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SHARP GRADIENT BOUNDS FOR SOLUTIONS OF DEGENERATE SEMI-LIN EAR
PARTIAL DIFFERENTIAL EQUATIONS

DAN CRISAN AND FRANCOIS DELARUE

ABSTRACT. The paper is a continuation of the Kusuoka-Stroock prognarof establishing smooth-
ness properties of solutions of (possibly) degeneratégbdifferential equations by using probabilistic
methods. We analyze here a class of semi-linear parabadti@ipdifferential equations for which the
linear part is a second order differential operator of thenf} +Z§il V2, whereVy, ..., Vy arefirst
order differential operators that do not necessarily §atie Hormander condition. Instead we assume
thatVp, ..., Vn satisfy a weaker condition, the so-called UFG conditiore ([8&]). Specifically, we
prove that the bounds of the higher order-derivatives ofsthiation along the vector fields coincide
with those obtained in the Hormander case, but that theylmeaffected by the non-linearity and thus
may differ from the linear case. The methodology is alsoiagpo partial differential equations with
nonlinear terms with quadratic growth with respect to toftre-order derivatives.

1. INTRODUCTION

Ina series of papers [15, 16, 17, 18], Kusuoka and Stroock &iaslyzed the smoothness properties
of solutions of linear parabolic partial differential egjoas of the form

N
1) Ouult,x) = 3 3" VPult,x) + Voult, ), (1) € (0,00) x RY,
i=1

with initial condition(0, z) = h(z), = € R? The condition (called the UFG condition) imposed on
the vector fieldgV;,i = 0, ..., N} under which they prove their results is weaker than the Hibcher
condition. This condition states that tig°(R?)-module W generated by the vector field%;,i =
1,..., N} within the Lie algebra generated Ky;,i = 1, ..., N} is finite dimensional. In particular,
the condition does not require that the vector spdd&x)|W € W} is homeomorphic t®? for
anyr € R<. Hence, in this sense, the UFG condition is weaker than trenidiider condition. It is
important to emphasize that, under the UFG condition, theedsion of the spacgV (z)|W € W}

is not required to be constant oMBf. Such generality makes any Frobenius type approach to prove
smoothness of the solution very difficult. Indeed the awgrae not aware of any alternative proof
of the smoothness results of the solution of (1) (under th&dBndition) other than that given by
Kusuoka and Stroock.

Kusuoka and Stroock use a probabilistic approach to dedhaderesults. To be more precise, they
use the Feynman-Kac representation of the solution of the iRDerms of the semigroup associated
to a diffusion process. LeX = {XF, (t,z) € [0,00) x R?} be the (time homogeneous) stochastic
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where the vector fieldéV;)o<i<n are smooth and bounded and the stochastic integrals iné2jfar
Stratonovich type. The corresponding diffusion semigrisuiben given by

[Pg](x) = E[g(X7)], t>0, zeR™

for any given bounded measurable functipn R¢ — R. Then the following representation holds
true:

u(t,z) = Ph(x), Y(t,z) e [0,00) x RY.
Kusuoka and Stroock prove that, under the UFG conditién, is differentiable in the direction of
any vector fieldW belonging toWW. Moreover they deduce sharp gradient bounds of the form:

3) W ... WiPufllp, < CPF7Y fllp, p € [1,00),

wherel is a constant that depends explicitly on the vector fiélds = 1, ..., k. Their results raise a
number of fundamental questions related to the PDE (1). Xamele, the differentiability oA in
the Vj direction is not recovered. This is one of the fundamentf¢dinces between the UFG case
and the Hormander case whefg is shown to be differentiable in any direction, includiig. So
whilst in the Hormander case, it is straightforward to stbat P.h is indeed the (unique) classical
solution of (1), the situation is more delicate in the absesfdhe Hormander condition. As explained
in [7], it turns out thatP;h remains differentiable in the directioy = 9, — V when viewed as a
function (t,z) — P;h(z) over the product spad®, oo) x R?. This together with the continuity at
the origin implies that®;  is the unique (classical) solution of the equation

N
@) Vou(t, &) = % S V2ult,z), (tx) € (0,00) x RY.
i=1

The introduction of a new class of numerical methods for exipnating the law of solutions of
SDE (and, implicitly, the solution of PDEs as computed by nseaf the Feynman-Kac formula)
has brought a renewed interest in the work of Kusuoka ana@&trdr heir fundamental results form
the theoretical basis of a recently developed class of higliracy numerical methods. In the last
ten years, Kusuoka, Lyons, Ninomiya and Victoir [14, 19, 20, 22] developed several numerical
algorithms based on Chen'’s iterated integrals expansam[8 for a unified approach for the analysis
of these methods). These new algorithms generate an apmatian of the solution of the SDE in
the form of the empirical distribution of a cloud of partislevith deterministic trajectories. The
particles evolve only in directions belonging W. This ensures that the particles remain within
the support of the limiting diffusion, leading to more s&kthemes. The global error of humerical
schemes depends intrinsically on the smoothnegs/obut only in directions belonging th). As a
result they work under the (weaker) UFG condition rathenttiee ellipticity/Hormander condition.
By contrast, the classical Euler based numerical methoahlfared with a Monte-Carlo procedure)
sends the component particles in any direction, hence #wyine the Hormander condition.

In recent work [5, 6] the applicability of these scheme hasnbextended to semilinear PDEs.
One of the major hurdles in obtaining convergence resuitthigsse scheme has been the absence of
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smoothness results of the type (3), again under the UFG tamdiThe authors are not aware of
the existence of such bounds proved under the Hormandelitmmeither. In the following we will
consider semilinear PDEs of the form:

N
(5) Owu(t,z) = %ZVizu(t,x) + Voult,z) + f(t, 2, ut,z), Vu(t,z)), (t,z)€ (0,00) x R?

i=1
with initial conditionu (0, z) = h(z), = € R% In(5) we used the notatiokiu(t, z) to denote the row
vector (Viu(t, x), ..., Vnu(t, z)). As we shall seey(t, z) is differentiable in any directiofV” € W
just as in the linear case. If, for example, the veclgrs = 1, .., n satisfy the ellipticity condition,
thenu(¢, x) is differentiable in any direction and the analysis coveniieear PDEs written in the
‘standard’ format

N

Opu(t,x) = %Z V2u(t,z) + Voul(t, ) + f(t,z,u(t,z), Vu(t,z)), (tz) € (0,00) x RY,

i=1
whereVu is the usual gradient af, i.e., the row vector of partial derivativéé; u, ..., Oy u).

Following the tradition of Kusuoka and Stroock, we analyze $smoothness of the solution of the
semilinear PDE using probabilistic methods. The basis@ftialysis is the corresponding Feynman-
Kac representation for the solution of (5). This repreg@mavas introduced by Pardoux and Peng
in [24, 25] and involves the solution of a backward stocleadifferential equation (see Section 2.1
below).

1.1. The UFG condition. Let(V;)o<i<n be N +1 vector fieldsV; belonging taC (R?, R?) andV;,
1 <i< N, toCETHRYRY), K > 0, Cp(R?,RY) standing for the set of bounded and continuous
functions that are-times differentiable, with bounded and continuous phd&ivatives up to order
n. We will make use of the standard notation introduced in,[{8}e also [7] and [8])

‘/[2]:‘/27 ‘/[Oc*i]: [‘/[04}7‘/2']7 16{077N}7
where[-, -] stands for the Lie bracket of two vector fields, thgdfisW| = V-VIWW — W -VV andaxi

stands for the multi-indexay, . . ., ay,, i) whenea is given by(aq, ..., a,) with o; € {0,..., N},
i =1,...,n. The following “lengths” of a multi-indexx = (ay, .. ., a;,) will be used:
la] = [(a1,...,an) =n, o =[(a1,...,an)|| =n+t{i: a; =0}

The set of all multi-indices is denoted by, the set of all multi-indicesy different from (0) is
denoted byA, and the set of non-empty multi-indicesfor which ||| < m is denoted by4,(m).
For n multi-indicesay, . .., a,, n > 1, we often denote the-tuple (a4, . .., «,) by a and then set
lell = llaall + - + llanll.

Definition 1. Letm e N* be a positive integer and assume tiiét> m + 3. (See footnofe) The
vector fields{V;,0 < i < N} satisfythe UFG condition of ordem if for any o € Ay(m + 1) there

existsp, 5 € CF 1Y (RY), with 3 € Ay (m) such that

Vig(@) = Y ¢ap@)Vig(@), zeR%
BEA(m)

Lin comparison with [7], the additionalfollows from the nonlinear structure of the equation, seedfam 1 below.
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The following example illustrates the difference betwdemWFG and the Hormander condition ( see
[17]):

Example 1. AssumeV = 1 andd = 2. LetVj andV; be given by

Vo(x1,x9) = sinxy—— Vi(z1,x9) =sinxy—
o(z1,x2) 18361 1(z1,22) 18352

The{Vp, V1 } satisfy the UFG condition of orden = 4, but not the Hhrmander condition.

The vector fieldgV;,0 < i < N} satisfy theuniform Hormander condition if there exista > 0

such that Z
inf (Vig)(2),€)* > 0.
{z,E€R|[|€]|=1} BeAo(m)

Obviously, if the vector field§V;,0 < i < N} satisfy the uniform Hérmander condition then they
satisfy the UFG condition. In particular if the vector fieldg, 1 < i < N} satisfy the strict ellipticity
condition then they satisfy the UFG condition.

Definition 1 is a (slight) generalization of the correspargdone given in [18]. In [18], both the
vector fields{V;,0 < ¢ < N} and the coefficients,, g are assumed to be smooth (infinitely differ-
entiable). If the smoothness assumption is imposed gns well defined for anyv € A and one
can interpret the UFG condition in the following manner. Ketbe Cg’o(Rd)-moduIeW generated
by the vector field{V;,: = 1, ..., N} within the Lie algebra generated Ky;,i = 1,..., N}. Then
W is finitely generateds a vector spacand{V|,},a € Ag(m)} is a finite set of generators fon.

In addition, the functions,, gz appearing in the decomposition of any vector figld: V as a linear
combination of the elements of the g8t,;, a € Aq(m)} are assumed to be smooth and uniformly
bounded oveR?. These are salient properties that are essential to makerdbé of Kusuoka and
Stroock work and justify the use of the acronym UFG - uniforifirhitely generated - for the assumed
property.

As shown in [7] the smoothness assumption on the vector fidld9) < i < N} and the coeffi-
cientsy, g is not necessary. The level of differentiability is dictht®y the order of the UFG condition
assumed. In other words, the vector fields have to be suffigiarany times differentiable for the
repeated brackets to make sense up to the required levebutdecin this case we can no longer talk
about theC° (R4)-module)V or about the Lie algebra generated{fdy,i = 0, ..., N} as not all the
Lie brackets will make sense (due to the reduced differbititig). In this case we will denote byV

the space of vector fields for which there existo, 5 € Cf“"“‘(]R{d), with 8 € Ap(m) such that
V)= Y @ap@)Vglx), =R
BEAo(m)

Definition 1 then states thgtl},),a € Ag(m + 1)} C W. This extension allows us to identify the
minimal level of differentiabilitthat we need to impose on the coefficients of the PDE so as tecded
the desired gradient bounds.

1.2. The Main Results. Under the UFG condition (see [7] and [18]) the solution oflihear equa-
tion (1) is differentiable in any directiol” € /. Moreover, ifh is a bounded continuous function,
the following gradient bound holds true:

(6) [Viaw - - Viagju(t, @)| < C||h|oot~l1o01/2
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where( is a constant independent bfand (¢, x) and||a|| = ||a1|| + - - - + || || If h is @ bounded
Lipschitz continuous function with Lipschitz constant
h(x) —h
R (o 16)]

{z,yeR x#y} ‘.% - y’
then there exists a constafitindependent of. such that for allz, x)
(7) View) - - Vit 2)| < C|lRuipt 1072,

In the current paper we investigate the counterpart of thesdts for the solution of the semilinear
PDE (5). The results are summarized in the following:

Theorem 1. Assume that the vector field¥;,0 < i < N} satisfythe UFG condition of ordem.
Then, ifh is bounded and continuous or Lipschitz continuous arydsétisfies additional conditions
that are specified below, the semilinear P is uniquely solvable in a suitable space déassical
solutionsand the solution is differentiable in any directidh € . Moreover, ifh is a bounded
Lipschitz continuous function then there exists a constarstuch that for all(z, z) € [0, 7)) x R¢,

(8) ‘V[al] e V[an}u(t,ajﬂ <otz < K —m—1,

witha = (aq,...,a,) € [Ao(m)]™. (See footnofd If h is a bounded continuous function, but not
necessarily Lipschitz, then there exists a cons@@rsuch that for all(z, z) € [0,7) x R¢ such that

(9) Vi) - - - Viagu(t, z)| < Ct=llel/2

if n <2A (K —m —1). However, ifn > 3, then there exists a constafit §) such that

(10) Vi - - Viamju(t, )| < C(8)t Ul =2)/2 =y < |0 - — 1,

If his bounded and measurable only, the semilinear RBHs uniquely solvable as well, but in a
suitable space ofieneralized solutionsThe solution admits generalized derivatives in any dicgct
V € W and satisfie$9) and (10) almost everywhere. (And footndtapplies as well.)

The details of the assumptions imposed on the funcfiane given in Sections 3 and 4 below. We
make explicit the dependence of the constants appearinguiations (8), (9) and (10) on the initial
conditionh in Theorems 3 and 4. Theorems 3 and 4 also contain certaitirfear) Feynman-Kac
representations for the derivativeg, ; . . . Vj,,,ju(t, z). Similar bounds and representations are also
valid for Vi) . .. Vo) Viu(t, =), i = 1,..., N. These too are important for the analysis of numerical
algorithms for the approximation of the solution of (5) repentations for Theorems 3 and 4.

Let us comment on the bounds contained in (8), (9) and (10)spibethe introduction of the
nonlinear term in (5), the solution of the semilinear PDH Wilve the same small time asymptotics
as the solution of the linear PDE (1) when the initial comulith is a Lipschitz continuous function.
The same applies for the case wheis a bounded (continuous) function as long as we differantia
no more than three times. For derivatives of order 3 or maeatlymptotics deteriorates. In Section
5 we study specific examples where deterioration occurs.

2The reader now understands wHRYis asked to be greater than+ 3: (8) holds at least fon = 1, 2, so that the partial
derivatives in space in (5) make sense.
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1.3. Structure of the article. The article is structured as follows: In section 2 we colectumber
of preliminary results required for the proof of the maindfems. The Feynman-Kac formula for
the solution of the equation (5) is presented that relatesstiution of the PDE to the solution of
a backward stochastic differential equation. We also dierigorous definitions of a solution of
(5). In Sections 3 and 4 we analyze the smoothness of thei@olot (5) in the case wheh is a
bounded Lipschitz continuous function and, respectiwehenh is a bounded (continuous) function.
In Section 5 we study an example that shows that we cannotettpesame decay for the case when
h is bounded, but not necessarily Lipschitz continuous, dkdrinear case. Finally in Section 6 we
relax the Lipschitz condition imposed on the functiérappearing in (5) and treat the case whfen
has quadratic growth. This is an important case with apjidioa in optimisation problems appearing
in mathematical finance (see, e.g., [11, 26] and the refegetierein).

2. PRELIMINARY RESULTS

2.1. The Feynman-Kac representation. Let (2, (F;):>0, P) be afiltered probability space endowed
with an (F;)¢>o-adapted Brownian motiofB;);>o. On (€2, (Fi)i>0,P) we consider the triplet
(X,Y.Z) = {(X, Y1, Z;),t € ]0,T]} of Fi-adapted stochastic processes satisfying the following
system of equations

(11) dX; = Vo(Xy)dt + SN Vi(Xy) o dW/
_d}/;f = f(T - ta Xt7 }/;fa Zt)dt - thWt

The system (11) is called a forward-backward stochastferdifitial equation (FBSDE). The process
X, called the forward component of the FBSDE, ig-dimensional diffusion satisfying a stochastic
differential equation with; : RY — R%,i = 0,1, ...,d . The notation &” indicates that the stochastic
term in the equation satisfied by is a Stratonovitch integral. The procegs called the backward
component of the SDE is a one-dimesional stochastic proséhksfinal conditionYr = h(Xr),
whereh : R? — R is a measurable function of polynomial growth. The functfon[0, 7] x R? x

R x R? — R referred to as “ the driver”, is assumed to be of polynomialgh inz, of linear growth

in (y, z), being bounded in timeand Lipschitz continuotfdn y andz, uniformly in timet and space
xX.

The existence and uniqueness question for the system (Elf)ratizaddressed by Pardoux and Peng
in [24, 25] and, since then, a large number of papers have thedicated to the study of FBSDEs.
Pardoux and Peng proved that the stochastic flai#”, Y%, Z5) | t € [0,T], z € R? associated
to the system (11), in other words, the solution of the system

dX0" = Vo(XE%)ds + Y0, Vi (XE®) 0 dWH,
(12) —dY$T = f(T — 5, X% Yy, 25%)ds — Zo%dW,, s € [t,T]
X0 =, YU =h(XP")

provides a non-linear Feynman-Kac representation for dhgien of the semilinear PDE (5). More
precisely they showed that when the functighand/ are continuous, then the function

(13) w(T —t,x) =Y,

SThis assumption will be relaxed in Section 6.
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is a continuous solution of (5 viscosity senséNe remark that the triplet

(Xte ybe zbe) ¢ € [0,T], z € R? which solves the system (12) is adapted to the (augmented)
filtration generated by the incremenit8; — B;)i<s<7 SO thatht’x has a deterministic value (up to a
zero-measure event).

2.2. Shift Operator. Whenu is continuous o0, T') x R?, the relationship between the deterministic
mappingu and the pai(Y, Z) extends ag; = (T —t, X;), t € [0,T]. GivenX; = z, for some
t € [0,T), this relationship reads/y"” = u(T — s, Xo™), s € [t, T], so that

T
(14) uw(T —t,z)=E {h(erpx) + / f(T — s, Xﬁ’x, Yst’x, Zﬁ’x)ds .
t

Eq. (14) is the keystone for the probabilistic analysis & thgularity ofu. Since X is a ho-
mogeneous diffusion process, we emphasize (tl?(étf)tgsg, t € [0,7], may be understood as a
shifted version of(ngct)ogs_tST_s. Specifically, we can choose the canonical Wiener space for
(Q, (Ft)t>0, P) and thus introduce the shift operai®f : w — 6;(w) = w(t + -) — w(t))i>0. Then,
(Xﬁ’x)tgsg reads a$Xg’_xt 00;)o<s—t<T—t, OF Simply as( X*_, 0 0;)o<s—t<7—¢, With the convention
XT — XO,x.

As basic application, we remind the reader of following dé&tin (see [7] and [18]). In the fol-
lowing let E be a separable Hilbert space andlét>°(E) be the space of’-valued functionals
admitting Malliavin derivatives up to order, see the Appendix for details.

Definition 2 (Kusuoka-Stroock functions) et E’ be a separable Hilbert space and teE R, n € N.
We denote byC? (E,n) the set of functionsy : (0,7] x RY — D™(E) satisfying the following:
(1) ¢(t,.) is n-times continuously differentiable ag (., .) is continuous ir(t, z) € (0, 1] x R
a.s. for anya € A satisfying|a| < n.
(2) Forall k e N,p € [1,00), andk < n — |«]
L]
ox®

sup t77/? < 0

t€(0,T),z€R4

Dk-P(E)
DefineX! (n) := KI'(R, n).
The functions belonging to the sk (E, n) satisfy the following properties which form the basis of
our analysis (see [7] for details)
Lemma 1 (Properties of Kusuoka-Stroock functiongjhe following hold
(1) The function(t,z) € Ry x R% — X7¥ belongs toCl (K), for anyT > 0.
(2) Supposey € KI'(E,n), wherer > 0. Then, fori = 1,...,d,

/O-g(s,a:)ng e KL, (E,n) and /0. g9(s,x)ds € KL (B, n).

(3) If gi € KL (n;) fori=1,..., N, then
N

N
i=1 1=1

We then claim as a consequence of Lemmas 17 and 22 in [7] @e@ade 265 in [18]):
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Lemma 2. DefineJ; , = [0(X})i/0x;]i1<ij<d, t > 0. Then, there exists a family of random func-
tions (ba,s : Ry X RY = R), e 40(m)s Do € 150K 5o+ (K —m), such that for any: € R?
anda € AJ(m).

(15) 07 [Js—t.2]V] = > 0f[bag)(s — t,2)Vg (XL7),
BeA (m)

whereb; [Js_; 2| = Jo—t2 0 0y andd; by gl(s —t,x) = [ba,g 0 0¢](s — t, x).

As we will see below, Lemma 2 is a key ingredient of the analysi
2.3. The Space of Classical Solutions for the PDE (5)For an open balB ¢ R? and for a function
@ in C°(B), that is a bounded (real-valued) functignwith bounded derivatives of any order on
B, we setngH]‘é:l = HcpH]Boo + 2aed(m) [Viaj#llB,00 @nd then define;,(B) as the closure of

Ce°(B) in Cp(B) weret. || - H Boo- (S€€ Footnofefor the closability argument.)
More generally, fol < k < K —m + 2, we can define by induction

) k [ee)
lelet, =lelgs ™+ 3 Vi - Vi @llsioc: @ € CG2(B).

ar,...,ap€AJ(m)

We emphasize thdf],, . .. V|, )¢ makes sense for any smooth function because of the bbund
K —m+2: eachV|,, is at leastk’ — m + 1 times continuously differentiable, so that the last vector
field Via,) in Via,) - - - Vja,) can be differentiated’ — m + 1 times.

We then definé)f;oo(IB%) as the closure af;°(B) in Cy(B) w.r.t. ||- || . (The closability argument
is the same as above.) In particular, we can defHfig® (RY) as

DyX(RY) = ( DYeB0,7), 1<k<K-m+2,
r>1

whereB(0, ) stands for thel-dimensional ball of cented and radius-. If finite, we set|jo|| %" =
sUp, > 1[50,y 00 FOrv € DYX(RY), 1 < k < K —m+2, Vig,) ... Vig,jv is understood as the

derivative ofv in the directions/,,) ... Vio,}, With a1, ..., oy € Ag(m).
Similarly, forp € C;°(B) and1 < k < K —m + 1, we set

N
Vk+1/2 Vik
lollsns = llelsoe + > D0 Vi ViewVieloo: k>0,
=1 041,...,0%6.,4(1)(777,)
HV;QO = - ||B.co-) We then defin@@“ﬂ’“(B) as the closure af;°(B) in Cy(B) w.r.t.
| - HV'“H/Q and we set

n>1

4We emphasize that the closure is well-definedidf, , (Via)jon)aec.a9 (m))n>1 tends to(0, (Ga) ae 49 (m)) Uniformly
onB asn tends to+oo, then for any test functio € C> (R*) with compact support included I, [, G, (2)¢(z)dx =
My — 00 — fpa 9n(2)0s, (Vi) (z)dz = 0,4 = 1,..., N, so thatG, is zero.
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Vk+1/2 Vik+1/2
(@)

If finite, we set||¢|| = sup,>1 [|llp{0, ) o0

A typical example of function iD);*(R%), 1 < n < K —m, isz € R? — (Pyp)(x), fort > 0
andy € C} (R9). For this we need to recall the following integration by pdarmula (see Corollaries
26 and 30in [7])

Theorem 2. Let(V;)o<i<n Satisfy the assumptions in Definition 1. Then, for @y 0, n < K —m
anday, ..., o, € A(m)), there exist®,, ., € K& (K —m — n) such that

(16) V[al] e V[Ofn} (Pth) (‘T) = t_”a”/2E [(I)Oél,---,an (t7 x)h(Xf)] ’

foranyh € C°(RY), t € (0,7), € RY, witha = (av,..., ). In particular, the following
gradient bound holds true:

(17) Vias] - - - Vi Prhllos < CllAl|oct™11/2,

whereC' = supg_y<r Sup,egd E[|[®a; ... 0, (6, 7)]] < oo. In addition, for anyn < K — m and

a,...,an € A(m) there exis®l, € K (K —m —n+1),i=1,...,dsuch that
d .
(18) V[ozﬂ L V[an] (Ph)(z) = t=Ulaall+AFllean—1l))/2 Z E [(I)?xl,...,ozn (t, l’)azh(th)] :
i=1

foranyh € C°(R%), t € (0,T], z € R% Hence, in particular, the following gradient bound holds
true:

(19) Vi) - - - Viaw) Piltl|oo < CT™D/2|| 0| oot dD/2 5
whereC' = max;—1, .. 4 SUPg<;<7 SUP;crd E [|q)?11,...,an (t,g;)|] < 0.

To prove that the mapping € R? — (Pyp)(z), fort € (0,T] andy € C)(RY), isin DL __(R?),
1 <n < K —m, itis sufficient to consider a sequengey),>1 of functions inCg°(R?) converging
towardsy uniformly on compact subsets Bf as/ tends to+oco. Then, from the above theorem, we
have that

(20) [View] - - - Viaw Pepe] () = t12E [0, (X7 ) (¢, 2)]

with ¢» € KI' (K —m—n) is independent of. Clearly, on every compact subsetsRs, the right-hand
side in (20) converges towards the continuous function

z € R — ¢ 1ol 2E[o(XE)y (8, 2)).

Therefore, the sequenc®(,,) . .. Via, | Pipr)e=1 is Cauchy in anyC®(B(0,r)), r > 0, so thatPp
belongs taD}>**(R?) for 1 < n < K —m and (20) holds fop as well.

5To be exact one ha§Vi,,) ... Via, Pihle < C||Vh|[aotIe1l++lan-110/2 and inequality (17) follows as
t*(”O‘IH‘F‘“‘"”O‘n—l”) S T’”*ltlfuau (reca” thatt S T)
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To define the notion of a classical solution to (4), we mustrgetfhe operatoV, first. Again, we
proceed by a closure argument. For any 1 and any time-space functigne C;°([1/r,r|xB(0,7))
with bounded derivatives of any order, we set

H@HEO/’:W]X]B(O,T)QO = @llj1/rrxB©O,),00 + 11060 — Vooll (1 /rr) xB(0,r),00-

We then define);> ([1/r, 7] xB(0, 7)) as the closure af{®([1/r, 7] xB(0, 7)) w.r.t. \|.\|E(77}7T]X3(07r)m

and then definé))l/’oc’o((o, +00) x R?) as the intersection of the spadé#ooo([l/r, r] x B(0,7)) over
r > 1. (As above, the closability property is easily checked.)
We are now in position to define a classical solution to the PDE

Definition 3. We call a functiory = {v(,z), (t,z) € [0, +o00) x R?} a classicakolution of the PDE
(5) if the followings are satisfied

(1) v belongs taDy;((0, +00) x R?) and, for anyt > 0, v(t, -) belongs taD;:* (R?) such that,
for anyay, ay € Ag(m), the function
(t7x) S (07 +OO) x Rd = (V[Oéﬂv(tﬂw)7 V[Oéﬂv[fm]v(t’w))

is continuous,
(2) forany(t,z) € (0, +0c) x R, it holds

N
Vou(t, ) = 5 S0 V2u(t,2) + f (ol ), Volt, ),
=1

(3) the boundary conditiotim, .« . v(t,y) = h(z) holds as well for any: € R,
As announced, here is the connection between the PDE andSth& B

Proposition 1. Under the standing assumption ifis a bounded continuous function or a Lipschitz
function, the function: given by(13) for a givenT > 0 is a classical solution to the PDE) on
(0,T] x R,

Moreover, any other classical solutianof the semilinear PDE (5) that has polynomial growth, in
other words for which there exist, » > 0 such that

(21) Ve e R, |u(t,z)] < C(1+|al),
matcheay.

The proof is postponed to Section 7. It mainly relies on tHfdng version of 1td’s formula
(whose proof is also postponed to Section 7):

Proposition 2. Letv satisfy Point (1) in Definition 3 and be at most of polynomiaivgth as in(21).
Then, for anyl’ > 0 andz € R,

N
s 1
(T — 5, X5%) = (T, z) + / [—VQU(T — 7, X5T) + 3 § V2u(T — r, X5 | ds
¢ i=1

N S
+ Z/t Vio(T —r, Xb")dBE, t<s<T.
=1



SHARP GRADIENT BOUNDS FOR SEMI-LINEAR PDE 11

2.4. The Space of Generalized Solutions to the PDE). As we definedD(“/oo(B) as the closure
of C°(B) in Cp(B) W.rt. || - H]‘Bf:';o for a given ballB, we can defin@f/”(B), for a given reap > 1
and forl <k < K —m + 2, as the closure af;°(B) in LP(B) w.r.t. || - H]‘Bf:’;, where

V1
lellgy = llelles+ D Vel
ac A9 (m)

Vk VkE—1
lellsy = ety + > Vel -+ Viaw#lsp: @ € LP(B),

a1,..,ap €AY (m)

the notation|| - ||, here standing for thé? norm overB. The closability argument is the same as

in Footnote (4). Then, we can defifi&’” (R%) as the intersection of all th®}* (B(0,7)), > 0.

Similarly, we can defin®’™/?(B) and DI /2P(RY) for 1 < k < K —m + 1, DIP([e, T] x B)

for 0 < e < T, andDy((0, +00) x RY).

Atypical example of function iD};"(R%), 1 < n < K —m, isz € R? — (P,p)(x), fort > 0 and
pE L{’OC(Rd), © being at most of polynomial growth at the infinity. The progfimost the same as
in the case whep = +o0. The point is to consider an approximating sequeigg,>;, converging
towardsy in LY, (R9) (that is in anyL?(B(0, R)), R > 0) and then to prove the right-hand side in

(20) is Cauchy inL{’OC(Rd). To prove it, we claim that for ang® > 0 and/, k > 0,

(22) / |E[(pesr — @o) (XP)0(t,2)][Pde < C Ellperk — @l (XT)] de,
lz|<R |z|<R
with
/ p/p’ 1 1
C = sup E[y(t,z)" ] <oo, —+—5=1L
z€R4 b p

Now, the result follows from

Lemma 3. Let#; and 6, be two functions belonging tbfoc(Rd), p > 1, and at most of polynomial
growth of exponent > 0 (that is|6;(z)| < C(1 + |z|"), i = 1,2, for some constant’ > 0), then,
forany A, R > 0,

/ E[|61 — 6af" (X)) de < C' / 01 = OafP (y)dy + C"ATV2(1 4 RPFV2),

|z|<R ly|<A

the constant’’ being independent of and R and depending ofi; and#, throughC' andr only.
The proof of Lemma 3 is postponed to the Appendix. Choo8ing ¢, andfy = ¢, therein,

we deduce that the right-hand side in (20) is indeed CauclﬁﬁogﬁRd). (Clearly, we can assume the
(¢)e>1 to be of polynomial growth, uniformly id.)

We are now in position to define the notion of generalizedtswiuo the PDE (5). On the model
of Definition 3, we set

Definition 4. We call a functiorv = {v(t, ), (t,x) € [0,+00) x RY} a generalizedsolution of the
PDE (5) if the followings are satisfied
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(1) v belongs ta,>1D;;7((0, +00) x RY) and, for anyt > 0, v(t, ) belongs ta,1 Dy (RY)
such that, for anyy;, s € A%(m), the function

(t,z) € (0, +00) x R? (V[aﬂv(t’w)’ V[aﬂv[%]v(t’w))

is measurable and in ang}, ((0, +o0) x R?), p > 1,
(2) for almost everyt,z) € (0, +0c0) x R it holds

N
1 2
Vou(t,x) = 3 ; Viu(t, @) + f (¢, @,0(t,2), Vo(t,z)),
(3) on any compact setyt, -) — h in Lebesgue-measure as\, 0, that is, for any balB ¢ R,
for anye > 0,

g{%Hx €B: |v(t,x) — h(z)] > e}| =0,

where|A| denotes the Lebesgue volumeddlor a Borel subsetd C R9.
In Section 7, we will show

Proposition 3. Under the standing assumption, /ifis bounded (and measurable), the function
given by(13) for a givenT > 0 is a generalized solution to the PDE) on (0, 7] x R?. Moreover,
any other generalized solutiom of the semilinear PDE (5) that has polynomial growth matches
almost everywhere.

Again, the proof is based on a suitable version of Itd’s folan Because of thé? setting, it cannot
be true for any given starting point. We will in prove in Secti7:

Proposition 4. Letv satisfy Point (1) in Definition 4 and be at most of polynomiaivgth as in(21).
Then, for anyl’ > 0 and any boundedF;-measurable an®?-valued random vectaf, 0 <t < T,
with an absolutely continuous distribution w.r.t. the Lefpee measure dR¢, 1td’s formula holds on
the same model as in Proposition 2, but replacisf® beﬁ’5 therein.

In particular, the proces$v(T" — s, X§’5))tSSST admits a continuous version.

We emphasize that, in 1td’s formula, all the terms are ueigulefined even if the derivatives of
are defined up to sets of zero Lebesgue measure. This a censeqof Lemma 3.

2.5. Generalized Gronwall Lemma. In the following we will make use of the following:

Lemma 4. Consider two bounded measurable functignsg, : [0, 7] — R such that

(23) (t) < Cy + C b
g1(t) = U1 2 . st )
for some constant§’;, Co > 0. Then there exisk, i > 0, depending oty andT" only, such that
T 1 T
(24) / g1(t) exp(At)dt < uCh + 5/ g2(t) exp(At)dt.
0 0

In particular, if g1 = g9, theng; is bounded by.'C1, for a constani’ depending orC> and T only.
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Proof. Integrating (23) w.r.txp(At), we obtain

T T Tr s exp()\t)
/0 g1(t) exp(At)dt SC’l/O exp()\t)dt+C2/0 _92(8)/0 mdt] ds

’ T 5 ex —s

- /0 exp(\t)dt + 02/0 ga(s) exp(As) /0 %dt} ds
T Tr R _

= 01/0 exp(At)dt + 02/0 g2(s) eXp(/\s)/O %dt} ds

T T _ T
< C’l/ exp(At)dt + 02/ %dt/ g2(s) exp(As)ds.
0 0 0
Choosing) large enough, this proves (24).

Assume now thay; = go. Then,fOT exp(At)g1(t)dt < 2uCy, so thathTgl(t)dt < 2uCh.
Therefore, for > 0, (23) yields

(t+e)NT T
g(t) <CiL+ 02/ %ds + 026_1/2/ g1(s)ds
¢ (s —t)Y/ (t+e)AT

< Oy +2u0 Coe™ 2 4 09?2 sup [g1(s))-
t<s<(t+e)AT
Finally,

sup [g1(t)] < C1+ 2uC1 Cae ™% + Coe'/? sup [g1(s)].
0<t<T 0<s<T

Choosing: small enough, we complete the proof.

3. LIPSCHITZ BOUNDARY CONDITION

3.1. Setting and Main Result. In the whole section, we assume that the boundary condisiat i
least Lipschitz continuous. We also assume tifiét, =, v, z)| < A(1 + |z| + |y| + |2]), , 2 € RY,
y € R, and thatf (¢, -) is K —m — 1-times continuously differentiable, the derivatives uuy order
1 <n < K —m — 1 being bounded by some constant > 0. To simplify things, we will assume
thatA,, > A.

The objective is then to prove
Theorem 3. Let (V;)o<i<n be N + 1 vector fields satisfying Definition 1. Then, for ang [0,7),
u(t, -) belongs tcﬂ){,(_m_l/z’w(Rd) and is Lipschitz continuous(t, -) is continuously differentiable
if i is continuously differentiable, i.&7,u(t, -) exists as a continuous function.

Moreover, for anyn < K —m — 1 anday,...,a, € A(m), there exists a constand, (p),
depending on\,,, n, p, T and the vector fieldsp, . . ., Viy only, such that for allt, z) € [0,T) x R¢,

Viaw) - - - Viawju(t, )| < Co(p)(T — )12 [1 4 B[|VR(XF_,)|[™] 1 7.
[View - - - Viaw) Viu(t, )| < Co(p)(T — )12 [1 4 E[|VA(XF_)[™] 1/”], 1<i<N,

wherea stands for{(ay, . . ., a,) and||a| for ||ay || + - - - + ||a,||. In the casewheR h does not exist
atpointX7.__, [Vh(X%_,)| is understood aim sup, g . | M A(XF_, + &) — h(XF_,)I.
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Moreover, the derivative pair process

(Y;fa = (V[ozl} S Wa7L]u)(t7Xg:)7 th = ((V[cn] cee V[an}viu)(t?Xf))léiSN)0§t<T

satisfies a generalized BSDE of the form

Y* = (s =) 12N B [(Vigu) (s, X267 [6](s — £, X7)|Fi]
Be A (m)

+E [/S (Fi(r,z) 4+ Fa(r,z)Y,™ + F5(r,2) Z2) | Fe |,

(25) !

Z3 = (s—t)7 12 N B[(Vigu) (s, X005 [ih)(s — t, X7)| 7]
BEA] (m)

+E {/ (r— t)_1/2 (Gl(t, r,z) + Go(t,r,2)Y,* + Gs(t,r, w)Z,‘?‘) | Fe |,
¢

witht < s < T, where(dg) e 49(m) and (¢8) ge.40(m Stand for Kusuoka functions ke (K —
m —n — 1), and Fy(r,z), Gi(t,r,z), Fa(r,x), Go(t,r, ), F3(r,z) and Gs(t,r,z) are random
functionals, in anyL?(2), p > 1, uniformly inz € R? and in0 < ¢t < r < s, s in a compact subset
of [0, 7). Moreover, Fy(r, z) and F3(r, z) are bounded, uniformly i € R and in0 < r < s, s
in a compact subset @6, 7"), and, for anyp > 1, E[|Ga(t,r, z)|P|F,] andE[|G3(t,r, z)|P|F,] are
bounded, uniformly in: € R% and in0 < t < r < s, s in a compact subset ¢, 7).

Equation (25) provides the stochastic dynamics of the devis processes when the forward equa-
tion is initialized atz at time 0. It must be seen as @on-linear integration by partsthat is the
equivalent to the integration by parts formula exhibitedhia linear case. It must be also compared
with the pathwise differentiation result in [25]. The diffmce between (25) and the result in [25]
lies in the lack of well-defined boundary condition in (2%)wiould be the higher-order derivatives
of h if they were well-defined. Here they don't exist Ads assumed to be Lipschitz only. As a
consequence, the derivative processes are only defined amyttime s strictly less than maturity
time and the boundary like type condition is expressed asditional expectation: the first-order
term therein is bounded inands so that the leading coefficiefit — ¢)!!~ /2 stands for the typical
order of the boundary condition in the neighborhood’ofObviously, it is also well-understood that
the coefficientsF, Fy, F3, G1, G2 andG3 depend on the spatial derivativesbf orders less than
or equal ton — 1: the explicit dependence being expressed in terms of additKusuoka functions.
The actual dependence is detailed the proof of Propositibel&v. Obviously, equation (25) also
holds when the forward process starts frorat timet € [0, 7).

A straightforward application of Lemma 4 shows thEt™, Z) is the unique solution to (25) with
continuous paths such thBfsupg< ;< |Y;*|? + supg<;<, | Z£*|P] < 400 for anys € [0,7") and for
anyp > 1. This is done via a standard fixed point argument similar & tised in the classical
proof of the unique solvability of BSDESs driven t#rindependent drivers. We also emphasize that,
following Lemma 4, one can establish a stability propertyefiguation (25), that is the stability of the
solution under perturbation of the coefficients: again,gteof is similar to the one in the standard
BSDE setting and we omit it.
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The strategy of the proof of Theorem 3 consists in mollifythg coefficients of the equation first
and then in letting the mollifying parameter vanish. Below will assume first that the coefficients
f andh are smooth in, y andz.

3.2. One-Step Differentiation. The following one-step differentiation lemma permits tatstvfrom
one derivative to another:

Lemma5. Let F" be a differentiable function frofi? x R x RY into R andy be inD{/***(R¢). Then,
setting® (X7) = (X7, o(X7), (Vi) (X3)<i<n), 0 < s < T, the mappings — F(O(XY)) is in
D (R?) and, for anya € AY(m),

mwwﬁmzij&m”mm>VFwﬁ»

BEA](m)

#VF(OOD) (Vi) () + 3 T F(OUXD) (Vi) (0] -

(Here, V] is understood a¥[,(z).)
Proof. When is a smooth function, we can write

Vi (@) [F(O(XD)] = D iy (@) %<ﬁﬂ§y
. i—1 t

d d
i (OFoO __
= Z Z(sz)jdv[a} (w)ij(Xs )-

Applying Lemma 2 witht = 0, the result easily follows (whep is smooth). By a closure argument,
the result is still valid wherp is in D?’/ZOO(RCI).
O
As a Corollary, we deduce

Corollary 1. LetF be a(K —m — 1)-time differentiable function froR? x R x R? into R and ¢ be
in Dgﬂ/z(Rd), n < K—m—1.Foranyk € {0,...,n}, letU(¢) be the set ok-tuples of functions
of the form(vy, ..., vx), with v; being equal either t@ or V,p, 1 < ¢ < N. (Whenk = 0, we
setUi(¢) = 0.) Finally, IetIk(n) be the set of non-decreasing sequences of (possibly zéeggm
i1,...,19 suchthati; +--- + i, < n.

Then for anyn-tuple of indicesae = (a1, ...,a,) € [AY(m)]" and for any0 < k < n, we
can find a subseV,, C Uy (p), a subsetl, C Zy(n) and, for anyv = (vi,...,vx) € Ux(p) and
i=(i1,...,ix) € Zx(n), we can findk subsets{A“’ C [AY(m)}7)1<;<k, such that

Viaw] -+ Viaw] [F(O(X))]

Ed

n

= > > [H B1) - Vigi, 193) (X3 biw p(s, 2)0i0,8(O(X)) |

k=0 icI;,veV}, B= (6% J)}iéi?EA’ v hj=1
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whereA*? = H?:l ALY, biwp € Kag”_”aﬂﬁ (K —m —n), with [|8]| = Z?:l >l 18] and
led| = >0 |||, andep; o, g is (K — m — n — 1)-times differentiable with bounded derivatives.

Proof. We proceed by induction. Assume that the result holds trua ffivenn > 1. Then, for a
givena,+1 € AJ(m), we are to consider for any, i, v, 3) as above

k
Views )€ with € = [T(Viy1 - Vig,, 103) (X bi,0,8(5. 2)i,0,8(O(XF)).
j=1

Clearly, the term obtained by lettirig,,,  ,; act ong; ,, g gives a new Kusuoka function belonging to
IC_EFHﬂII—Ilc_vH)* (K —m — (n+ 1)), which is included 'rK(IIBH o —flams )+ (B —m = (n+ .1)). To
differentiatey; ,, 3(©(XY)), we apply Lemma 5. There are two cases: (i) the first term inrbarb
does not add a new term of the foriy;v; (i) the two last terms in Lemma 5 add new terms of the
form Vigv. Itis clear that (i) keeps the general form of the formula. &plain now what happens for
(ii). Following Lemma 5, the functions; ,, g is modified in such a way that, for agy .1 € AY(m),

the term& at rankn is multiplied byV[ﬁl’kH]ka for vi1 being eitherp or one of the(Vip)1<i<p
and that the sum is then performed over allthe. 1 € A (m). It means thak is increased inté+ 1
and thatp; ., g is changed int®; , gba,, 1 3, ;.- NOW, b isin /ca

Q1 B B -l
m). In particular, we can say that ,, gba,, 5, ,.,, Pelongs to?C(IIﬂH ”a||)++(”51 k+1” lansa [+ (=

m — n). Since the positive part is sub-additive, that(is+ y)* < 2% + y™, we deduce that
. T —m—
Gi0,8bas1,01,1 DEIONGS WO 515 = = (B — 0= 7).
It now remains to say what happens when differentiating eétite termg(V{s, ;... Vj5, v;)(X7).
: i
Again, we are using Lemma 2 with= 0 anda = a,41, I.€.

JS ZCVCM”+1 Z ban+175 S Zz ‘/[IB] (X )
BeAO(m)

The result is that we are increasing the lengtfor somel < j < k fromi; to i; + 1, all the other
lengthes being preserved, and that the Kusuoka funetjQy is changed int@; ,, gb.,, . , s for any
B € AJ(m), which as we already argued belongs(tﬁﬁﬂﬂmk“”_”aH_”anH”ﬁ(K —m —n).

3.3. Estimates of the Derivatives ofu in the Mollified Setting. We now go back to Eq. (12). As
announced, we assume that all the coefficients of the badkegaration (12) ar€>° functions with
respect to the variables y andz. For anyl < n < K —m — 1, the common bound for the Lipschitz
constant of, and for the derivatives of the coeffients up to the ordés denoted by\,,.

The bounds in Theorem 3 are proven by induction. For exeryl, we denote byP,, the following
property: for any > 1, there exists a consta6t, (p), depending om\,,, n, p, T'and the vector fields
only, such that, for anyay, ..., ay) € (A(m))" and any(t,z) € [0,T) x R,

Viea) -+ Vianyu(t, )|
< Calp)(T =121 4 B[ VA(XE_,)["]7],

[Via] - - Vi) Viult, @) |
< Co(p)(T — ) 12 [1 4 B[|VA(XF_)["]V"], ie{l,...,N},
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with ||| = >°7; ||el|. The induction property relies on the following
Proposition 5. For anyp > 1and1 < n < K —m — 1, there exists a constaut, (p), depending

on A,, n, p, T and the vector fields only, such that, for aty,...,a,) € (AY(m))" and any
(t,r) € [0,T) x R,

|V[a1} e V[an}u(t, x)! < Cn(p) |:1 + (T _ t)(1—||a||)/2EHVh(X%_t”p] 1/P:|
(T+t)/2 i k iy /(o)
+ / Z Z (s — t)(”'BH_HO‘H) / H E [‘ (V[BLJ'} .. V[ﬁij,j]vj)(sa X;E_t)|np/u] ds,
t k=11%,v,08 j=1
“/[Olﬂ - ‘/[an}‘/iu(t, ZL')‘ S Cn(p) |:1 + (T _ t)_”a”/2EHVh(X%_t)‘p:| 1/P:|

/(T+t)/2 Zn: Z [( )[(Ilﬁll llexl)t—1]/2
+ s—t el =
¢

k=11,v,8
k np/is ij/(np)
X HE[‘ (Vg1 Wﬁij’j]vj)(s’Xf_m J} ]ds] '
j=1

Above, both sums run over the indiges: (i1, ..., ix) € Zx(n), v = (vy,.

' .)€ Ug(u(s,-)) and
B=((Brj:---,Bi.5) € [Ao(m)l )1<j<k-

We first show how Proposition 5 implies the induction propert
We first proveP;. For a giverp > 1, we set for any3; € A%(m)

N
Qb (t, 5, %) = E[|(Vig,u) (5, X )" + (T = $)V2 3 B[] (Vg Vyu) (s, X2 )] "

i=1

Choosen = 1 in Proposition 5 andv; € A{(m). Sinces —t < T — sforanys € [t, (T +t)/2],
we get

Viaqu(t, )| < Ci(p) [1 + (T — )0l DR[| Th(xE_ )]

(T+1)/2
N / Z (3_t)[(||ﬁ1||—||a1||)+—1]/2Qél(t7s,a;)ds},
t B1EAY(m)

together with
(T — )2 |Via, Viu(t, z)| < Ci(p) [1 + (T — )N DR[| Tn(x3_ )]

(T+t)/2
4 / Z (s — 75)[(||51||—||041||)+—1V2Qé1 (t,s, aj)dS] ,
¢ BreAd(m)
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i running from 1 taNV. Again, fors € [t, (t+T)/2], T —s > (T —t)/2, so that the above inequalities
can be written into a single one:

N
(1 = 0D Vgt )] + (= 02 3|V V)|
i=1

< &1(p) [1 FE[|VA(XE_ )]

(T+1)/2
+ Z [/ (s —t) V(T — s)(”m”_l)ﬂQé1 (¢, s, x)} ds] ,
t

BreA}(m)

the constant’; (p) possibly varying from line to line here and after.

Choosingz of the form X ., with 0 < r < ¢, taking theL? moment, applying Minkowski’s
integrl inequality, and then making the sum ovar € A%(m) andi € {1,..., N}, we eventually
obtain

(@ - gyl {EH (Viay) (6, X2
a1€AY(m)
N
57 — ) PE[| (Vi Vi) (6 XE) )] ”p]

i=1

< i) [1 LE[|VACE_ )]

(T+t)/2
L

(s —t)V2(T — s)(UIArl=1)/2 Qél (rys, :E):| ds} .
B1EAT (m)

We emphasize that the left-hand side is nothing B, ¢ 49y (1 — t)lleall=D/2Q1 (r,t,2). By
Lemma 4, we complete the proof &Y.

We turn to the proof of the induction property. Assume tRatholds for everyl < k < n, for
some ranks > 1. We then apply Proposition 5, but we take care to make therdifference between
the following cases(i;, = n) and(i; < n). Wheni; = n, the sum ovep3 actually reduces to a sum
over@ = (fu,...,3,) € [A}(m)]" and the product of th&"’s reduces to a single term of the form
Vigy] - - - Vig, v, v running over the seftu(s, -), Vyu(s,-),1 < £ < N}. In this case, we do not use the
induction property. When, < n, all the possible;’s, 1 < j < k, are also (strictly) less than That
is, the terms of the fornﬁ’wl,ﬂ ... V[Bw}vj fulfill the induction property, i.e., for any < j < k,

|(Vig11 - Visi, 1vi) (8, X3

< Cp(p)(T — 3)5/2—(2?;1 18e.511)/2 [1+ EHVh(X%_t)\ijP] 1/?’]7

with § being equal td whenv, (s, -) matches(s, -) and being equal to whenv; (s, -) matches some
Viu(s,+), 1 <1i < N. Clearly, the worst case is

| (Vg1 -+ Vi, ,103) (5, X2_)| < Cap)(T = )" D21 B[O h(X5_)[ 7] 7).
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We then obtain
k

H‘(V[ﬁl,j} cee V[ﬁij,j}vj)(s> X;C—t)‘

i=1

< C,(p)(T — S)—(Zle E Ly 18e51)/ H 1+ E[|VA(X3 )|sz]]1/p

k
< Calp)(T — 5) WPIPTTE[(1 + [Vh(XE_,)]) "],
j=1

whereg stands for thé-tuple of multi-indices((ﬁg,j)1§g§ij)1§j§k.
Plugging these bounds into Proposition 5, we obtain (up te@dification of the constant’,)

Vie] - - ViawJult: 2)| < Cu(p) [1 + (1 — )WV VA(XF_,) 7]
T+t)/2
+ Cp(p) Z /( o/ (T — s)~IBI2 (5 — t)(IIBII—IIaII)W?Rk(S’m)ds
(26) B=(B1,-..B1) ELAG (m)]F k<
(T+t)
AOEDY / s_t)[(llﬁll led)* =12 gn (1,5, 0)ds
61 ----- ,BnE-AO

= Tl(t7$) + T2(t7$) + T3(t7$)7
with

k .
Ris,z)= Y TIE[Q+|VAaxE )|

i1+ Fip<n j=1
b 2i /(e n
< S TIEIO+[VACE_)™] ) < CoIE[(1 + | h(XF_ )™
114+ <n j=1
Q5. (t5,2) =E[| (Vg - wmw@X“MﬂW

1”22E Vg, - - Vi, Viu) (s, X2 )] 77,

Up to a madification of”,(p) from line to line, we obtain by replacing with X" ., 0 < r < t,
and by taking thd.? moment

(T — t)(”"‘”_l)/ZEHTQ(t, th_mp] 1/p
(T+t)/
(27) < C’n(p)E[(l + Wh(X%“—r)an]l/p T+t 2(3 - t)—1/2ds
t

< Cu(p)(T = O)PE[(1 + |VR(XE_,))"] V"
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Similarly, by Minkowski’s integral inequality,
(T — t)(”aH—l)/?EHT (t, X7 T)‘p] 1/p
(T+t) /2

9 <Culp) / 1)1 — ) WBI-D2gn (s ) ds.

617 767L€-AO
By (26), (27) and (28), we deduce

(7 = )0IDR ]| (Vi Vi) (8, X2 )]
< Cu()E[(1+ | VR(XE_)|)™]""

(T+t) /2 . 2 N2
WA / (T~ 5 IBI-2Qn (15 x)ds.
1817 UBneAO

By a similar argument

(29)

T "“"ZE Vi Viu) (8, X7

(30) < Cu(E[(1+|VA(XF m)’”’]””
(T+0)/ —1/2 1)/2
WAOEED / (T~ 5 IBI-2Qn (15 x)ds.
1817 UBneAO(m
Summing (29) and (30) ovéryy, ..., a,) € [AY(m)]", we obtain

Z (T — t)(l\all—l)/2 Q217...7an (r,t,2)

a1,.e.,an €AY (m)

(31) < CulP)E[(1 + | Vh(XF_ »!)””]“p
(T+t)/
NAOEED / VAT — B2 (s p)ds.
617 7/67LE.A (m

By Lemma 4, we complete the proof.

It now remains to prove Proposition 5.

Proof (Proposition 5). The first point is to prove that, for artye [0, 7], u(t, ) is (K — m — 1)-
times continuously differentiable w.r.t: in all the directions of the space. Again, keep in mind that
the coefficients of the backward component are here assumkee $mooth as well with bounded
derivatives, by a mollifying argument. (See Subsection)3.3

Lemma 6. In the mollified setting, for any < [0, 7], the mappings:(t,-) and (Viu(t,))i<i<n
are (K — m — 1)-times continuously differentiable in all the directiontbe space and, for any
1<n<K-m-—1,(Viu(t,-))o<t<r and ((VEViu(t, -))o<t<1)1<i<n are uniformly bounded in.
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The proof of Lemma 6 is rather technical. For this reason,aetmore convenient to postpone it
to the end of the section.

We recall from [25] that, in the mollified setting, the furartiu is continuously differentiable with
respect to the variable and that

(32) sup || Vau(t, )|, < C(A1,T),

0<t<T
whereC (A1, T) depends on\y, T and the bounds of the derivatives of the vector fiélgs .., Vy
only. Basically, by Proposition 3.2 in Briand et al. [2], waceven say that for any> 1

33) V() €[0,T) xRY,  [Voult,z)| < C(Ay,p, T)[1+E[|Vh(XE_,)[P]],

for some constant’'(A1, p, T') depending on\;, p, 7" and the bounds of the derivatives of the vector
fieldsVp, ..., Vi only. Below, we aim at estimating the higher order-derixediof along the vector
fields. We write

V(t,z) € [0,T) x R,  u(t,z) = Pir_y [U(T;ta )] ()

(T+1)/
- /t Pyt [f (5, u(s,-), (ViDgu(s, ))i<i<n)] (z)ds.

Forn given multi-indicesas, . . ., a,, in AY(m),

T+t
2 7)](1')

(T+1)/2
+/ Viaa] - - V[an}Ps_t[f(s, su(s, ), (ViDyu(s, '))1@51\/)] (x)ds
¢
= Tl(t7 .Z') + TZ(t7 .Z')

Viar] - - Vian)u(t: ) = Viay) - - - Vi) Pr—gy 2 [u(

By Corollaries 24 and 27 in [7], we can find a family of Kusuokadtion (¢£1,,,,,an)1§j§N in
K¥(K —m —n + 1) such that

T+t .,
Ti(t,x) = V[al} e ‘/[anfl]E[‘/[an} (“(TaX(T_t)p))]

ou T—I—t
(34) _Zv[al] an 1] [(J(T—t)/2,9ﬂv[om](gj))yaaj ( X(T t)/2))]

n1aZ T—t ou T+t
= (T — )" W/DZE IIZE o ?, )895](

Therefore, for anyp > 1, we can find a constar(fn(p), depending ori” and the bounds for the
higher-order derivatives of the vector fields only and gagsrarying from line to line, such that

T+t
, X t)/z)|p]l/p

< Culp)(T — )2~ O2IIE 1 4 |Vh(x5,) ],

X 2)]-

) IT1(t,2)] < Cu(p)(T — )V/> WA E[| 70 (——
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the last line following from (33). We emphasize that the exgrdt in(7" — ¢) is 1/2 — |||, where
|la]| = |ea| + - - - + |a|. Compared with (34), the addition&f2 follows from the term«,, |, which
is not taken into account in (34). We here see that the smugptihécay of the boundary condition
behaves as in the linear case exactly, as well-guessed. iglkeal is now to handle the nonlinear
term. To do so, we follow the strategy developed in the nayederate case.

By Corollary 1 with(¢, 8) therein possibly depending enthat is withe of the formu(s, -) and
@(X:;C—t) of the form@(s> X;C—t) = 6(87 X;C—tv ’LL(S, X;C—t)v (V;"LL(S, X;C—t))lﬁiSN)’ we write

Tg(t, ;L')

k

(t+T)/2
= > /t E[H(le,ﬂ-'-V[ﬁz-mj)(&Xi”—t)%vﬂ(s—t@)l/’ivvvﬁ(@(S’X?—t)) ds,

k,i,v,0 J=1

where the shorten notatid#, i, v3) is as in Corollary 1: it stands fdr€ {0,...,n},¢ € I, v € Vj

andB = (Bie,-- .. Bi0)1<t<k € A*Y. Keeping in mind that; , 3 € K (g |a)+ (K —m — n)
and thaty; ., g is bounded, we deduce that, for any- 1,

To(t, )|
(T+t)/2 . k 1/p
< Ch(p) Z / (s — ¢)IBl1=lled) /2E[H|V[61,j}"'V[ﬁi»,j}vj(SvX:—t”p] ds
k,iv,B7t j=1 !
(T+1)/2 P np/i; ij/(np)
<Culp) Y / (s — ¢)UAI=lled) ﬁ]‘[E{\v[gLﬂ...v[ﬁz.j’j]vj(s,xg_t)| g } ds,
k,iv,B71 j=1

the constantC),(p) possibly depending on\,, as well. Similarly, we can compute, for any index
i€{l,....,N}, Via,]- - - Vi Viu(t, ) may be expressed as
‘/[al} s ‘/[an}‘/iu(ta ‘T)

Tt
= Vil - - Viaw Vi 2 [u(— =) (@)

(36) (T+t)/2
+ / Vv[al} s ‘/[an]‘/ips—t [f(s7 g ’LL(S, ')7 (V;'/DE’LL(S, ))1§Z’§N)] (ZL’)dS
t

= Sl(t7 33‘) + 52(t7 33‘)
Following the proof of (35), we obtain
e T+t
1S1(t, x)| < Co(p)(T — )~ ”/QEHVW(?7X(T—@/2)m v
< Culp)(T — ) 12 [1 4 E[|VR(XE )17,
We now turn toS,. By Integration by Parts (see Corollary 24 in [7]), we emprasghat
ViPo i [f (s, u(s,-), (Vi Dau(s, )i<i<n) ] (x) = ViE[f(O(s, Xi_,))]
= (s —t)PE[f(O(s, Xi_p)) #{ (s — t,)],

for some Kusuoka function) € KT (K —m — 1).
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Therefore,
‘/[al] ‘/[an}vps t[f( 7u(37’) (V D u( ))1<i’<N)](x)
= (s = 1) WVigy) .- Vi E[F(O(s, X2)) #(s — t,2)] ().
Differentiating the product, we obtain

‘/Y[al] s Wan}wps—t [f(sa “ U(S, ')7 (V;’Dxu(sy ))1§2’§N)] (gj)

TN ST BV Ve A (O(s, X2)) oy (s — t,2)],

k=01<01 <--<lp<n

for new Kusuoka function$fl"“’£k e KI(K—m—n—1).
We now apply Corollary 1 again. For any< ¢; < --- < £ < n, we can write

V[Oée } e V[Oée {F(®(8 X:;c—t))}

= Z > [H Vigy 1+ Vig, 10 (5 Xoo0)) 03l 5™ (s — to)egly ™ (O(s, X2)) |

=01,v,8~j=1
where the shorten notatiofi, v, 3) stands fori € Iy, C Zy(k), v € Vi C Up(u(s,-)) and
B = (Brjs--- B, jh<j<k € A%Y C [Ag(m)]F, qﬁfl;) [fk stands for a Kusuoka function belonging
to K7 o (B —m = k) andy;'; 3 stands for a bounded function.

(IBII=3 51 llevey I
Therefore, denoting by the increasing sequende< ¢ < --- < { < n,

V[Ofl] te V[an}ViPS—t [f(37 ) u(37 ')7 (Vi’Dxu(& '))1§i’§N)] (x)
< Cn(p)(s — )_1/2

X Z Z Z Z s t (BI=led™ /2 HE[“/gl .}Uj(S,Xg—t)‘np/ij]

k=0 £ k'=0¢%,v,8

ZZ s — £)~ /2181 l1al) +/2HE[|V&]1 Vi, (s X2 )|/

k=0 1,v,08

i/ (np)

:|ij/(np)
where the shorten notation in the last line above stands forZ,(n), v € Ui (u(s,-)) and3 =
(B1,js- -+ Bi; i )1<i<k € [Ao(m)]". We emphasize that the case= 0 is the constant case: the prod-
uct is understood as a 1. In the right-hand sides of the tvwimatss in the statement of Proposition 5,
the sum ovek starts fromk = 1: the case whek = 0 is hidden in the additional in the boundary
term.

O

3.4. Proof of Lemma 6. We start with
Casen = 1. The first-order continuous differentiability ef¢, -) is a straightforward consequence
of Pardoux and Peng [25]. Moreover, for any initial conditi@, z) € [0,7] x R?, the solution
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(Vo YE" V0 ZE") < <1 to the derivative BSDE
V.Y = Vh(XE )V, X5*

T
# [ V(01 T.XE 4 ¥ (0) Vi + V.5 (01) 9. 21

(37)

T

- / V.Z5*dB,,
S
with ©L% = (r, X" V0" Zb"), satisfies
Yt,x+h o Yt,m
(38) P—as., V,Yh"= }llirrb %, t<s<T, zecR%
V.Y = }131]% V. YHeth 4 <s<T, zeRY,
and
T t,x+h t,x
Zg —Zg
lim E U | = - VmZﬁ’des} =0,

T
lim E |:/ ‘Vxng—i-h —_ VxZ§7x|2dS:| =0.
h—0 t

Clearly, (37) yieldssupg<;<r || Vou(t, -)||o < 400, SinceV,f, V, f andV. f are bounded.
We now go back to the backward formulatiomadt, -):

T
u(t, ) = E[h(X3")] +/t E[f (s, X3 uls, Xo7), (Viu(s, Xo")1<i<n) ] ds.

By the example in Subsection 2.3 and by Lebesgue dominagsdein, we know that the right-
hand side is im‘l/z(]R{d) and that for anyl <i < N,

Viu(t,z) = E[Vh(X3")ViX7"]
T
+ / (s — ) V2R [f (5, X527, u(s, X0, (Viu(s, X0"))1<ien )05 () (t — s,2)]ds.
t

Above, 1 stands for a Kusuoka function 16} (K —m — 1) andd; (+) indicates that the randomness
is evaluated after shifting. (See Subsection 2.2.) Cleamycan rewrite the above expression as

Viu(t,z) = E[VA(XE)ViX5"]

40
(40) i /tT(s — )T VRR[f (s, X1, YIS, 25005 () (t — 5, 2)]ds,

V;X%“” being understood &s;(x) - VxX;x. At this stage of the proof, we would like to apply (38)

and (39) to differentiate the right-hand side under thegirgte The point is tha(VxZﬁ’x)tgng isin

L2([t, T] x Q) only so that the convergence of the integralof- t)~1/2|V, Z”| is not guaranteed.
The proof is then completed by
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Lemma 7. Consider two random jointly measurable functions, denbte@dV (¢, ))o<;<7 ,cre @nd
(Va(t, 5,7))o<t<s<Tzerd, With values inR% andR% respectively such that, a.sl; (, -) is contin-
uously differentiable and@(t, s, ) is continuously differentiable for any < ¢+ < s < T. Assume
in addition that(V, W1 (t, z))o<i<1rerd ANA (Ve Wa(s, T))o<t<s<1rcrae Q€ in LP($2), uniformly in
x for anyp > 1. Consider a random functiod : (w,t,s,£,¢) € Q x [0,7]? x R% x R4 —
F(w,t,s,&,¢) € R%, continuously differentiable i€, ¢) with derivatives im,>1 LP(Q), uniformly

in (¢,¢), and assume that: [0, 7] x R? — R% satisfies
T
(42) v(t,x) =E {\Ill(t,x) + / (s — t)_1/2F(t, s, Wal(t, s,w),v(s,Xﬁ’x))ds ,
t

thenw(t, -) is Lipschitz continuous, uniformly in

Before we prove Lemma 7, we explain how it applies to the pmfoLemma 6. We choose
£ = (@), ¢ = 2z andF(t,5,£,0) = f(s,2,9,2)0; ()(t — s,2), Ua(t,5,2) = (X, YE7)
and ¥, (t,2) = Vh(X5")V:X2", and obviouslyp(t, z) = (Viu(t,z))1<i<ny. We then deduce that
(Viu(t, ))1<i<n is Lipschitz continuous, uniformly in

In particular, for any) < ¢ < s < T, the mapping: — Z5* = (Viu(s,Xﬁ’x)) is locally Lipschitz
continuous, i.e. for any € R,

sup |Z0Y — ZWY| < ()l -yl
y,y'€B(x,1)

whered is a random variable in ang?, uniformly in z ands. In particular, by (39)V,Z5" is any
LP(Q2), uniformly in s andzx.

We now go back to (40). By (39), we know that the term inside ititegral is continuously
differentiable for anys > t. SinceV, 2" is any LP(Q2), uniformly in s andz, we deduce that
(Viu(t,-))1<i<n is continuously differentiable as well and thd®, V;u(t, -))1<i<n is bounded uni-
formly in ¢.

Induction. We now assume that, for a givan< n < K —m — 2, u(t,-) and (V;u(t,-))1<i<n
aren-times continuously differentiable in all the directionktioe space, with bounded derivatives,
uniformly in ¢.

By Lemma 1, we can differentiate times the pair(Yst’x, Zﬁ’x)tgsg. The dynamics of the deriv-
ative procesgV"Y:", V" Zb") < <7 may be summarized as follows:

T
VRY{® = H'(t, @) + / [F™(t,s,@) + Vy f(OR7) VYT + V. f(007)V Z0" ] dr
(42) .
- / V' ZiTdB,,

where H"™(t, x) is an Fp-measurable r.v., bounded in any(2), p > 1, uniformly in (¢,z), and
(F™(t,s,x))i<s<T IS @ progressively-measurable process (ws)f.bounded in anyL”(Q2), p > 1,
uniformly in (¢, z). Obviously,H" (¢, z) is given by the differentiation of the boundary conditiordan
F"(t,s,x) by the differentiation of the driver of the BSDE(¢, s, x) contains all the derivatives
of X up to ordern and all the derivatives ofY, Z) up to ordern — 1. In particular, F™(t, s, x) is
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a.s. continuously differentiable w.r.t, with bounded derivatives in any?(2), p > 1, uniformly in
(t,z) (by the induction assumption).

We then recover the framework of Eq. (37). By the same styateg deduce that the pair
(Vitlyh? yntl zb%) o exists as in (38) and (39). Clearly+'Y;"" is continuous and bounded,
uniformly in (¢, z), i.e. V2 lu(t, -) is well-defined, continuous and bounded, uniformlydne).

To obtain the continuous differentiability ¢%7 V;u(t, -))1<i<n, we follow the strategy developed
in (40). Differentiatingn times, we obtain a generic equation of the form

ViWiul(t,z) = E[H"V2(t, )]

TE[(F"(t,5,2) + Vy f(OF)VEYS" + V. f(Or)ViZr") 0 () (¢t — s,2)] |
+ (s— )17

for somey € K'(K—m—1). Above,F™ is the same as in (42) add"'/2(t, ) is a.s. continuously
differentiable, with derivatives in ang?(Q), for anyp > 1. (Basically, H"'/2(t, z) is obtained by
differentiating (n + 1)-times the boundary condition. Sinee+ 2 < K and(t,z) — X7_,isin
K9.(K), H"+1/2 is continuously differentiable w.r.tc. A similar argument holds fof},.) We then
recover the framework of Lemma 7 exaclty. The end of the ptioenf follows the case = 1. O

T,

Proof (Lemma 7). The point now is to prove Lemma 7. We introduce the followingpping
®:(v:[0,T] x RT — R%)

— <w (t,z) € [0,T] x R — E [\I’l(t,x) + /tT F(t.s %((z’i’;)l’/g(s’X?x)) ds} >

Clearly, the right-hand side is well-definedifis assumed to be bounded. Moreover, it is plain to
prove that there exists a constansuch that, for any € [0, 77,

T o) = va(s,)lloo
(43) Jin (1) = waft, oo < © [ FUEI 2R N g
with wy = ®(vy) andwy = ®(v2), v1 andve being bounded.
By Lemma 4, we can find > 0 such that
T

T 1
/ [exp()\t)le(t, ) —walt, -)Hoo]dt < 5/ [exp()\s)Hvl(s, ) — va(s, -)Hoo]ds
0 0

Clearly, the mapping is a contraction on the space of bounded functions fayf] x R? to R%
endowed with the semi-norm— f(;f exp(At)]|v(t, -)||odt. In particular, ifv satisfies (41) and is a
fixed point of®, then, for a.et € [0,T], 0(t,-) = v(t,-). By (43), this proves thai(¢, -) = v(t, -) for
anyt € [0,7]. Similarly, if we construct by induction a sequence of therfdv,, 1 = ®(v,,))n>0,

vo = 0, we get
T

lim ; lexp(At)[|vn(t, ) — v(t,-)||oo | dt = 0.

n——+00
In particular, up to a subsequendey,(t, ) — v(t, )|l — 0 for a.e. t € [0,7]. By (43) again,
the convergence holds for amyc [0,77]. Therefore, if we prove that th€v,(t,-)).cjo,7))n>1 are
Lipschitz continuous, uniformly in and inn, v(t,-) is Lipschitz continuous as well, uniformly in
te[0,7].
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By induction, it is clear that all the,, (¢, -) are continuously differentiable and that

T [Vzvn (s, ) lloo
(44) IVavnt1(t, ) lloo < C+C/ -2
(The value ofC may vary from line to line.) We use Lemma 4 again. For a pogsiblv value of},

T T
/ expO) [ Vatns1 (b Yoo < C + / exp(M) [ Vatn(t, oo
0 0

Iterating the bound, we obtain (for a possibly new valué€'pf

T
/0 exp(M)[[ V(oo < C.

In particular, for any > 0, (44) yields

TV 200 (s, ) loo
IV st (1, )Hoo<0+c/ %

(t+e)NT
oo [Tl ot [ s

< C'(e) + Ce? sup [|[Vavn(s, )],
0<s<T

for some newC’(¢), independent of. and possibly depending an Fore small enough, we deduce
that

1
IVavni1(t,-)|loo < C( ) + 5 sup [vavn(sf)HOO}'
<s<T

Iterating, we obtain thatup,,~; supg<i<7 [|Vovn(t, -)|loo < +o0.
g

3.5. Getting out from the Mollified Setting. To complete the proof of Theorem 3, we must get out
from the mollified setting.

In the mollified setting, we clearly obtain (25) as a consegaeof Corollary 1, so that Theo-
rem 3 holds in this case. The point to let the mollifying pae#en vanish is to prove some uni-
form continuity property for the derivatives in the mollifiesetting. Specifically, if we denote by
(RM M) \~1 a sequence of mollied coefficients converging towardsf) uniformly on compact
sets and if we denote byu’),,~; the associated family of solutions, the point is to prove,tha
for any ay,...,an in AY(m), n < Q, andt € [0,T), the families(Viy,] ... Vi, ju™ (£, ))iz0
and((Via, - - V[%L]V,-uM(t, ))1<i<N)e>0 are uniformly continuous in compact subsetsRgf This

would prove that(¢, ) is in Dgﬂ/z(Rp) and satisfies the announced bound. Passing to the limit in
(25) along the mollifying sequence, (25) would hold fdt, -) as welf

The proof of uniform continuity may be seen as a straightéoodrconsequence of (25) taking into
account the explicit form of the coefficients given by Caao}i 1 and using a stability argument based
on Lemma 4.

5The argument is a bit short sinég, F», F3, G1, G2 andGs in (46) depends on the derivatives of lower orders. We
let the reader check that an induction argument would apyte @asily.
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4. BOUNDARY CONDITION IN L*°

In this section we dispense with the Lipschitz condition asgume that the boundary conditibn
is continuous and bounded. As already stated (see Cor@jamhenf = 0, it is indeed known that,
foranyp > 1,n > 1, and(a, . .., a,) € [A(m)]” and any(t, z) € [0,T) x R,

(45) Vi) - Viwju(t, 2)| < Ca(p)(T — )7 19V2E[|n(x3_,)["]7.
for some constant’, (p), independent ok. The main result of this section is

Theorem 4. Let(V;)o<;<n be N+1 vector fields belonging @ (R¢, R?), the set of all bounded con-
tinuous functionk-times differentiable and partial derivatives bounded aoatinuous, that satisfy
the UFG condition of ordefn, wherek > m. For anyt € [0,7), u(t,-) is continuous and belongs

to D"“/_m“ﬂ(Rd). Moreover, for anyp > 1 and1 < n < k — m, there exists a constaut,, (J, p),
depending on\,,, n, p, T and the vector field%y, ..., Viy only, such that for albv, ..., a, € AY
and all (t,z) € [0,T) x R%,Did | get the exponents right below ?

View - - Vit )| < Cu(8,p)(T — 1)~ =27 /2021 L B [|a(x5_,) ] 7],
Viaws -+ Viaw Vit 2)| < Co(6,p)(T = )=~ 2021 4 B[ h(xg_ ) 7#] 7],
with 1 < ¢ < N. Moreover, the derivative pair process
(Y = (Vau] -+ Vi (6 X7), Z8 = (Vo] - - - Vi) Vi) (8 XT))1<i<N) o<y
satisfies the generalized BSDE
Y = (s — ) 1o2R [u(s, X7)67 (6)(s — t, X7)| 7]

+E /s (Fi(r,z) + Fa(r,a)Y,™ + F3(r,2) Z25) | F |,
46 -t
(o) 7 = (s — t)”WHDP2E [u(r, X7)07 [)(s — t, XT)| F]

VR / (r— 1) Y2(Cu(t, r, ) + Calt, r, @)Y, + Ga(t,r, 2) Z%) |
t

witht < s < T, the coefficients satisfying the same properties as in EHmed.

5. COUNTER-EXAMPLES

We here provide two counter-examples:

(1) The first example is driven by the one-dimensional Laplagerator and by a discontinuous
boundary condition. The operator being uniformly elliptitheorem 4 says that the decay
of the derivatives of order less than 3 is the same as in tealdinase and that the decay of
the derivatives of order 4 is almost the same as in the linese,ap to a small correction of
the exponent. On the opposite, Theorem 4 suggests that ¢tag déthe derivatives of order
greater than 5 might be worse. For a specific choice of the deyncondition and of the
nonlinear term, we show that the decay of the derivativesrdérogreater than 5 is indeed
worse than the corresponding decay in the linear settings filus sounds as a confirma-
tion of Theorem 4: order 5 appears as a threshold above wihéHdcay of the derivatives
deteriorates because of the nonlinearity.
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(2) Inthe second example, we investigate a nonlinear emjudtiven by a weak Hormander op-
erator of dimension 2, close to the hypoelliptic Kolmogooperator. Basically, the operator
is driven by two vector field$, andV; such thaf{ Vi (z), [V1, Vo](z)} spans the whole space
at anyz € R2. Theorem 4 says that the decay of the derivatives of orderthem 2 is the
same as in the linear case but suggests that a threshold exightit order 3. For a suitable
boundary condition and a suitable nonlinear term, we shawttie decay of the derivatives
of order 3 is indeed worse than in the linear case. In othedsyadhe concomitancy of the
nonlinearity and of the degeneracy here modifies the thiésitmve of which the decay of
the derivatives deteriorates.

In both cases, we show that the right exponent for the dectheaferivatives exactly fits the exponent
suggested by Theorem 4, up to the additional correctitderein. This may be seen as a justification
of the title of the paper: “sharp estimates”.

5.1. Counter-Example in the Linear Setting. In the whole subsection, we assume that N = 1
and we choose a smooth functigfrom R to [—1, 1]. By Theorem 4, we know that the solutiarto
the nonlinear equation

1
(47) drult,x) = 50; jult, ) + f(Osult, @), t€(0,1), wER,
with u(0, z) = 11,0y as boundary condition satisfies

or  pult,z)] < Cpt™2, 1€ (0,1, 2 €R, n=1,23,

where(C,, is some nonnegative constant. Moreover, for any 0 and anyn > 4, there exists a
constantC), (6) such that

07 u(t,2)| < C,(0) "0, te(0,1], z € R
5.1.1. Diffusive Scaling.Having in mind to take advantage of the diffusive scaling,tien set, for
any integemp € N*,
Up(t, 33‘) = u(p_2t,p_1x),
so that, for any € (0,1), z € R,

|a:?,...,mu;l)(t7$)| < Cnt_n/2> n=1,23,

48
(48) 100 up(t,2)| < Cr(9)p™ 4270 5> 0, n > 4.
and
1
(49) Orup(t, ) = §8§,xup(t,w) +p‘2f(p8xup(t,x)), te(0,1), z e R.

In particular, the function§d;u,,),>1 are uniformly bounded in compact subsetg®fl] x R, so that
the functions(«,),>1 are uniformly convergent on compact subset&lol] x R towards the solution
of the linear equation

1
Opup(t,z) = iagxuo(t,w), t € (0,1], x € R,
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with u(0, z) = 14,0y as boundary condition. That is,

+o00
ug(t,z) = (27Tt)_1/2/ exp[—y?/(2t)]dy.

—T

We first specify the rate of convergence:
Lemma 8. For any (¢,z) € (0,1] x Rand anyp > 1,

lup(t, z) — ug(t, )| < p~ 2, [Opuy(t, z) — puo(t,z)| < Op~2,
for some universal constant > 0.

Proof. It is clear that

t
up(t, ) = uolt, z) + p~2 /0 /R £ (pOauy(t — 5,9)) (s, @ — y)dsdy,

whereg is the standard Gaussian kernel, hence the first inequabitget the second inequality, we
differentiate the above formula to obtain

t
|Ouup(t, ) — Dyuo(t, x)| < p~? /0 st /R |F1(POaup(t — 5,9)) |z — ylg(s, x — y)dsdy.

This completes the proof. O
The rate of convergence of the second-order derivative isdifferent:

Lemma 9. There exists a constaft > 0, such that for anyt, z) € (0,1] x R,
102 o (up — wo) ()| < Cp e,

Proof. We write

(up — 1) (t, ) = /R (up — ) (£/2, % — 1)g(t/2,y)dy

t/2
+p 2 /O /Rf(p@zup(t —5,9))9(s, x — y)dsdy,
so that (differentiating once, making a change of variabl# differentiating once again)
82 o (up — uo) (¢, 2)

v /R Dt — 10) (t/2,) (& — 1)g(t/2, — y)dy

t/2
-p /0 st /Rf(paxup(t — 5,9)) 07 yup(t — 5,y)(x — y)g(s, v — y)dsdy.
Therefore, by (48) and by Lemma 8, we can find a constgrduch that
102 2 (up — uo) (t, )| < Ct~12p~2 4 Cp~ 112,

This completes the proof.
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5.1.2. Sharpness of the Bounds of the Derivativége are now ready can to complete the analysis of
the first counter-example. By differentiating PDE (4A)mes and by applying the chain rule formula
(or so-called Faa di Bruno’s formula),

atax,,,,@ug(t, x)

1
— 5(%8507___7 u”+2(t x)

n
+p—2zﬁnymly7mnpm1++mnf(m1++mn pa up t :E H 8J+1 )mj7

for some weight$5,, m......m, )n,ma....m., the sum running ovet-tuples(m;)i<;<, such thatn; +
2mg + -+ +nmy, = n.
By Itd’s formula, we deduce for a given stopping timéess than some prescribed réak 1/2,

am,...,xug(l, —1)
= E[am,,xug(l -7, —1+ WT)]
Y Buampan B [ [P (50,0, -1 1)
(50) 0
xHaﬂ“ p(1—s,—1+ W)™ ]ds
= E[0r,..atp (1= 7, —14+Wy)] + Z B iy ™ T 2TE)

0,1,

where(W;):>o stands for a one-dimensional Brownian motion.

Below, we choose- as the first exit timer = inf{t > 0 : [W;| > 0p~'} A (§*p~2), so thatr
has the same law &p~2(p A 1), wherep stands for the first exit time of a Brownian motion from
(—1,1). We deduce that’p~?P{p > 1} < E(r) < 6*p~2E(p).

By (48), for everys > 0, we can find a constairdf; such that

n,mi,...,;Mn

n
pmte +mn—2|T(P | < 0592p6_4p2?=1 mj Hp(j_3)+mj

51
(51) < 0692p5—4p2y:1mjpzyzl(j—?,)mﬁZ?:l(3—j)m]

— C59p"+5—4p_22?:3 mj—ms
(Keep in mind thaE?zljmj = n.) Therefore, whem; < n (i.e.m; > 1forsomei € {2,...,n}),

. 4—n_mi+---+m _
lim sup p*~"p™ ”\ nml’ mn] 0.
p—-+o0

Now, whenm = n,

3Ty yeeey

p"_2T7(Lp2L 0..0= p"_ZIE/O f(") (p@wup(l —s,—1+ Ws)) (8:%71,%(1 —s5,—1+ Ws))nds.
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By Lemmas 8 and 9 and by Taylor’s formula, we can find a constant 1 such that

—2(p)
pn Tn,n,O,...,O

— p" 2 / F™ (pByuo(1 — s, —1 + W) (92 yuo(l — s, —1 + Wy))"ds + Op(p"*)E(r)
0

> p"2E(1)

2, n—4 (n) _ : 2 _ n n—>s
> Co%p |m}2f09[f (pO2uo(1,—1) + z)] ‘x@g@[%,xw(l, 1) +x]" +0p(p" ™),

whereO,(-) stands for the Landau notation (@agends to+oo).
We now compute

Oyug(t,w) = (2mt) ™2 exp[—a®/(20)],
0, puo(t,w) = —(2m) 7273w exp[—a?/ (28)),

so that
Opug(l,—1) =1 > 0, 07 yug(1,—1) = ¢z > 0.

Choose nowf (z) = cos|(2r/c1)z — n(w/2)]. Then,f (z) = (27 /c1)™ cos|(2r /¢1)z], so that
f(") (p(‘)xuo(l, —-1)+ ac) = (2w /c1)" cos[(2m/c1)x] > (2w /c1)" /2,
for (2w /c1)|x| < 7/4.
Therefore, foW small enough,
pn_zTr(L?y)L,(),,,,,o > C3pn_4 + Op(pn_5)>
with ¢3 > 0. Therefore,

(52) Eﬁi{}f [p4_n(pn_2T7(LI,2,07...70

)] > 0.
5.1.3. Conclusion. Assume now that, for some> 0 andn > 5, the bound
0y gu(t,r)] < Cot 249 1 €(0,1], z € R.
By scaling,
|00 up(t, o) < Cop™ 7204720 e (0,1], z € R
Plugging the above inequality in (50) and multiplying (5@)73~", we understood from (5.1.2) that
all the terms bUP4_"(P"_2T$)L,o,...7o) vanish ap tends to+co. By (52), there is a contradiction.
O
5.2. Counter-Example in the Degenerate Setting.Consider now the following family of PDESs:

1
(83) uup(t, 2,y) = 507 sup(t, 2,y)+0(@) Dy (t, @, y) + f (Deup(t 2,9)), >0, (w,y) € R,

with u,(0,z,y) = sign(z)sign(y) + Asign(x + 1/p) as boundary condition, the functiofibeing
bounded and the parametebeing real. Bothf and\ will be chosen later on.

In Eq. (53) abovey stands for a bounded smooth function with bounded derizatdf any order
such thatp(0) = 0 and’(0) = 1. In particular, Eq. (53) is degenerate but satisfies weakitdader
condition sinced,, ()0 jz—0 = ¢'(0)0, = 9,. It may be seen as a nonlinear generalization of
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the so-called Kolmogorov hypoelliptic example: in the Earpaper [13], Kolmogorov noticed that
the operator driving the nonlinear equation above admitsthooth density of Gaussian type when
¢(z) = z, despite the degeneracy of the diffusion matrix. (Below,dperator(1/2)92 , + x0, will

be referred to as Kolmogorov operator.)

5.2.1. Gaussian Fundamental Solution whefr) = z. In what follows, we will choosep(x) very
close tox in the neighborhood of zero so that the derivatives of thatgol « to (53) be close to
the deratives of the solution to (53) but driven by the Kollmay operator. (Obviously, we cannot
choosep(x) = x, z € R, since it is not bounded.)

Kolmogorov operator is of great interest since its fundalesolution is explicitely known. It is
given by the Gaussian density associated with the covaiaratrix of the two-dimensional Gaussian

process
t
Gt = <Wt,/ Wsd8> s
0 t>0

(W1)i>0 here standing for a one-dimensional Brownian motion.
The covariance matrix df,, at a given timeg > 0, reads

K= ( t2t/2 g?g > ‘

Therefore, the kernel of Eq. (53) wheriz) = 2, may be expressed as

31/ 52 @) )

t = ——t I

50 gtz y) = —s exp( 5 )
31/2 22 2

mt?
That is,u, has the form

up(t, x,y) = /2 up(0, 2",y )g(t,x — o',y + to — y')dz'dy

R
t
+ / f(axup(t - s,x/,y/))g(s,w - wlay + sz — y/)dw/dy/a > 07 T,y € R27
R2 J0O

whenp(z) = =.

We observe that the covariance matrix has two scdlgg:stands for the exponent of the fluctua-
tions of the coordinate: and3/2 for the exponent of the fluctuations of the coordingtd /2 may
also be understood as the half-length of the vector figld:) = 1 and3/2 as the half-length of the
vector field[V7, Vp], with V = z0,.

5.2.2. Rescaling Argumenttollowing the previous subsection, we consider a rescaesion ofu,,
according to the scaling exponerity'2, 3/2). We set:

1

p(t, 2, y) = up(p~2t,p 'z, py), t>0, z,y €R,

foranyp > 1.
By Theorem 4, we have
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Lemma 10. There exists a constant, independent of, such that

|01ty (t, 2, y)| < CtTV2, 18y (t, z,y)| < O3, |92 iy (t,2,y)| < CtT

|8g,yap(tv$ay)| S Ct_27 |8§ ’[Lp(t7$>y)| S Ct_5/27 |8§ ﬂp(t7$>y)| S Ct_7/27

Y Yoy

xz,y € Randt > 0. Moreover, for anyy > 0 and anyn > 3, there exists a constan,, (0),
independent of, such that
’857"'7y@p(t, z, y)‘ < Cn(5)pn_8/3+26t_2n+4/3_6,

O3 gt y)| < Co(@)p T/ 200,

055yt 2, y)| < Cu(8)p" 2204200,

z,y € Randt > 0. The last inequality above is also true wher= 2.

We now investigate the limit behaviour 6f, asp tends to+-co. The equation fofi, has the form

. 1o . . _ .
atup(t7$7y) = iaixup(tvl'vy)+p(p($/p)ayup(tv$7y)+p Zf(pawup(t7$7y))v t > 07 x,y € R)
with 4,,(0, z, y) = sign(z)sign(y) + Asign(z + 1) as boundary condition. Below, we sg0, z,y) =

sign(x)sign(y) + Asign(x + 1). (That is, we get rid of the indexin @,(0, -, -) since it is independent
of p.) Sincep(0) = 0 andy’(0) = 1, the limit is expected to bé,, solution to the PDE

1
(55) 8t'&0(t7 €, y) = gag,x'&()(ta €, y) + .Z'ay'll()(t, €, y)7 t> 07 T,y c Ra

with (0, z,y) = u(0, -, -) as boundary condition. It is plain to see that Eq. (55) is yweled and
that the solutioni, writes

ot 2, y) = / (0,27, )g(t,z — oy + bz — o )da'dy
R2

with ¢ as in (54).
As a corollary, we deduce

Lemma 11. Choosep(z) = x(1 — exp(—z?)), z € R. Then, for anyl’ > 0, we can find a constant
C' such that

|ty (t, 2,y) — ot z,y)| < Cp 272 (1 + |2]*), t€(0,T)], 2,y € R.

Proof. We write,, as the solution of the PDE

. 1 . .
Oty (t,z,y) = §8£7xup(t,3:,y) + 20,0, (t, x,y)

+ (pe(x/p) — )0yt (t, 2, y) + 2 f (Ouip(t, z,y)), t€(0,T], z,y €R,
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so that
Up(t, x,y) = o(t, z,y)
t
- / / (po(a’/p) — a0yt — s,2",y ) g(s,2 — 2,y + sz — o )da'dy ds
0 R2
(56) .
+p? / / f(poya(t —s,2',y))g(s,x — 2,y + sz — ¢ )da'dy'ds
0 R2
= do(t,z,y) + RV (t, z,y) + RO (t,2,y).

By boundedness of, we can find a constart, independent op andT’, such that R (¢, z, y)| <
Cp~2,t € (0,7T], z,y € R. (The value ofC may vary below.)
Turn now toR™W (¢, z, ). By integration by parts,

1
RV (t,z,y)

t
= /O { </}R2 (pp(2'/p) — ') Oyt (t — s,2', 4 )g(s,x — 2,y + sz — y')dw’dy’>

1/2

1/2
X (/ (p‘p(:L"/p) - gj/)ﬂp(t — 8, ;U/7 y/)ayg(s’ T — :L'/, Y+ sz — y/)dm/dy/> }ds
R2
t 1/2
- /0 { </]R2 (RSt — 5,2, )g(s, 2 — 2y + sz — y/)dx'dy’>

1/2
- (/ (31(71,2) (t—s,8,2,y)g(s,x — 2’y + sz — y/)d:c’dy/> }ds,
R2

By the choice we made fas, [pp(x/p)—z| < |z|[1—exp(—22/p?)] < Cp~?|z|3, z € R. By Lemma
10, we deduce thaR\" (t — s, 2/, y/)| < C(t — s)™3/2p~ 22’3, 0 < s < t < T, 2’y € R, for
some possibly new value 6. Similarly, by (54),|R$" (t—s, 2/, y/)| < C's~3/2p=2|2'|3 (s~ /2|2 —
z|+s532y+sz—1]),0< s <t<T, 2,y € R. Performing a change of variable in the integrals
above, we obtain

t
ROt 2,9)] < Cp2(1 + \xy?’)/ s34 — sy ds < Cp2(1 + 2P V2.
0

This completes the proof.
O

As a Corollary, we deduce

Lemma 12. Choosep(r) = x(1 — exp(—x?)), z € R. Then, for anyl’ > 0, we can find a constant
C' such that

|0ty (t, ,y) — Butio(t, x,y)| < Cp 2t (1 + |zf*),
1O i (£, 2, y) — Dyt (£, 3, y)] < Cp~ 't 22 (1+ |af),

t>0,z,y € R.
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Proof. We consider a variation of (56).
'&P(u .Z', y)

:fbo(t :E,y)—l-/ [up(t/Q x’ y) (t/2 z’ y)] (t/2,33_$,7y+(t/2)$—y,)dmldy,
t/2
(57) / / po(2'/p) — ') Oyt (t — s,2",y )g(s,x — 2/, y + sz — ¢/ )da’dy' ds

t/2
+p- / / f(poya(t —s,2',y))g(s,x — &',y + sz — y)da’dy'ds

ao(t,z,y) + SOt z,y) + S (t, 2, y) + SP (L, 2,y).

Convergence ad,u,. We start withaxsl(,l).
1

0,55 (t, 2, y)

= [Tt/ )~ o(t/2.0' )]s [0t/ — 'y + ¢/ — ooy
so that

0.5 (t, 2, y)| < Cp~2t~'/? /RQ{G + P) (e — 2|+ 7Py + sz — ¢))

(58) x g(s,x —a',y+ sz —y') }da'dy
< Cp2tHL A+ Jzf).

By a similar argument and by Lemma 10,

0:82 (t,2.9)| < O / / /[P s — /| + 57y + sz — o)
(59) X g(s,x — ',y + sz —y')da'dy'ds
< Cp 2t (1 +|af).
The same method applies.ﬂé?’) (t,z,y). Itis plain to check that
(60) 0.5 (4,2,9)] < Cp2
By (58), (59) and (60), we complete the proof of the convecgenf o, i,,.
Convergence af? i,. We start with@iysl(,l). Following (58),
|02,y SSV (t, 2, y)|
< Cp A2 / {A+ 2P (e — 2|+t 2y + sz — o)) + 177
(61) R2
X g(s,xz—a',y+sz—y)}da'dy
< Cp~2t7°2(1 + |z?).
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To deal witho, yS(2) (t,z,y), we perform a change of variable:
Oy S$2 (t, 2, )

t/2
/ / po(a [p) — )05 ip(t — 5,2’y + sz — ) 0u[g(s,x — 2,y )|da’ dy'ds,
so that, by Lemma 10,
|02, S$2 (8, 2, )]

t/2
(62) < Oty / / 2P (s e — 2| + 52y Ngls, z — oy )da'dy/ds
]R2

< CtPp (1 4+ |xf*).
By a similar argument,

OLyS()t:Ey // {f (pOytp(t — 5,2,y + sz — )

X 82 Up(t — s,2'y + sz — ' )0x[g(s, 2 — o', y)] }da'dy,
so that, by Lemma 10,

t/2
|00 S5 (8,2, y)| < Cp‘lt‘2/ / (s7z — | + 52|y Ng(s, @ — 2’y )da' dy'ds
(63) ’ o Jre
< Cp 2.

By (61), (62) and (63), the proof is over.
O

5.2.3. Criticallity at Order 3. We now investigaté?jy ,Up. Specifically, we assume that it satisfies

the decay|d? , , iy (t, 2, y)| < C(6)t~9/271/3+9 for somes > 0. We will establish below a contra-
diction showing that the order 3 inis critical.

In what follows, we denote bYth’p,Xf’p)tZO the two-dimensional process associated with the
operator(1/2)8§,w + po(z/p)0,. Differentiating three times Eq. (53) w.rg, we apply 1td's formula
to (ayyy p(t — s,Xsl’p,XE’p))ogKt, t > 0 being given. For a stopping timeless thar, for #
small (in particularp < t/2),

857y,yap(tv xz, y) [62 v, y A ( - T, Xivp, XE,;D)]

+ pE / FO (pdyay(t — s, X2, X2#)) (82 iy (t — 5, X 1P, X2P)) ds
0

" 3E/ F (POsup(t = 5, X7, X39)) 0, iy (t = 5, X7, X3)
(64) ; |
X a%y,yﬂp(t — 8, XSLI” Xz’p)ds
+p—1E/ £ (pOyup(t — s, X212, X2P)) 0y gy lip(t — 5, X 2P, X 2P ds
0

— 1 2 3 4
- T;S )(t7$7y) +T]§ )(t733>y) +T;§ )(t7$7y) +T;§ )(t7$7y)'
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By Lemma 10, for any > 0, p=2/37903 i, is bounded on every compact subset®ftoo) x R?,

uniformly inp. Similarly, 9 , . i, is bounded on every compact subsef@f+oo) x R?, uniformly
in p. Whenr is the first exit time of a compact subset(6f +o00) x R?, T,§2) (t,z,y) andTISA‘) (t,z,y)
are bounded, uniformly ip.

By Lemma 12, the asymptotic behaviorﬂﬁ‘z) (t,z,y) is given by
(65) ngz)(th"y) :pE/O f(3) (pax'&()(t_ S7X87}/t9)) (ainO(t - SaXSJX/S)):adS—i_OP(l)J

whereO, (1) stands for the Landau symbol and denotes a bounded sequence i

Assume now that we can firid> 0 such thaiiio(t,0,0) = 92 ,iio(t,0,0) = 83, ,io(t,0,0) =
0. Choose therX, = Y, = 0 andr as the first exit timer = inf{t > 0 : |X;| > op~ /3, |Y;| >
03p~1} A 9%p~2/3, Differentiating PDE (55) w.r.tz, we also havé)? (t,0,0) = 0. Performing a
Taylor expansion in (65), we obtain 7

2
T (t,2,y)

66 T
©8)  _ pE /O F® (98,10 (t,0,0) + 00,(1)) (82 ,0(t,0,0) + B0, (p~/%)) ds + O,(1).

In particular, there exists a constant> 0, such that, for any powey > 0,

lim infp_‘STISQ) (t,x,y) > liminf{pl_‘sE[T] [f(?’) (p(‘)x?lo(t, 0,0) + x)]
p——+00

inf
p—-+o0 j21<~0
©D inf (02, o(t,0,0 ’
X ‘xl‘r%w[( .y lo(,0, )—l—w) ]}
Come now back to (64). We claim that the boufigl, , i, (t, z,y)| < Cp"t=9/27"2t > 0,2,y € R,
cannot be true if the infimum limit below is infinite:
(68) liminf{p' "E[r] inf [f® (pd,io(t,0,0) +z)] inf [(82,a0(t,0,0) +z)°]} = +oo.
p—+oo |z[<~0 |z[<~0 ’

Indeed, by (67), (68) impliekim inf,_. o p~"T\> (t,2,y) = +oo. Multiplying (64) by p~", we
then obtain a contradiction.

In particular, the bound®; , ,up(t, z,y)| < Ct=%/21/2,t > 0, 2,y € R, cannot be true if (68)
holds true. Indeed, i3,  u,(t,x,y)| < Ct~%>7/2, then

105 tip(t, 2, y)| = p 0|05, jup (02t p e, pBy) | < Pt >0, 2,y

5.2.4. Lower Bound forfE[7]. It now remains to bound(7) from below. Definer’ = inf{t > 0 :
|X}"P| > 6p~1/3}. Since

t
|X7P| = ‘p /0 p(X37/p)ds

t
< / |X2P|ds, t>0,
0
we obtain that
‘Xfﬂ < Htp_l/g, t< 7.

In particular,
(XPP| < 0%p, t < nepR
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Therefore,
E[r] > 92]P’{7" > 92p_2/3}p_2/3.

Sincer’ ~ 6%p~2/3p, wherep is the first exit time of a Brownian motion froif+-1, 1), we deduce
that

(69) E[r] > 0’P{p > 1}p~?"
Therefore, (68) holds fo < 1/3, provided

(70) hgig’{'zl'gg@[f( (pdr1o(t,0,0) + z)] |mi|1%f€[(8 ,Uo(t,0,0) +x) |} >o.

That is, the boundd , ,up(t, z,y)| < Ct=9277/2 ¢ > 0, 2,y € R, cannot be true fon < 1/3.
This exactly fits the threshold in Theorem 4.

5.2.5. Computation of the Derivativedt now remains that to find > 0 such that,a,(t,0,0) =
92 ,1o(t,0,0) = 92 , ,io(t,0,0) = 0 and to check (70).

We first notice thatiy can be splitted into term&, = zl(()l) + )\a(()2), 11(()1) andzl(()2) both satisfying
Eqg. (55) but with different boundary conditions:
(0, 2,y) = sign(x)sign(y), 4 (0,2) = sign(z + 1).

We emphasize that
~ (1) - ~(1) roo W o /
uO (t,m,y)— uO (O,x,y)g(t,w x,y—i—tx w)dx
R2

Sincea(()l)(o —z',—y) = (() )(0, 2',y'), itis plain to see, by change of variable, that

72(() )(t —r,—y) = u((]l)(t,:n,y), t>0, z,y € R.

Q)

By differentiation, we deduce that,a; ’ (¢,0,0) = 93 , xA(l)(t, 0,0) = 0.

We now compute

89611(()1)(15, x,y) = 2/ sign(y +tx — v )g(t, =,y )dy' + 2t/ sign(z — 2')g(t, 2’y + to)da’
R R

. . +tx
82 (1)(75 x,y) =4g(t,x,y +tz) + 2t/ﬂ£s&gn(:p - :p’)(—12yt—3 —|—6t2)g(t 2y +tx)da'.

In particular,

8:%73/72(()1)(@ 0,0) = 4¢(t,0,0) + 12t~ / sign(—z')2'g(t, 2, 0)dz’ = ¢1t72,
R

with ¢; > 0.
We now |nvest|gatm(2)( t,x). Itis given by
\2
WP (t,x) = (2m) 12 / sign(z — 1'% + 1) exp(— (“2)
R

)d:n’.
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Therefore,
1 2
Oty (t,x) = (2m) 72472 eXP(—%)
1 2
32,95@(()2) (t,z) = _(27T)_1/2t_3/2(x +1) exp(—%)
1 2
3 i1 (t,w) = (2m) T2 (72 (2 4 1)? — 72) exp(— @ ; ) )-
In particular,
92, (1,0) = —¢, < 0
aim,mﬂ(()z)(l, 0) =0.
Finally,

02 4iio(1,0,0) = 82 ;a8 (1,0,0) + 202 4l (1,0) = 02 a5 (1,0,0) + Ac,
(71) &, 00(1,0) = 83, aY(1,0,0) + A2, a8 (1,0) = 0.
92 io(1,0,0) = 82 al (1,0,0) = ¢; > 0.
Choose nowA so thataima(()l)(l, 0,0) + Aca = 0. (This is possible since, > 0.) For this choice,
the required condition8,éio(1,0,0) = 92 ,iio(1,0,0) = 93 , ,io(1,0,0) = 0 are satisfied.)
5.2.6. Conclusion. We now choosd:
f(z) = —sin(272/|0,10(1,0,0)]), z€R, if O,ti0(1,0,0) # 0,
f(z) = —sin(z), z€R, ifdya0(1,0,0) = 0.
In particular, there are two cases in (70)0}fiy(1,0,0) # 0,

‘ i‘réfg[f(?’) (p9riin(1,0,0) + 2)] > (27/|0,80(1,0,0)])° ‘ i‘réfe[cos(jﬂﬂp + 272 /D3 1i0(1,0,0)) |
x| <y x| <y

— (27/]8x10(1,0,0)])* ‘xj‘]%t;e[cos@wx/wxﬂo(l,0,0)|)].

(72)

Choosingyf < |0,10(1,0,0)|/4, we then obtain

(73) | i‘gfe[f(?’) (pDriin(1,0,0) + z)] > 2712 (21/|8,1i0(1,0,0)])°.
x| <y

If 9,i0(1,0,0) =0,

‘xi‘]%fw [£®) (pdsin(1,0,0) + z)] = ‘xiéfw [cos(x)].

Choosingyf < /4, we then obtain

(74) | ilgfe[f(?)) (pdyin(1,0,0) + )] > 2712
TIXY

Examinate now the second term in (68). Fér< c; /2,

(75) ‘xi‘g 9[(8§7yﬂ0(t, 0,0) + 2)°] > (1/2)°.
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From (69), (73), (74) and (74), we deduce that (68) holdswritie, < 1/3. This shows criticallity
at order 3.

5.2.7. Generalization at any Ordet > 3. Following (67), we can generalize the result to any order
n > 3. The point is to differentiate (53) times w.r.t.y and to apply Itd’s formula as in (64). We then
obtain

03, p(t, 2, y)

- E[ay Y,y p(t - T, Xi’p7 X72'7p)]

+p_2 Z6n,m1,...,mnpmlerer"E/ [f(m1+"'+m")(p3x?lp(t _ S,X;’p,Xf’p))
(76) 0

H 87271 " »(t—s, Xl’p Xz’p)) ]ds

= E[0] ) yip(t =7, X77, X77)] -+ZZI5mmhnwmﬂf“+”+mﬂ‘?ﬂﬁhhmmm-

Following (51) and applying Lemma 10, for any> 0, we can find a constart; > 0 such that

mi1+-+mp

’ < C5E(T)p6—2p2?:1 m; Hp(j_7/3)+mj
j=1
< CgE(T) 0—2 Z?zl mjpzz'l:1(j—7/3)mj+m2/3+4m1/3

n m17 -Mn

p

= GHE(r)p"+ =2 (/) D s,

Keeping in mind that < p—2/3, we deduce that

n+8/3 mi+-- +mn—2| | =0
nm1, »Mn

lim
p—rtocl

whenm < n.
Whenm, = n, we can follow (66), (67) and (69). We deduce

lgglilgp_wg/gﬂ(fl),o,...,o >0,
provided
77 liminf inf [f (pdyao(t,0,0) + inf [(0y.4t0(t,0,0) +z)"] > 0.
(77 liminf inf [f*(pOrio(t,0,0) +2)] inf [(ratio(t,0,0) +2)"]

Following (72), (77) holds true for

f(2) = cos(2mz/|0,00(1,0,0)| — n(7/2)), z€R, if dyip(1,0,0) # 0,

f(z) =cos(z—n(r/2)), z€R, ifdin(1,0,0) =0.
Going back to (76), we deduce that the bound

05 iip(t,z,y)| < Cpn=8/3704 T30y 5 0, 2,y € R,
cannot be true for some> 0. By scaling, we deduce that the bound
0y yup(t, 2, y)| < CtHAB+ 450, z,y,€ R,

cannot be true. This shows sharpness of the bound in Theonenid current example.
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0

5.2.8. Crossed DerivativesWe here show that the same method applies to crossed deriafio
simplify, we investigated? . u, only.

z,Y,9,Y
The bound given by Lemma 10 reads
(78) \8§’y7y’yﬂp(t,m,y)\ < Cy(8)p?/3H2y16/3=0 4 >0, x,y € R.

for any§ > 0. Below, we show that it is sharp, up to the additional expoiien
The strategy is the same as above and consists in diffeliagti@3) once w.r.tz and three times
w.r.t. y. Applying It6’s formula, we obtain« standing for the same stopping time as above)

Dryyylip(t 0, y) = B[Oy yip(t — 7, X777, X2P)]

+p2E/ [f( )(pi? up)(‘)xxup((?z 7 ) ](t—s,XSl’p,Xf’p)ds
0

+ 3PE/ [f( )(pa up)ax 2yl (8§,yﬁp)2:| (t—s, X;7p’ ngp)ds

/ p@ up 8 82 i 8xyyup] (t—s,Xsl’p,Xf’p)ds
(79) —|—3E/ p@ up) O xxy aiyyA |(t — s, X2P, X2P)ds

+ 3E p@ up 8 a;*myy ]( t—s, XP, X2P)ds

\

—I—E/ [f()(pﬁxup)a 8§yyy ](t—s,Xsl’p,Xz’p)ds
0

—l—p_lE/ [f (p(? up)(‘)xx’yyy ](t—s,X;’p,st’p)ds
0

=E[0; ey lp(t — T, XHP, X2P)] + Tlgj)(t, x,y).
j=1..7

Keep in mind thaf£(7) < p~2/3 A (t/2). By Lemma 10, we obtain, for any> 0,

T (¢, 2, y)], | T (t x y)! < cp'l?,
T t.x <C
(80) T (8,2, y)| p-
TP (t,2,y)], | T (¢, 2, y)| < Csp~2/3F9,

T30 (¢, 2, )| < Csp’,
the constant§’ andC's possibly depending of (As abovey is taken ad below.)
We then focus orTISl)(t, x,y). Following (65),

TV (t,2,y) = p’E /0 [F D (p8yt10) 82 410 (82 10)°| (t — 5, X 1P, X2P)ds + O, (p*/?).

As above, we choose= 1 andz = y = 0. We then expand the right-hand side above by Taylor’'s
formula. The terméd, tio(1—s, X5, X27))o<s<r and(92 iig(1—s, Xs 7, X37))o<s< is expanded
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as in (65). The big deal is to expatd? o (1 — s, X5, X27))o<s<,. By It0’s formula,
92 plig(1 — s, X )P, X2P)

S
= 6371&0(1’ 0,0) + / [_a?,w,xﬂo + (1/2)6;1,93@,93@0 + Xrlmaim,y’fbo] (1—mr, X&’p, Xf’p)dr
0
S
+/ D 4 2lio(1 — s, X7, X2P)dX )P
0

= 2 ,ii(1,0,0) + U (s) + UL (s).
Recall thatd? ,io(1,0,0) = 03, ,iio(1,0,0) = 0. (See (71).) In particular,

T 1/2
E|U(s AT)| < <E/ |a§7x7xao(1 - S,ngpjxf,p)fds) < %23,
0

Compute now
[_8133@@’&0 + (1/2)8;1,32,32@@0 + X%’pai,x,yQO] (1 - X}ﬁl” Xv%p)
= =02 yiig(1 — v, X}, X2P) — [fP (pOyti) 02 4] (1 — 1, X7, X2P)
- p_l |:f/ (paxa())a‘%’m’ma()] (1 -, X%’pa X?’p)
= —c1 +00,(p™ /%),

so that
UP(s) = —c1s + 030,(p~ ).
Finally,
E[|92 ,io(1 — s, X2P, X2P)|] < CO*p~ 23,
We deduce

1
TM(t, 2, y)
= p*(82 iio(1,0,0))°E / [£D (p0ytio(1,0,0) + pdi 4 4 21i0(1,0,0)(X2P)?)
0
X 02 Ll (t — s, X7, X27)|ds + O, (p'/?)

= p?(92 ,0(1,0,0))° fD (pd,n(1,0,0)) E /0 ’ 02 Jan(t — s, X 1P, X2P)]ds
+670,(0*) + 0, (p'7?).
In the end,
Tlgl)(t,x,y)
= —cst'p3 (D2 it (1,0,0))° FO (pDrito(1,0,0)) + 070, (p3) + O, (p'/?),

wherec, # 0 is independent of andp. As in (72), we can choosgso thatf ) (pd,iig(1,0,0)) # 0.
For# small enough, we deduce that

L —2/3(1
gglfg[p BT (t,2,y)] > 0.
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As above, this shows that the decaydgf, , ,i,(t, x,y)| cannot be of the form
|8:v,y7y,yﬂp(t> z, y)| S 04(6)p2/3_26t_16/3+67 t> 07 T,y € R.
That is, (78) is sharp up to the additiordatherein.

6. THE QUADRATIC CASE

Semilinear PDEs with quadratic nonlinearities appear imisg certain optimization problems
encountered in mathematical finance (see [11, 26]). Theiesponding BSDE (11) is said to be
guadratic if

(81) |ft 2y, 2)] < Ar(|2] + |yl +12%),

for some constani\; (independent of). The exponent 2 is the critical one for the growth of the
nonlinear term with respect to the spatial derivativess known that existence and uniqueness may
fail for higher exponents.

Below, we show how to estimate the first-order derivatives(of-) whenh is bounded and (¢, -)
is continuously differentiable. In particular we will assa that there existd; > 0 such that

(82) ||hHOO < Ala |vmf(t>x>y> Z)|> !Vyf(t,a:,y, Z)|> !sz(t,a:,y, Z)| < Al(l + |Z|)

Quadratic equations are known to be well-posed provideddhedary conditiork is bounded: we
refer the reader to the original paper by Kobylanski [12]siBally, the boundedness property ensures
that the martingale driving the BSDE (11) is BMO and thus oz gse Girsanov transformation to
get rid of the quadratic part of the equation: we refer to hhokeller and Muller [11] for a review
of this strategy. For this reason, the most natural appratthestimate the first-order derivatives in
L*> only. We remind the reader of the following (see e.g. Ankirethet al. [1]):

Proposition 6. Assume thaf81) and (82) hold, then(11) is uniquely solvable for any starting point
(t,z) of X. Moreover, the BMO-norm of the martingale part

H/(Z, dW) = sup E UT ngsm} 1/2,

BMO Stopping Times 7<T'
is finite and bounded by a constafit depending om\; and " only.

As announced, Girsanov assumption holds under BMO praperty

Proposition 7. For any progressively-measurable procésas)o<;<r with values inR™¥ such that

t
(Mt _ / O, dWs>>
0 0<t<T

has a finite BMO-norm, there exists an expongnt- 1, depending on the BMO-norm @¥/; )o<:<1
only, such that thd.¢" (P)-norm of the exponential martingale @¥/,)o< ;<7 is finite and bounded by
a constant, depending on the BMO-norm(df; )o<:<7 only.

We have the following:
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Theorem 5. Let (V;)o<;<y be N + 1 vector fields belonging t6*(R¢, R?) that satisfy the UFG
condition of orderm, wherek > m. Assume tha{81) and (82) hold and thath is a Lipschitz
continuous function. Then for artye [0,7"), V,u(t,-) exists as a continuous function ang, -)
belongs toD‘TH/Z(Rd). Moreover, for anyn < k — m anday,...,a, € A(m), there exists a
constantC), (p, h), depending o\, n, p, the Lipschitz constant éfand the vector field$p, ..., Vy
only, such that for all(t, z) € [0,T) x R,

Vi) - - - Vianu(t, 2)| < C(p, h)(T — t)3- e/
Viaay - - Vi Vitu(t, )| < Co(p, BYT — ) 121/2 1 < < N,

Proof. The proof is identical with the case whenis assumed to be Lipschitz. The reason is quite
simple: in this case, the gradient is known to be bounded yndamections of the space in terms of
the Lipschitz constant oi. This goes back to the work by Ankirchner et al. [1]. As congstpe,
guadratic growth does not affect the decay of the higherrateervatives, but only the dependence of
the constant,, (p, h) on the Lipschitz constant &f. O

The non-Lipschitz case is much more involved. Here we nodoigve available the result of
Ankirchner et al. [1] for the control of the first order detives. The first step is to obtain a bound
for the first order derivatives. Once obtained, the analgdimndled as in the non-quadratic case.

Lemma 13. Let (V;)o<i<n be N + 1 vector fields belonging t6*(R?,R?) that satisfy the UFG
condition of orderm, wherek > m. Assume that the boundary conditidris continuous thaf81)

and (82) hold. Thenu(t,-) belongs thi)’,/z(}Rd) and, for anyt € [0,T'), there exists a constaut,
depending om\;, n, T" and the vector fields only, such that, for ahy< i < N and any(t,z) €
[0,T) x R,

Viu(t,z)| < C(T — )~ /2.
Moreover, we can writéV;u(t, X))i1<i<n as

Viu(t, Xi') = (T — )" V2E[R(XF)6F [0')(T — t, X{')|F]

T
; E[ [ s =072 (o, X2 Y2, 220316 — Xl
t

where(¢")1<;<n denotes Kusuoka functions ify.

Proof. As above, we first mollify the coefficients to assume them itdin differentiable and truncate
them to make the derivatives of any order bounded. We neet@ phat in the mollified setting the
announced estimates in terms of the parameters, p andT only.

By Kobylanski [12], we know that: is bounded in terms ok; andT only. This point is crucial in
what follows. Let(X;,Y:, Z;)o<:<7 be a generic solution of the equation (11). The initial ctodi
of X will be specified later on. The basic argument then relies Girganov transformation. Indeed,
for a givena € A9(m), we can always write (keep in mind that the coefficients areath)

A[Via) (2)Y:] = —(V2(01), Via) () Xe)dt — (V, [(O1), Vi) (2)Yi)dt — (V- £(84), Vi) () Zu)lt
+ <Vv[a} (ZL’)Zt,dBt>,
where®; = (¢, X4, Y:, Z).
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Owing to Proposition 7 (or taking advantage of the mollifietting), we know that the martingale
process the Radon-Nykodym derivative

Z% — exp (/OT(sz(@t)vdBt> - %/OT|sz(@t)‘2dt>

defines a new probability measugeunder which the process
t
B, = Bt—/ V.f(O)dt, 0<t<T,
0

is a Brownian motion.

In particular, undef, the procesgVj,(z)Y;)o<i<7 admits the following semi-martingale decom-
position:
(83) d[V[a] (:L')Y;f] = _<V:Bf(®t)v V[a] (:L')Xt>dt - <vyf(®t)7 V[a] (:L')Y;f>dt + <V[a} (x)Ztv dBt>

Similarly, we can compute the Malliavin derivative Bf. (We refer to Pardoux and Peng [25] for
a review of Malliavin calculus for BSDEs.) For afy< s <t < T', we get, foranyl < j < N,

d[DIY}] = —(Vof(©r), DIXy)dt — (V, f(©y), DIYs)dt — (V.f(©y), DIZ;)dt
+ (DI Zy,dBy)
= —(Vaf(©r), DIXp)dt — (Vy f(©y), DIYs)dt + (DZ;,dBy),

with D!V, = ZJ as initial condition, so that

89 Divi=Z+ [ [(Vaf(0,),DI%,) + (9,700, DI ]ar — [ (D17, dBy)

Choosing(t, x) as initial condition forX', we deduce from (83) that

[ (T+t

Vie)(@)u(t, 2) = B Vig) (@) [u(—~, X5

Dt Xt o))

(T+1)/2
(85) *EQ/t (Vo f(O57), Vig () XE7) + (Vy f(O47), Via) (€)Y ") ] ds

= 51+ Ss.

Surprisingly, the most difficult term to handle in (85) is first one in the right-hand side.
The idea is to go back to the original measBrand then to perform an integration by parts under
P. To do so, we apply Proposition 20 in [7],

Vig (@) [u (T+t T+t)/2)]
N all 18 . T+t

Z Z t) el Qf[Mojé](%,x)/t ’ 0;]a;g](s —t,z)DJ Y(tTit)/zds

J=1 peAR(m)
wherea,, s stands for some Kusuoka function ity g — o)+ and M, g for (see Proposition 20 in
[7]) Mapg(r,z) = r=UdHIBD2 [ q; (s,2)a; 5(s,z)ds,r > 0. Itis the key point of the Malli—
avin calculus theory to prove that the mattiX, (r, ), gc 40 () IS invertible and thalM glsa
Kusuoka function irnC.
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We can plug the above expression into the right-hand sid@ant6 get

(DB vy () [u(T L X0 )]

ﬁ:z 7

BEAY(m)

T+t

dQ T—1t 2, N
E d]P’et (M ﬁ](T,x)/t 0f[a;g)(s — t,w)DgY%ds .

(86)

To simplify the integration by parts we will perform belowgwvrite first

(T+t)/ dQ ... 1., T —t % t,x
Zl/t E[p 0 (Mo 5l (w5 2)67 [a;p)(s — £, 2) DIY(g ) o] ds
p
(T+t)/ * T—1t * t,T
= Z / { E{0; (M, 5] (—5—> 0) 1367 [0 6](s — £, 2) DIV o | ds
(87) (T+1)/

T—1

+Z/ e[ Rt ) - e ) m))

x 0fla;)(s —t, gn)DsY(tTg:_t)/2 ds

=T +Ts.

Now, by the conditioning performed ifi, and by (84), we observe that

(T+t)/ _ ,
i= Z/ [ B {07 M ) () 307l s = 1. 0) 207 s

(88) + Z /

(T+t)/2 ) .
x ( [ a0, DXt + (9, 5(0)), Dm’mdr)] s
=T+ Tip-

(T+t)/ T

e[ et (A s — )

We analyze firstZ; ;. By the BMO condition, we know that the densiffQ/dP belongs to some
L7 (P) space, fog* > 1, the L¢" (P)-norm being bounded in terms of known parameters. Denoting
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by p* the adjoint exponent, we deduce that

T4
p*] 1/p*

(T+6)/2 * -1 T—t * t,x
<cr|| [ Bl AT R G - o), 2 as

T

(T+t)/2 _ p*/271/p"
<o -oe|( [ B ol el - tal i)

T—t *
@) P | Fo}t

<or- WE[ sup {67 (ML)

t<s<T

. (T+t)/2 p* /29 1/p*
X sup  sup [w:[aj,gxs—t,w)rp}( / \Zﬁ’x!2d8> ]
1<j<N t<s<T ¢

* 1, =1 4p*11/(4p* * *11/(4p”
< o -0 PEe M= )| TV sup B[ sup [67lajpl(s — )]
1<j<N t<s<T

By Briand and Confortola [4], the last term above can be bedrtdy known parameters. By Lemma
21in [7], we deduce from a Cauchy-Schwarz argument that

(89) IT11| < C(T —t)IBl2,

We analyze next’ ». We obtain by a similar argument that

(T+t)/2 ax11/(2q%)
ITy2| < C(T — t)<1+ll5ll>/2EK/ (1+ yzgvxP)ds) ]
t

. (T+t)/2 p*71/(2p*)
+O(T—t)1+”5”/2E[ sup  |D,Yb®|*P (/ (1—|—|Z§’m|2)ds> ]
t<s<r<(T+t)/2 t

< (T — 1)+l [1 CE[  swp | DSY:@‘@*]U(@*)}
t<s<r<(T+t)/2

We now use the connection betweBnY, and the derivatives ai(r,-). Indeed, from the proof of
Proposition 20 in [7], we know that

DIYE" = 3" Vig(u(r, X0")05 [aj4](s — t, )
yEAJ (m)
SinceT — r > s — t, we deduce

ITy2| < C(T — t)1+||ﬁll/2(3 _ t)(llvll—l)/2 S;@ UV[’Y]U(T7 x)\]
< (T — t)/2H8172 gy (T - 74)||’Y||/2‘Vmu(r7 )]
zeRd

(90)
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Finally, we handl€l’,. The idea is to represemt[ojg((T —t)/2,x) as a stochastic integral through
the Clark-Ocone formula:

oMY (ot ) = B[o L) (et

N ((T+1)/2
+ Z/ E{DJ[6;[M; 5] (——
j=17%

Lt o)A

-t )] |F }dBi.

From Kusuoka [18], we know that the Malliavin derivative Bf[0; [M é]((T —t)/2,x)] has finite
LP moments for any > 1, the moments being bounded by known parameters. We theel tolat,
for anyp > 1, there exists a constagt, such that

E[16; 1044 (C

Using the same strategy as above, it is therefore quite sitogrove that

(91) Ty < C(T = ) >0 sup sup [(T — )02V u(r, 2)].

t<r<T zeRd

By (86), (87), (88), (89), (90), (91), we deduce
T+t

1511 = ()P E Vg () [ X )1
<C+C(T—1)"? sup sup (T —r)””’H/2|V[,ﬂu(r,x)|].

t<r<T zeRd

o)~ (ot ) F ) < G 0,

(92)

We now handle5; in (85). By (15) and by Cauchy-Schwarz inequality, we obtain

T 1/2
|Sy| < C(T — t)WE[/ (1+ ]Zﬁ’x\z)ds]
t

(93) x (14 (T - )~ 1ell72 sup  sup (T - r)””’H/2|V[,ﬂu(r,:E)|])

t<r<T zeRd
<C(T- t)1/2(1 + (T — t)~llell/2 tilfT Sél[é)d[(T - r)””’H/2|VMu(r,m)|]).

Eventually, from (85), (92) and (93), we obtain

sup_sup [(7 — 1)1%1/2|Vpu(t, 2)]])
0<t<T zeRd

<C+TY? Z sup sup [(T — 7’)”VH/2WMu(T,x)H).
HEAY (m) 0<r<T zcRd

Clearly, this proves the result whdnis small enough, i.eT* less than somé. The result easily
follows for T' of arbitrary length by choosing as initial conditiart, -) itself and then by applying
the above inequality oft — 4, t]. O

The lemma gives us the gradient bounds for the higher ordaratiges as in the case whehis
Lipschitz.
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Theorem 6. Let (V;)o<;<y be N + 1 vector fields belonging t6*(R¢, R?) that satisfy the UFG
condition of orderm, wherek > m. Assume that the boundary conditidris continuous thaf81)

and(82) hold. Then for any € [0,T), u(t, -) is continuous and belongs IZD?“”(R%. Moreover,
foranyd > 0,p > 1 and1 < n < k, there exists a constaiit,, depending o, A,, n, T and the
vector fieldsly, . .., Viy only, such that for alky, ..., o, € A and all (¢,z) € [0,T) x R,

Mm] o Vigault, x)| < Co(T — t)_("_4)+/2_||°‘H/2_61{n24}
[Viea) - View) Vtlt, )] < Co(T — 1)~ /2D 2z
withl <4¢ < N.

7. CONNECTION WITH PDES
We here prove Propositions 1, 2, 3 and 4.

7.1. Proof of Proposition 1. We first assume that Proposition 2 holds true and then praitghie
unique solvability of the PDE (5) holds as well.

7.1.1. Solvability. We know thatu satisfies (1) in Definition 3. Taking the expectation in (12§
can even writ€[Y;"*] asE[h(X )] + O((T —t)/?), the Landau notatio®(-) being uniform w.r.t.
x on compact subsets, so thais continuous up to the boundary. (That is (3) holds as well.)

To prove that it satisfies (2), we shall apply 1td’s formule.(Proposition 2.) By Markov property,
it is indeed well known that?"* = u(T — s, Xﬁ’“"”), t < s < T. The dynamics given by Itd’s formula
and by the BSDE (12) thus coincide, that is, at tinad at pointz, the PDE (5) is satisfied.

7.1.2. Uniqueness.Uniqueness also follows from Proposition 2. Note first that martingale term
in Proposition 2 is local only. Anyhow, we can prove it to bew@etmartingale under the standing
assumption (see Subsection 2.1). Indeed, by the PDE steuétu any starting poinft, «) € [0,7") x
R, the pair(v(T — s, Xo™), Vo(T — s, Xe™))i<s<7 Satisfies the BSDE (12) dn, 7). By standard
Young's inequality, it is then possible to prove that

T
E/ V(T — s, X5%)|2ds < C' sup E[lv(T — s,Xﬁ,’m)F],
t t<s<T
for a constanC’ possibly depending ofi. By the growth property of, this proves that the martingale
term is square integrable. Moreover, by the continuity afp to the boundary, Eq. (12) is shown
to hold up to timeél". The initial condition of the diffusion being given, uniquess of the classical
solution easily follows by uniqueness of the solution toB&DE (12).

7.2. Proof of Proposition 2. Clearly, Proposition 2 is true whenis smooth. Whem is not smooth,

the point is to approximate it by a sequence of smooth funsfio,),~; such that

(94) Vr > 1, lim sup ||lup(t,-)—o(t,- V’ZTOO:O, lim ||v, —v VO’: oo = 0.
P, SO [op(t,-) = vt )llg(o,m, S v =0l a0,

Indeed, introducing the stopping timés, = inf{s > ¢ : |X§’“"’| > q})g>1 (inf @ = +o00), we can

apply 1to's formula to(u, (T — s, X7))o<s<r,a(T—<), € Standing for a small positive real, and then

let p tend to+oc. Property (94) then implies Itd's formula f@u (T — s, X'))o<s<r,a(T—<) UP time

74 N (T — €). Letting ¢ tend to+oo, this completes the proof.
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It thus remains to prove (94). Itis a consequence of

Lemma 14. For two smooth densities; and p,; overR andR?, both with compact support, and for
a solutionv to the PDE as in Definition 3, define for all> 0

)= [ olt = eso )l eoyn(s)paly)dsdy.
Rd+1
Then,

. £ N . V,2 — : g _ V071 —
Yr21 Jimy swp 07(E) = ol gm0 =0 BT = vl om0 = O
The proof of Lemma 14 is not so straightforward: it is posgubto the end of the section.
O

7.3. Proof of Proposition 3. We first assume that Proposition 4 holds true and then praighie
unique solvability of the PDE (5) holds as well.

7.3.1. Solvability. We know thatu satisfies (1) in Definition 4. To prove that it satisfies (2), stll
apply Ité’s formula (i.e. Proposition 4). To do so, we calesi{ as in Proposition 4. Basically, the
first point is to prove tha(tYst’f)tSng writes (u(T — s, Xﬁ’f))tgsg. Whenh is smooth, it holds true
since((}@t’x)tgsg)te[ojmgw defines a continuous flow (w.r.t the initial conditiaft see Pardoux
and Peng [25]. In the case whénis measurable only, things are less obvious simamight be
discontinuous. Nevertheless, it can be proven that),<,<7 and (u(T — s, X2*))i<.<7 coincide

by approximating the terminal condition: we can approxieiaby a sequence of uniformly bounded
smooth functions(h,),>1, converging towards. almost everywhere (for the Lebesgue measure).
Then, by standard stability results on BSDEs, it is known tha

(95) E[ sup [Y{ —un(T — 5, X09)*] < CE[|M(X7") — he(X7%)P],
t<s<T
whereu, is associated with the boundary conditibnby (13). Above, the right-hand side tend<)to
since the law otX%f is absolutely continuous w.r.t. the Lebesgue measureyamrhma 3).
Denoting byu the density of, we obtain by the same argument:

sup Ef|u(T — s, XE8) — (T - s, Xﬁ’f)m
t<s<T

(96) = Ssup /[Rd E“U(T — S, X;’x) - Ug(T — 8, X;’x)|2]'u(x)dm

t<s<T
<c /R CE[RCE) — he (X)) )

Again by Lemma 3, the above right-hand side converges @s/ tends to+oco. Comparing (95)
and (96), we understand that, for anye [t,T], vi¢ and u(T — s,Xﬁ’g) coincide. Since both
processes have a continuous version (see the statemeposRion 4), this means that the processes
(u(T — 5, X59)) < and (Y4) < o<1 coincide.
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Since processes are the same, we can compare the dynaric® efs, Xﬁ’f))gsg and(}@t’f)tgsg.
We then deduce that, for aly< ¢t < T,

s N
IE/ [V — 5 D2 V2u) (T — 7, X2)
t i=1

- f(T -, XU (T —r, X59), V(T — 7, Xﬁ’g))]dr =0, t<s<T.
Then, Point (2) in Definition 4 follows from

Lemma 15. Lets : [0,7] x R? — R be a function such that, for antye [0,7 — ], ¢ € (0,7T),
[o(t,z)| < Co(1+ |z|"), and, for anyt € [0, T),

Vs e [t,T), /¢rth)dr—o

Then,y is zero almost-everywhere for the Lebesgue measure.

Proof (Lemma 15). By Lebesgue differentiation theorem, for ah¢ [0,T"), there exists a Borel
subset\; C [t, T, of zero Lebesgue measure, such that fos @A N [t, T),

¢(37 y)d]P)Xz’E (y) =0.

R4
SettingN' = Uycqnpo,r)N:, We deduce, that for alb € NCA[0,7), forall t € [0,s)NQ, the
above equality holds true. In particular, we cantlégnd tos. To do S0, keep in m|nd thd{Xt el
absolutely continuous w.r.t. the Lebesgue measure wghR? — B[ (X, (y))]J 5 H as densﬂy

(X~! denoting the converse of the flow &f and.J the associated Jacoblan matrlx). there is no need
of continuity oy to pass to the limit in the above expression. We deduce tradlfs € NN [0,7),

/ Y(s,y)u(y)dy = 0.
Rd

Choosingu running over a countable total subset of densities with @ghpupport, we deduce that
1) is zero almost-everywhere.
O
It finally remains to check thai satisfies the boundary condition (3) in Definition 4. Sircis
bounded, the solution is bounded as well by the maximum principle (or equivalebihyGronwall's
lemma). Taking the expectation in (12), we then wiitg;"*] asE[h(X,")] + O((T — t)/?), the
Landau notatiorD(-) being uniform w.r.taz: on compact subsets. Therefore, witlas above,

lim [ |u(T —t,2) — ER(Xy")]|u(z)dz = 0.

=T Jrd
We deduce that
97) lim [ |u(T —t,z)— h(z)|p(x)dz =0,
t—T Rd
provided
(98) lim ‘E[h(X:tFx)] — h(z)|p(x)dz = 0.

t—T Jrd
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Convergence (98) holds true wharis continuous. When is not continuous, we can approximate it
by a smooth function i, (R%) and then apply Lemma 3. This implies (3) in Definition 4.

loc

0

7.3.2. Uniqueness.The uniqueness property is checked in a similar way. Givenlisn v to the
PDE with polynomial growth, the point is to prove that(7" — s,Xﬁ’g))tgng satisfies the BSDE
(12) (for the sam& as above). Basically, this follows from Itd’'s formula. Asthe continuous case,
the polynomial growth property together with the standiaguanption ory imply the martingale part
in the BSDE to be square integrable [onl’], that is

T
IE/ Vo(T — s, X4¢|2ds < +oc.
t

As a consequence, the martingale part

N S
(5 Fvetr o)
i=1"1t

t<s<T

has an a.s. limit as tends tol” as the limit of anL2-martingale. Similarly, by Cauchy criterion,

(/ (T =7, XS (T — 7, XE), Vo(T -, Xf:f))dr>
t t<s<T

has an a.s. limit as well. Therefore,(1" — s, Xﬁ’ﬁ))tSKT has also an a.s. limit astends tol". We
can identify it as arl.! limit:

E[Jo(T — s, X0%) = h(X7")[] < E[lo(T — s, X0%) = R(XE9)|] + E[|A(XF) — MXLEO)]].

By Lemma 3 and by (3) in Definition 4, the first term in the rigtand side tends tbass tends torl'.
The second one also tendsitavhenh is continuous: approximating in L}OC(Rd) by a continuous
function and applying Lemma 3 again, it tend9)tas well wherh is measurable only.

Finally, (v(T — s, X1*)) << satisfies (12) Witl’h(Xélf) as boundary condition. By uniqueness
of the solution to the BSDE, we deduce thatT — s, X1*));<.<r and (Y{*),<,<7 coincide, that
is (v(T — s, X2%))i<s<r and (u(T — s, X1°)),< <7 coincide. Here, we emphasize that we cannot
chooses = ¢ directly since both(v(T — s, X1*));<s<r and (u(T — s, X°))i<,<r are seen as
continuous versions of the original procesged — s, X*));<s<r and(u(T — s, X:°)),<s<7: they
might differ from the original ones for some valuessdbecause of the possible discontinuitiesvof
andu. Anyhow, we can always claim that

S
Vte[0,T), Vt<s<T, IE/ [0(T — 7, XE°) — (T — r, X1%)|dr = 0.
t

By Lemma 15, we deduce thatandv match almost everywhere.
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7.4. Proof of Proposition 4. Again, the proof follows from a mollification argument. Théale
point is to find a sequendey),>; of smooth functions such that, for all> 1,

(99) vr>1, Zlim sup |jve(t, ) — v(t, -)HV’2 =0,

V071 O
B(0
—+00 1/r<t<T 0,7),p

[ve — UHU/T,T]xB(o,r),p a

lim |
l——+o0

Indeed, introducing the stopping timés, = inf{s > ¢ : |X2"| > ¢}),>1 (inf ) = +00), we can
apply Ito’s formula to(v (T — s, X7))o<s<r,A(T—c), fOr some small positive real
Therefore, forany > 0 and anyt < s < 7', we have

ve(T = 5, X2%) = 0p(T — 1,€) = Tu(s),
with
S 1 N N S i
Ty(s) = / [—Vow(T —r, X5%) + 5 Z V2 (T — 7, X156 )] ds + Z / Vive(T — r, X%)dB:.
t i=1Y1t

i=1
Setting

N N
S 1 S .
75~ | [—VOU(T =1 XP) 45 D V(T -, Xﬁv%] ds+ Y [ Vio(T = X{)aB,
t i=1 i=1"1

which makes sense by Lemma 3, we deduce from Lemma 3 that

lim E[  sup 1Z(s) — Ze(s)|] = 0.
=00 << N(T—e)

Therefore,

lim supE[  sup e r (T — 8, X5%) — (T — s,Xﬁ’S)H =0.
=400 k>0 t<s<ryA(T—e)

We deduce that we can find a continuous adapted pr@&gs$s: ;< such that

(100) lim B[ sup  [Ss—v(T -5, XL)|] =0.
f=to0 “4<s<r, AN(T—¢)

The point is now to identify=;):<s<7 as a version ofv(T — s, Xﬁ’é))tSKT. By Lemma 3, we know
that

(101) Jim E[[o(T — s, X1) — v,(T — 5, X5%)|] = 0.
By (100) and (101), we understand that, for any [t,T),
P{=, # (T — 5, X.%), sup | X1 <q} =0.
t<s<T
Letting ¢ tend to+oc, this completes the proof.

O
Now, (99) follows from

Lemma 16. For two smooth densities; and p; overR andR¢, both with compact support, and for
a solutionv to the PDE as in Definition 4, define for a&ll> 0

vlta) = [ olt = eso )l esoyn(s)paly)dsdy.
Rd+1
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Then, for allp > 1,

V2

Vo,1
B(0,r),p 0

Vr>1, lim sup Hva(ta ) - U(t7 )H [1/7r]xBO,r),p —

=0, lim [|[v® — v
=01 /r<i<r €0

The proof is postponed to the next subsection.

7.5. Convolution Arguments: Proof of Lemma 14. We here prove Lemma 14. We start with:

Lemma 17. For a smooth density,; over R with compact support and a functian € D%/(]R{d),
define for alle > 0

(@) = [ el =)oty z R

Then,

. V.2 _
vr > 1, 21_)1% % — (p”IB%(O,r),oo =0

Proof. Start with the case whepis smooth. Then, for: € AY(m),
Vig#® (z) = /]R V(@ = ey), Veo(a — ey))p(y)dy
+ /Rd<V[a] (z) = Via)(z —ey), Voo(z — ey))p(y)dy.
By integration by parts, we obtain
Viaj#® () = /]R NViayela —ey)p(y)dy

(102 + [ (ol = ) = pla))div (Vi) @ evola)iy

V[a] (l’) - V[a] (l’ - Ey)
9

+ [ (ota—en) = o) Vow))dy.
In the general case whep is not smooth, we can approximate the p@it V|, ¢) by a sequence
(¢p, Via)¥p)p=1, uniformly on compact subsets. All the mappings,),>1 satisfy (102). Letting
tend to+oo, we deduce thap satisfies (102) as well.

Since(y, V|4 ¢) is continuous, we deduce thi, = converges towardg,, uniformly on com-
pact sets.

Turn now to the second-order derivatives. Wheis smooth, we obtain for a gives € A% (m)

Via)Vig#™(z) = /]R Ve - VVig ] (2), Vel — ey))ply)dy

" / ([Via © Vig] (2). V2 (& — 20) plw)dy
Rd
= TF + 1.
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Clearly,
T7 = /Rd<[V[a} -VVig (@ — ey), Vo(z — ey)) p(y)dy

+ /Rd<[V[a] -VVig | (@) = [Via] - VVig ] (z — ey), Vo(z — ey))p(y)dy
= T1€,1 + Tf,27
with

TE, - /Rd((p(x ey - (,0(1'))<[‘/[04 -VVigl(z) — [Via) - VVigl(z — ey) Ty

€

+ /Rd(sﬁ(w —ey) — ¢(2))div(Via - VVjg)) (@ — ey)p(y)dy,
by integration by parts. Similarly, we can write
75 = [ ([Via ©Vial@ = 20), V(o = <)oo}y
+ /Rd([V[a] ® Vig] (x) = [Via) @ Vig] (¢ — ey), V2p(z — ey))p(y)dy

=15, +T5,.

Now,
Tso= /]R Vi (@) = Viay (@ = ey)] @ [Vig)(2) = Vi) (& = ey)], V2p(x —ey))p(y)dy
+ /R Moz —ey) @ [Vig|(@) = Vig|(z — ey)], VZo(z — ey))p(y)dy

+ [ (Va@) = Vi o = )] © Vig (o = 29), Vola = cu)p(u)dy
=T591+ 1500+ 1553

By integration by parts,

Via)(@) = Vio)(@ — €y) ° Vig(@) = Vg (z — ey)
R 5 5 ’

+ / (p(x — ey) — p())div(Vig)) (@ — ev)) M@ - ‘jﬁ] (x —ey)

Vo) (#) = Vi) (z — &y)
€

V2p(y))dy

,Vp(y))dy

(p(x — ey) — p(x))div(Vig) (x — ey))(

(ol — ey) — o(a)) V2 [Vig (z) — Vig(& — ey)] i Via) () = Viaj (& — f-:y)]p(y)dy.

,Vp(y))dy




SHARP GRADIENT BOUNDS FOR SEMI-LINEAR PDE 57
Similarly,
Tso3= /R d([‘/[a] () = Via)(@ — y)], V[Vige(z — ey)])p(y)dy

- /]R d([V[a] () = V(@ — y)], VVig (@ — ey) Vo(z — ey)) p(y)dy.

We deduce

Vieg(®) = Vi (& — 1)
f2a= | (Vigele —ey) = Vigel)) (==

+ [ Vil = 29) = Vig@)dix (Vi) (2 = p)o(w)iy

(
= | (p(z —ey) = o(2)) (Vi) (x = ey), VVig (¢ — ey))p(y)dy
- /Rd (o(z —ey) — ¢(z)) <VM &= 6? ~ Viel (@)
— [ (ol = e8) = (@) Vi &) = Vi 2 = 20). ViV & = e9)) o).

Obviously, a similar expression holds f6¥ , .
We now emphasize that

T3+ 750 = | (VaViae)@ - o))y,

Clearly, this term makes sense wheiis in D% (R%) only and then converges towartlg, Vig p(z),
uniformly on compact subsets, agends ta). We also notice that all the remaining terffis,, 75 , -
andT7s , ; make sense whepis in D? (Rd) only and then converge towar@dsuniformly on compact
set, ag tends ta). The proof is then completed as in the first-order case.

,Vp(y))dy

ES

, VVig (z — ey)Vp(y))dy

O
Similarly, we claim

Lemma 18. For two smooth densities; and p,; overR andR?, both with compact support, and for
a functiony) € D}, (R, x R), define for alle > 0

Ye(t,m) = " Yt — €8, 7 — ey)Lp—css0y01(8)paly)dsdy.
Then,
. € Vo,1 _
vr>1, ;E}%WJ w”[l/rr]xBOr)oo = 0.

Proof. The proof is similar to the proof of Lemma 17. We first assumn®® be smooth. Given
t > 0, we can assumesmall enough to get rid of the indicator function in the deiom of 1)¢. Then,

Vo (t,z) = /R " O(t —es,x — ey)p1(s)pa(y)dsdy

; /Rdﬂ%(‘"”)’ Vi(t —es,x — ey))p1(s)pay)dsdy,
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so that

W tn) = [ (e~ e~ ppr (patw)dsdy

Rd+1

- /Rdﬂ (Vo(z) = Vo(z — ey), VU(t — s,z — ey))p1(s)pa(y)dsdy

— /Rd+1 Vo] (t — s,z — ey)pr(s)paly)dsdy

Vo(z) — Vo(z — ey)

- ; Vpa(y))p1(s)dsdy

_ /R(Hl (Yt —es,x —ey) —P(t,z))(

_ /Rd+l (¢(t —es,x —ey) — (¢, w))div [Vo] (x —ey)p1(s)paly)dsdy.

We then complete the proof as in Lemma 17.
O

End of the Proof of Lemma 14. The second point is a straightforward consequence of Lemma
18. For the first one, we note that, for amys € A{(m),

ViaVigw (6, 2) = | 1y cosopp1($)Vi () - V| Vg (2) -V [ ult —es,x —ey)pa(y)dy | ds.
R R

Using the time-space continuity of the functiohz) — V| V|gu(t, z) and following the proof of
Lemma 17, we can prove that

V() -V {Vw] () -V /Rd u(t —es,z — Ey)Pd(y)dy} — VigVigu(t, z),

ase tends ta0, uniformly on compact subsets.
The proof is easily completed.

7.6. Proof of Lemma 16. We here give a sktech of the proof only, since quite similatht proof
of Lemma 14. First, we let the reader check that Lemmas 17 &ncaf be adapted to the]
framework,p > 1. (Keep in mind that, for an)LllOC(]R{d) function ¢, the mappingr € R¢ —
o(- + ey) — ¢(-) tends to zero il (R?) ase tends to0, y being given inR?: this follows from a
standard approximation q¢f in Llloc(]R{d) by a continuous function.)

By Point (1) in Definition 4, we know that the second order eiives are time-spacg ., p > 1.
Again, we can follow the end of the proof of Lemma 14.

8. APPENDIX
8.1. Malliavin Differentiation. Consider th&Cameron-Martinspace
H={hecQh e L*[0,00);R)} € Q,

with the inner product

(hyg) i = (W, 9') 12(10,00)RE) = /0 W (u) - g (u)du.
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Definition 5 (Malliavin Derivative) Let f € C°(R™), b}, ..., k!, € L2([0,00);RY) and F : Q — R
be the random variable:

(103) F(w):f< /0 Ooh’ t)dBy(w / h! (t)dBy(w >

We call such random variables smooth and denoté& by

The set of smooth random variabl§ss dense in.(2). See for example Nualart [23]. Using the
density property of one extends the definition of the Malliavin derivative to e¢ of all square inte-
grable random variable for which there exist an approxingasiequence of smooth random variables
such that the corresponding Malliavin derivatives congemp. This approach will work provided
the Malliavin derivatives of two convergent sequences abatim random variables who converge to
the same.?(2)-limit have the samé ([0, co) x )-limit. This amounts to showing the following:

Corollary 2 (Closability of the Malliavin Derivative operator)The Malliavin derivative, a linear
unbounded operatob : S — L%([0,00) x €;R?) is closable as an operator from?(2; R%) into
L%([0,00) x ©;R9). In other words if{F;,} C S is a sequence of smooth random variables such
that: || || r2() — 0 and || DF, || 2 (jo,00)xq) IS cOnvergent then it follows that

IDFollL2((0,00) x2) — O

Since smooth random variables are denséfror p > 1 the same results one has just obtained
hold for any suctp. Forp # 2 we use with the norm:

(104) IDEI, 0.1 = E [IDF %]

The closability property still holds i.eD is closable fromL?(Q2) to LP(Q2; H).
Denote the domain ab by D'?, meaning thaD!? is the closure of smooth random variablgs
with respect to the norm:

|F|lpns = [E(FP) + E(|DF|2)]7.

One may also define the iteration of the Malliavin derivati¥én such a way that for smooth random
variables, the iterated derivative® F is a random variable with values #®*. Define

DFF = Z Oiy,in f </ h’l(u)dBu,...,/ h;(u)dBu> hi, @ ... ® h,,
it yein=1 0 0
whereh,(.) == [; h;
Inan analogous Way one can close the oper&tbfrom LP(Q) to LP(Q2; H®*). So, for anyp > 1
and naturak > 1, defineD*? to be the closure of with respect to the norm:

1

P

k
1Fllpes = |E(FP) + Y E(DF|Ge,)
j=1

Note that forp = 2 the following isometry holdd.?(Q x [0, 00)¥; RY) ~ L2(Q; H®*). Hence one
may identify D*F as a processDf, , F.
A random variable is said to nooth in the Malliavin sense F' € D*» for all p > 1 andk € N.
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Moreover, there is nothing which pins consideratioftevalued random variables. Indeed, it one
could consider more general Hilbert space-valued randarahlas, and the theory would extend in
an appropriate way. To this end, den@&”(E) to be the appropriate space Bfvalued random
variables, wherd® is some separable Hilbert space. Also we defifie°(E) to be the space

(105) Db>*(E) = (| D*>(E).
p>1

Similarly, let S; be the set of allF;-measurable random variables. The for any 1 and natural
k > 1, one definéD*? to be the closure of with respect to the norm:

= =

k
E(FP)+> E( sup [ID}, ., FI")

1 F g == ot
D t1,,t€[0,] by

j=1
and similarly we defin®*>(E) to be the space
(106) DF<(E) = () D" (E).

p>1

8.2. Proof of Lemma 3. For a given4d > R,

/ E[|6; — 05[P(X7)]de
|z|<R

107 _ / E[|0) — 057 (X7); | XF| < Alda +/ E[|0y — 027 (X7); | X7 > A]da
lz|<R |z|<R
=Ti(A, R) +T5(A, R).
By the change of variable formula
T(AR) = / lpess — 90€|p(y)E[|JtTy1|1{\X;1(y)\<R}]dy <C loerr — @elP (y)dy,
ly|<A - ly|<A

whereX; ! stands for the converse of the flow &fand.J; , for the associated Jacobian matrix.
To handleT>(A, R), we make use of the polynomial growth assumption. By Cauftiywarz
inequality,

Ty(A, R) < c’/ E[1 + (XF)™P; |X7| > Alde
|z|<R

< C’/ E[l + (X2)2?]PR{|X7| > A}Y/2]d
|z|<R
< C'(14 R'™P) sup P{|X7| > A}/2,
lz|<R

the constan€”’ here changing from line to line. Sinsep,,|. P{|X| > A} < C'(1+ R)A™", this
completes the proof.
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