctions régulières dans A(T, 3 
2 ).

Lemme 1 Si µ

(N ) i 1 ≤ i ≤ N désignent les valeurs propres de T N (f 1 )T -1 N (f 2 )
, classées dans l'ordre croissant, alors la suite de mesures

N i=1 δ µ (N)
i converge au sens faible (ou en loi) vers

P f 1 f 2
la mesure image de la mesure de Lebesgue sur le tore par f 1 f 2 .

Ce lemme admet comme corollaire immédiat les deux théorèmes suivants Théorème 3 Avec les hypothèses et notations précédentes

lim N →+∞ µ (N ) 1 = 0, lim N →+∞ µ (N ) N = f 1 f 2 ∞ .
On considère maintenant pour tout entier N la forme quadratique W N définie par

W N = 1 2N t X N T -1 N f 2 X N où X N un processus de densité spectrale f 1 = |1 -χ| 2α 1 c 1 et f 2 = |1 -χ| 2α 2 c 2 , c 1 et c 2 étant
deux fonctions régulières sur le tore. On considère alors la suite de fonctions

L N (t) = 1 2N - 1 2 N i=1 ln(1 -2µ N i t) où (µ N i ) i=1•••N sont les valeurs propres de A N = T 1/2 N f 1 T -1 N f 2 T 1/2 N f 1 qui sont aussi celles de T N (f 1 )T -1 N f 2 . Alors nous pouvons écrire, en posant ∆ =] -δ -1 , δ -1 [ avec δ = f 1 f 2 ∞ Théorème 4 Si f 1 f 2 ∈ L ∞ (T) avec α 1 > 0 et α 2 < 0 on a pour tout t tel que 2t ∈ ∆ L N (t) = - 1 4π 2π 0 ln 1 -2t f 1 f 2 (θ) dθ + o(1), et lim N →+∞ N L N (t) + N 4π 2π 0 ln 1 -2t f 1 f 2 (θ) dθ = Ψ(2t) 2 avec Ψ(t) = ∞ l=1 (-1) l+1 l (t) l Ψ (l) 1 (0) l! Remarque 2 Ce théorème revient à dire que si f 1 f 2 ∈ L ∞ (T) et α 1 α 2 < 0 alors (W N ) satisfait une SLDP ( Sharp Large Deviation Principle) pour une fonction L * qui est le dual de Fenchel- Legendre est L(t) = 1 4π 2π 0 ln 1 -2t f 1 f 2 (θ) dθ. D'autre part en posant m N = E( t X N T -1 N f 2 X N )

nous pouvons énoncér le théorème

Théorème 5 La variable aléatoire :

t X N T -1 N f 2 X N -m N √ N
converge en loi vers une variablle aléatoire qui suit une loi normale centrée de variance

1π π -π f 1 (θ) f 2 (θ) 2 dθ.
Remarque 3 La démonstration de ce théorème est bien sûr parfaitement identique à celle du théorème du même genre donné dans [START_REF] Fox | Central limit theorems for quadratic forms in random variables having long-range dependence[END_REF] Pour démontrer le théorème 1 nous allons devoir, dans un premier temps, donner une expression asymptotique simple pour N suffisamment grand, des coefficients du polynôme prédicteur de degré N d'une fonction f admettant une singularité dordre α comprise entre -1 2 et 1 2 . C'est ce que nous faisons, après un bref rappel, dans la partie suivante.

3 Asymptotique des coefficients du polynôme prédicteur

Definition et propriétés fondamentales du polynôme prédicteur

Définition 1 Si h une fonction positive dans L 1 (T) on appelle polynôme prédicteur de degré

N de h le polynôme K N définie par K N = N k=0 (T -1 N ) k+1,1 (T -1 N ) 1,1 z k .
Nous avons alors les résultats suivants (voir [START_REF] Landau | Maximum entropy and the moment problem[END_REF])

Théorème 6 Si h une fonction positive dans L 1 (T) et K N son polynôme prédicteur de degré

N alors - ∀s, -N ≤ s ≤ N |K N | -2 (s) = h(s).
-K N ne s'annule pas sur le tore.

Ce théorème admet la conséquence immédiate suivante

Théorème 7 Avec les hypothèses du théorème précédent nous avons

T N |K N | -2 = T N (h).
Le calcul de T -1 N (h) s'en trouve alors facilité grâce au lemme suivant qui a été établi dans [START_REF] Rambour | Formulas for inverses of Toeplitz matrices with polynomially singular symbols[END_REF] et qui est une version algébrique de la formule de Gohberg-Semencul [START_REF] Gohberg | The inversion of finite Toeplitz matrices and their continual analogues[END_REF].

Lemme 2 Si P = N u=0 δ u z u un polynôme de degré N sans zéros sur le tore on a

T -1 N |P | -2 = ( δ0 δ l-k + • • • + δk δ l -(δ N -k δN-l + • • • δ N δ N +k-l ).
Dans cette partie nous considérons une fonction f définie par f = |1 -χ| 2α c où c est une fonction régulière sur le tore avec c 1 = g 1 ḡ1 , g 1 ∈ H 2+ et g = (1-χ) α g 1 . On pose β (α) k = g -1 (k) et on note par β k,N le coefficient de χ k du polynôme prédicteur de degré N de f . D'autre part nous nous plaçons dans le cas -1 2 < α < 1 2 .

Théorème 8 On considère une fonction f comme ci-dessus Alors si n 1 est entier fixé, indépendamment de N ,

β k,N = β (α) k (1 - k N ) α (1 + o(1)
)

pour tout entier k ∈ [0, N -n 1 ], uniformément par rapport à N .
Remarque 4 Dans la pratique n 1 est choisi de manière à ce que pour tout entier u ≥ n 1 on ait β

(α) u = 1 g 1 (1) u α-1
Γ(α) avec la précision nécessaire.

Remarque 5 Ce théorème peut se lire ∀ǫ > 0

∃N 0 t.q. ∀N ≥ N 0 ∀k, 0 ≤ k ≤ N -n 1 ∃R k , |R k | ≤ ε tel que β k,N = β (α) k (1 - k N ) α (1 + R k )

Démonstration du théorème 8

Pour démontrer ce théorème nous allons découper l'intervalle [0, N δ] en deux, à savoir [0, δ 1 ] et [δ 1 , δ]. La démonstration du théorème sur [δ 1 , δ] est assez rapide. Dans [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] nous avons démontré Théorème 9 Si -1 2 < α < 1 2 , α = 0 nous avons pour 0 < x < 1

g 1 (1)β [N x],N = N α-1 1 Γ(α) x α-1 (1 -x) α + o(N α-1 ) uniformément en x dans [δ 1 , δ 2 ], pour 0 < δ 1 < δ 2 < 1.
Ce théorème est équivalent à

g 1 (1)β k,N = 1 Γ(α) k α-1 (1 - k N ) α + o(N α-1 )
pour tout entier naturel k dans [N δ 1 , N δ 2 ], uniformément par rapport à N . Cette remarque, jointe au résultat (voir [START_REF] Zygmund | Trigonometric series[END_REF])

β (α) k = 1 g 1 (1)Γ(α) k α-1 (1 + o(1)), uniformément par rapport à k pour k assez grand, permet d'obtenir le résultat sur [N δ 1 , N δ].
Pour démontrer le théorème dans l'intervalle [0, N δ 1 ], il nous faut revisiter les résultats de [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF]. Nous avons obtenu dans cet article le lemme Lemme 3 On suppose α ∈] -1 2 , 1 2 [. Alors, sous les hypothèses du théorème 9 nous pouvons écrire pour N suffisamment grand et pour 0

≤ k ≤ δN , 0 < δ < 1 β k,N = β (α) k - 1 N k u=0 β (α) k-u F α u N (1 + o(1)) . la fonction z → F α (z) est continue et dérivable sur tout compact de [0, 1[ et de plus pour tout réel dans [0, δ] on a |F α (z)| ≤ K 0 (1 + | ln(1 -z)|),
où K 0 est une constante indépendante de N .

Remarque 6 En utilisant le déterminant de T N (|1 -χ| 2α f 1 ) et la formule d'Hartwig-Fisher nous obtenons facilement

F α (0) = α 2 + o(1). Si k ∈ [0, k 0 ] et N suffisamment grand le lemme 3 permet d'écrire β (α) k + 1 N k u=0 F α ( u N )β (α) k-u = β (α) k (1 -o(1)) = β (α) k 1 - k N α (1 + o(1)) .
Si k 0 < k < N δ 1 nous pouvons considérer, toujours avec le lemme 3, les égalités

β (α) k - 1 N k u=0 F α ( u N )β (α) k-u = β (α) k - 1 N k u=0 F α ( u N ) -F α (0) β (α) k-u -F α (0) 1 N k u=0 β (α) k-u = β (α) k -β (α+1) k α 2 N + 1 N 2 k u=0 uβ (α) k-u F ′ α (c u )
avec, pour tout u, 0 ≤ c u ≤ u N . Alors si k 0 suffisamment grand pour que l'approximation de β

(α) k et de β (α+1) k
soient pertinentes on a, en utilisant l'uniformité de ces mêmes approximations,

β (α) k -β (α+1) k α 2 N = β (α) k -α k N β (α) k (1 + o(1)) = β (α) k 1 - k N α (1 + o(1)) uniformément par rapport à k ∈ [k 0 , N δ 1 ]. Si α positif on a 1 N 2 k u=0 uβ (α) k-u F ′ α (c u ) = O 1 N 2 k u=0 uβ (α) k-u , et nous avons également 1 N 2 k u=0 uβ (α) k-u ≤ 1 N 2 k u=0 (k -u)|β (α) k-u | + k u=0 k|β (α) k-u | = O k α+1 N 2 = O k α-1 δ 2 1 = o(β (α) k )
D'autre part si α est négatif nous pouvons écrire, toujours si k 0 suffisamment grand pour que l'approximation des coefficients β

(α) k soit pertinente k u=0 uβ (α) k-u = k-k 0 u=0 uβ (α) k-u + k u=k-k 0 +1 uβ (α) k-u .
Nous avons encore

1 N 2 k-k 0 u=0 uβ (α) k-u = 1 N 2 k-k 0 u=0 (k -u)β (α) k-u + k-k 0 u=0 kβ (α) k-u . On a évidemment 1 N 2 k u=0 (k -u)|β (α) k-u | = O( k α+1 N 2 ) = O k α-1 δ 2 1 = o(β (α) k ) et k-k 0 u=0 kβ (α) k-u = -k ∞ u=k-k 0 +1 β (α) k-u = O(β (α) k ).
Enfin en utilisant la formule d'Euler et Mac-Laurin (en supposant k 0 assez grand pour que cela ait un sens) il vient

1 N 2 k u=k-k 0 +1 |β (α) k-u | = 1 N 2 O k α+1 -(k -k 0 ) α+1 = k α+1 N 2 O 1 -(1 - k 0 k ) α+1 = O( k α N ) = o(k α-1 )
ce qui achève de démontrer le lemme, et l'uniformité, pour k ∈ [0,

δ 0 ]. Reste à obtenir la formule pour k ∈ [N δ 2 , N -n 1 ].
Pour ce faire nous allons utiliser les polynômes orthogonaux Q j , 0 ≤ j ≤ N associés au poids f et reliés aux polynômes prédicteurs par Q N (χ) = P N (χ). Nous allons utiliser également la relation (voir [START_REF] Inoue | Asymptotics for the partial autocorrelation function of a stationary process[END_REF], [START_REF] Inoue | Asymptotics for the partial autocorrelation function of a fractionnal ARIMA process[END_REF]) que

β N +1,N +1 ∼ α N . (1) 
D'autre part la relation (voir, par exemple [START_REF] Szegö | Orthogonal polynomials[END_REF])

P m (χ) = P m-1 (χ) + χβ m,m Q m-1 permet, en identifiant les coefficients en N -m β N -m = β N -m,N -1 + β N,N β m,N -1 et pour m ≤ k et k suffisamment petit nous obtenons β N -k,N -m = β N -m-(k-m),N -m = β N -k,N -m-1 + β N -m,N -m β k-m,N -m-1
ce qui donne, en ajoutant cette relation pour m de 0 à k :

β N -k,N = k m=0 β N -m,N -m β k-m,N -m-1 .
Ce qui se traduit, en utilisant le lemme (3) et l'équation (1)

β N -k,N = (1 - α 2 N ) α N k m=0 β k-m,N -m-1 + o( 1 N )
et avec les résultats établis au début de la démonstration

β N -k,N = (1 - α 2 N ) α N k m=0 β (α) k-m - α 2 N β (α+1) k-m + o( 1 N ) = (1 - α 2 N ) α N β (α+1) k - α 2 N β (α+2) k + o( 1 N )
Ce qui donne

β N -k+1,N = αβ (α+1) k N + o( 1 N ). (2) 
Ce qui s'écrit aussi si nous considérons un entier j

∈ [N δ 2 , N -n 1 ] g 1 (1)β j+1,N = α(N -j) α N Γ(α + 1) = 1 Γ(α) (1 - j N ) α N α-1 + o( 1 N ) = 1 Γ(α) (1 - j N ) α ( N -j + j j ) α-1 j α-1 + o( 1 N ) Soit β j+1,N = β (α) j (1 - j N ) α + o( 1 N ).
L'uniformité du résultat est alors assurée par la façon dont δ 2 tend vers 1.

Démonstration du théorème principal

On doit calculer la trace de

T N (f 1 )T -1 N (f 2 ) avec f 1 = |1 -χ| 2α 1 c 1 et f 2 = |1 -χ| 2α 2 c 2 où -1 2 < α 1 , α 2 < 1 2 et où c 1 et c 2 sont des fonctions régulières. On peut écrire Tr T N (f 1 )T -1 N (f 2 ) = f1 (0) N k=0 T -1 N (f 2 ) k,k + 2ℜ N s=1 f1 (s) N -s k=0 T -1 N (f 2 ) k,k+s , et aussi (avec s > 0) et en utilisant le lemme 2 N -s k=0 T -1 N (f 2 ) k,k+s = (N -1 -s)A 1 (s) + A 2 (s) avec A 1 (s) = N -s l=0 β l,N β l+s,N A 2 (s) = -2 N -s l=0 lβ l,N β l+s,N
où les β l,N , 0 ≤ l ≤ N , sont les coefficients du polynôme prédicteur de la fonction f 2 . Nous avons établi plus haut que si n 0 est un entier tel que n 0 N = o(1) nous pouvons écrire

β l,N = β (α 2 ) l (1 - l N ) α 2 (1 + o(1)) (3) 
uniformément pour tout entier l dans [0, N -n 0 ]. Dans un premier temps nous allons démontrer le lemme suivant Lemme 4 Avec les hypothèses du théorème nous avons quel que soit s, 0 ≤ s ≤ N -n 0 , uniformément par rapport à s

1. Si α 2 ∈] -1 2 , 0[ alors N -s l=0 T -1 N (f 2 ) l,l+s = N (1 - s N ) α 2 +1 1 f 2 (-s) + (1 - s N ) α 2 τ 2 s N   u≥0 uβ α 2 u β α 2 u   + + N 2α 2 Γ 2 (α 2 )c 2 (1) (1 - s N ) 2α 2 F 1 ( s N ) + o(N 2α 2 ) où F 1 est une fonction continue sur [0, 1], et τ 2 (t) = -(α 2 + ((1 -t)(α 2 + 2))) . 2. Si α 2 ∈]0, 1 2 [ alors N -s l=0 T -1 N (f 2 ) l,l+s = N (1 - s N ) α 2 +1 1 f 2 (-s) + N 2α 2 Γ 2 (α 2 )c 2 (1) F 2 ( s N ) + o(N 2α 2 )
où F 2 est une fonction continue sur [0, 1],

Démonstration du lemme 4

Remarque 7 La démonstration de l'uniformité des restes, qui est un peu fastidieuse, a été repoussé dans l'appendice.

Calcul du coefficient A 1

En supposant que n 1 est un entier tel que n 1 N = o(1) et n 1 ≤ n 0 nous pouvons écrire la décomposition :

A 1 (s) = N -s-n 1 l=0 β l,N β l+s,N + N -s l=N -s-n 1 +1 β l,N β l+s,N .
Compte tenu de la remarque 3 nous pouvons écrire, en posant

s ′ = s + n 1 N -s ′ l=0 β l,N β l+s,N = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 (1 - l + s N ) α 2 (1 + o(1)) .

Nous avons alors

N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 (1 - l + s N ) α 2 = = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 -1 + 1 (1 - l + s N ) α 2 -(1 - s N ) α 2 + (1 - s N ) α 2
En développant on a

N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 (1 - l + s N ) α 2 = A ′ 1 + A ′ 2 + A ′ 3 + A ′ 4 , avec                                  A ′ 1 = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - s N ) α 2 A ′ 2 = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 -1 (1 - s N ) α 2 A ′ 3 = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l + s N ) α 2 -(1 - s N ) α 2 A ′ 4 = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 -1 (1 - l + s N ) α 2 -(1 - s N ) α 2 .

Nous avons

A ′ 1 = (1 - s N ) α 2 1 f 2 (-s) - +∞ N -s ′ +1 β (α 2 ) l β (α 2 ) l+s = (1 - s N ) α 2 1 f 2 (-s)- - N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) +∞ 1-s ′ /N t α 2 -1 (t + s N ) α 2 -1 dt + o(N 2α 2 -1 ).
On peut remarquer que quand s N tend vers 1 et α 2 négatif nous pouvons écrire

A ′ 1 ∼ (1 - s N ) α 2 1 f 2 (-s) -(1 - s N ) 2α 2 N 2α 2 α 2 c 2 (1)Γ 2 (α 2 ) + o(N 2α 2 ) Nous avons d'autre part i) Si α 2 ∈] -1 2 , 0[ A ′ 2 = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 -1 + α 2 l N (1 - s N ) α 2 - - α 2 N N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s l (1 - s N ) α 2 .
Ce qui donne

α 2 N N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s l = α 2 N   u≥0 uβ (α 2 ) u β (α 2 ) u+s   - -N 2α 2 -1 α 2 c 2 (1)Γ 2 (α 2 ) +∞ 1-s ′ /N t α 2 (t + s N ) α 2 -1 dt + o(N 2α 2 -1 ), et d'autre part N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 -1 + α 2 l N = N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) Φ 1 ( s ′ N ) + o(N α 2 -1 ) avec Φ 1 ( s ′ N ) = 1-s ′ /N 0 t α 2 -1 (t + s N ) α 2 -1 ((1 -t) α 2 -1 + α 2 t) dt. En posant finalement Φ 2 ( s ′ N ) = Φ 1 ( s ′ N ) + α 2 +∞ 1-s ′ /N t α 2 (t + s N ) α 2 -1 dt nous pouvons écrire A ′ 2 =   - α 2 N   u≥0 uβ (α 2 ) u β (α 2 ) u+s   + +N 2α 2 -1 1 c 2 (1)Γ 2 (α 2 ) Φ 2 ( s ′ N ) (1 - s N ) α 2 + o(N α 2 -1 ), où Φ 2 est une fonction continue sur [0, 1]. ii) Si α 2 ∈]0, 1 2 [ nous avons A ′ 2 = (1 - s N ) α 2 N 2α 2 -1 1 c 2 (1)Γ 2 (α 2 ) 1 0 t α 2 (t + s N ) α 2 -1 ((1 -t) α 2 -1) dt + o(N α 2 -1 )
Calculons maintenant le terme A ′ 3 .Là aussi nous devons distinguer les cas

α 2 positif et α 2 négatif. i) Si α 2 ∈] -1 2 , 0[. Nous pouvons écrire A ′ 3 = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l + s N ) α 2 -(1 - s N ) α 2 = N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l + s N ) α 2 -(1 - s N ) α 2 + α 2 l N (1 - s N ) α 2 -1 - - α 2 N N -s ′ l=0 lβ (α 2 ) l β (α 2 ) l+s (1 - s N ) α 2 -1 .
Nous avons

α 2 N N -s ′ l=0 lβ (α 2 ) l β (α 2 ) l+s (1 - s N ) α 2 -1 = (1 - s N ) α 2 -1 α 2 N ∞ u=0 uβ (α 2 ) u β (α 2 ) u+s - -(1 - s N ) α 2 -1 α 2 N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) +∞ 1-s ′ /N t α 2 (t + s N ) α 2 -1 dt + o(N 2α 2 -1 )
et de même

N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s (1 - l + s N ) α 2 -(1 - s N ) α 2 + α 2 l N (1 - s N ) α 2 -1 = = N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) Φ 3 ( s N ) + o(N 2α 2 -1 ), Avec Φ 3 ( s N ) = 1-s ′ /N 0 t α 2 -1 (t+ s N ) α 2 -1 (1 -t - s N ) α 2 -(1 - s N ) α 2 + α 2 t(1 - s N ) α 2 -1 dt.
En écrivant

t α 2 -1 (t + s N ) α 2 -1 (1 -t - s N ) α 2 -(1 - s N ) α 2 + α 2 t(1 - s N ) α 2 -1 = (t + s N ) α 2 -1 n≥2 δ n t α 2 +n-1 (1 - s N ) α 2 -n
où les coefficients δ n sont les coefficients du développement entière de la fonction t → (1 -t) α 2 nous pouvons conclure que Φ 3 (u) ∼ O 1 -u) 2α 2 au voisinage de 1. En posant

Φ 4 ( s N ) = α 2 +∞ 1-s ′ /N t 2α 2 (t + s N ) α 2 -1 dt
nous pouvons écrire finalement

A ′ 3 = (1 - s N ) α 2 -1   - α 2 N   u≥0 uβ (α 2 ) u β (α 2 ) u+s     + + N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) (1 - s N ) α 2 -1 Φ 4 ( s N ) + Φ 3 s N + o(N 2α 2 -1 ) où Φ 3 est une fonction continue sur [0, 1[ et équivalente à O (1 -t) 2α 2 en 1, et où Φ 4 est une fonction continue sur [0, 1]. ii) Si α 2 ∈]0, 1 2 [ nous pouvons écrire de même α 2 N N -s ′ l=0 lβ (α 2 ) l β (α 2 ) l+s = α 2 N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) 1 0 t α 2 (t + s N ) α 2 -1 dt + o(N 2α 2 -1 ) et, comme ci-dessus N -s ′ l=0 lβ (α 2 ) l β (α 2 ) l+s (1 - l + s N ) α 2 -(1 - s N ) α 2 + α 2 l N (1 - s N ) α 2 -1 = = N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) Φ 3 ( s ′ N ) + o(N 2α 2 -1 ). D'où A ′ 3 = N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) (1 - s N ) α 2 -1 Φ4 ( s ′ N ) + Φ 3 s ′ N + o(N 2α 2 -1 ), avec Φ4 ( s N ) = α 2 1 0 t 2α 2 (t + s N ) α 2 -1 dt
Il est d'autre part facile de se convaincre que

A ′ 4 = N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) 1-s ′ N 0 t α 2 -1 (t + s N ) α 2 -1 (1 -t - s N ) α 2 -(1 - s N ) α 2 (1 -t) α 2 -1 + o(N 2α 2 -1 ) = N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) Φ 5 ( s N ) + o(N 2α 2 -1 ) où Φ 5 est une fonction continue sur [0, 1[ et où Φ 5 (u) est équivalent à O (1 -u) 2α 2 +1 en 1.
Enfin en utilisant l'équation 2 qui est apparue dans la démonstration du théorème 8 on obtient que, quel que soit le signe de α 2 on a

N -s l=N -s-n 1 β l,N β l+s,N = O(N α 2 -2 ) ce qui implique (N -s -1) N -s l=N -s-n 1 β l,N β l+s,N = o(N 2α 2 ).
En regroupant on peut donc écrire

• Si α 2 ∈] -1 2 , 0[ (N + 1 -s)A 1 (s) = N (1 - s N ) α 2 +1 1 f 2 (-s) -α 2 (2 - s N )(1 - s N ) α 2 s N   u≥0 uβ (α 2 ) u β (α 2 ) u+s   + + N 2α 2 c 2 (1)Γ 2 (α 2 ) (1 - s N ) 2α 2 F1 ( s N ) + o(N 2α 2 ) avec F1 une fonction continue sur [0, 1]. •• Si α 2 ∈]0, 1 2 [ (N + 1 -s)A 1 (s) = N (1 - s N ) α 2 +1 1 f 2 (-s) + N 2α 2 c 2 (1)Γ 2 (α 2 ) F2 ( s N ) + o(N 2α 2 ),
où F2 est une fonction continue sur [0, 1].

Calcul du coefficient A 2

Toujours avec la même définition de s ′ on a Nous avons

A 2 (s) = -2 N -s ′ l=0 lβ l,N β l+s,N . i) Dans le cas où α 2 ∈] -1 2 , 0[ nous avons A 2 (s) = -2 N -s ′ l=0 lβ l,N β l+s,N = -2 N -s ′ l=0 lβ (α 2 ) l β α 2 l+s (1 - l N ) α 2 (1 - l + s N ) α 2 = -2 N -s ′ l=0 lβ (α 2 ) l β α 2 l+s (1 - l N ) α 2 (1 - l + s N ) α 2 -(1 - s N ) α 2 - -2(1 - s N ) α 2 N -s ′ l=0 lβ (α 2 ) l β (α 2 )
l+s .

Soit, finalement :

A 2 (s) = -2(1 - s N ) α 2   u≥0 uβ (α 2 ) u β (α 2 ) u+s   + + 2(1 - s N ) α 2 N 2α 2 c 2 (1)Γ 2 (α 2 ) +∞ 1-s ′ /N t α 2 (t + s N ) α 2 -1 dt -2 N 2α 2 c 2 (1)Γ 2 (α 2 ) 1-s ′ /N 0 t α 2 (t + s N ) α 2 -1 (1 -t) α 2 (1 -t - s N ) α 2 -(1 - s N ) α 2 dt + o(N 2α 2 ).
En posant

H 3 ( s N ) = - +∞ 1-s ′ /N t α 2 (t + s N ) α 2 dt + H 4 ( s N ) = 1-s ′ /N 0 t α 2 (t + s N ) α 2 (1 -t) α 2 (1 -t - s N ) α 2 -(1 - s N ) α 2 dt, nous pouvons écrire A 2 (s) = -2(1 - s N ) α 2     u≥0 uβ (α 2 ) u β (α 2 ) u+s   + N 2α 2 c 2 (1)Γ 2 (α 2 ) H 3 ( s N )   - - N 2α 2 c 2 (1)Γ 2 (α 2 ) H 4 ( s N ) + o(N 2α 2 )
où H 3 et H 4 sont des fonctions continues sur [0, 1] (on vérifie aisément que H 4 (u) = O (1 -u) α 2 +1 au voisinage de 1. ii) Le cas α 2 ∈]0, 1 2 [ se traite plus rapidement. Il suffit de remarquer que :

A 2 (s) = -2 N -s ′ l=0 lβ (α 2 ) l β α 2 l+s (1 - l N ) α 2 (1 - l + s N ) α 2 = -2 N 2α 2 c 2 (1)Γ 2 (α 2 ) 1 0 t α 2 (t + s N ) α 2 -1 (1 -t) α 2 (1 -t - s N ) α 2 dt + o(N 2α 2 ).
Pour résumer nous pouvons poser

• Si α 2 < 0 alors A 2 (s) = -2(1 - s N ) α 2 s N   u≥0 uβ (α 2 ) u β (α 2 ) u+s   - N 2α 2 c 2 (1)Γ 2 (α 2 ) -2(1 - s N ) α 2 H 3 ( s N ) + H 4 ( s N ) + o(N 2α 2 ). •• Si α 2 > 0 alors A 2 (s) = -2 N 2α 2 c 2 (1)Γ 2 (α 2 ) H 5 ( s N ) + o(N 2α 2 ).
D'autre part quelque soit le signe de α 2 , nous avons, comme pour le calcul de A 1 nous avons

-2 N -s l=N -s-n 1 lβ l,N β l+s,N = o(N 2α 2 ).
En réunissant les résultats des points abordés nous obtenons l'énoncé du lemme 4

4.2 Démonstation du théorème dans le cas où α 2 ∈] -1 2 , 0[ Il s'agit de calculer la somme

f 1 (0)Tr (T N (f 2 )) -1 + 2ℜ N s=1 f 1 (s) N -s l=0 (T N (f 2 )) -1 l,l+s .
Rappelons que dans le cas où l'exposant α 2 est négatif il a été établi que ] ). En utilisant toujours la propriété 2 extraite de la démonstration du théorème 8 il vient, avec |N -s| < n 0 , avec n 0 comme dans le préambule de la démonstration, et si n 0 assez petit :

Tr T -1 N (f 2 ) ) = (N + 1) 1 f 2 (0) + ln f 2 | 1 f 2 2,1/2 + o(1) où | 2,1/2 désigne le produit scalaire dans A(T, 1 2 ) = {ρ ∈ L 2 (T)/ m∈Z |m||ρ(m)| 2 < ∞} (voir [ 28 
N -s l=0 β l,N β l+s,N = O 1 N et N -s l=0 lβ l,N β l+s,N = O 1 N . Soit N s=N -n 0 f 1 (s)(N -s) N -s l=0 β l,N β l+s,N = O(N -2α 2 -2 ) et N s=N -n 0 f 1 (s) N -s l=0 lβ l,N β l+s,N = O(N -2α 2 -2 ).
Nous allons donc étudier ne fait la somme

f 1 (0)Tr (T N (f 2 )) -1 + 2ℜ N ′ s=1 f 1 (s) N ′ -s l=0 (T N (f 2 )) -1 l,l+s avec N ′ = N -n 0 .
Nous vérifierons ensuite que l'approximation trouvée est d'ordre supérieur à O(N -2α 2 -2 ). D'après le lemme précédent la somme précédente se décompose en quatre sommes que nous allons traiter séparément.

Calcul de

(N + 1) f1 (0) 1 f 2 (0) + 2 N ′ s=1 f 1 (s)(1 - s N ) α 2 +1 f -1 2 (-s)
Il est connu que pour s suffisamment grand on a

f 1 (s) = c 1 (1) Γ(-2α 1 ) s -2α 1 -1 + o(s -2α 1 -1 ), f -1 2 (s) = 1 c 2 (1)Γ(2α 2 ) s 2α 2 -1 + o(s -2α 2 -1 ).
Trois cas sont à distinguer pour calculer cette somme. a) 1 2 > α 2 -α 1 > 0. Sous cette hypothèse nous pouvons écrire, en posant

C 1 = c 1 (1) c 2 (1) 1 Γ(-2α 1 )Γ(2α 2 ) (N + 1) N s=1 f 1 (s)(1 - s N ) α 2 +1 1 f 2 (-s) = (N + 1) N s=1 f 1 (s) 1 f 2 (-s)+ + (N + 1) N s=1 f 1 (s) 1 f 2 (-s) (1 - s N ) α 2 +1 -1 ce qui donne encore (N + 1) N s=1 f 1 (s)(1 - s N ) α 2 +1 1 f 2 (-s) = (N + 1) +∞ s=1 f 1 (s) 1 f 2 (-s) -(N + 1) +∞ s=N f 1 (s) 1 f 2 (-s) + (N + 1) N s=1 f 1 (s) 1 f 2 (1 - s N ) α 2 +1 -1
Nous pouvons donc conclure

(N + 1) f1 (0) 1 f 2 (0) + 2 N s=1 f 1 (s)(1 - s N ) α 2 +1 1 f 2 (-s) = Tr T N f 1 f 2 + 2N 2α 2 -2α 1 C 1 1 0 u 2α 2 -2α 1 -2 (1 -u) α 2 +1 -1 du - - +∞ 1 u 2α 2 -2α 1 -2 du + o(N 2α 2 -2α 1 ) b) 0 > α 2 -α 1 > -1 2 .
On écrit alors :

(N + 1)

N ′ s=1 f 1 (s)(1 - s N ) α 2 +1 f -1 2 (-s) = (N + 1) N ′ s=1 f 1 (s) f -1 2 (-s) -(α 2 + 1) N ′ s=1 s f 1 (s) f -1 2 (-s) + (N + 1) N ′ s=1 f 1 (s) f -1 2 (-s) (1 - s N ) α 2 +1 -1 + (α 2 + 1) s N = (N + 1) +∞ s=1 f 1 (s) f -1 2 (-s) -(α 2 + 1) +∞ s=1 s f 1 (s) f -1 2 (-s)- -(N + 1) +∞ s=N +1 f 1 (s) f -1 2 (-s) + (α 2 + 1) +∞ s=N +1 s f 1 (s) f -1 2 (-s)+ + (N + 1) N ′ s=1 f 1 (s) f -1 2 (1 - s N ) α 2 +1 -1 + (α 2 + 1) s N D'où, (N + 1) f 1 (0) f -1 2 (0) + 2 N ′ s=1 f 1 (s)(1 - s N ) α 2 +1 f -1 2 (-s) = = Tr T N f 1 f 2 -(α 2 + 1) f 1 |f -1 2 2,1/2 + + 2N 2α 2 -2α 1 C 1 1 0 u 2α 2 -2α 1 -2 (1 -u) α 2 +1 -1 + (α 2 + 1)u du - +∞ 1 u 2α 2 -2α 1 -2 du + (α 2 + 1) +∞ 1 u 2α 2 -2α 1 -1 du + o(N 2α 2 -2α 1 ). c) -1 2 > α 2 -α 1 > -1
On utilise alors la décomposition suivante (N + 1)

N ′ s=1 f 1 (s) f -1 2 (-s)(1 - s N ) α 2 +1 = (N + 1) N ′ s=1 f 1 (s) f -1 2 (-s) -(α 2 + 1) N ′ s=1 s f 1 (s) f -1 2 (-s) + (α 2 + 1)α 2 2N N ′ s=1 s 2 f 1 (s) 1 f 2 (-s)+ (N + 1) N ′ s=1 f 1 (s) f -1 2 (-s) (1 - s N ) α 2 +1 -1 + (α 2 + 1) s N - α 2 (α 2 + 1)s 2 2N 2
Ce qui nous permet finalement d'écrire,en utilisant les mêm'es calculs que ci-dessus Rappelons le résultat, pour s suffisamment grand

(N + 1) f1 (0) f -1 2 (0) + 2 N ′ s=1 f 1 (s)(1 - s N ) α 2 +1 f -1 2 (-s) = = Tr T N f 1 f 2 -(α 2 + 1) f 1 |f -1 2 2,1/2 + O( 1 N ). 4.2.2 Calcul de 2ℜ   N ′ s=1 f 1 (s)(1 - s N ) α 2 τ 2 ( s N )   u≥0 uβ (α 2 ) u β ( α 
Σ(s) = C 2 s 2α 2 , avec C 2 = C 1 α 2 .
Là aussi nous allons devoir distinguer trois cas suivant les valeurs de

α 2 -α 1 . a) 1 2 > α 2 -α 1 > 0 Dans ce cas la formule d'Euler et Mac-Laurin permet d'écrire directement 2ℜ   N ′ s=1 f 1 (s)(1 - s N ) α 2 τ 2 ( s N )   u≥0 uβ (α 2 ) u β (α 2 ) u+s     = = 2N 2α 2 -2α 1 1 0 u 2α 2 -2α 1 -1 (1 -u) α 2 τ 2 (u)du + o(N 2α 2 -2α 1 ) b) 0 > α 2 -α 1 > -1 2
Nous allons utiliser la décomposition suivante

N ′ s=1 f 1 (s)(1 - s N ) α 2 α 2 (2 - s N )Σ(s) = = 2α 2 N ′ s=1 f 1 (s)(1 - s N ) α 2 Σ(s) - α 2 N N ′ s=1 s f 1 (s)(1 - s N ) α 2 Σ(s) = 2α 2 N ′ s=1 f 1 (s)Σ(s) (1 - s N ) α 2 -1 + N s=1 f 1 (s)Σ(s) - α 2 N N ′ s=1 s f 1 (s)Σ(s)(1 - s N ) α 2 .
Ce qui donne, tous calculs faits

ℜ N ′ s=1 f 1 (s)(1 - s N ) α 2 Σ(s)α 2 (2 - s N ) = 2α 2 ℜ +∞ s=1 f 1 (s)Σ(s) + C 1 N 2α 2 -2α 1 2 1 0 u 2α 2 -2α 1 -1 ((1 -u) α 2 -1) du - 1 0 u 2α 2 -2α 1 (1 -u) α 2 du -2 +∞ 1 u 2α 2 -2α 1 -1 du + o(N 2α 2 -2α 1 ).
On a de même

ℜ N ′ s=1 f 1 (s)(1 - s N ) α 2 +1 2Σ(s) = = 2ℜ +∞ s=1 f 1 (s)Σ(s) + + 4C 1 N 2α 2 -2α 1 1 0 u 2α 2 -2α 1 -1 (1 -u) α 2 +1 -1 du - +∞ 1 u 2α 2 -2α 1 -1 du + o(N 2α 2 -2α 1 ).
Nous sommes donc ramenés à calculer

4(α 2 + 1)ℜ( +∞ s=1 f 1 (s)Σ(s)).
Précisons cette quantité quand les fonctions f 1 et f 2 sont paires. Nous avons

u≥0 uβ (α 2 ) u β (α 2 ) u+s = -i u≥0 u g -1 2 (u) g -1 2 (u + s) = -i g -1 2 ′ | χ -s g -1 2 = -i g -1 2 ′ g 2 | χ -s f -1 2 = u≥0 u ln g -1 2 (u) χ -s f -1 2 (u).
Et de même nous obtenons :

u≥0 uβ (α 2 ) u β (α 2 ) u+s = u≥0 u g -1 2 (u) g -1 2 (u + s) = i u≥0 (g -1 2 ) ′ (u) g -1 2 (u + s) = i u≥0 (g -1 2 ) ′ (-u) g -1 2 (u + s) = i u≥0 (g -1 2 ) ′ (-u) ḡ-1 2 (-u -s) = i ḡ-1 2 ′ | χ s ḡ-1 2 = i ḡ-1 2 ′ ḡ2 | χ s f -1 2 = - u≤0 u ln ḡ-1 2 (u) χ s f -1 2 (u).
En remarquant que l'on a π + ln(f

-1 2 )(u) = ln(g -1 2 )(u) si u > 0 et π -ln(f -1 2 )(u) = ln(ḡ -1 2 )(u) si u < 0 nous pouvons écrire 2ℜ   s≥1 f 1 (s)Σ(s)   = s≥1 f 1 (s) u≥0 u ln f -1 2 (u) χ -s f -1 2 (u) - s≥1 f 1 (-s) u≤0 u ln f -1 2 (u) χ s f -1 2 (u).
Nous avons ensuite

s≥1 (f 1 )(s) u≥0 u lnf -1 2 (u) χ -s f -1 2 (u) = u≥0 u ln f -1 2 (u) s≥1 (f 1 )(s) χ -s f -1 2 (u) = u≥0 u ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (u + s) = u≥0 u ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (-u -s) et en remplaçant u par -u, en utilisant la parité de f 2 s≥1 (f 1 )(s) u≥0 u lnf -1 2 (u) χ -s f -1 2 (u) = u≤0 |u| ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (u -s); (4) 
en procédant de même il vient

- s≥1 (f 1 )(-s) u≤0 u ln f -1 2 (u) χ s f -1 2 (u) = u≤0 |u| ln f -1 2 (u) s≥1 (f 1 )(-s) χ -s f -1 2 (u) = u≤0 |u| ln f -1 2 (u) s≥1 (f 1 )(-s) f -1 2 (u -s) = u≤0 |u| ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (s -u)
ce qui donne, toujours grâce à la parité de f 2 :

-

s≥1 (f 1 )(-s) u≤0 u ln f -1 2 (u) χ s f -1 2 (u) = u≤0 |u| ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (u -s). (5) 
Nous pouvons donc écrire

2ℜ   s≥1 (f 1 )(s)Σ(s)   = 2 u≤0 |u| ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (u -s). (6) 
Considérons maintenant l'égalité

2 ln f -1 2 | f 1 f 2 2,1/2 -ln f -1 2 | 1 f 2 2,1/2 f 1 (0) = +S 1 + S 2 + S 3 + S 4 (7) 
avec

S 1 = 2 u≤0 |u| ln f -1 2 (u) s≤-1 (f 1 )(s) f -1 2 (u -s) S 2 = 2 u≥0 |u| ln f -1 2 (u) s≤-1 (f 1 )(s) f -1 2 (u -s) S 3 = 2 u≥0 |u| ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (u -s), S 4 = 2 u≤0 |u| ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (u -s).

Nous avons clairement

S 4 = S 2 = ℜ   s≥1 (f 1 )(s)Σ(s)   et S 1 = S 3 . Nous avons d'autre part S 1 = u≤0 |u| ln f -1 2 (u) s≤-1 (f 1 )(s) f -1 2 (u -s) = u≤0 |u| ln f -1 2 (u) s≤-1 (f 1 )(s) f -1 2 (s -u) = u≤0 |u| ln f -1 2 (u) s≥1 (f 1 )(s) f -1 2 (s + u) = - s≥1 (f 1 )(s) u≤0 u ln f -1 2 (u) χ -s f -1 2 (u).
Nous pouvons maintenant constater que

- u≤0 u ln f -1 2 (u) χ -s f -1 2 (u) = - u≤0 uln ḡ-1 2 (u) χ -s f -1 2 (u) = i u≤0 ln ḡ-1 2 ′ (u) χ -s f -1 2 (u) = i ln ḡ-1 2 ′ |χ -s f -1 2 = i ḡ-1 2 ′ ḡ-1 2 |χ -s f -1 2 = i ḡ-1 2 ′ |χ -s ḡ-1 2 = i u≤0 ḡ-1 2 ′ (u) χ -s ḡ-1 2 (u) = - u≤0 u ḡ-1 2 (u) χ s g -1 2 (-u) = - u≤-s uβ (α 2 ) -u β (α 2 ) -u-s
Il est maintenant facile de se rendre compte que

- u≤-s uβ (α 2 ) -u β (α 2 ) -u-s = v≥s vβ (α 2 ) v β (α 2 ) v-s = w≥0 (w + s)β (α 2 ) w+s β (α 2 ) w et puisque s w≤0 β (α 2 ) w+s β (α 2 ) w = s g -1 2 |χ s g -1 2 = s 1|χ s f -1 2 = s f 2 (-s) nous pouvons finalement conclure 2 ln f -1 2 | f 1 f 2 2,1/2 -ln f -1 2 | 1 f 2 2,1/2 f 1 (0) = 4ℜ   s≥1 (f 1 )(s)Σ(s)   + 2 f 1 |f -1 2 2,1/2 . (8) Autrement dit ℜ   s≥1 (f 1 )(s)Σ(s)   = 1 2 ln f -1 2 | f 1 f 2 2,1/2 f 1 (0) -ln f -1 2 |f -1 2 2,1/2 -f 1 |f -1 2 2,1/2 (9) 
Nous pouvons donc conclure que

2ℜ   N s=1 f 1 (s)(1 - s N ) α 2 τ 2 ( s N )   u≥0 uβ (α 2 ) u β (α 2 ) u+s     vaut -2(α 2 + 1) ln f -1 2 | f 1 f 2 2,1/2 -ln f -1 2 |f -1 2 2,1/2 f 1 (0) -f 1 |f -1 2 2,1/2 . c) -1 2 > α 2 -α 1 > -1 Nous obtenons alors N ′ s=1 f 1 (s)(1 - s N ) α 2   u≥0 uβ (α 2 ) u β (α 2 ) u+s   α 2 (2 - s N ) = = 2α 2   N ′ s=1 f 1 (s)   u≥0 uβ (α 2 ) u β (α 2 ) u+s   (1 - s N ) α 2 -1 + α 2 s N + N s=1 f 1 (s)   u≥0 uβ (α 2 ) u β (α 2 ) u+s   - - α 2 N N ′ s=1 s f 1 (s)   u≥0 uβ (α 2 ) u β (α 2 ) u+s     - α 2 N   N ′ s=1 s f 1 (s)   u≥0 uβ (α 2 ) u β (α 2 ) u+s   + N s=1 f 1 (s)   u≥0 uβ (α 2 ) u β (α 2 ) u+s   (1 - s N ) α 2 -1  
et les résultats du points précédent s'appliquent immédiatement.

4.2.3 Calcul de N 2α 2 N ′ s=0 (1 - s N ) 2α 2 F 1 ( s N ) f 1 (s)N 2α 2
Ici seul le signe de α 1 est déterminant. (rappelons que α 2 est négatif) a) α 1 < 0 Nous avons alors aisément

N 2α 2 N ′ s=0 (1 - s N ) 2α 2 F 1 ( s N ) F 1 (s) = = N 2α 2 -2α 1 c 1 (1) Γ 2 (α 1 ) 1 0 (1 -t) α 2 F 1 (t)t -2α 1 -1 dt b) α 1 > 0 Nous utilisons alors la décomposition N 2α 2 N ′ s=0 (1 - s N ) 2α 2 F 1 ( s N ) f 1 (s) = = N 2α 2 N ′ s=0 F 1 ( s N )(1 - s N ) 2α 2 -F 1 (0) f 1 (s) + N 2α 2 F 1 (0) N ′ s=0 f 1 (s)
qui donne l'égalité suivante, en se souvenant que

+∞ -∞ f 1 (s) = 0 N 2α 2 N s=0 (1 - s N α 2 F 1 ( s N ) f 1 (s) = = N 2α 2 -2α 1 c 1 (1) Γ 2 (α 1 ) 1 0 F 1 (t)(1 -t) 2α 2 -F 1 (0) t -2α 1 -1 dt -F 1 (0)K avec K = +∞ 1 t -2α 1 -1 dt + f ( 0) 2 .
4.3 Démonstation du théorème dans le cas où

α 2 ∈]0, 1 2 [ 4.3.1 Calcul de N N s=1 f 1 (s)(1 - s N ) α 2 +1 1 f 2 (-s)
Rappelons que dans ce cas

Tr T -1 N (f 2 ) ) = (N + 1) 1 f 2 (0) + N 2α 2 2K α 2 c 2 (1)Γ 2 (α 2 ) + o(N 2α 2 ) avec K α 2 = 1 1/2 x 0 t 2α 2 -2 (1 -t) 2α 2 -1 -t 2α 2 (1 -t) 2α 2 -2 dtdx + 1 2α 2 (2α 2 -1)
.

Comme dans le cas négatif trois cas sont à distinguer. a) 1 2 < α 2 -α 1 < 1. Nous avons alors immédiatement l'égalité :

N N s=1 (1 - s N ) α 2 +1 f 1 (s) 1 f 2 (-s) = N 2α 2 -2α 1 C 1 1 0 (1 -u) α 2 +1 u 2α 2 -2α 1 -2 du + o(N 2α 2 -2α 1 ). b) 0 < α 2 -α 1 < 1 2 .

Avec les mêmes idées que dans le cas négatif il vient

N N s=1 (1 - s N ) α 2 +1 f 1 (s) 1 f 2 (-s) = N N s=1 f 1 (s) 1 f 2 (-s) (1 - s N ) α 2 +1 -1 + N N s=1 f 1 (s) 1 f 2 (-s) = = Tr T N f 1 f 2 + N 2α 2 -2α 1 C 1 1 0 (1 -u) α 2 +1 -1 u 2α 2 -2α 1 -2 du - +∞ 1 u 2α 2 -2α 1 -2 du + o(N 2α 2 -2α 1 ). c) -1 2 < α 2 -α 1 < 0.
Nous obtenons avec les mêmes justifications que dans le cas où α 2 est négatif

N N ′ s=1 (1 - s N ) α 2 +1 f 1 (s) 1 f 2 (-s) = N N ′ s=1 f 1 (s) 1 f 2 (-s) (1 - s N ) α 2 +1 -1 + (α 2 + 1) s N + + N N ′ s=1 f 1 (s) 1 f 2 (-s) -(α 2 + 1) N ′ s=1 s f 1 (s) 1 f 2 (-s) D'où 2ℜ N N ′ s=1 f 1 (s)(1 - s N ) α 2 +1 1 f 2 (-s) + f 1 (0)Tr T -1 N (f 2 ) ) est égal à Tr T N f 1 f 2 -(α 2 + 1) f 1 |f -1 2 2,1/2 + N 2α 2 2K α 2 c 2 (1)Γ 2 (α 2 ) + + N 2α 2 -2α 1 C 1 1 0 ((1 -u)α 2 + 1 -1 + u(α 2 + 1)) u 2α 1 -2α 1 -2 du - - +∞ 1 u 2α 2 -2α 1 -2 du + (α 2 + 1) +∞ 1 u 2α 1 -2α 1 -1 du . 4.3.2 Calcul de N 2α 2 N ′ s=0 (1 - s N )2 α 2 F 2 ( s N ) f 1 (s)
Ce calcul se traite comme dans le cas précédent.

Démonstration du théorème (2)

La démonstration nécessite deux lemmes.

Lemme 5 Avec les hypothèses du théorème (2) f il existe une constante strictement positive t K 0 indépendante de s telle que pour tout entier s on ait

Tr T N (f 1 )T -1 N (f 2 ) s -T N f 1 f 2 s ≤ K 0 s 2 f 1 ∞ f -1 2 ∞
Lemme 6 Avec les hypothèses du théorème (2) négatif posons pour tout entier

N et t ∈ ∆ R 1,N (t) = Tr T N (f 1 )T -1 N (f 2 ) -T N f 1 f 2 -Ψ 1 (t).
Alors pour tout N la fonction R 1,N est analytique sur un voisinage de zéro et pour tout entier naturel non nul p on a lim

N →+∞ R (p)
1,N (0) = 0.

Démonstration du lemme (5)

Remarque 8 Dans la suite de la démonstration nous noterons 1 la norme A 1 = (Tr( t AA) 1/2 ). Si désigne la norme classique des matrices, rappelons les propriétés bien connues

TrA| ≤ A 1 , AB 1 ≤ A 1 B .
Remarque 9 On rappelle également que si ρ est un endomorphisme symétrique réelle dans un espace de dimension n on a, si λ 1 , λ 2 , • • • , λ n sont les valeurs propres de ρ : ρ = max{λ i /1 ≤ i ≤ n}.

Remarque 10 Enfin on utilisera que si f est une fonction positive sur ]-π, π] qui ne s'annule qu'en un nombre fini de points l'opérateur T N (f -1 ) -T -1 N (f ) est un opérateur positif.

Nous devons d'abord rappeler les résultats techniques suivants

Lemme 7 Si h 1 et h 2 sont dans A(T, 1/2) on a

T N (h 1 h 2 ) -T N (h 1 )T N (h 2 ) 1 ≤ h 1 2,1/2 h 2 2,1/2 .

et également

Lemme 8 Il existe une constante C > 0 telle que si h 1 et h 2 sont dans A(T, 1/2) on ait

h 1 h 2 2,1/2 ≤ C( h 1 ∞ + h 1 2,1/2 )( h 2 ∞ + h 2 2,1/2 ).
Ces deux résultats peuvent se trouver dans [32]. Ecrivons

Tr T N (f 1 )T -1 N (f 2 ) s -T N f 1 f 2 s = Tr T N (f 1 )T -1 N (f 2 ) s -T N f 1 f 2 s + +Tr T N f 1 f 2 s -T N f 1 f 2 s . En utilisant Tr(A s -B s ) = Tr (A -B)(A s-1 + A s-2 B + • • • + B s-1 nous pouvons écrire Tr T N (f 1 )T -1 N (f 2 ) s -T N f 1 f 2 s ≤ S 1 S 2 En posant S 1 = T N (f 1 )T -1 N (f 2 ) -T N f 1 f 2 1 et S 2 = s-1 k=1 T N (f 1 )T -1 N (f 2 ) k T N f 1 f 2 s-1-k .
Il vient alors, en utilisant [START_REF] Rambour | Théorèmes de trace de type Szegö dans le cas singulier[END_REF], plus le fait que T N (f -1 2 ) -T -1 N (f 2 ) est un opérateur positif et aussi le lemme 7

S 1 ≤ T N (f 1 ) T -1 N (f 2 ) -T N (f -1 2 ) 1 + T N (f 1 )T N (f -1 2 ) -T N f 1 f 2 1 ≤ O(N 2α 2 ) + f 1 2,1/2 f -1 2 2,1/2 .
D'autre part nous obtenons facilement

S 2 ≤ s p=1 f 1 p ∞ (T N (f 2 )) -1 p f 1 f 2 s-1-p ∞ ≤ s p=1 f 1 ∞ f -1 2 ∞ p f 1 f 2 s-1-p ∞ ≤ s p=1 f 1 ∞ f -1 2 ∞ s-1 ≤ (s -1) f 1 ∞ f -1 2 ∞ s-1 Etudions maintenant Tr T N f 1 f 2 s -T N f 1 f 2 s . On a Tr T N f 1 f 2 s -T N f 1 f 2 s ≤ T N f 1 f 2 s -T N f 1 f 2 s 1 et on pose G s = T N f 1 f 2 s -T N f 1 f 2 s 1 On a G s ≤ T N f 1 f 2 T N f 1 f 2 s-1 -T N f 1 f 2 T N f 1 f 2 s-1 1 + T N f 1 f 2 T N f 1 f 2 s-1 -T N f 1 f 2 s 1 .
Et en utilisant le lemme (7) nous obtenons

T N f 1 f 2 T N f 1 f 2 s-1 -T N f 1 f 2 s 1 ≤ f 1 f 2 2,1/2 f 1 f 2 s-1 2,1/2
ce qui d'après le lemme 8 s'écrit aussi

T N f 1 f 2 T N f 1 f 2 s-1 -T N f 1 f 2 s 1 ≤ C f 1 f 2 2,1/2 f 1 f 2 2,1/2 + f 1 f 2 ∞ s-1
.

En posant M = f 1 f 2 2,1/2 + f 1 f 2 ∞
nous avons l'inégalité

G s ≤ M G s-1 + CM s .
Ce qui donne finalement G s ≤ CsM s .

D'où le lemme( 5).

Démonstration du lemme (6)

Un développement en série entière permet d'écrire, pour tout t ∈ ∆,

R 1,N (t) = Tr T N (f 1 ) (T N f 2,t ) -1 -T N f 1 f 2,t -Ψ 1 (t) soit R 1,N (t) = ∞ s=0 t s (-1) s Tr T N (f 1 )T -1 N (f 2 ) s+1 -TrT N f 1 f 2 s+1 - ∞ s=0 t s Ψ (s) 1 (0) s!
Ce qui donne, pour tout entier naturel q (en dérivant)

R (q) 1,N (t) -R (q) 1,N (0) = s≥q+1 (-1) s s • • • (s -q + 1)t s-q Tr T N (f 1 )T -1 N (f 2 ) s+1 -TrT N f 1 f 2 s+1 - s≥q+1 t s-q Ψ (s) 1 (0) (s -p)! .
nous obtenons alors, en utilisant le lemme (5

R (q) 1,N (t) -R (q) 1,N (0) ≤ |t|   s≥p+1 |t s-p+1 |K s 0 s • • • (s -q + 1) + s≥p+1 |t s-p+1 | |Ψ (s) 1 (0)| (s -q)!   et R (q) 1,N (t) -R (q) 1,N (0) ≤ |t|K p+1 0 φ q (t)
où la fonction φ q est bornée sur un voisinage de zéro. Ce résultat peut encore s'écrire, si p est comme dans l'énoncé du lemme ∀ǫ > 0, ∀q ∈ N * ∃δ ǫ,q t.q. ∀N R

(q) 1,N (t) -R (q) 1,N (0) ≤ ǫ. ( 10 
) Soit maintenant t fixé dans ] -δ ǫ,1 , δ ǫ,1 [. Pour tout entier N il existe t N compris entre 0 et t tel que R 1,N (t) = R 1,N (0) + tR ′ 1,N (t N ). C'est une conséquence du théorème 1 que la limite des suites R N (0) et R 1,N (t) est nulle. On a donc lim N →+∞ tR ′ 1,N (t N ) = 0 et lim N →+∞ R ′ 1,N (t N ) = 0. Puisque t N ∈] -δ ǫ,1 , δ ǫ,1 [ l'inégalité (10) permet de conclure lim N →+∞ R ′ 1,N (t) 
= 0. Supposons maintenant la propriété obtenue pour tout entier q strictement inférieur à p. Soit cette fois t dans ] -δ ǫ,p , δ ǫ,p [. Pour tout entier N la formule de Taylor-Lagrange nous donne l'existence d'au moins un réel t N tel que

R 1,N p-1 j=0 t j j! R (s) 1,N (0) + t p p! R (p) 1,N (t N ).
Le théorème 1 et l'hypothèse de récurrence donnent de la même manière que ci-dessus lim

N →+∞ R (p) 1,N (t N ) = 0 et, avec t N ∈] -δ ǫ,p , δ ǫ,p [ l'inégalité (10) donne lim N →+∞ R (p) 1,N (0) = 0.

Fin de la démonstration du théorème 2

Le théorème s'obtient alors facilement pour α 2 < 0 à partir du lemme 6 et en dérivant suffisamment de fois en zéro la formule

Tr T N (f 1 )T -1 N (f 2,t ) -Tr T N f 1 f 2,t = Ψ 1 (t) + R 1,N (t).

Démonstration du corollaire 1

Posons h2 = h -1 2 . Posons T N h 1 T -1 N h2 = A T N (h 1 )T N 1 h2 = B.
Pour tout entier naturel s nous avons

Tr(A s -B s ) = Tr   (A -B)   s-1 j=0 A j B s-1-j     ce qui permet d'écrire |Tr(A s -B s )| ≤ M -N 1 s-1 j=0 A j B s-1-j . Or puisque T N ( 1 h2 ) -T -1 N h2 est un opérateur positif nous avons A -B 1 ≤ T N (h 1 ) Tr T -1 N h2 -T N ( 1 h2 ) = o(N )
d'après [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1 -cos θ) α f 1 , -1 2 < α ≤ 1[END_REF]. D'autre part, toujours avec les mêmes notations,

A j B s-1-j ≤ h 1 ∞ 1 h2 ∞ s D'où finalement Tr T N h 1 T -1 N h2 s -Tr T N h 1 T N ( 1 h2 s = o(N )
ce qui permet d'obtenir le résultat avec le théorème 2 et en remplaçant h2 par sa valeur.

6 Démonstration des théorèmes de grandes déviations et de valeurs propres.

démonstration du lemme 1

Dans la suite nous poserons ∆

0 =] -δ -1 0 , δ -1 0 [avec δ 0 = 2K 0 f 1 ∞ f -1 2 ∞
la constante K 0 étant celle qui intervient dans l'énoncé du lemme 7. Dans la suite nous noterons λ

(N ) i , 1 ≤ i ≤ N les valeurs propres de T N ( f 1 f 2 ) et µ (N ) i , 1 ≤ i ≤ N les valeurs propres de T N (f 1 )T -1 N (f 2 ). Nous pouvons alors énoncer le lemme Lemme 9 Pour tout u ∈ ∆ 0 α 1 > 0 et α 2 < 0 ∞ l=1 (-1) l l u l Tr T N f 1 T -1 N f 2 l = ∞ l=1 (-1) l l u l TrT N ( f 1 f 2 ) l - ∞ l=1 1 l u l Ψ (l) 1 (0) l! + o(1),
Démontrons ce lemme . Soit ǫ > 0 t grâce au lemme 5 et puisque le rayon de convergence de la fonction Ψ est supérieur à δ 0 , nous savons qu'il existe l 0 tel que t ∈ ∆ 0 et pour tout entier naturel N nous avons les majorations

∞ l=l 0 (-1) l l u l Tr T N f 1 T -1 N f 2 l -TrT N ( f 1 f 2 ) l ≤ ǫ et ∞ l=l 0 1 l u l Ψ (l) 1 (0) l! ≤ ǫ.
D'autre part après le théorème 2 il existe un N 0 tel que pour tout N ≥ N 0 et s ≤ l 0 on ait,

Tr T N (f 1 )T -1 N (f 2 ) s -Tr T N f 1 f 2 s -(-1) s+1 Ψ (s) 1 (0) s! ≤ ǫ l 0 .
Supposons maintenant que lim 

Démonstration du théorème 4

Nous considérons donc la fonction

N L N (t) = -1 2 N i=1 ln(1 -2µ N i t) où les (µ N i ), 1 ≤ N sont les valeurs propres de A N = T 1/2 N f 1 T -1 N f 2 T 1/2 N f 1 qui sont aussi celles de T N f 1 T -1 N f 2 . On écrit, pour |2t| < 1 max |µ N i | = 1 δ N L N (t) = - 1 2 N i=1 ln(1 -2µ N i t) = 1 2 N i=1 ∞ p=1 (2t) p (µ N i ) p p = 1 2 ∞ p=1 (2t) p p Tr T N f 1 T -1 N f 2 p
En utilisant de nouveau le lemme 9 il vient que pour tout t ∈ ∆ 0 nous obtenons finalement 

N L N (t) = - 1 2 TrT N ln 1 -2t f 1 f 2 -Ψ(2t) + o(1).
(1 - l N ) α 2 -1 + α 2 l N = N 2α 2 -1 Γ 2 (α 2 )c 2 (1) m 0 /N 0 t α 2 -1 (t + s) α 2 -1 ((1 -t) α 2 -1 + α 2 t) dt - m 0 l=0 β (α 2 ) l β (α 2 ) l+s (1 - l N ) α 2 -1 + α 2 l N + N 2α 2 -1 Γ 2 (α 2 )c 2 (1) 1-s ′ N 0 t α 2 -1 (t + s N ) α 2 -1 ((1 -t) α 2 -1 + α 2 t) dt + m α 2 -1 0 (m 0 + s) α 2 -1 (1 - m 0 N ) α 2 -1 + α 2 m 0 N + (N -s ′ ) α 2 -1 ((N -s ′ ) + s) α 2 -1 (1 - N -s ′ N ) α 2 -1 + α 2 N -s ′ N + R 0 où R 0 est
l+s l = 1 N +∞ N +s ′ +1 t α 2 (t + s) α 2 -1 Γ 2 (α 2 )c 2 (1) dt + 1 2N (N -s ′ ) α 2 (N + s -s ′ ) α 2 -1 Γ 2 (α 2 )c 2 (1) + R 2 .
Nous avons immédiatement

1 2N (N -s ′ ) α 2 (N + s -s ′ ) α 2 -1 Γ 2 (α 2 )c 2 (1) = O N δ 0 α 2 N α 2 -2 = o(N 2α 2 -1 ) si α 2 < 0 = O(N 2α 2 -2 ) = o(N 2α 2 -1 ) si α 2 > 0.
et d'autre part

|R 2 | ≤ 1 N +∞ N -s ′ +1 1 Γ 2 (α 2 )c 2 (1) α 2 t α 2 -1 (t + s N ) α 2 -1 + (α 2 -1)t α 2 (t + s) α 2 -2 dt. (15) 
La dérivée intervenant dans l'équation 15 étant de signe constant nous avons 

|R 2 | ≤ 1 2N (N -s ′ ) α 2 (N + s -s ′ ) α 2 -1 Γ 2 α 2 c 2 (1) = O N δ 0 α 2 N α 2 -2 = o(N 2α 2 -1 ) si α 2 < 0 = O(N 2α 2 -2 ) = o(N 2α 2 -1 ) si α 2 > 0.
(1 - l + s N ) α 2 -(1 - s N ) α 2 + α 2 l N (1 - s N ) α 2 -1 = = N 2α 2 -1 c 2 (1)Γ 2 (α 2 ) 1-s ′ N 0 t α 2 -1 (t + s N ) α 2 -1 (1 -t - s N ) α 2 -(1 - s N ) α 2 + + α 2 t(1 - s N ) α 2 -1 dt + Q.
Pour ce faire nous utilisons le même type de décomposition que dans le cas du reste de A ′ 2 avec m 0 = N δ 0 un entier fixé comme ci-dessus. Comme précédemment nous sommes conduits à utiliser la formule d'Euler et Mac-Laurin et nous écrivons

Q = m α 2 -1 0 c 2 (1)Γ 2 (α 2 ) (m 0 + s) α 2 -1 (1 - m 0 + s N ) α 2 -(1 - s N ) α 2 + αm 0 N (1 - s N ) α 2 -1 + (N -s ′ ) α 2 -1 c 2 (1)Γ 2 (α 2 ) (N -s ′ + s) α 2 -1 (1 - N -s ′ + s N ) α 2 -(1 - s N ) α 2 + αN -s ′ N (1 - s N ) α 2 -1 + n 0 l=0 β (α 2 ) l β (α 2 ) l+s (1 - l + s N ) α 2 -(1 - s N ) α 2 + α 2 l N (1 - s N )α 2 -1 ds

  propres d'une matrices de Toeplitz d'un symbole f avec inf θ∈T f (θ) = m et sup θ∈T f (θ) = M alors lim

  de T N (f 1 )T -1 N (f 2 ) nous obtenons, en étudiant la convergence de la mesure

N

  = M . Cela signifie qu'il existe un réel ǫ > 0 et un entier N 0 tels qu'il existe une sous-suite φ vérifiant ou∀N ≥ N 0 µ φ(N ) φ(N ) -M < ǫ.Une fonction F continue, strictement positive, de support contenu dans [M -ǫ, M ] nous donne alors une contradiction. On démontre de même que lim N →∞ µ

Soit par analycité pout tout t ∈ ∆ L 1

 ∆1 Uniformité des restes dans la démonstration du lemme 4 L'outil principal est l'évaluation du reste de la formule d'Euler et Mac-Laurin que nous rappelons ici, pour deux entiers naturels m et n et une fonction f f(m) + f (m + 1) + • • • + f (n) = h-1 B h (2h)! f (2h-1) (n) -f (2h-1) (m) + R r avec |R r | ≤ 2 (2π)2 n m |f (r+1) (t)|dt et où les B h sont les nombres de Bernouilli.

7. 1 . 1 Calcul de A ′ 1 2 2

 11122 De part la nature des termes à considérer le reste de la somme A ′ 1 est rapidement traitée grâce à la formule d'Euler et Mac-Laurin. Nous remarquons que pour avoir un reste en o(N 2α 2 -1 nous avons besoin de la condition Reste du coefficient A ′ Pour appliquer la formule d'Euler Mac-Laurin au reste de la quantité A ′

  le reste d'Euler et Mac-Laurin, défini comme ci-dessus. Pour rendre les encadrements des différentes quantités plus aisés on divise l'ensemble des indices s en deux intervalles [0, N δ 1 ] et [N δ 1 , N -N δ ] avec 0 < δ < 1 et 0 < δ 1 < 1. La quantité N δ correspond à l'entier n 0 de la démonstration. Nous ferons également intervenir le réel m 0 = N δ 0 (0 < δ 1 < 1) qui soit tel que pour m ≥ m 0 l'usage de l'asymptotique de β (α) m soit pertinent. Nous avons bien sûr 0 < δ 0 < 1, 0 < δ 1 < 1, N δ 0 < N δ 1 < N -N δ . La quantité δ est commune aux quatre calculs des restes relatifs aux termes A ′ 2 , A ′ 3 , A ′ 4 . Par contre les quantités δ 0 et δ 1 peuvent être choisies indépendamment dans chacun des quatre calculs. Les majorations des différents termes intervenants dans la somme sont classiques et on obtient l'approximation annoncéé avec un reste d'ordre o(N 2α 2 -1 ) uniformément par rapport à s. Pour terminer l'étude du reste coefficient A ′ 2 il nous faut encore considérer pour s ∈ [0, N -N δ ] le reste de l

7. 1 . 3 3

 133 Reste du coefficient A ′ Ici aussi pour faciliter nos calculs nous sommes obligé de diviser l'intervalle auquel appartient le paramètre s en [0, N δ 1 ], et en [N δ 1 , N -N δ ]. Nous cherchons tout d'abord à majorer uniformément le reste Q dans la formule N -s ′ l=0 β (α 2 ) l β (α 2 ) l+s

L'inégalité triangulaire permet alors de conclure. D'autre part pour tout u ∈ ∆ 0 nous pouvons écrire

De même nous obtenons

Nous avons donc obtenu

En reprenant [START_REF] Grenander | Toeplitz forms and their applications[END_REF] pp 62-63 nous pouvons conclure que pour tout fonction continue

Ce qui traduit la convergence faible (ou en loi) de la suite de mesure N i=1 δ λ (N) i vers la mesure image de la mesure de Lebesgue sur le tore par la fonction f 1 f 2 (voir toujours [START_REF] Grenander | Toeplitz forms and their applications[END_REF] p65). Nous pouvons alors appliquer la Proposition 3 pp79 de [START_REF] Bercu | Large deviations for quadratic forms of stationnary gaussian process[END_REF] qui nous permet d'écrire le théorème 4

Démonstration du théorème 3

Pour tout entier N on suppose les valeurs propres (µ (N ) i ) 1≤i≤N classées par ordre croissante. L'équation 12 peut encore s'écrire

Ce qui implique lim

Démontrons cette propriété. Posons M = f 1 f 2 ∞ . On sait que les valeurs propres de T N (f 1 )T -1 N (f 2 ) sont dans [0, M ] pour cela on peut voir [START_REF] Bercu | Large deviations for quadratic forms of stationnary gaussian process[END_REF] lemme 10 p 87 ou considérer l'opérateur M T N (f 2 )-T N (f 1 ) qui est positif. Il en est de même pour l'opérateur Nous devons utiliser la décomposition 

Ses valeurs propres sont donc positives et on conclut en remarquant que
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