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SHARP DERIVATIVE BOUNDS FOR SOLUTIONS OF DEGENERATE SEMI-L INEAR
PARTIAL DIFFERENTIAL EQUATIONS

DAN CRISAN AND FRANCOIS DELARUE

ABSTRACT. The paper is a continuation of the Kusuoka-Stroock prognarof establishing smooth-
ness properties of solutions of (possibly) degeneratégpditferential equations by using probabilistic
methods. We analyze here a class of semi-linear parabdti@ipdifferential equations for which the
linear part is a second order differential operator of thenfdy +Z§i1 V2, whereVp, . .., Vi are first
order differential operators that satisfy the so-called@endition (see [18]), which is weaker than the
Hormander one. Specifically, we prove that the bounds ohtbker order-derivatives of the solution
along the vector fields coincide with those obtained in thedr case when the boundary condition is
Lipschitz continuous, but that the asymptotic behaviorhaf derivatives may change because of the
simultaneity of the nonlinearity and of the degeneracy wienboundary condition is of polynomial
growth and measurable only.

KEYWORDS. Degenerate semi-linear parabolic PDE; Second-ordegrdifitial operator satisfying the
Uniformly Finitely Generated condition; Derivative estites; Backward SDE; Malliavin calculus

AMS CLASSIFICATION (MSC 2010). 60H10, 60H07, 35K58, 35B45

1. INTRODUCTION

Ina series of papers [16, 17, 18, 19], Kusuoka and Stroock &iaslyzed the smoothness properties
of solutions of linear parabolic partial differential egjoas of the form

N
® duult,z) = 5 3 VPult, ) + Voult,2), () € (0,00) x B,
=1

with initial condition »(0,2) = h(z), = € R% The condition (called the UFG condition) im-
posed on the vector fieldg/;,i = 0,..., N} under which they prove their results is weaker than
the Hormander condition. This condition states that@§e(R¢)-module}V generated by the vec-
tor fields{V;,7 = 1,..., N} within the Lie algebra generated 4y;,i = 1,..., N} is finite di-
mensional. In particular, the condition does not requii the vector spacéW (z)|W € W} is
homeomorphic t&R? for anyz € R%. Hence, in this sense, the UFG condition is weaker than the
Hormander condition. It is important to emphasize thatjarrthe UFG condition, the dimension
of the spaceg{W (z)|W € W} is not required to be constant ov&f. Such generality makes any
Frobenius type approach to prove smoothness of the soluéipndifficult. Indeed the authors are
not aware of any alternative proof of the smoothness resiiltse solution of (1) (under the UFG
condition) other than that given by Kusuoka and Stroock.

Kusuoka and Stroock use a probabilistic approach to dedhaderesults. To be more precise, they

use the Feynman-Kac representation of the solution of tHe iRDerms of the semigroup associated
1
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to a diffusion process. LeX = {XF, (t,z) € [0,00) x R?} be the (time homogeneous) stochastic
flow

t N ¢
) Xp—at [ s+ Y [ Vi) edsl, =0,
0 — Jo

where the vector fieldsV;)o<i<n are smooth and bounded and the stochastic integrals iné2jfar
Stratonovich type. The corresponding diffusion semigrisuiben given by

[Pg](x) =E[g(X])], t>0, z€R

for any given bounded measurable functipn R — R. When the boundary conditiokin (1) is
continuous, the following representation holds true:

u(t, ) = Ph(z), Y(t,z) € [0,00) x R%

Kusuoka and Stroock prove that, under the UFG conditiémn, is differentiable in the direction of
any vector fieldW belonging toWW. Moreover they deduce sharp gradient bounds of the form:

3) |Wr ... Wi Pk, < CPF¢Y R, p e [1,00],

wherel is a constant that depends explicitly on the vector fiéldss W, i =1, ..., k. Their results
raise a number of fundamental questions related to the PREHdr example, the differentiability
of P.h in the Vj direction is not recovered. This is one of the fundamentif¢dinces between the
UFG case and the Hormander case whéreis shown to be differentiable in any direction, including
Vh. So whilst, in the Hormander case, it is straightforwarghow thatP;/ is indeed the (unique)
classical solution of (1), the situation is more delicatéhm absence of the Hormander condition. As
explained in [21], it turns out thaP.h remains differentiable in the directio, = 0; — V) when
viewed as a functiorft, z) — P,h(z) over the product spad®, co) x R?. This together with the
continuity att = 0 implies thatP,h is the unique (classical) solution of the equation

N
(@) Voult, ) = % S V2ult,x), (t,2) € (0,00) x R
=1

The introduction of a new class of numerical methods for axipnating the law of solutions of
SDE (and, implicitly, the solution of PDEs as computed by nseaf the Feynman-Kac formula)
has brought a renewed interest in the work of Kusuoka ana@&itrdr heir fundamental results form
the theoretical basis of a recently developed class of higliracy numerical methods. In the last
ten years, Kusuoka, Lyons, Ninomiya and Victoir [15, 20, 22, 24] developed several numerical
algorithms based on Chen'’s iterated integrals expansam[{§ for a unified approach for the analysis
of these methods). These new algorithms generate an apmatian of the solution of the SDE in
the form of the empirical distribution of a cloud of partislevith deterministic trajectories. The
particles evolve only in directions belonging W. This ensures that the particles remain within
the support of the limiting diffusion, leading to more swkthemes. The global error of humerical
schemes depends intrinsically on the smoothnegs/obut only in directions belonging th). As a
result they work under the (weaker) UFG condition rathenttiee ellipticity/Hormander condition.
By contrast, the classical Euler based numerical methoahlfared with a Monte-Carlo procedure)
sends the component particles in any direction, hence duyine the Hormander condition.
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In recent works [5, 6] the applicability of these schemes ligen extended to semilinear PDEs.
One of the major hurdles in obtaining convergence resultshiese schemes has been the absence
of smoothness results of the type (3), again under the UF@ittom. The authors are not aware of
the existence of such bounds proved under the Hormandelitmmeither. In the following we will
consider semilinear PDEs of the form:

N
(5) ult, z) = 5 D V2ult,2) + Voult, ) + £ (2, u(t,2), (Vu(t,2) 7). (8,) € (0,00) x B,
=1

with initial conditionu(0,z) = h(x), = € R% In (5) we used the notatioWu(t, z) to denote the
row vector (Viu(t, z),..., Vyu(t,z)). (Vu)" stands for the transpose bfu.) As we shall see,
u(t, z) is differentiable in any directio®¥ € W whenh is continuous just as in the linear case.
If, for example, the vector¥;, i = 1,..., N, satisfy the uniform ellipticity condition, thea(t, z)
is differentiable in any direction and the analysis covemsiitinear PDEs written in the ‘standard’
format
L
Oult,x) = 5 Y Viu(t,x) + Vou(t, x) + f(t,z, u(t, z), (Veu(t,2))"), (t.z) € (0,00) x RY,
i=1
whereV ,u is the usual gradient aof in z, i.e., the row vector of partial derivativés,, u, . . ., 05, u).
Following the tradition of Kusuoka and Stroock, we analyze $moothness of the solution of the
semilinear PDE using probabilistic methods. The basis@atialysis is the corresponding Feynman-
Kac representation for the solution of (5). This repred@mavas introduced by Pardoux and Peng
in [26, 27] and involves the solution of a backward stochiadifferential equation (see Section 2.1
below).

1.1. The UFG condition. Let (V;)o<;<n be N + 1 vector fields,V; belonging tocX (R¢, RY) and
Vi, 1 <i < N, toCf (R RY), K >0, CF(R?,RY) standing for the set of bounded and contin-
uous functions fronR¢ to R? that aren-times differentiable, with bounded and continuous phrtia
derivatives up to ordeti. We will make use of the standard notation introduced in,[($8e also [21]
and [7]):

V[z']:Via V[a*z']: [V[a}7vi]a iG{O,...,N},

where[-, -] stands for the Lie bracket of two vector fields, thgflisW] = V- VW —W-VV anda*i

stands for the multi-indexa, . .. , a,, i) whena is given by(a, ..., o) with a; € {0,..., N},
j =1,...,n. The following “lengths” of a multi-indexx = (a4, . .., ay,) will be used:
laf = (e, ... an)[ =n, |l = [(a1,...,an)| =n+#{i: a; = 0}.

The set of all multi-indices is denoted by, the set of all multi-indices: different from(0) is denoted
by Ay and the set of non-empty multi-indicesin A, for which ||a|| < m is denoted byd,(m).

For n multi-indicesay, ..., a,, n > 1, we often denote the-tuple (o, ..., «,) by a and then
set|af = flaafl +--- + [lan]-

Definition 1.1. Letm € N* be a positive integer and assume thiat> m + 3. The vector fields
{V;,0 < i < N} satisfythe UFG condition of ordem if, for any « € A, such that|«| = m + 1 or
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a = o x0with ||o/|| = m, there existsp, g € Cf+1_‘a|(Rd), with 5 € Ay(m), such that

V@)= > ¢ap@)Vgl@), zeR™
BeAo(m)
Remark 1.2. In [21], the constanf is required to be greater tham + 1. We here nee& > m + 3
to ensure the existence of classical solutions to the neatiPDE, see Theorem 1.4 below.

The following example illustrates the difference betwdemWFG and the Hormander condition ( see
[18]):

Example 1.3. AssumeV = 1 andd = 2. LetV{, andV; be given by

0
Volx1,x9) = sinx; — Vi(x1,x9) = sinxzy —
0( 1 2) 181’1’ 1( 1 2) laxz

The vector field§Vy, V1 } satisfy the UFG condition of order. = 4, but not the Fbrmander condi-
tion.

The vector fieldgV;,0 < i < N} satisfy theuniform Hormander condition if there exista > 0

such that
inf > (Vg@),9)?>o0.
{z.£eRY| [¢]=1} BeAg(m)

Obviously, if the vector field{V;,0 < i < N} satisfy the uniform Hormander condition then
they satisfy the UFG condition. In particular if the vect@idis{V;,1 < i < N} satisfy the uniform
ellipticity condition then they satisfy the UFG condition.

Definition 1.1 is a (slight) generalization of the corresgiog one given in [19]. In [19], both the
vector fields{V;,0 < i < N} and the coefficientp,, s are assumed to be smooth (infinitely differ-
entiable). If the smoothness assumption is imposed Hgns well defined for anyv € A and one
can interpret the UFG condition in the following manner. Ketbe theC;O(Rd)-module generated
by the vector field§V;,7 = 1,..., N} within the Lie algebra generated §¥;,i = 1,..., N}. Then
W is finitely generateds a vector spacand{V,,« € Ag(m)} is a finite set of generators fow .

In addition, the functions,, 3 appearing in the decomposition of any vector figld: WV as a linear
combination of the elements of the gét,,;, « € Aq(m)} are assumed to be smooth and uniformly

bounded oveR?. These are salient properties that are essential to makerdoé of Kusuoka and
Stroock work and justify the use of the acronym UFG - unifgrfimhitely generated - for the assumed
property.

As shown in [21] the smoothness assumption on the vectorsfiglil 0 < ¢ < N} and the
coefficientsy,, 3 is not necessary. The level of differentiability is dicthtey the order of the UFG
condition assumed. In other words, the vector fields have wulfficiently many times differentiable
for the repeated brackets to make sense up to the requireld ©¥ course, in this case, we can no
longer talk about th@go(Rd)-moduleW or about the Lie algebra generated{¥;,i = 0,..., N}
as not all the Lie brackets will make sense (due to the reddiféerentiability). Then, we will
denote by/V the space generated by the vector figlgs, with |o| < K + 1, for which there exist

Ya,8 € le{“_'“‘(]R{d), with 3 € Ag(m), such that

V@) = > ¢ap@)Vgle), xeR%
BEA(m)
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Definition 1.1 then states théi,; o € Ag(m + 1)} U{Vjy;a = o' x0,a’ € Ag(m)} C W. This
extension allows us to identify thminimal level of differentiabilitythat we need to impose on the
coefficients of the PDE so as to deduce the desired gradiemidso

1.2. The Main Results. Under the UFG condition (see [21] and [19]) the solution of tmear
equation (1) is differentiable in any direction € WW. Moreover, ifh is a smooth bounded function,
the following gradient bound holds true:

(6) Viea] - - Vi u(t, )| < C||hlsot™1e1/2,
for aq,...,a, € Ap(m), whereC' is a constant independent bfand (¢, z), and||a| = ||| +
-+« + |la || If A is Lipschitz continuous function with Lipschitz constant
h(x) —h
Wl = sup M@ = RO

{z,yeR x#y} ‘.% - y‘
then there exists a constafitindependent of. such that for allz, x)
7) Vi - - - Viawju(t, 2)| < O Rt =12/,

In the current paper we investigate the counterpart of thesdts for the solution of the semilinear
PDE (5). The results are summarized in the following:

Theorem 1.4. Assume that the vector field$;,0 < i < N} satisfythe UFG condition of ordem.
Then, ifh is of polynomial growth and continuous andfifsatisfies additional conditions that are
specified below, the semilinear P¥&) is uniquely solvable in a suitable spaceaéssical solutions
and the solution is differentiable in any directidn € V. Moreover, ifh is a Lipschitz continuous
function, then, for an{” > 0, there exists a constafit such that, for all(t, z) € (0, 7] x R¢,

(8) ‘V[al] . V[an}u(t,xﬂ <otz < g —m -1,

with a = (a1, ...,a,) € [Ag(m)]". (See Footnot§ If & is a continuous function of polynomial
growth, but not necessarily Lipschitz, then there existsrestantC' such that, for all(t, ) € (0, 7] x
R¢,

9) Vi) - - - Viampu(t, )| < Ct=llel/2

if n <2orn=3andmin{|o;|,i = 1,2,3} = 1. However, if3 < n < K —m — 1, then, for any
§ > 0, there exists a constanit(§) such that, for all(t, z) € (0,T] x R,

(10) Vi) Viayult 2)| < C(8)¢ 1121 4 g/ bminit /oy |1/241/ Gllag D=9

wherel|a || < [l || stand for the two smallest elements amdngl, . .., [|a,||. If A is of poly-
nomial growth and measurable only, the semilinear P(BEis uniquely solvable as well, but in a
suitable space ofieneralized solutionsThe solution admits generalized derivatives in any dicgct
V € W and satisfie$9) and (10) almost everywhere. (And Footnbtapplies as well.)

1The reader now understands whyis chosen to be greater tham + 3: (8) holds at least fon = 1,2, so that the
partial derivatives in space in (5) make sense.
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The details of the assumptions imposed on the funcfiane given in Sections 3 and 4 below. We
make explicit the dependence of the constants appearinguitiens (8), (9) and (10) on the initial
conditionh in Theorems 3.1 and 4.1. Theorems 3.1 and 4.1 also contaaircémonlinear) Feynman-
Kac representations for the derivatives, | . .. Vj,,,ju(t, ). Similar bounds and representations are
also valid forVj,,;... Vjo,\Viu(t,z), i = 1,...,N. These representations are important for the
analysis of numerical algorithms for the approximationta solution of (5).

Let us comment on the bounds contained in (8), (9) and (10)spiDe the introduction of the
nonlinear term in (5), the solution of the semilinear PDE tias same small time asymptotics as
the solution of the linear PDE (1) when the initial conditibris a Lipschitz continuous function.
The same applies for the case whies a measurable function of polynomial growth as long as
we differentiate no more than two times. For derivatives mfeo 3 or more the asymptotics may
deteriorate according to the degeneracy: when 3 and||a(,)|| = 1, the asymptotic rates in (10) are
similar to the ones in the linear case; wher- 3 and||a(,)|| = 2 orn = 4 and|la) | = [Jag@) |l =1,
it is almost the same as in the linear case up to the additigrialall the other cases, the asymptotic
rates are strictly worse. In particular, the small time agtatic behavior of the derivatives up to
the fourth order are the same as in the linear case when thmatopés uniformly elliptic (up to the
additional§ for the fourth derivatives). In Section 5, examples, bothhi@ uniformly elliptic and
degenerate cases, are given where the announced boung is éttained (up to the additiona).
This shows the sharpness of the bound. As a consequencejstdut that the simultaneity of the
nonlinearity and of the degeneracy will lead to a faster @siph (as — 0) of the higher derivatives
above a certain threshold.

1.3. Structure of the article. The article is structured as follows. In Section 2, we calleaumber

of preliminary results required for the proof of the maindtems. The Feynman-Kac formula for
the solution of the equation (5) is presented. It relatesstitetion of the PDE to the solution of a
backward stochastic differential equation. We also giwertorous definitions of a solution of (5).
In Sections 3 and 4, we analyze the smoothness of the sohfti&) in the case wheh is a Lipschitz
continuous function and, respectively, wheris a measurable function of polynomial growth. In
Section 5, we study two examples that show that we cannoteRpesame asymptotic behaviour for
the case when is bounded, but not necessarily Lipschitz continuous, dkéarinear case. Finally,
in Section 6, we relax the Lipschitz condition imposed onftirection f appearing in (5) and treat
the case wherf has quadratic growth andis bounded. This is an important case with applications
in optimisation problems appearing in mathematical finafsee, e.g., [11, 28] and the references
therein).

2. PRELIMINARY RESULTS

2.1. The Feynman-Kac representation. Let (2, F, (F;):>0, P) be a filtered probability space en-
dowed with an(F;);>p-adapted Brownian motioB;):>o. On (€2, F, (Fi)¢>0,P) we consider the
triplet (X,Y,Z2) = {(X},Y:, Z;),t € [0,T]} of F;-adapted stochastic processes satisfying the fol-
lowing system of equations

_d}/;f = f(T_taXtynvzt)dt_ <Zt7dBt>



SHARP DERIVATIVE BOUNDS FOR SEMI-LINEAR PDE 7

The system (11) is called a forward-backward stochastferdifitial equation (FBSDE). The process
X, called the forward component of the FBSDE, ig-dimensional diffusion satisfying a stochastic
differential equation driven by; : R — R? i = 0,1,...,N . The notation 8” indicates that
the stochastic term in the equation satisfiedXbys a Stratonovitch integral. The process called
the backward component of the SDE is a one-dimensional astichprocess with final condition
Yr = h(Xr), whereh : R? — R is a measurable function of polynomial growth. The function
f:[0,T]xR? xR xRN — R, referred to as “ the driver”, is assumed to be of polynomiaigh in

x, of linear growth in(y, z), being bounded in timeéand Lipschitz continuodsn y andz, uniformly

in time ¢t and space:.

The existence and uniqueness question for the system (Elf)raieaddressed by Pardoux and Peng
in [26, 27] and, since then, a large number of papers have thedicated to the study of FBSDEs.
Pardoux and Peng proved that the stochastic fla#®, Y%, Z4) | t € [0,T], = € R? associated
to the system (11), in other words, the solution of the system

dXET = Vo(X&%)ds + o0, Vi (Xe®) o dBI,
(12) —dYST = f(T — s, X%, Yo", Zo%)ds — (Z2%,dBy), s € [t,T)
Xt =, YU =h(XEY),
provides a non-linear Feynman-Kac representation for dhgien of the semilinear PDE (5). More
precisely they showed that when the functighand/ are continuous, then the function

(13) u(T —t,z) =Y,

is a continuous solution of (5h viscosity senseWhen the coefficientg and h are smooth, it is
a solutionin classical sensand Zi* = (Vu)' (T — s, X2). Therefore, the results in this paper
represent a strengthening of the results of Pardoux of Pengeadentify conditions under which
the stochastic rovatt"c generates alassicalsolution, and respectively, a generalized solution (in
Sobolev sense) of (5), the terminal conditibibeing possibly non-smooth.

We remark that the tripletx®*, Y2, Z4%), t € [0,T], = € R?, which solves the system (12) is
adapted to the (augmented) filtration generated by therimenés(B; — B;)<s<7 SO thatYf’m has a
deterministic value (up to a zero-measure event).

2.2. Properties of the Flow. Whenw is continuous on(0, 7] x R?, the relationship between the
deterministic mapping and the pai(Y, Z) extends a¥; = u(T — ¢, X;),t € [0,T). GivenX; = z,
for somet € [0, T'), this relationship reads’y"” = u(T — s, Xt"), s € [t,T). Moreover, (13) reads

T
(14) uw(T —t,z)=E {h(X;x) + / f(T — s, Xz’z, Yst’x, Zﬁ’x)ds .
¢

2.2.1. Shift Operator.Eqg. (14) is the keystone for the probabilistic analysis @& thgularity of
u. SinceX is a homogeneous diffusion process, we emphasize(fiaf);<.<7, t € [0,T], may
be understood as a shifted version(afg’_“’”t)ogs_tg_t. Specifically, we can choose the canonical
Wiener space fofS2, F, (F;)+>0, P) and thus introduce the shift operai@ : w — 0;(w) = w(t +

) —w(t))is0. Then,(X5) < < reads a§X % 06, )o<s—_i<1—¢, OF SIMply as( X7, 06;)o<s—1<7—t»
with the conventionx® = X972,

2This assumption will be relaxed in Section 6.
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As basic application, we discuss below how to transfer difidation at starting point into differ-
entiation along the flow. To do so, we first remind the readeyoetalled Kusuoka-Stroock functions
(see [21] and [19]).

2.2.2. Kusuoka-Stroock Functiondn the following, letE be a separable Hilbert space didi>°(E)
be the space db-valued functionals admitting Malliavin derivatives updalern, see the monograph
by Nualart [25, Chapter 1, Section 2] for details.

Definition 2.1 (Kusuoka-Stroock functions)Givenr € R andn € N, we denote byC (E, n) the
set of functionsy : (0, T] x R? — D™>(E) satisfying the following:
(1) g(t,.) is n-times continuously differentiable an@*g/0xz](.,.) is continuous in(t,z) €
(0,T] x R? a.s., for any tuplev of elements of 1, ..., d} of length|a| < n.

(2) Forall ke N,p e [l,00), andk <n—|a|, sup ¢t/ @(t,x)

< 0.
t€(0,T],zeRd Oz

Dk-2(E)

DefineK! (n) := KI'(R, n).

The functions belonging to the sk (E, n) satisfy the following properties which form the basis of
our analysis (see [21] for details).

Lemma 2.2 (Properties of Kusuoka-Stroock functiond)ithin the framework of Definition 1.1, the
followings hold

(1) The function(t,z) € Ry x R? — X¥ belongs tal (K), for anyT > 0.

(2) Suppose € KX'(n), wherer > 0. Then, fori = 1,...,d,

/0 g(s,z)dB: € KL, (n) and /().g(s,w)ds € KL 5(n).
(3) If gi € KL (ny) fori=1,..., N, then

N N
i=1 1=1

2.2.3. Transport of Differentiation.As announced, we claim as a consequence of Lemmas 2.2 and
3.9in [21] (see also page 265 in [19]):

Lemma 2.3. DefineJ; , = [0(X})i/0xj]1<ij<d, t > 0. Then, there exist two families of random
functions(aas : Ry x RY = R), geaom) and (bag : Ry x R = R)y geao(m), Ga,8:ba,g €
OT>OIC(HBH o+ (& — m), such that for any: € R?anda € Ag(m),

V[B}(th) _Ht 5= tiB Z et aﬁa —t,fL’)V[a}(:L'),

acAop(
(15) : 0 ) t,x
Ht [Js t,x V[a Z 9 015 x)v[ﬁ] (‘XS7 )7
BEA(m)

whereb} [Js_t 2] = Js—tz 0 0 andbfas o|(s — t,z) = [ag,q © 6¢(s — t, z) (@and the same fob, g).

As we will see below, Lemma 2.3 is a key ingredient of the asialy
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2.3. Classical Solutions for the PDE (5).We now define the notion of classical solutions in The-
orem 1.4. A classical solution of the PDE (5) will be twice continuously differentiable ihet
directions of the vector field®;, i = 1,...,d and once continuously differentiable in the direction
Vo = 0; — Vi, when viewed as a functioft, ) — u(t, z) over the product spad@, oo) x R¢.

2.3.1. Space of Classical Solutiongor an open balB c R¢ and for a functionp in C;°(B), that is
a bounded (real-valued) functianwith bounded derivatives of any order @nwe set

Vi1
1lgs = lelBoo+ D IVigelse
acAg(m)

and then defin;;™(B) as the closure of°(B) in C,(B) w.rt. || - ||"... (See Footnofefor the
closability argument.) More generally, for< k£ < K — m + 2, we can define by induction

Vik Vik—1 o0
[ /%] > Viaa] - - - Viaw) lIB,ocs ¢ € G5 (B).
a1,...,akEAo(m)

We emphasize thdf],, . .. V|, makes sense for any smooth function because of the bbund
K —m+2: eachV|,, is at leastk’ — m + 1 times continuously differentiable, so that the last vector
field Vig,) In Viay) - - - V]oy) €an be differentiateds — m + 1 times.

We then definé)f;oo(IB%) as the closure af;°(B) in Cy(B) w.r.t. ||- || . (The closability argument
is the same as above.) In particular, we can déﬂ@ﬁO (RY) as

DpX(RY) = (| DYeBO,7), 1<k<K-m+2,

r>1
whereB(0, r) stands for thel-dimensional ball of cented and radius-. Forv € Df;oo(IR{d), 1<
k< K-m+2,Vj,... V4, visunderstood as the derivative ofn the directionsVj, ;... V|,

with aq, ..., ar € Ag(m).
Similarly, forp € C;°(B) and0 < k < K —m + 1, we set

N
V,k+1/2 Vk
ol = lelg® + 3" Y Viay - Vi Vigllz.co-

i=1 aq,...,a€Ao(m)

k]

(Above, || - 12 = || - [|5,c.) We then defineD},"™"/*>(B) as the closure af;°(B) in Cy(B) w.r.t.
| - \|Vk+1/2 and we set
Dy A RY) = DY A®(B(0,7), 0<k <K —m+1.
r>1

Remark 2.4. Note that any function irZD‘l;"o(Rd) is differentiable along the solutions of the ordinary
differential equationy; = V' (v;),t > 0, for V€ Ay(m). In particular, any function inD‘l/’O"(Rd) is
continuously differentiable oR¢ when the uniform Brmander condition is satisfied.

3we emphasize that the closure is well-definedidf,, (Viaj@n)acag(m))n>1 t€Nds t0(0, (Ga)ae.ay(m)) Uniformly
onB asn tends to+oo, then for any test functio € C> (R*) with compact support included I, [, G, (2)¢(z)dx =
1My 400 — fpa 9n(2)0, (Vo X ) (x)dz = 0,i=1,..., N, so thatG,, is zero.

@
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2.3.2. Typical Example A typical example of function iD{;**(R%),1 < n < K —m, isz € R?
(Pip)(x), fort > 0 andy € Cy(R?). For this we need to recall the following integration by part
formula (see Corollaries 3.13 and 3.18 in [21])

Theorem 2.5. Let (V;)o<i<n satisfy the assumptions in Definition 1.1. Then, for @hy 0, n <
K —manda,...,a, € Ag(m), there existab,, ., € KI (K —m — n) such that

(16) Via] -+ Viaw) (Pih) (2) = t71I1PE [@0, (8, 2)R(X])],

foranyh € C°(RY), t € (0,7], = € R%, witha = (au,..., ). In particular, the following
gradient bound holds true:

(17) ”V[oa] s V[om}PthHOO < C”hHOOt_HaW27

whereC' = supg_y<r Supegd E[|®a; ... 0, (6, 2)]] < oo. In addition, for anyn < K — m and
a1,...,an € Ag(m) there exis®’, € KJ(K —m—n+1),i=1,...,dsuch that

d
(18) ‘/Y[Ofl] L Vv[an}(Pth)(l') = t_(||041”+...+”0£n—1||)/2 ZE [q>izl,...,an (t, :n)@xlh(Xf)] ’

i—1
foranyh € C°(R%), t € (0,T], = € R%. Hence, in particular, the following gradient bound holds
true:

(19) Via - - - Viaw Piblloo < CTT=D/2|| 7| 1N/
whereC' = max;—1, . ¢SUpg i< SUP,epa B [|®L, (t,2)]] < 0.4

To prove that the mapping € R? — (Pp)(x), fort € (0,T] andyp € Cj(RY), is in Dy, (RY),
1 <n < K —m, itis sufficient to consider a sequenge,),>1 of functions inCg°(R?) converging

towardsy uniformly on compact subsets Bff as/ tends to+-oo. Then, from the above theorem, we
have that

(20) [View - - - Vi Pepe] () = t112E [0, (X7 (¢, 2)]

with ¢ € KI'(K — m — n) is independent of. Clearly, on every compact subsetsRff, the right-
hand side in (20) converges towards the continuous funatienR¢ — ¢~ I«I/2E[p(X7)v(t, x)].
Therefore, the sequenc®],,; . .. Via,] P:we)e>1 is Cauchy in any spacg(B(0,r)), » > 0, so that
P, belongs taD};*(R9) for 1 < n < K — m and (20) holds for as well.

2.3.3. Definition of Classical SolutionsTo define the notion of a classical solution to (5), we will
need to introduce the set of functions that are continuodilgrentiable in the directiony = 9, —
Vo. Again, we proceed by a closure argument. For any 1 and any time-space functiop €
Cee([1/r,r] x B(0,7)) with bounded derivatives of any order, we set
Vo,1
H(’DH[lO/r,r}XIB(O,r),oo = HSOH[I/T,T]XIB%(O,T),OO + HVOSOH[I/T,T]XIB%(O,T),oo-

“To be exact one ha§Vi,,; ... Via, Pihlle < C||Vhaot=Uleal++lan—1D/2 and inequality (17) follows as
t*(”O‘IH‘F““"”O‘n—l”) S T’”*ltI*HaH (reca” thatt S T)
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We then defindy; ([1/r,7] xB(0, ) as the closure @l ([1/r, 7] xB(0, ) W.tt. |11 1 50, 00

and then defin@®,;>((0, +o00) x R?) as the intersection of the spac@§™ ([1/r, 7] x B(0,)) over
r > 1. (As above, the closability property is easily checked.)
We are now in position to define a classical solution to the PDE

Definition 2.6. We call a functionv = {v(t,z), (t,z) € [0,4+00) x R¢} a classicalsolution of the
PDE (5) if the followings are satisfied

(1) v belongs toDy;((0, +00) x R?) and, for anyt > 0, v(t, ) is in Dy (R?) such that, for
anyar, az € Ag(m), the function(t, z) € (0, +00) x R = (Vi,)v(t, 2), Viay] Vias] v (¢, 7))
is continuous,

(2) forany(t,z) € (0, +00) x R, it holds

N

Vo(t, o) = % S V2o(t,2) + £(t @, 0(t,2), (Vo(t,2)T),
i=1

(3) the boundary conditiofim, ), ) v(t,y) = h(z) holds as well for any: € R,

Remark 2.7. We emphasize that we do not assume that a classical solutitve dDE (5) must
be differentiable in the time direction or in the directi®f. However this is the case if vector fields
satisfy the uniform Brmander condition. In this case the above definition caiesiwith the standard
definition of a classical solution.

As announced, here is the connection between the PDE and3D& Bthe proof is postponed to
Section 7):

Proposition 2.8. Under the standing assumption ifis a continuous function of polynomial growth
and f is bounded in(t, z), uniformly in(y, z), and twice continuously differentiable w.riz, y, )
with bounded derivatives, the functiargiven by(13) for a givenT' > 0 is a classical solution to the
PDE (5) on (0, 7] x R

Moreover, any other classical solutianof the semilinear PDE (5) that has polynomial growth
matches:. “Polynomial growth” means that there exiét, » > 0 such that

(21) V(t,z) € [0, 7] xRY,  |u(t,z)| < C(1+ |=|").

2.4. Generalized Solutions to the PDE5). We now specify the notion of generalized solutions.
A generalized solution, of the PDE (5) will be a function that ig-locally-integrable and that has
p-locally-integrable generalized derivatives of secondeo in the directions of the vector fields,

i = 1,...,d, and ap-locally-integrable generalized derivative of first-arde the direction}, =

0y — Vp, when viewed as a functioft, ) — u(t, z) over the product spad®, co) x R¢.

2.4.1. Space of Generalized Solution&s we definede;oo(IBB) as the closure of$°(B) in Cy(B)
w.rt. || - ngjio for a given ballB, we can defin@"‘;”’(IB%), for a given reap > 1 and forl < k <
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K —m + 2, as the closure af;°(B) in LP(B) w.r.t. || - H]‘gf’];, where

Vi1
lellg, = leller+ D 1Viaelse,
a€Ag(m)

Vik Vik—1
HCIOH]BJ) = ”(10|’IB%,p + Z ”‘/[al] te ‘/[ak}QOHIB,py p e LP(B)7

ai,...,ap€Ao(m)

the notation| - ||z, here standing for thé? norm overB. Then, we can defin@f}p(Rd) as the
intersection of all thedDlP(B(0, 7)), r > 0. Similarly, we can defin®-"'/>*(B) andD¥™/*7 (R)
for1 <k <K —m+1,DyP([L, 7] x B) forr > 0, andD7((0, +-00) x RY).

r?

Remark 2.9. If the uniform Hirmander condition is satisfied, thé?(“,’p(IR{d) is the set of functiong
that belong to the Sobolev spaidé®?(B(0, r)) for anyr > 0.

2.4.2. Typical Example.A typical example of function irD"i’"(]R{d), 1<n<K-m,isz e R
(Pyp)(z), fort > 0andy € L{’OC(}Rd), © being at most of polynomial growth at the infinity. The
proof is almost the same as in the case whea +oo. The point is to consider an approximating
sequencéyy)¢>1, converging towards in LI (R) (that is in anyLP(B(0, R)), R > 0) and then to
prove that the right-hand side in (20) is Cauch;Lﬁgc(Rd). To prove it, we claim that for anig > 0
and/, k > 0,

(22) / KR‘E[(SDZ-M — @0) (X)Y(t, )] |Pde < C E[leere — el (X7)] da,

|z|<R
with C = sup,cpa E[zp(t,x)l”]p/p/ < 00, 1/p +1/p' = 1. Now, the result follows from

Lemma 2.10.Let#; andd, be two functions belonging tbeC(Rd), p > 1, and at most of polynomial
growth of exponent > 0 (that is|6;(z)| < C(1 + |z|"), i = 1,2, for some constant’ > 0), then,
forany A, R > 0,

/ E[|61 — 0oP(X])]dz < C / 101 — 0P (y)dy + C"A™Y2(1 + RPH/2),
|z|<R ly|<A

the constant’’ being independent of and R and depending ofi; and#, throughC' andr only.

The proof of Lemma 2.10 is left to the reader: the two termdright-hand side are obtained
by splitting the left-hand side along the evefitX| < A} and{|X}| > A}, the first term in the
right-hand side then follows from the boundedness of thers® of the Jacobian matrix &f in any
L1(P), ¢ > 1; the second one follows from the polynomial growth propetfty; andf, and from
Cauchy-Schwarz and Markov inequalities. Chooging= ¢, andf, = ¢, therein, we deduce that
the right-hand side in (20) is indeed Cauchy[jﬁc(Rd). (Clearly, we can assume tlie;),>; to be
of polynomial growth, uniformly ir?.)

2.4.3. Definition of Generalized Solution&Ve are now in position to define the notion of generalized
solution to the PDE (5). Following Definition 2.6, we set

Definition 2.11. We call a functiorv = {uv(t, ), (t,z) € [0,+00) x R?} a generalizedsolution of
the PDE (5) if the followings are satisfied
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(1) visin Np>1DyP((0, +00) x RY) and, for anyt > 0, v(t, -) is in My>1 D3 (RY) such that, for
anyai, as € Ag(m), the function(t, z) € (0, +00) x R = (Vi v(t, 2), Viay Vias v (¢, 7))
is measurable and in ang} ((0, +o0) x R%), p > 1,

(2) for almost everyt, z) € (0, +oo) x R, it holds

Vou(t, x) ZV2 (t,z) + f(t,z,v(t, z), Vot z)) )
i=1
(3) on any compact sety(t, -) — h in Lebesgue-measure a3\, 0, that is, for any balB c R,
foranye > 0, limy o [{z € B : [u(t,z) — h(x)| > €}| = 0, where| A| denotes the Lebesgue
volume ofA for a Borel subsetd C R,

In Section 7, we will show the following

Proposition 2.12. Under the standing assumption, /ifis measurable and of polynomial growth
and f is bounded in(t, z), uniformly in(y, z), and twice continuously differentiable w.riz, y, )
with bounded derivatives, the functiangiven by(13) is a generalized solution to the PD[B) on
(0,T] x R? for anyT > 0. Moreover, any other generalized solutiorof the semilinear PDE (5)
that has polynomial growth matchaesalmost everywhere.

2.5. Generalized Gronwall Lemma. In the following we will make use of the following:
Lemma 2.13. Consider two bounded measurable fUﬂCti@lﬂSgg : [0, 7] — Ry such that

(23) t) <C1+Cy / \/ST

for some constant€’;, Co > 0. Then there exisk, 1 > 0, depending o’y andT" only, such that

T 1 T
/ g1(t) exp(At)dt < pCy + = / g2(t) exp(At)dt,
(24) 0 2 Jo

T
1
sup [g1(t)] < puCi +2C3 / ga(t)dt + 5 Sup [92(1)].-
0<t<T 0 0<t<T

In particular, if gy = g9, theng; is bounded by/’C}, for a constanf.’ depending o andT" only.

Remark 2.14. By an obvious change of variable, the result also applieb@iforward sense, that is
wheng; (1) < C1 + Cy fot(t —5)"Y2gy(s)ds.
Proof. Integrating (23) w.r.txp(At), we obtain

T T T
/ a(t) exp(M)dt < C / exp(M)dt + Cs /
0 0 0

[ 5 exp(At
_92(3)/0 %dt]ds

g T S ex — s
:Cl/o eXP(}‘t)dHCz/O 92(s) exp(AS)/ %dt} ds

0

T Tr s _
:C’l/ eXp(/\t)dt—l—C'g/ g2(s) exp(/\s)/ Mdt ds
0 0 t1/2

0

T T
< C’l/ eXp(/\t)dt—l—C'g/ %ﬂ)\t)dt/ g2(s) exp(As)ds.
0 0 0
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Choosing) large enough, this proves the first inequality in (24).
Prove now the second inequality. For any 0, (23) yields

(t+e)NT T
g(t) <CiL+ 02/ %ds + 026_1/2/ g2(s)ds
t (s —t)Y (t+€)AT

T
<Cy+ 025_1/2/ g2(s)ds + Cye'/? sup [gg(s)].
0 0<s<T
Choosings'/? = 1/(2C5), we complete the proof of (24).
Wheng; = g, the first inequality in (24) yield§0T exp(At) g1 (t)dt < 2uCh so thathT g1(t)dt <
2uC1. By the second inequality in (24),

1
sup [g1(t)] < C1+ 4uC1C3 + 5 Sup [g1(s)]. O
0<t<T 0<s<T

3. LIPSCHITZ BOUNDARY CONDITION

3.1. Setting and Main Result. In the whole section, we assume that the boundary condgidipk
schitz continuous. We also assume thitt, =, y, 2)| < A(1 + |z| + |y| + |2]), = € RY, y € R,
z € RN, and thatf(t, ) is (K — m — 1)-times continuously differentiable, the derivatives aghy
orderl <n < K —m — 1 being bounded by some constant > 0. (SinceK > m + 3, f(t,-) is at
least twice differentiable.) To simplify things, we will@ane that\,, > A.

In the following, a stands for a tuple of multi-indicegy, ..., «,) and||a|| for |laq| + -+ +
o |l. We write f(a) = n to say thata is ann-tuple of multi-indices and denot&/?(m) =
tH{(Br,---,Bk) € [Ao(m)]¥, 1 < k < n}. In the case wheWh does not exist at poinky,
[VR(X{)| will be understood a$Vh(X{)| = limsup._o .0 g |el™ [y <c) IVRXT + y)ldy,
wherel'; stands for the volume of thédimensional ball of radius 1. a

We will analyse the properties of our candidatéor the solution of the PDE as defined in (14).
That is

T
uw(T —t,x) = E[h(xfﬁ) +/ f(T — s, Xb7,YE" Zb)ds|, 0<t<T, zeR%
t

(Note that by time homogeneity (7" — ¢, z) depends on the paft, T') through the differenc& — ¢
only, as indicated by the notation.) The objective is to prov

Theorem 3.1. Let (V;)o<i<n be N + 1 vector fields satisfying Definition 1.1. Then, for any 0,

u(t, ) belongs tciD{,(_m_l/z"’o(Rd) and is Lipschitz continuous;(, -) is continuously differentiable

if h is continuously differentiable, i.&7,u(t, -) exists as a continuous function.
Moreover, foranyl’ > 0,n < K —m—1anday,...,a, € Ay(m), there exists a constant, (p),
depending om\,,, n, p, T and the vector fieldsy, . . . , Vi only, such that, for allt, z) € (0, T] x RY,

Vi) -+ Viewgu(t, )] < Co(p)t 19072 [1 L B[|[WR(XF)| ™) 7],

Vi) -+ - Vi Viult, )| < Co(p)t 12 [1 4 B[|WR(X7)|™]"?], 1<i<N,
Moreover, giver) < ¢ < T', the derivative processes by indexed= (a1, ..., a,) € [Ao(m)]"

(Y = Vo) - Via (T = 5, X5%), 28 = (Vo] - - - Via) Vi) (T — 5, X3%))1<i<)

(25)

t§s<T)a
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are continuous and satisfy a generalized BSDE of the form

Ve = (S —s)Ie2E[V (T - 8, X57)0%[6a] (S — 5, X07)|F]

r rS

+E / Fa(”a&hx»xﬂt’x»Zﬁ’x?(Y;”ﬁ)ﬁ(ﬁ)<nv(Zf)ti(ﬁ)<n)dr|‘7:sj|7

(26) ~s . .
(Z22); = (S — s) 1PE[V (T — S, X5)02[WL](S — 5, X17)|F]

S .
+E / (T - 8)_1/2Gix (wv s, T, T, Y;t’xv Z;E’mv (Y;B)ﬁ(ﬁ)gnv (Z;”@)ti(ﬁ)<n)dr‘]:sj| >

wherel < i< N,t<s< S <T, ¢, and (ng)lgiSN are R%valued Kusuoka-Stroock functions
in Kg(K -—m-n- 1)' andFa(wa 51T,Y, 2, 67 C) a‘nd (GZ(Q}, $T,Y, 2, 57 C))lSZSN are JOIntly
measurable random functionals fraix [0, 7]2 x R% x R x RN x RMn(m) x RNVM:(m) into R, such

that, a.s.,
|(Fa, (Gg))(w,s,r,w,y,z,0,0)‘ < P(w,s,mz)(1+ |yl +2]),
|(Fa, (Go)i) (w5, 2.y, 2, €, () = (Fay (Go)i) (ws 87,2, 4, 2,6, O Ly 211 2|<R)
< B(w,5,7,2)(0(,6,¢,¢) + R) [mrly — v, 2 — 2 )+ & =&+ ¢ = ¢l], R>0,

where®(w, s,r, z) is a jointly measurable functional, such that, for apy> 1, E[|®(w, s, 7, z)[P]

is uniformly bounded in: in compact subsets ®? and in0 < s < r < T, O(¢,¢,¢, () is a
(deterministic) polynomial function anagi(y, z) is a (deterministic) continuous function matching
0 at (0,0). In (26), V u(T — S, Xg’m) stands for a boundeds-measurable random variable when
V.u(T — S, ) doesn't exist as a true function.

Equation (26) provides the stochastic dynamics of the dtviv processes when the forward equa-
tion is initialized atz at time 0. It must be seen as r@on-linear integration by partsthat is the
equivalent to the integration by parts formula exhibitedhia linear case. It must be also compared
with the pathwise differentiation result in [27]. The diffmce between (26) and the result in [27]
lies in the lack of well-defined boundary condition in (2&)wiould be the higher-order derivatives
of h if they were well-defined. Here they don’t exist Ads assumed to be Lipschitz only. As a
consequence, the derivative processes are only definedanytimeS € [0,7") and the boundary
like type condition is expressed as a conditional expewtatihe first-order term therein is bounded
in s andS so that the leading coefficieas — s)[!~ll*lll/2 stands for the typical order of the boundary
condition in the neighborhood &f.

A straightforward application of Lemma 2.13 shows thEf*, Z%) is the unique solution to (26)
with continuous paths such thBfsup;« < g |[Y.*|P 4+ sup;<,<g | Z8P] < +oo foranyS € [¢,T) and
for anyp > 1. This is done via a standard fixed point argument similar &b tised in the classical
proof of the unique solvability of BSDEs driven +independent drivers.

The strategy of the proof of Theorem 3.1 consists in provirggresult first for the case when the
boundary condition of the equation (5) is smooth and thesxréhe assumption via a mollification
argument. Hence below, we will assume first thas smooth inz.

3.2. One-Step Differentiation. The following one-step differentiation lemma permits theiteh
from one derivative to another:
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Lemma 3.2. Let F be a continuously differentiable function frdkf x R x RY into R and¢ be in
DY/>(RY). Then, settingd(X?) = (X2, o(X2), (Vig)(XZ))1<i<n), 0 < s < T, the mapping
z — F(O(X?))is in D} (R?) and, for anya € Ay(m),

VmlFOXD)] = 3 {bams ) [Vig(X2) - Vo F (O(X7))
BEA(m)

9O (M) (X5 + X ., F(O1XD) (ViaVis) (X2)] |-

(=1..N
(Here, V], is understood a¥[,(z) - V.)

Proof. When¢ is a smooth function, we can write

d d d
- ; OF 0 © aFO@ .
V{a][F(@<Xs>>}=ZV[a}<w T (X9) (fm L S S V@) 5o (X5

j=1 i=1 j=1

Applying Lemma 2.3 witht = 0, the result easily follows (whep is smooth). By a closure argument,

the result is still valid wherp is in D/ > (R9). O
In the following, for anya = (ay,...,a,) € [Ao(m)]", we denote|al = > 7, ||la;|| and we
defineZy(n) as the set of non-decreasing sequences of (possibly zéegeisiy, ..., i, such that

i1+ -+ i < n. Foranyk € {0,...,n}, we also definé/;(¢) as the set ok-tuples of functions
of the form(vy, ..., vx), with v; being equal either t@ or Vo, 1 < ¢ < N. (Whenk = 0, we set
Uy () = ). We deduce the following:

Corollary 3.3. LetF be a(K —m — 1)-times differentiable function fro? x R x RY into R, with

bounded derivatives of any ordér< k < K —m — 1, andy be inD‘rj“ﬂ(Rd), n<K-m-—1.
Then, for anyn-tuple of indicesy = (ay, ..., a,) € [Ag(m)]"

anl - Ve E[F(O(XD))] = i > > >

k=04€Z)(n) vells(v) g B=(Be.j)1<e<ij1<j<k€lli<jcr[Ao(m m)]%

Vi

KU Bl - Vig, ﬂ”z)(Xf))¢i,v,ﬁ(3>$)¢i,v,g(@(X§)) ,

where¢; ,3 € K(HBII )+ + (K —m —n) and; , g is bounded and K — m — n — 1)-times
differentiable with bounded derivatives.

Proof. We proceed by induction. The case whenr= 1 follows from Lemma 3.2. Assume then
that the result holds true for a given> 1. Then, for a given,,1 € Ag(m), we are to consider for
any(k,i,v,3) as above

k

Viap € with &= (H(Vwm}---V[ﬁij,j]vj)(Xé”)>¢i7vﬂ(8,w)%vﬂ(@(Xﬁ))-

Jj=1
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Clearly, the term obtained by letting,,,, ) act ong; . g gives a new Kusuoka-Stroock function
belonging tdc{l\ﬁll—llal\ﬁ (K —m — (n+ 1)), which is included iﬂc{l\ﬁll—llal\—l\anﬂ||)+(K —m—

(n + 1)). To differentiatey; ,, g(O(X7Y)), we apply Lemma 3.2. There are two cases: (i) the first
term in Lemma 3.2 does not add a new term of the féfpw; (ii) the two last terms in Lemma 3.2
add new terms of the forrirgv. Itis clear that (i) keeps the general form of the formula tnet
new is (K — m — n — 2)-times differentiable. We explain now what happens for (#pllowing
Lemma 3.2, the function); ,, 5 is differentiated; for any3; 1 € Ao(m), the term& at rankn is
multiplied by le,kmvkﬂ for vi41 being eithery or one of the(Vy¢)1<i<n and the sum is then
performed over all thes; .1 € Ap(m). It means thak is increased int& + 1 and thate; ,, g is
changed intap; ,, gb Now, b is in IC(T )+(K —m). In particular,

n+1,61,k+1 181 k1l = llenall
we can say thaﬁ’ivvﬂbanﬂ 81 k1

T .

belongs (¢ 51 i)+ + (161111~ llan fiy+ (K~ —1)- Since the
positive part is sub-additive, that(s + y)* < 2% + y*, we deduce thap; ,, gb belongs
to K1 (K —m —n).

(UIBI+181, -+ 1 1= llexll=llem-+1 D F
It remains to say what happens when differentiating eacheterms(Vis, ;... Vwij’j]vj)(Xs )
We use Lemma 2.3 witt, o) = (0, ant1), 1. Js .2 Via, 11](2) = 2o ge a0(m) bani1,8(5, 2) Vg (XT).-
The result is that we are increasing the lengtfor somel < j < k from ¢, to i; + 1, all the other
lengthes being preserved, and that the Kusuoka-Strooatiéuny; ,, 5 is changed int@; ,, gba,, ., 3
for any g € Ay(m), which as we already argued belongsi(lﬁﬁﬂﬂw_Ha”_”anﬂ”)+(K —m —n).
(Note that some of the weight functions ,, g and; ,, g in the formula at rank + 1 may be zero so
that the sums therein run over all the possible indices.) O

041,01, k41"

41,81, k41

3.3. Proof of Theorem 3.1 in the Smooth Setting.As announced, we assume first that the boundary
conditionh in (12) is aC;° function. For anyl < n < K —m — 1, we denote by\,, the common
bound for the Lipschitz constant éfand for the derivatives of the coefficients up to the ondevwe

will make us of the following results whose proofs are posgzbfor the next subsection.

Lemma 3.4. In the smooth setting, the mappingsand Vv are (K — m — 1)-times continuously
differentiable on(0, +o0) x R? with respect to the variable; moreover, for anyl” > 0 and1 < n <
K —m — 1, V2 and V"V« are bounded oif0, 7] x R

Proposition 3.5. In the smooth setting, for any > 1 and1 < n < K — m — 1, there exists a
constant’,, (p), depending or,,, n, p, T'and the vector fields only, such that, for gay, ..., a,) €
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(Ag(m))™ and any(t, z) € (0,T] x R,

Vi) - - - Viawju(t, )| < Cu(p) [1 + tU-leDPR | wh(xF) ) W}

+ T np/i;
+/t/QZZ (t — 5181l /QHE{ Vi Vigy 107) (5, XE )5

k=114v,0

i;/(np)
} ds,

[Viau] - - Viaw) Viult, )| < Can(p) [1 + ¢ 2E [ h(X7)|P] 1/7’]

t n
+/ {t_s (81—l ~11/2
WZZ (t—s)

k=11,v,08
np/z ij/(np)
x HE|: 61]] [ﬁz ]},UJ)(S Xt s | ]:| :|d3:|

Above, both sums run over the indides: (i1, ... ,ix) € Zx(n), v = (vi,...,v;) € Ux(u(s,-)) and

B=((Brjs--,Bi;) € [Ao(m)])1<j<k-

We prove Theorem 3.1 by induction. For evary< n < K — m — 1, we denote byP, the
following property: for anyp > 1, there exists a constant,(p), depending om\,,, n, p, T" and the
vector fields only, such that, for aryy, ..., a,) € (Ag(m))™ and any(t, z) € (0, 7] x R,

[View - - - Viamqu(t, )| < Cu(p)tt=112D/2[1 4 E[|VA(XT) ™) 1/”],
View - - - Viaw) Viu(t, )| < Co(p)t12172[1 + E[|VR(XF)|™] 1/”], ie{l,...,N},

with el = S0 fleu].
We first proveP;. For a giverp > 1, we set for anys; € Ag(m)

(Pn)

N
QL (s.t,2) = E[|(Vigyu) (5. X7 ) [ + 5123 B[] (Vs Vi) (5. X5 )[]7.
j=1

Choosen = 1 in Proposition 3.5 and;; € Ag(m). Sincet — s < s for anys € [t/2,t], we get

Vi ult, )] < C1(p) [1 + -l /2R |y xE) 7] VP

t

+/ G S)M61||—||a1||)+—11/2%1(37m)ds}7
t/2 g, e Ao (m)

t/2 Vi, Viu(t, 2)| < C1(p) [1 + ¢ lleaD 2R [|wh(xy) 7] /P

t
+/ Z (t — S)[(|\51||—||041||)+—1]/2Qé1 (s,t,x)dS}
t/2 B1€AQ(m)
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wherei = 1,..., N. By the bounds > ¢/2 again, both inequalities can be incorporated into:

N
laf=1)/2 [‘V[al]u(t, z)| + /2 Z\V[aﬂviu(t, ) @
i=1

< Ci(p )[1 +E[|VR(XF)|F]Y + > / —H2gl=N2 gl (s, ;U)}d
B1E€A(m)

the constant’; (p) possibly varylng from line to line hereafter.
Choosingr of the form X" ,, with » > ¢, taking theL” moment, applying Minkowski’s integral
inequality, and then summlng ovei € Ag(m)andi € {1,..., N}, we eventually obtain

N
Z tUlel=1)/2 [EH (V[al}u) (t, Xf—t”p] 1/p + Z 751/21[3“ (V[al]ViU) (t, Xf—t”p] 1/1)]
a1€Ap(m) i=1

< Cilp )[1+E[Wh xHPP Y / “1/250I-D/2 01 (s 1, x)ds]
B1E€Ag(m)

We emphasize that the left-hand side is nothing Bt 4, ) t1*1171/2Q}, (t,7,2). By Lemma
2.13 (applied in the forward sense), we complete the pro@t;of

We turn to the proof of the induction property. Assume tRatholds for everyl < k < n — 1,
for some rank < n < K —m — 1. We make use of Proposition 3.5 at ramkWe have two cases:
i, = nandi; < n. Wheni, = n, the sum ovep actually reduces to a sum ov@r= (81,...,5,) €
[Ao(m)]" and the product of th&"'s reduces to a single term of the forviy; . .. Vig, v, v running
over the sefu(s, -), Vyu(s,-),1 < ¢ < N}. In this case, we do not use the induction property. When
ir, < n, all the possiblé;’s, 1 < j < k, are also (strictly) less tham. That is, the terms of the form
le,j] .. Vwij,ﬂvj fulfill the induction property, i.e., forany < j < k,

| (Visa -+ Vi, 103) (5, XE-)| < Cu(p)s?/2- (e a2 1 4 B[ VR(XE) 77 |Fiss] 7],

with § being equal td whenv, (s, -) matches(s, -) and being equal to whenv; (s, -) matches some
Viu(s,+), 1 <1i < N. Clearly, the worst rates hold for the term

(27) ‘(V[BM} . V[ﬁij’j]’uj)(s,Xf_sﬂ < Cn(p)s—(Zej;l 1Be,11)/2 [1 4 EHVh(Xf)|ijp’ft—s]l/p]-

We then obtain

k o\ inpfis ij/(np)
H[ Vigij1 - 'V[Bij,j}vj)(s’Xt—s)‘ J]]

28 15 k 2
(28) < Cn(p)s_(zé?zl Sl I1Bes11)/2 H 1+ IEHVh(Xf)‘anZ]/(np)
j=1

< Culp)s PPIPE[(1+ [VA(XT))™],

where3 stands for the:-tuple of multi-indices((8e,;)1<e<i; )1<j<k-
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Plugging these bounds into Proposition 3.5, we obtain (@#prtmdification of the constait, (p))

(29)

with

Maﬂ o V[an]u(t,ﬂf)| < Chu(p) [1 + 75(1_”°‘||)/2EHVh(Xf)|p] 1/p

t
+ Cu(p) 3 / s IB1/2 (1 _ )81 232 1. )
B=(B1,.-..8k)E[Ao(m)]F k<n t/2

t
+Calp) Y / (t — s)lWBI=lled™=0/20n . (5.t,2)ds

B1 o€ Ao(m) U /2
= Tl(tv :I") + TQ(t7 33‘) + T3(t7 33‘),

R(t,z) = E[(1+ |Vh(X})[)"]"/?
Q... (5:1,0) = E[| (Vigy - Viggu) (s, X )]

N
+ 5123 B[ (Visy - - Vi, Vi) (s, X)) 7.
i=1

By replacingz with X*_,, » > ¢, taking theL” moment and using Minkowski’s integral inequality

we get

(30)

Similarly,

(31)

t(Ha”_l)/2EHTQ(t,Xf_t)‘p] 1/p < Cn(p)tl/2E[(1 + ‘Vh(XT:f:)DnP] 1/17.

tled=D72g |7y (2, X7_,)[") 1/p

t
< Ch(p / t — )~ 1/25IBI=D/2 gn s,r,x)ds.
P O bnor

By (29), (30) and (31), we deduce

(32)

tII=D2E | (Vi .. Via,ju) (8 X2 )P]Y? < Cu(@)E[(1 + |VA(XE)[)"]

t
+Colp /t—yW%W*WQ’ R
( )Bl"”7BnZ€AO(m) t/2( ) 517---767l( )

By a similar argument,

(33)

N
S B[] (Vo - View Vi) (6 X2 )17 < Cu@)E[ (1 + [VA(XS)]) "]
i=1

t
+Colp /t—{M%W*W@ s, 2)ds.
( )617...7%.,40(7”) t/2( ) Blyu-yﬁn( )
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Summing (32) and (33) ovéryy, ..., ay,) € [Ap(m)]™, we obtain
al|— n T npil
> IR o (tre) < Ca)E[(1+ [VR(XE)))

at,...,an€Ag(m)

(34) ! 1/2 1)/2
+ Ch(p) Z / (t—s)~ 125I81-1)/ Q3, .5, (s,)ds.
B1,-.,Bn€A0(m) t/2
By Lemma 2.13 (applied in the forward sense), we completénithgction proof. d

3.4. Proofs of Lemma 3.4 and Proposition 3.5.The proofs rely on the technical lemma:

Lemma 3.6. Consider three random jointly measurable functidns (w, t, ) € Q x [0,7] x R?
U(w,t,r) € R, & : (w,t,s,2) € 2 x[0,T]> xR = ®(w,t,2) € Ry and F : (w,t,s,2,() €
Qx[0,T]? x RY x R s F(w,t,s,2,¢) € R% such that, a.s., for any € [0, T, the mappings

z +— ¥(w,t,x) and (z,¢) — F(w,t,z, () are continuously differentiable. Assume in addition that
(P(w, 5,1, 2))g<sct<Tzerd IS IN LP(Q), uniformly in0 < s < ¢ < T andz € R4, for anyp > 1.
Assume finally that

|\P(w7 t? 0)| é é(w7 07 t? 0)7 |F(w7 87 t? :L'7 0)| é é(w7 S? t7 :L')7

(35) |v$\1j(w7t7x)| é q)(w707t7$)7 |V$F(w787t>gj><)| é (I)(W,S,t,ZE)(l + |C|)>
|VCF(W,S,t,ZE,C)| < q)(w73>ta$)'

If o: [0, 7] x RY — R% is a function inL>°(]0, T, C,(R?)) that satisfies

T
(36) u(t,z) =E [\I’(t,:n) —I—/ (s — t)_1/2F(w,t, 8,:E,17(8,X§’x))ds ,
t

thenw(t,-) is Lipschitz continuous, uniformly ih Moreover, if, a.s., for any € [0,7], x € RY,
¢ € R%, the functiong € [0,7] ~ ¥(¢,z) andt € (0,s) — F(w,t,s,z,() are continuous, then
is continuous o0, 7' x R¢.

Proof. We introduce the following mapping

@ : 1°([0,T),Co(RY)) — L([0, ], Cy(RY))

T F(w,t,s,w,v(s,Xﬁ’x)) })
ds| .
(s —t)1/2

There exists a constaft (whose value may vary below ) such that, for any [0, 7] andz € R,

s (w L (t,2) € [0,T] deHE[‘P(t>$)+/t

r — v9)(s, -
(37) [|(w1 — w2)(t, )]0 < C/t ||(U1( 2))( , )Hoods,

s —t)1/2

with w; = ®(v;) andwy = ®(vy). By Lemma 2.13,
T

T
| el = wa) e < 5 [ exprs) o1 = va)(s. s

for some\ > 0. Thus, the mapping is a contraction or.> ([0, 7], C,(R%)) endowed with the
semi-normov fOT exp(At)||v(t, -)||sodt. In particular, ifv satisfies (36) and is a fixed point of®,
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then, for a.et € [0, 7], 0(t,-) = o(t,-). By (37),0(t,-) = ©(t,-) for anyt € [0,7]. Similarly, for a
recursive sequende@,+1 = ®(vy))n>0, vo = 0, we get

T
lim exp(At)[[(vy, — ) (¢, )|l codt = 0.

n—-+4o00 0

By (37) and Lemma 2.13 again,

0<t< 0<s<

1 T _
(38) sup_ 1(on+1 = D), lloo < 5 sup_ [ (vn )(8,')Iloo+C/0 [(vn —0)(s, )|l ds.

We deduce thatupg<;<r [|vn(t,-) — 9(t, )|l CONverges towards. Therefore, if the functions
((vn(t, -))tejo,m)n>1 are Lipschitz continuous, uniformly ihand inn, o(t, -) is Lipschitz continu-
ous as well, uniformly int € [0,7]. By induction, it is clear that all the,, (¢, -) are continuously
differentiable. By (35),

T
Va2vn(5,+)|loo

(39 Vet < 040 [ Sl ay

since the functionsuv,, ), > are bounded, uniformly in. (The value ofC' may vary below.) We use

Lemma 2.13 again. For a possibly new value\pf

T 1 T
/ exp(AL) | Vavni1 (L, -)[locdt < C + 5 / exp(At)[|Vavn(t, -)[locdt.
0 0

Iterating the bound, we gg"gT exp(At)[|Vevn(t, )|leodt < C. In particular, by (39) and Lemma 2.13
1
(40) [Vevni1(t,)lle < C + 5 SUP ||van( s Moo

lterating, we obtain thatup,,~; supy<;<7 || Vavn(t, ) |lee < +00.

When the random functiong and F’ satisfy the prescribed continuity conditions w.r.t. thadi
parameter, all the function@;,),>1 are continuous of0, '] x R¢; by local uniform convergence of
the sequencév,,),>1 towardsv, v is continuous. O

Proof (Lemma 3.4). The first-order continuous differentiability af(t,-) is a straightforward
consequence of Pardoux and Peng [27]. Moreover, for arglicidndition (¢, z) € [0, T] x R?, the
solution(V,Y:*, V. Z4") 1< <7 to the derivative BSDE

T
VoY) = Vh(X3") Ve X727 — / dB V2"
S

(41) ,

+ [ [Vl (O VaXEF 4 V, (O V.Y + V. (6) V.21,

S
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with ©8% = (T — r, X1* V0%, Zb"), satisfies

Yt ,z+h Yt T 5
(42) hmE[ sup |T -V Y”‘ + sup |VpYheth VoYEH] =0, w e RY,
=0 <s<T t<s<T

tx-i—h_th
(43) hmEU \——v Zb* % ds +/ |V, 20t -, Z8 *ds| =0, = eR%

Clearly, (41) yieldssupy<;< [|Vzu(t,-)[lco < +00, SiNCEV, f, Vyf andV . f are bounded, that is

(44) sup [|Vau(t, )|, < O(Ar, T

0<t<
whereC(A1,T) depends om\;, 7" and the bounds of the derivatives of the vector fiélgs .., Vx
only. Precisely, by Proposition 3.2 in Briand et al. [2], wavh that for any > 1

(45) V(t,x) € [0,T) x RY, | V,u(t,2)| < C(A1,p, T)[1+E[|VA(XP)[] ],
for some constant'(A1, p, T') depending on\;, p, 7" and the bounds of the derivatives of the vector

fields Vg, ..., Vi only.
We now go back to the backward formulatiomadt, -):

T
u(T — t,7) = E[h(X5%)] + /t E[f(T — s, X0 u(T — 5, X2%), (Vu) (T — 5, X2")) ] ds.

By the example in Subsection 2.3 and by Lebesgue dominagedetim, we know that the right-hand
side is inD}/*(R?) and that for anyl < i < N,

Viu(T — t,z) = E[VA(X2")V; X257
T
+ / (S - t)_l/zE [f(T -5, X?ma U(T - S, Xg’w)a (VU)T(T - S, X?m))ef(wl)(s - ta ‘T)] dS,
t

whereV; X" being understood &8, X 2" V; (). Above,1); stands for a Kusuoka-Stroock function in
KT (K —m —1) andé; (1;) indicates that the randomness is evaluated after shiftBee Subsection
2.2.) Clearly, we can rewrite the above expression as

T t,x t,x t,2\ nx ) .
(46) VZ"LL(T—t,QE) _ E[Vh(X;lx)VZX;x]—I-/ E[f(T 5, Xs ’zj ’tff/z)et (¢2)(5 t,ZL')]
] _
We need to apply (42) and (43) to differentiate the rightehaide under the integral. However
(Vo Zo™)i<s<r isin L2([t, T] x Q) only so that the convergence of the integralof t)~'/2|V, Z4”|
is not guaranteed.
We now make use of Lemma 3.6. Sin€&v;)(s — t,z) is centered, we can replaggdT —
s, XUT Y5 Z87) by f(T — s, X0" YE®, Z0") — f(T — s,2,u(s,z),0) in (46) and then apply
Lemma 3.6 With¥ (¢, z) = VA(X5" )V, X5", F(t,s,x,() = [f(T—s,Xﬁ’:”,u(s,Xﬁ’m),C) — f(T -
s,x,u(s,x),0)]0; () (s — t,z), and obviouslyz(t, z) = (Vu)T (¢, z). We then deduce thafu(t, -)
is Lipschitz continuous, uniformly in. Writing E[f(T — s, X2, Y&", Z6")05 (4;) (s — t,x)] as
E[f(T — s, X%, u(s, X% ), (Vu) T (s, X2_,))i(s — t,x)] and then taking advantage of the time-
continuity of X and+);, we also deduce from Lemma 3.6 tiat is continuous or{0, 7' x R?. In

ds.
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particular, for any0 < t < s < T, the mappinge — Z* = (Vu)T (s, X2") is locally Lipschitz
continuous, i.e. for any € R,
sup [ Z0Y — ZY) <d(x)ly — yl,
y,y' €B(z,1)
whered is a random variable in ang?, uniformly in z ands. In particular, by (43), we can choose a
version ofV, Z,'" that is in anyL?(£2), uniformly in s andz.

We now go back to (46). By (43), we know that the term inside ititegral is continuously
differentiable for anys > t¢. SinceV,Z5" is in any LP(2), uniformly in s andz, we deduce that
Vu(t, ) is continuously differentiable as well and thét Vu(¢, -) is bounded uniformly irt.

The proof is completed by an induction step. We now assunigftitaa givenl <n < K —m—2,
u(t,-) and Vu(t,-) aren-times continuously differentiable in all the directionstbe space, with
bounded derivatives, uniformly ih We also assume that, for afiy< k& < n — 1, the functionsv’;u
andV*Vu are continuous o0, 7] x R<,

By Lemma 2.2, we can differentiate the pgif”*, Z:™) ;< .<r pathwisen times. The dynamics of
the derivative proces&V? Y., V7 Z4" )< <7 may be summarized as follows:

T
VRV = H (@) + / [F7(t5,2) + V, (OF) VRV + V. f(O17) V32| dr
(47) s
where H" (¢, z) is an Fp-measurable r.v., bounded in afy(2), p > 1, uniformly in (¢,z), and
(F™(t,s,x))i<s<T IS @ progressively-measurable process (ws)f.bounded in anyL?(Q), p > 1,
uniformly in0 < ¢t < s < T and inz. Obviously, H"(t,x) is given by the differentiation of
the boundary condition an8" (¢, s, z) by the differentiation of the driver of the BSDE" (¢, s, x)
contains all the derivatives of up to ordern and all the derivatives ofY, Z) up to ordern — 1.
In particular, F"(t, s, z) is a.s. continuously differentiable w.r.t, with bounded derivatives in any
LP(Q),p > 1, uniformly in0 < t < s < T and inz (by the induction assumption).

Following the strategy developed in (46) and differentigti times therein, we obtain as generic
equation forV2Vu(t, -):

V(T — t,x) = E[H"/2(t,2)]
“e /T E[G"(t,5,2) + (Vo (O ) VY™ + Vo f(Or") V3 Zr") 6; (i) (s — t, )]
t (s — t)l/z

1 <i< N, forsomey; € ICOT(K —m —1). Above,G" is obtained by differentiating both the driver
of the BSDE and the Kusuoka-Stroock function in (46). In ipatar, by centeringf as in (46), we
can assume th&i™ satisfies the same propertiesis. Moreover, H"t1/2(t, z) is a.s. continuously
differentiable, with derivatives in ang?(£2), for anyp > 1. (Basically,H”+1/2(t,m) is obtained by
differentiating (n + 1)-times the boundary condition. Sinee+ 2 < K and(t,z) — X7._, isin
K9.(K), H™+'/2 is continuously differentiable w.r.t:.)

Making use of (47) and (48) and applying the time-space oaityi argument in Lemma 3.6 to the
pair (V7u, V*Vu), we deduce thafv?u, V"V u) is continuous orf0, 7] x RY. By the same strategy
as in (41), we also deduce that the p@i 'y, v+l zL%) .o exists as in (42) and (43). (See

dr,
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also Footnot&) Clearly, V?+1u(t, ) is well-defined and continuous, and it is bounded, uniformly
in t. To establish the continuous differentiability ®"V« (T — ¢, -), we use the same strategy as
in the casen = 1 by applying first Lemma 3.6 to (48). This proves tha} ' Vu(T — t,-) is a
continuous function and that it is bounded, uniformly.iWriting the dynamics foRr?+1u (T —t, -)

and V"t V(T — t,-) and applying the time-space continuity argument in Lemnga 8e finally
establish tha¥?+1u(T — -,-) and V71V u(T — -, -) are continuous of0, T') x R, O

At last we are in a position to give the proof of Propositios.3n the following we estimate the
higher order-derivatives af along the vector fields. We write, for all> 0 andz € R¢,
t

(49) ult,x) = Py [u(%,-)](m)—l—/ P [f (5. s, ), (V) T (s, )] () ds.

t/2
Forn given multi-indicesay, . . ., oy, In Ag(m),
t
Viea -+ Viaw (6, @) = Viau - - Ve B2 [u(5, )] (@)
50 ! T
(50) + /t/2 Vial -+ Vian Pi—s [f(s,-,u(s, D), (V) (s,-))](m)ds

=T\(t,z) + Ta(t, x).

By Theorem 2.5 (see also Corollaries 3.10 and 3.14 in [21d)can find a family of Kusuoka-Stroock
functions(é?, ,...a, )1<j<n iN K& (K —m — n + 1) such that

i72))]
ou ,t

(51) = Vi Vian 1B [(1/2.0Viaw) (@ ) i5a, (3 Xij))]

Tl(t, 33‘) = ‘/[aﬂ ce Vv[an

<.
Il
—

n— 1 a t 8u t IE
EPRGVEYD vl ZIIZE Joa —,l’)%j(ivXt/Z)]'

Therefore, for anyp > 1, we can find a constan’fn(p), depending ori” and the bounds for the
higher-order derivatives of the vector fields only and gagsrarying from line to line, such that

2 T (t,2)| < Colp )t1/2 (1/2) HaIIEvau( f/z)‘ ]1/10

< Cn(p)tl/Z—(l/Z)HaHE[l + |Vh(th)|p:| 1/p7

the last line following from (45). We emphasize that the exgrat int is 1/2(1 — ||«]|), where
|la]| = |ea| + - - - + |a|. Compared with (51), the addition&f2 follows from the term«,, |, which
is not taken into account in (51). We here see that the smugptihécay of the boundary condition
behaves as in the linear case exactly. The major hurdle iartdlé the nonlinear term.

SWe note that (42) and (43) stand for continuous differetfittgin Z>-mean. Although, this is weaker than pathwise
continuous differentiability, it is sufficient in our settj. To establish differentiability ii.>-mean, there is no need to apply
Kolmogorov continuity theorem and thus no need to assuniddd@ontinuity of the derivatives of the coefficients.
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By Corollary 3.3 with(y, 8) therein possibly depending anthat is withy of the formu(s, -) and
O(X} ;) ofthe formO(s, X} ) = O(s, X[, u(s, X7 ;), (Viu(s, XJ ,))1<i<n), We write

5(t,x) // [(H V[Bl; "/[Bij,j]vj)(‘g?th_S))

(53) 2kiv3 j=1

X ¢iv8(t —8,2)0i0 3 (@(s, Xf_s))} ds,

where the shorten notatidi, ¢, v, 3) is as in Corollary 3.3: it stands fdre {0,...,n}, ¢ € Z(n),

v € Up(u(s,-)) andB = (Bre, ..., Bi,0)1<e<k € [1h_1[Ao(m)]i. Keeping in mind thats; ., 3 €
Kq8)-ljaly+ (K —m — n) and that); ,, g is bounded, we deduce that, for gny- 1,

Ta(t, )]

’ k 1/p
S Cn(p) Z /t/Q(t - S)(”B” el +/2E |:H (81 J] BL J}UJ (S Xt 8)‘ :| ds

t - 713/ (np)
<Clp) 3 / (1 — 5) (181l /2 HE[Mﬁl,j]---Vwij,jw(stf—s)\ p/J] ds.
kw872 j=1

the constantC,,(p) possibly depending on,, as well. Similarly, we can compute, for any index
i€{l,...,N} Vo) -+ Vian Viu(t, v)

t
Vi] -+ - Vian Vit ) = Viay] - - - Vian ViP2 [U(§7 )](2)
t
(55) * //2 V[Ozl] o V[Ozn}vipt—s [f(sa " u(37 ')7 (VU)T(S7 ))] (‘T)ds
t

= Sl(t,w) + Sz(t,x).
Following the proof of (52), we obtain
|91 (t, 2)| < Cr(p)t™ ||°‘||/2EHVIU( L XE,) P17 < Calp)e 12 1 4 B[ VR(XF) [P
We now turn taSs. By Integration by Parts (see Corollary 3.12 in [21]), we &agize that

ViPi—s [f(sa ) u(37 ')7 (VU)T(Sv ))] ((L’) =ViE [f(@(37 th—s))]
= (t =) PE[f(O(s, X[",)) (¢t — 5,2)].

for some Kusuoka-Stroock functiaff € KI' (K — m — 1). Therefore,

V[al] V[an}vpt S[f( 7u(37')7(vu) ( ))](w)
=(t—s)" (1/2)V V[anE[f(G s, X\ ) )(;Sg(t—s,:n)].
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Differentiating the product, we obtain
Viaa] - Vian ViPrs [£ (5. uls, ), (V) T (5,)) ) ()

= (t - S)_(1/2) Z Z E[V[all} s V[alk}{f(Q(Sv Xf—s))}‘ﬁfl ..... b (t -5 :E)]

(56) k=11<<-<bp<n
+ (= )" VIE[f(O(s, X)) 9 (t — 5,2)]
= T3(87 t, 33‘) + T4(S, t, :L')

To boundTy(s, t, ), we observe thap!' (t — s, z) is centered, so that
(57)  |Tu(s.t,2) = (¢ — )" 2E[{f(O(s, X} ) — E[f(O(s,2)] }o} (¢ — 5,2)] |,
with O(s, ) = (s, z,u(s, X7 ,), E[(Vu)" (s, X ,)]). By the Lipschitz property of, we deduce
[Ti(s,t,2)| < Clt = 5) 2 (L4 E[[Vu(s, X)) 7)
+(t— ) PIE[{f(O(s,2)) —E[£(O(s,2))] } 6} (t — 5,2)] |
By Clark-Ocone formula and then by integration by parts falam
Tu(s,t,2)| < C(t = )21+ E[|Vu(s, X7 )I7] ")

L (-8 VR /0 T (BI0, £(6 (5, 2))Dy[uls, XE )| F), Dyt — s,2))dr

By definition of a Kusuoka-Stroock function, the procéss ¢! (r, z))o<r<¢—s belongs to the space
L(Q,dP; L*([0,t — s],dr)), for anyq > 1, so that, for any > 0,

Tu(s,t,x)| < C(p,e)(t —s)~ L2 (1 +E[|Vu(s, X7 ,)[7] e
(58) s (14€)/27 1/(14¢)
+ E[(/ E[|D, [u(s, X)) \.7-}]2d7"> ] >
0

By the well-known relationshi: X , = J* (J¥)~'V;(X?) and by Lemma 2.3, we claim

Dju(s, X7 ) = Vau(s, X ) I (JF) T Vi(XT)
= Z Qi (Tﬂx)vxu(stf—s)ch—sWV1](x)
(59) €Ay (m)

= D i (1)by (= 5,2)Vouls, X7 )V (X7,).
Y1,72€Ag(m)
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Sincea; -, is time-progressively measurable and belongli(f%
to K7,

|—1)+ (&K —m) andb, ,, belongs

Urall= e D+ . (K —m), we deduce, for the specific choitet 3¢ = p,

t—s o\ (1+9)/271/(1+e)
EK/O E[|D, (u(s, X)) | |F] dr) ]

t—s ) ) (1+e)/2791/(1+4¢)
< X u|([ @Bl - sV X IF )
1, 72€ Ao (m) 0
- 14+2¢)71/(142
< Y E[ sup E[fby(t — s,0)Vipgu(s, Xi )| |F,] V0
0<r<t—s
Y1,72€ A (M)

t—s (14e)(1+2e)/(2¢)7 €/ [(1+€) (142¢)]
X EK/ a?. (r, x)dr) ]
0

2,772

<@+ Y (=) IDRE[Vu(s, Xz,
yeAo(m)
the last line following from Doob’s inequality for martinigs. By (58)
(60)  [Tu(s,t,2)| <Ct—s)7 21+ > (t— o) IVRE]Vu(s, X7 )P]T).
yeAo(m)
To handleT;(s, t, z), we apply Corollary 3.3 again. For any< ¢; < --- < {;, < n, we can write

V[ael} Ve 1 (Os, Xi2 ) }

(61) . .
- Z Z [H V[Bl gl 'V[Bz‘j,j]vj(s7 Xt—s))qsf,l;,.,égk (t—s, x)wf,lq;,dgk (@(37 Xt—s)):| )

=01,v,0 ~j=1
where the notatiofi, v, 3) stands foi € Zy/(k), v € Ups(u(s,-)) andB = (B1j, ..., Bi, j)1<j<w’ €
H'?/ [Ao(m)])%, qﬁfli’,”éé’“ stands for a Kusuoka-Stroock function belongingﬁﬁﬁ”_zk r (K—

p=1 o |l
m — k) andy;’;5% stands for a bounded function.

Therefore, denoting by the increasing sequente< ¢; < - -- < £}, < n and gathering (56), (60)
and (61)

V[ 1] - V[an]VPt s[f( I (S,'),(VU)T(S,'))](:E)
< Calp)(t - o v

X ZZ Z Z (t — )UIBlI=lell) )T /2 HE[WBU] .}vj(s,Xf_s)\"p/ij]

k=0 £ Kk'=01%,0,08

i/ (np)

(1BlI=llel)t /2—1/2 I ij/(np)
Z Z t—S HE “/[Blj . "/v[ﬁij,j]vj('S’Xt—s)‘ ,

k=01,v,8

where the shorter notation in the last line above stands ferZy(n), v € Ux(u(s,-)) and3 =
(Bijs-- 5 Biji)1<i<k € H?Zl[Ao(m)]if. We emphasize that the case= 0 is the constant case: the
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product is understood as being equal to 1; we also noticahlibataseé: = 1 contains inequality (60):
choosei; =1, 811 = v andv;(s,-) = u(s,-). On the right-hand sides of the two estimates in the
statement of Proposition 3.5, the sum okestarts fromk = 1: the case whek = 0 is contained in
the additionall in the boundary term. d

3.5. Proof of Theorem 3.1 in the general caseThe first step is to obtain the representation formula
(26) in the smooth setting. For a givenc [t,.S), it follows from (50), (53), (55), (56) and (61)
replacing therein the initial poir(t, =) of the diffusion process by its current positi¢sn Xﬁ’“’”) and
noting that the random variabl®fV ,u(T — S, X%_,)pa (S —s, w)]|x:X§,w is a version off [V u(T —

S, Xg’x)e;[%](s — 5, X2")|F,]. To prove that, almost-surely, (26) holds for ang [t, S), some
continuity argument is necessary. By Lemma 34 );<s«s and (Z$);<s<s are continuous w.r.t.

s. Clearly, the conditional expectations of the integratsfrs to S of F,, andG,, are continuous as
well. Finally, E[V u(T — S, X% _,)¢a(S — s,v)] _xt= IS continuous with respect tosinceV,u

is time-continuous.

ly

3.5.1. Moallification of the Boundary ConditionWhen the boundary conditialis Lipschitz contin-
uous only, we denote bff,),>; a sequence of mollifications &f converging toward# uniformly

on compact sets and we denote (ay),>; the associated family of solutions. Using the stability
property (see for example [26] and [27]) of the BSDE (11),4bgquence of corresponding solutions
(ug)¢>1 converges towards uniformly on compact subsets f, 7] x R¢. By the standard maximum
principle, there exists a constafit independent of, such that

(62) V(t,x) € [0,T] x RY,  Jug(t,z)] < C(1 + |z]).
By (44) (for a possibly new value @),
(63) V(t,z) € [0,T] xRY, V1 <i< N, [|Viug(t,z)| <C.

3.5.2. Representation Formula for the Mollified SolutioriEo get the convergence of the derivatives
of uy, we notice that the terminal condition in (26) may be writberterms ofu(7" — S, Xé’m) itself
instead ofV,u(T — S, Xé:m). Specifically, foranyl < n < K —m —1,¢ > 1 andz € R¢, the
family of derivative pair processes

((szé,a = (Vv[al] oo ‘/Y[an}’LLg)(T—S, X?m)v Zf’a = ((‘/Y[aﬂ oo ‘/[an}‘/iué)(T_s» X§7m))1§i§N)tSS<T)
indexed by sequences of multi-indicas= (a1, ..., a,) € [Ao(m)]", satisfies
VE* = (S — s) N 2R [uy(T — S, X§7)0%[0a) (S — 5, X17)|F]

r rS
+E / Fo(w,s,r2, Y, 2002 (VEB), 5 (ZEFP )ﬁ(ﬁ)ﬁn)dr‘};}

64 -
(64) (259); = (S — )12 [uy(T — 8, X5°)02[ha) (S — 5, X17)| F.]

S .
+E / (T - 3)_1/2Gza (w, s, T, T, }/;"&t’x? Zf’t7m7 (Yrg’ﬁ)ﬁ(,@)grw (Zfﬂ)ﬁ(ﬁ)gn)dr‘fs:| 5

with 1 < i < N, whereY;""" = u,(T — r, X") and Z:"" = (Viug(T — r, X1"))1<i<y and where
the functionsp,, andi,, will differ from the original ones in (26). (Here they akevalued.)
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3.5.3. Convergence of the Sequer(dé“vx)gzl. We emphasize that the second line in (64) makes
sense whemx = (). It provides a representation formula f(ch’t’x)tSKT of the form

Z94 = (S = 5) T PE[ud(T — 8, Xg")0:[gl(S — 5, X1*)|F]

(65) s
n E[ [ =92 Ga s ) 0, X0 Y04, 200 B

t < s < S8, Gy(w,s,r,r) being a random functional with values RV such that, for any > 1,
E[|Gy(w, s, 7, z)[P|Fs] is uniformly bounded in randomness, inc R? and int < s < r < S. By
Cauchy-Schwarz inequality, we can find a constarfindependent of, ¢, t andz) such that

|zEvbe — Z82bm 2 < O(S — 8) T B [|ug, (T — S, X57) — ugy (T — S, X5°) *| Fs]

(66) 5
+ C/ (T’ _ S)_1/2 (E[‘tht,:c _ Zfz,t,x‘Z‘fs] + E[’erl,t,x . erg,t7x’2‘fs] )d?”

Taking the expectation and then the supremum éyveh > ¢, we get by (63), that for ang’ € (¢, S)
ands € [t, 5], we have

sup E[‘zﬁi@ _ Zf2,t750’2]
ly,82>0

<C(S =8 sup Eljug, (T — 8, Xg") — ug, (T — 8, Xg") ] + C(S — )"/
01,05>0

Sl
1+C sup sup E[’erl’t’x B erg,t,x’2] —l—C/ (7” _ S)_1/2 sup E[’tht,x _ Z£27t,x’2]dr'
£1,lo>£t<r<S s Ly,l2>8

By Lemma 2.13, forany < s < §’

sup E[’Zfl’t’x _ Z£27t,x‘2]
£,82>0

67) <C(S§ -8t ZS?I;ZEU% (T — S, X5") —ug, (T — S, X5")?] + C(S — §)'/?
1,22

+C sup sup E[lug, (T —r, X2") — g, (T —r, X27) 2]
L1,02>01<r<S

Taking the supremum w.r.t: € K in (67), K standing for a compact subset®f, we deduce that

(68) lim sup sup sup IE“Zfl’t’x—Zf?’t’ﬂQ] =0.
£—=400 zek 4y £y >0 1<s< S

Below, we show that the supremum oweEe ¢, S| can be put inside the expectation. Going back
to (66), taking the supremum therein w.ste [¢, S'], applying Doob’s inequality for martingales to
the first term in the right-hand side and applying Holdemequality with exponent$4/3, 4) to the
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second term in the right-hand side, we obtain

E[ sup |Zf1,t71‘ _ Zf2,t750|2]
t<s<S’

< C(S = ) E[|ug (T — 8,X5%) — ug, (T — S, Xg") ]
s
+ CE|: sup / (7, _ S)_1/2 (E[‘Zfl’t’m - Zf2,t,m‘2 + ’YT&,t,m . Y*TZQ,t,mF‘fs])dr]
t<s<S’Js
< O(S = S E[Jue, (T — 8, X§") — ug, (T — S, Xg")[?]

5 3/4
+C sup </ (r— s)_2/3d7‘>
t<s<S’ s

s 1/4
X </ E[ sup (E[‘Zfl’t’x - ZfQ’t’x‘S‘}—s] + E[’Yrﬁ’st’m - eri?mls‘fs})]dT) :
t t<s<S’

By Doob’s inequality again, we deduce
E[ sup [Z{0e — Zz2022) < C(S — S")'E [Jue (T — S, X5%) — ugy (T — S, X§%)|?]
t<s<S’

S 1/8
+ C(/ E[‘Zfl’t’m . ng,t,m’lﬁ + ‘}/Tfl,t,x o erz,t,xllﬁ] dT) .
t

By the bounds (62) and (63) and by (68), we finally deduce tbagnyt < S’ < S,

(69) lim sup sup E[ sup ’Z‘fht,x _ Zf%t,xﬂ —0
L=+00 gk 01 ,02>0 t<s<S’

We deduce that, for any< S < T, the processeS(Zf’t’x)tgsgg)gzl are convergent w.r.t. the norm
E[supy<,<s | s |*]*/2, uniformly with respect to: taking value in compact subsetsf.

3.5.4. Proof thatu(t, -) Belongs td)%//2’°°(Rd). Takings = t in (69), we deduce thal/ u(t, x))s>1
is uniformly convergent w.r.tz in compact subsets @&?. This shows that(t,-) € D%/2’°°(Rd) for
anyt > 0.

3.5.5. Existence of Higher-Order Derivatives:rom the preliminary result (69) and from the bounds
we have for(Y*e, z%e) (see Theorem 3.1 in the mollified setting), we know that, fora> 1,

7(8) = S sup Bl (Fa, (GQ)i) (w, 5,72, Y, 00, Z00e (VP g (2P y3)<n)
SS<Tr> 1,422

— (Fa, (GL):) (w, 5,7, 2, Y207zt (VB o (Z5P)y51<n) ']
in (64) converges towardsas/ tends to+oo, uniformly in z in compact sets. We can follow (67) to
derive from (64)
sup sup E[[Y0® — Y20 4| 200% — ZOP) < O(S - 87 4 0o (9)
fa<n l1,02>0

+C(S — &)~ (ntD/2 ZSEEZE[WI (T — S, X5%) —ug (T — S, X5%)].
1,622
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Note thatC' depends ory. Following the proof of (69), we can also prove that, for any S < T,

(70) lim sup sup sup E[ sup |V V% — V2% + sup |Z50* — Z522%] =0,
=400 fa<n zek by >0  t<s<S t<s<S

so that, forany < S < T, the sequence(Yf"", Zf’a)tgsgs)521 is Cauchy with respect to the norm

E[sup;<s<g | s |2]*/2. In particular, it converges towards sofi€®, Z&),< < for the same norm.
Taking in particulars = ¢ in (70), we deduce that the sequen¢gs,,; . . . Via,ju(t, ))¢>1 and

((Viaa] - - - Viay) Viwe(T — t, ) )1<i< N )e>1 @re convergent, uniformly with respectitdn an arbitrary

compact subset @&¢“. This shows thati(t, -) belongs t(ﬂ){f—m_l/2’°°(]R{d) for anyt > 0.

We use now (26) but in the mollified setting. (That is replgcin by u, and (Y*, Z%) by
(Yo, z4e) therein.) We know that the sequen(®,u (T — S, X§"))¢>1 is bounded. We can
denote bW, u(T — S, ng) a possible weak limit irL?(£2). (We will show below tha¥ ,u exists as
a true function wherh is continuously differentiable.) Multiplying the dynarsiof Y in (26) by a
test random variablg; that is square integrable atid-measurable and then lettidigend to+oo, we
deduce that, for any € [t,.S), (26) holds true almost-surely in the limit setting. To pedkiat, almost-
surely, it holds true for any € [¢t,.S), we apply a continuity argument. By (70), we know that the
limit processegY.®):<s<r and(Z<)< s« are almost-surely continuous. In particular, the leftchan
sides in (26) are continuous. By the martingale represent#teorem, the conditional expectations
of the integrals involvingF,, andG,, are continuous as well. This says that there exists a centinu
ous modification of the conditional expectatiiB[V ,u(T — S, X §°)0% [¢a] (S — s, Xo)|Fs])i<s<s-
Choosing this modification of the conditional expectatisre deduce that the formula holds true
almost-surely for any < s < S.

3.5.6. Continuously Differentiable Casdf h is continuously differentiable, thevii exists as a con-
tinuous function. In this case we apply (41) with instead ofh. Using standard stability ([26],
[27]) results for BSDEs and taking the expectation in (41¢, deduce the equicontinuity property
for the family of functions(V,u,)¢>1 over compact subsets f, 7' x R%. Letting ¢ tend to+oc,

we deduce thaV,u exists as a continuous function over the whole space. By dheectgence of
(Vzug)e>1 towardsV,u on compact subsets (up to a subsequence), this shows thgi’— S, Xg’:”)

in (26) is understood as thrie gradient ofu: in particular, we check that the conditional expectation
E[V,u(T — S, X§7)0%[0a] (S — s, Xo)| Fs] also read® [V, u(T — S, X% )ba(S — s,9)]
which is a continuous process, as expected.

ly=X5""

3.5.7. Bounds in the Lipschitz Settind.he bounds in Theorem 3.1 are obtained by passing to the
limit along the bounds obtained in the mollified setting. WHheéh exists as a continuous func-
tion, it is immediate to pass to the limit in the right-handesin (25). Whenh is not continuously
differentiable, it is possible to bound the limit quantity the right-hand side in terms of the limit
limsup__g e[~ [y1,1<cy [VR(XT + y)|dy, as specified in the statement. O

4. MEASURABLE BOUNDARY CONDITION

In this section we dispense with the Lipschitz condition asgume that the boundary conditibn
is of polynomial growth and possibly discontinuous. Theelrif satisfies the same assumption as in
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Section 3 together with the stronger growth conditiofit, z, y, z)| < A(1 + |y| + |2|). Basically,
this growth condition ensures that, for afiy> 0 andp > 1, there exists a consta@t, > 0 such that
2y p11

(71) [u(t, 2)| < Gy (1 +E[IA(X)I)).
Eq. (71) must be seen as the counterpart of (45). It folloamfBriand et al. [2] as well.

As already stated (see Theorem 2.5) wifes 0 andh is bounded and smooth, it is known that,
foranyT > 0,p > 1,n > 1, (a1,...,a,) € [Ag(m)]* and(t,z) € (0,T] x R,
(72) Vi) -+ Viauju(t, )| < Cu(p)t 1eI2E | n(x7)[7] 7
for some constant’,, (p), independent ok. The main result of this section is

Theorem 4.1. Let (V;)o<i<n be N + 1 vector fields satisfying Definition 1.1. Then, for any 0,

u(t, ) belongs tmpzll){/.(_m_l/2’p(Rd). Moreover, foranyl’ > 0,p > 1,n = 1,2 anday, o, €
Ap(m), there exists a constardt, (p), depending om\,,, n, p, 7" and the vector field¥j, ..., Vy
only, such that for alt € [0,7") and almost every € R,

(73) [VieaVianjult 2)| < Ca(p)t™ 1172 [1 + B[ |07 (x7)] 7],

andforanyd > 0,3 <n <K -m—1anday,...,a, € Ag(m), there exists a constaxt, (p, 9),
depending o, A,, n, p, T and the vector field%j, ..., Vi only, such that for alk € (0,7] and
almost every: € R¢,

|V[a1} ... V[an]u(t,:n)‘

(74) S Cn(p, 6)t_”aH/2 [1 + t—n/2+l+m1n(1/||a(1)||,1/2+1/(2Ha(2)||))—6} [1 + E[|h|np(th):| 1/p],
with 1 <4 < N, wherea(;) and a(,) stand for multi-indices in the family,, ..., «;, such that
lamll < lloge)ll are the two smallest elements in the faniity; ||, . . . , [l . In particular, when

n = 3and| )| = 1, Eq.(73) holds as well.
Finally, given0 < t < S < T, for any boundedF;-measurable random variablé with an
absolutely continuous distribution d@&f' (se&), the derivative pair processes

((sza = (V[aﬂ e V[an}u)(T -5 X;f,f)’ Zsa = ((V[al] cee V[an]Viu)(T -5 Xz’s))lﬁiSN)

indexed by the:-tuples of multi-indicesx = (a4, ...,a,) € [Ao(m)]™ are continuous and satisfy
the generalized BSDE

Ve = (S —s) IR [u(T - 8, X550 [0a] (S — 5, X14)|F]

S

t§s<T)a

S
+E / Fo(s,r, 2, Y5, 205, (Y2 y8)<ns (Zf)ﬁm)@)d?“\fs}
(75) s .
(Z22); = (S — 5)"UFIeD2E[y(T — 8, X590 L (S — 5, X0 Fy)

s

r rS
+E / (T - s)_l/szx (57 rz, Y;~t7x7 Z£7x7 (}/rﬁ)ti(ﬁ)grw (Z;“B)ﬁ(,@)<n)dr‘]:8:| 5

LSS

SHere, the probability spade must be enlarged to define random variables that are indepentithe Wiener process.
A standard way consists in considering the tensorial prodfi? and of the canonical Wiener space. This construction
preserves the shift operator as defined in Subsubsectidh 2.2
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witht < s < S, the coefficients satisfying the same properties as in Eme&.1. (Hereg,, and1)’,
1 <i < N, areR-valued.)

Whenh is continuousyu(t, -) belongs tODK m=1/2, >°(R%) for anyt > 0, and(73) and (74) hold
for anyz € R?. Moreover,(75) hold for ¢ = z, i.e. ¢ deterministic.

We observe that = 3 is the threshold after which the small time behaviour of thieitton to the
nonlinear equation is worse than in the linear case. In thewing section we give an example of
a simple degenerate semilinear PDE for which the small tisyenatotic behaviour is indeed worse
than in the linear case beyomd> 3. In the uniformly elliptic setting, all ther's in .A4y(m) have
length 1, so that-n/2 + 1 + min(1/[|a [, 1/2 + 1/2[law ) = —n/2 +2 = —(n — 4)/2: the
threshold is» = 4 or evenn = 5 if the additionals in the bound for the fourth-order derivatives is
forgotten. In what follows we also give an example of a nomaegate semilinear PDE for which
the small time asymptotic behaviour is indeed worse thaménlinear case beyond > 5. In the
uniformly elliptic setting, it is not clear whether the atolhal 5 whenn = 4 is sharp or not.

From a technical point of view, the threshold occurs becatfiiee product

i5/(np)

k
(76) Gn(s, t;k,4,v,8) = H { 811 - .V[Bij’j}vj)(s,Xf_s)‘np/” ,

that appears in Proposition 3.5 (and which will be used ia taise). Fok = n (i.e. when all the
B's in (76) are of length 1), this product is of order™ whereas it was of ordes"/2 under the
assumption of Theorem 3.1. Clearly, this is much more thargép between the rates in the® and
Whee cases for a linear equation: in the linear setting, the gapristant, equal to/2.

Nevertheless, the gap in the product is not felt for low valoén since the nonlinear ternf
is integrated over the intervdl, t]: for n small, this additional integration permits to balance the
gap between thé&> and W1 > cases. Obviously, the effect of the integration is limitdeyond
some rank, the gap in the terf, (s, t; k, ¢, v, 3) affects the small time asymptotic behaviour of the
derivatives.

4.1. Keystone in the Smooth Setting.Again, we investigate first the case of a smooth boundary
condition: below we will assume thatis bounded, infinitely differentiable with bounded derivas

of any order. The precise mollifying procedure is discugagslubsection 4.5 following the model of
Subsection 3.5. The keystone for the estimate is the faigwihalogue of Proposition 3.5:

Proposition 4.2. For anyp > 1 andT > 0, there exists a constaudt, (p), depending on\,,, p and
T only, such that, for anya, ..., o) € (Ag(m))™ and any(t, z) € (0,7] x R,
Vi - Vow:2)] < Catp)| 1+ £V o) 7
ij/(np)

“ + T np/i;
+/t/zzz (t — 5)(I18llle)* /2 HE{ Vi - Vig,, 107) (5, XE )"/ ds.

k=11,v,0
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and
Viea] - - - Vi Viu(t, )| < Cr(p) [1 + ¢~ (e 2E [ B x7) 7] p]

¢ k il )
+/ SO (¢ — s8Il -2 HE[\(V[BU}'--V[@N} j)(s,Xf_s)\"”/”]] ds}
t/2 i=1 ' '

k=11i,v,8

Above, both sums run over the indides: (i1, ... ,ix) € Zx(n), v = (vi,...,v;) € Us(u(s,-)) and

B= (B Bipohr<e<r) € [Ty [Ao(m)).

The proof is identical to that of Proposition 3.5 up to theitiddal estimate (71) in place of (45).
Clearly, the price to pay in comparison with Proposition i8.5he additional exponent1/2 in the
boundary terms of both upper bounds. As announced abosedirection doesn’t propagate linearly
to the estimates of the higher order derivatives: becausieeafion-linearity, a break occurs beyond
which the small time asymptotic behaviour of the derivaiv® higher than in the analogue linear
case.

4.2. Proof of the Estimates for the first and second order derivatves in the Smooth Setting.We
start by proving the announced estimates whea 1, 2.

Forn = 1, the proof is similar to that of Theorem 3.1. The only diffeze comes from the linear
bounds of the first and second order derivatives (put it diffdy, it comes from the boundary terms in
Proposition 4.2). At this stage of the proof, the nonlinyadioesn’t affect the small time asymptotic
behaviour: the product in (76) always reduces to a singha gncek matches 1, that is everything
works as in a linear setting with a non-zero source term.

Actually, one can deduce better estimate than the annowmatd forn = 1. As in the proof of
Theorem 3.1, we also obtain a bound fof,,;Viu(t, )|, i € {1,..., N}. Clearly, we get the same
bound as fotVj,,ju(t, =)|, but the exponent of the explosion rate is augmented by &2, i

(77) “/[alﬂ/}u(t,m)‘ < Cl(p)t—1/2—|\all\/2(1 + E[|h(Xf)|p]l/p)7

for some constant’;(p), depending om\, p, T and the vector fields only. (Eq. (77) is a little bit
better than the announced estimate since the exponent pother of|4| is p and not2p as it would
be by applying (73) directly.)

Forn = 2, the method consists in examining the factors in (76) cilyef8incek < 2 therein, we
notice that the factors in the product (76) are of three tessorms: E[|(Viz,jv1) (s, X¢_,)[27]"/ ),
E[|(Vig,o1)(s, XE o)1 2P < E[|(Vigy02) (s, Xi2)[P]Y/ ) andE[|(Vig, Vg, v1) (s, X P2,
with 51, B2 € Ag(m) andvy,ve € {u, V;u}, 1 <i < N. Using the bounds for = 1, we can follow
the proof of Theorem 3.1 (see (29)) and then deduce that éxésts a constant’;y (p), depending on
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As, p, andT only (the value ofC;(p) possibly varying from line to line), such that

t(||a1||+||az||)/2‘V[al]V[az]u(t,:L")‘ < 02(p)(1 —|—E[|h|p(th)] 1/P)

+ Ca(p) //2 [s7Y2(1+ B[R (X)) ) 4 57 (1 E 2 (X)) ) ds

78 ) 1
(78) +Calp) Y U/z s+ /2R [| (Vg Vig,yu) (s, XE_ ) |P] P ds
B1,52

t
b3 [ (e B DR (1 Vig, Vi) 5, X7 )P] s .
j=1..N /t/2
the sum running oves,, B2 € Ay(m).
Similarly, foranyl <i < N,

tHlen o)/ v Vi, Viu(t 2)| < Ca(p) (1 + E[|BPP(X7)]7)

t
Lo Y { / (t — )2 UBIHIBD 2| (Vi Vigu) (5, X5 )] Y ds
B1,82 /2

Ly / /2 (BR[| (Vi Vig Vi) (s, XE_)IP] /P ds) .
j=1..N

(79)

By (78) and (79),
t(||a1”+”°‘2||)/2!V[aﬂV[aQ]u(t, z)| + t(1+||a1”+”a2”)/2‘V[al]V[az]Viu(t, z)|
211
< Cap) (1 + E[Inf (x7)] )

t
+Ca(p) Y [ / (t — 5) 725 WUB B 2R | (Vi Vig, u) (s, X2 )] P ds
B1,B2 /2

t
b Y [ - R R (1 Vi, Vi) (5, X7 )] s .
/2

j=1..N "1
Summing overy, ay € Ag(m) andi € {1,..., N}, choosingz of the formX?_,,» >t > 0, as in
(34), taking theL? moment and applying Lemma 2.13, we complete the proof when2. O

4.3. Crude Estimates forn > 3. Whenn is larger than 3, we first prove the following crude esti-
mates:

Proposition 4.3. ForanyT > 0,p > 1 and1 < n < K —m — 1, there exists a constait, (p),
depending on\,,, n, p, T'and the vector fields only, such that, for gy, . .., a;,) € (Ag(m))"™ and
(t,r) € (0,T] x R,

)t llexll /2—(n— 2)+/2[1 _|_EHh (XF ‘np]l/p]

|V[061 : V[Oén]u(t 33)| < Culp
)| < Cp ()t lel2=0=2 220211 L [|n(xF)|™])?], 1<i<N.

[Viea] - Viaw Viu(t,
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Proof. We proceed by induction. By Subsection 4.2, the estimatés thae whenn = 1,2.
Assume next that they hold true up#o— 1, wheren is such thak < n < K — m — 1. We then
establish the announced bounds for rank

The strategy is the same as for the Lipschitz case. It relieBroposition 4.2, applied at ramk
We thus considety,...,a, € (Ag(m))"™. With the same notation as in (76), we are to analyze
Gn(s7 t7 kv i? v, B)

When all the(i;)1<;<k in Gn(s,t; k,4,v,3) are less than or equal to— 1, we make use of the
induction property to bound,, (s, t; k, ¢, v, 3). Following (27) and (28), we obtain

Gut i v.B)] < Culp) [ [« 120207202 2 1) 7))
j=1
< Cn( ) =118ll/2— Z] 1@ =2)* 1y >1}]/2(1+EHh X:c |”P]1/p).
Sincezg?zl[(ij —2)T +15,5n] = Z;’?:l ij + ijl(l{ijzl} — 1) < n, we deduce that

(80) |G, t: k3,0, B)] < CsIBI2/2(1 L B[ |n(x7)[™]P),

when all the(i;)1<j<x In Gyn(s,t;k,4,v,3) are less than or equal to — 1. Plugging (80) into
Proposition 4.2 and following (29) and (33), we deduce that

H/[aﬂ...‘/[an}u(t,x)! < C’n(p)[(1-|-t el /2—(n—2) /2) [|h(xE ‘np]l/p

(81)
s / (t — 5)IBI-la* /2120 (S7t,x)d8],
B1;--Bn
and,
‘V[al}---V[an]Viu(t,ﬂ?” SC'n(p)[(l-l-t x|l /2—(n— 1/2 Hh (X2) ‘ ]1/17
(82) ¢ N
s /(t_s)_1/2+(|6||—lla|) /28‘1/2%1,...,5"(8,&x)ds]7
517---76'” t/2
where

QB s (stx) = H(V[Bl] Vig,u) (s, X¢ )17
—1—81/2ZE Vig, Vi) (s, X2 )17

Choosing(t, z) of the form (¢, X}*_,) in (81) and (82) for some > t, taking the LP-norm and
applying Minkowski’s integral inequality, we deduce

S gy ) < ot 1+ EROG))

QY yeeeyQlpy

(83) .
> / (t— ) V2sIBI/ZH-D/2gn (s,
Bly"'yﬁ’rl t/2
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forany0 < ¢t < r. By Lemma 2.13, the proof is easily completed. d

4.4. Proof of Theorem 4.1 in the Smooth Setting.The proof of Theorem 4.1 relies on a suitable
version of Corollary 3.3. Recall th&k,(n) is the set of non-decreasing sequences of (possibly zero)
integersy, . . ., i, such that, +- - -+i, < n. Also foranyk € {0,...,n}, letUy(p) stands for the set

of k-tuples of functions of the fornwy, ..., vy ), with v; being equal either tg or Vyp, 1 < ¢ < N
(Whenk = 0, Uy () = ). We claim the following:

Corollary 4.4. Let F be a(K —m — 3)-times differentiable function fro? x R x RY into R with

bounded derivatives of any order up &6 — m — 3 andp be in D‘Tj“ﬂ(Rd), 3<n<K-m-1.
Then, for anyn-tuple of indicesy = (a1, ..., ay) € [Ao(m)]"

Viaw] - - Vi E[F(O(XY))] = g— Ul I+l 1) /2 (E [F(O(X%))o(s,2)]

(84) +Z ) Z Z

k
| [TV Vis, 100 (X501 xwiw(@(xg))] )

J=1

where|la( || < [lag || stand for the two smallest lengthes among the farfiiity; ||)1<i<», Where
90 € Ko (K —m—n) andei.g € K{jg_jajtagy I+l K —m =) with el = 352, o]

and||8|| = ijl Zi:l 8.5 1|, and wherey; ,, g is bounded.
A similar version holds with|a || only. In this case/}' is assumed to beK — m — 2)-time
differentiable and: runs over{0,--- ,n — 1}.

Proof. The proof is quite straightforward. Assume that the smalledices at which ;) and
o) appear in the sequenes, ..., o, arep; andp; (not necessarily in a respective way), with
p1 < p2. Apply then Corollary 3.3 t0 o, 4] - -- Via[F(©(X5))] and then take the expectation
to get a representation (M[aptﬂ - Via E[F(O(X5))]. Apply an integration by parts to compute
Viap, ) Viap, 1] - - - Vi E[F(©(X;))] without differentiating the function ok involved in the repre-
sentation oﬁ/[aprl] Vo E[F(O(X5))]. (See, for example, Corollary 3.12 in [21].) Next apply
Corollary 3.3 again to writéf[aprl] .. Vi E[F(©(X;))] and, then, a new integration by parts again,
and finally Corollary 3.3 again.

The first term in the right-hand side in (84) appears wheg- 1: in such a case, we first perform
an integration by parts; the resulting Kusuoka-Stroockfiam is then differentiated — 1 times. O

We are now in position to complete the proof of Theorem 4.1 mithe boundary condition is
smooth. We go back to (49) and (50). Clearly, we can bdLr{d, «) therein by (compare with (52))

Ty (1, 2)| < Co(p)t 112 (1 + E[|n(X0) 7] 7).
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To boundT;(t, x) in (50), we use an interpolation argument. FEoe [0, 1], we have the trivial
inequality

|To(t, )| < /t/2|v[aﬂ oo Van Pres [f(g, Su(s, ), (V)T (s, .))](x”l—E

X ‘V[al] oo Vian Pr—s [f(s, Su(s, ), (Vu)T(s, ))] (az)fds.

To bound the first factofPs_;[f (s, -, u(s, ), Vu(s,-))](z)|}~¢ in the integral above, we follow (53)
and (54). Using Proposition 4.3, we deduce that, forany1,

|T2 t x | < C ZZ { —llell/2— ZJ 1[(11—2)++1{z >1}}/2[ +E[|h|np(Xx)] 1/1’]}1 €
k=0 1

X ‘V[al] o Vo Pi=s [ f (s, u(s, ), (V)T (s, )] (ac)‘eds,

% running over the indice§iy, ..., i) such thatZé‘?:1 i; < n. Following the proof of Proposition
4.3, 5% [(i; —2)t + 1{,.21}]/2 < n/2, so that

|To(t, )] < Cp( {S—HOLH/? n/2 [1 +E[|h|"p(Xx)] 1/17]}

‘V[ozl]"'v[an}Pt—s [f( S, U ( 7')7(VU)T(3"))]($)|€dS'

To bound the second factor in the above integral, we applyl@oy 4.4 together with Proposition
4.3. Basically, it permits to reduceinto n — 1 or n — 2. We then obtain

t
Ty(t, )| < Co(p)[1 + E[|h]"™P(XF)] 1/1’] /t/2 S—Hall/2—n/2{(t _ S)—Ha(n||/23H0¢(1)||/2+1/2}51
x {(t — S)—(Ilau)H+Ha(2)H)/ZS(Ilau)H+HO<<2)H)/2+1}52d37

withe; +e9 =¢,0 < g1,e9 < 1. (The first term in (84) is handled as in (57) and (60).) Thécai
values for(e1, e2) to ensure integrability satisfy; ||o[|/2 + 2 (][aqy || + [lg) ) /2 = 1. Forgetting
for a while the divergence of the integral @— s)~!, we then understand that the critical bound for
Ty (t, )| is Cy (p)[1 + E[|h|™P (X)) /P)t~Iell/2=n/241+21/2422 Therefore, the point is to maximize
61/2—|—€2 under the Constraintsl, €9 > 0,149 <1 and€1HOé1 ||/2—|—€2(HO£(1) H + HO[(Z) ||)/2 =1.1t

is plain to see that it is the same as maximiz2ig|| oy [| + [levz) ) + (g [ = llecqay D /12Ny | +
lo2)l)]e1 under the constraints < &1 < min(1, 2/[[aq) ||, (lawll + [law)ll — 2)/llawl). The
optimum s given by, = min(L,2/[laqy, (laq | + || = 2)/llag ) sincellagl > o)
Therefore, the critical values are

{ e1 = (lall =D/lell, e2=1/(lagl),  ifllag) =1
e1 =2/[lag)ll g2 =0, if oyl > 2.

(In short, the above result says that we try to saturate tiegial with a first-order derivative. When
the first order derivative doesn’t saturate the integralsaterate it with a second-order derivative. In
this way, the integral is always saturated and there is nd telok at higher-order derivatives.) To
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take into account the divergence of the intregaltof- s)~!, we must subtract some smalt> 0 to
€1. We finally obtain, for any > 0,

ITa(t,2)| < Calp, 6)[1 + E[|AP(XF)] /7] lel/2=n/2+ Lmin( gy 11/2+1/ @llacy D=5 0

4.5. Proof of Theorem 4.1 in the General Setting.We follow here the same strategy as in Subsec-
tion 3.5.

4.5.1. Mollification of the Boundary Conditionlf A is continuous, it can be mollified as in Subsec-
tion 3.5. If it is measurable only, the sequence of mollifiedfticients(h,),>; converges towards,
in L{’OC(Rd) only, for anyp > 1. In any case, the sequence of soluti¢ng),>; is at most of linear
growth on the whol€é0, 7] x R<, uniformly in¢. (See (71).)

Following Subsection 7.3, for anty> 0, u,(t,-) — u(t,-) asf — +oc inany L (R9), for any

p > 1. If his continuous, the convergence holds in supremum norm opaocinsets, as in subsection
3.5. Following Subsubsection 3.5.2, (64) holds here as well

4.5.2. Convergence of the Sequer(@“f)gzl. Eqg. (67) holds true, but we cannot pass to the limit
on it since the convergence of the sequetic®)>, holds in( -, L}, (R?) only. To overcome
this difficulty, we choose as initial condition fot at timet a random variablé, bounded and;-
measurable, with an absolutely continuous distributioover R?. (See Footnote) There is no
difficulty to replace(t, =) by (t,£) in (67). By Lemma 2.10}imy- o0 Supy, 5,50 ElJug, (S, X§°) —
ug, (S, ng)P] = 0, so that (68) and (69) holds with, =) replaced by(¢, ¢). (And forgetting the sup
with respect ta: therein.) By the new version of (6Q)my_ o supy, 4,5¢ E[| 2 — 2,242 = 0,
for anyt € [0,7), that islimy_, ;o SUpy, 4,5 fga [Vue, (t,2) — Vug, (¢, 2)[Pdp(z) = 0.

By the a priori bounds we have diVu,(t,-))s>1 (see Theorem 4.1), we deduce that, for any
t €[0,7), (Vug(t,))e>1 converges towardgu(t,-) inany LY (RY), p > 1.

loc

4.5.3. Completion of the proofThe end of the proof is then similar to Subsection 3.5. (Using
particular the bounds foiVj,,; . .. Vs, Viu(t, 2))1<i<n in Proposition 4.3 whemn = K —m — 1,
since nothing is said about it in Theorem 4.1.)

Whenh is continuous, there is no need to introdg¢since the convergence @fy),>; towardsu
is uniform on compact subsets. The whole argument is theilesito Subsection 3.5. Moreover, by
standard stability properties on BSDEsis continuous on the whol@, 7' x R<. O

5. COUNTER-EXAMPLES

In this section we give two counter-examples:

(1) Inthe first example, the second order differential ofmeris the one-dimensional Laplace op-
erator and the boundary condition is bounded but not Lipa¢Hiis, in fact, discontinuous).
Since the operator is uniformly elliptic, Theorem 4.1 sdat the exponent of the explosion
rate of the derivatives of order less than 3 is the same aitirthar case and that the ex-
ponent of the explosion rate of the derivatives of order 4rigoat the same as in the linear
case, up to a small correction of the exponent. On the opoEiteorem 4.1 suggests that
the exponent of the explosion rate of the derivatives of ogdeater than 5 might be higher.
For a specific choice of the boundary condition and of theineat term, we show that the
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exponent of the derivatives of order greater than 5 is indemde than the corresponding ex-
ponent in the linear setting. This confirms that, as sugddsierheorem 4.1, order 5 appears
as a threshold above which the small time behaviour of thivat&es deteriorates because
of the nonlinearity.

(2) Inthe second example, we investigate a nonlinear emjudtiven by a weak Hormander op-
erator of dimension 2, close to the hypoelliptic Kolmogooperator. Basically, the operator
is driven by two vector field3{ and1; satisfying UFG condition withm = 3 and weak
Hormander condition as well. Theorem 4.1 says that the thdonthe derivatives of order
less than 2 is the same as in the linear case but suggestshhestaold might exist at order 3.
For a suitable boundary condition and a suitable nonlinemin twe show that bound for the
derivatives of order 3 is indeed worse than in the linear.chsether words, the simultaneity
of the nonlinearity and of the degeneracy here modifies tesittold above which the small
time behaviour of the derivatives deteriorates.

In both cases, we show that the right exponent for the rateeofierivatives exactly fits the exponent
suggested by Theorem 4.1, up to the additional correéttberein. This may be seen as a justification
of the title of the paper: “sharp estimates”.

5.1. Counter-Example in the Uniformly Elliptic Setting. In the whole subsection, we assume that
d = N =1 and we choose a smooth functigrfrom R to [—1, 1]. By Theorem 4.1, we know that
the solutionu to the nonlinear equation

(85) Opu(t,x) = %%xu(t,m) + f(@xu(t,x)), te (0,1, x € R,

with u(0, z) = 1,0y as boundary condition satisfig®;  u(t,z)| < Cot™™2,t € (0,1], x € R,
n=1,2,3, where’,, is some nonnegative constant. Moreover, for any 0 and anyn > 4, there
exists a constar@), (§) such thatoy  u(t,z)| < C,(0)*™" %, t € (0,1], z € R.

5.1.1. Diffusive Scaling.Having in mind to take advantage of the diffusive scaling,tien set, for
any integelp € N*, u,(t,x) = u(p~2t,p 1), so that, for any € (0,1], z € R,

07 sup(t,2)] < Cot™™%, n=1,2,3,

(86)
07 sup(t,@)| < Co()p™ 1270 5> 0, n > 4,
and
1
(87) Orup(t,x) = iﬁgwup(t,x) +p_2f(p8mup(t,m)), t € (0,1], x € R.

In particular, the function§d;u,,),>1 are uniformly bounded in compact subsetg®fl] x R, so that
the functions(«,),>1 are uniformly convergent on compact subsetflol] x R towards the solution
of the linear equation

1
Orup(t, x) = iaixuo(t,w), te(0,1], z € R,

with u(0,z) = 1~ as boundary condition. That iy (t, z) = (2rt)~1/2 [** exp[—y?/(2t)]dy.
We first identify the rate of convergence:
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Lemma5.1. Forany(¢,z) € (0,1] x Rand anyp > 1,
’up(tﬂ ‘T) - uo(t7 ‘T)’ < p_27 ‘axup(t7 x) - 8xu0(t, ‘T)’ < Cp—Z’
for some universal constant > 0.

Proof. It is clear that

t
u;l)(t7 33‘) = uO(tv ;U) +p_2/0 /Rf(pamup(t -5 y))g(sv xr — y)deyv

whereg is the standard Gaussian kernel, hence the first inequatitget the second inequality, we
differentiate the above formula to obtain

t
i@xup(t,x) - a:r:u()(taw)’ < p_2/0 3_1 /]R ’f’(paxup(t - S,y))‘l’ - yig(s,w - y)dey U

The rate of convergence of the second-order derivativaghtbt different:
Lemma 5.2. There exists a constant > 0, such that for any¢, z) € (0,1] x R,
103 o (up —uo)(t,)] < Cp~ 71/,

Proof. We write

<%—u@@xwaéwp—mxwzx—wmwzw@
t/2
—2 U — S, — S S
+p /O Af(pax p(t —s,2 —y))g(s,y)dsdy,

so that, after differentiating once, making a change ofalme and differentiating once again, we get

82 2 (Up —up)(t, )

——%*/a 0)(t/2,9)(z — 9)g(t/2.z — y)dy

—p! /0 51 /Rf’(paxu;a(t — s, y))@ixup(t —s,y)(xz —y)g(s,x — y)dsdy.
Therefore, by (86) and by Lemma 5.1, we can find a consfasstich that
102, (up — o) (1, )| < CH2p=2 4 Cp~ 1/, .

5.1.2. Sharpness of the Bounds of the Derivativége are now ready to complete the analysis of the
first counter-example. By differentiating the PDE (83)mes and by applying the chain rule formula
(or the so-called Faa di Bruno’s formula),

1
OO,z (t, ) = iax,,,,,wu““(t x)

n
072 BT fOE ) (0 (8, 2)) [ (00 (2, 2)) ™
j=1
for some weight$ 53, m. ....m, )Jn,ma,...m,» the sum running ovet-tuples(m; )<<, such thain; +
2mg + - + nm, = n.
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By Itd’s formula, we deduce for a given stopping timéess than some prescribed réak 1/2,
832,...,32”2(17 _1)

88
( ) = E[aﬂcv---,xug(l =T, -1+ BT)] + Z Bn,mh...,m it +m”_2’1;(3)7)”17 M
where

7(11072117 m — E/O f(m1+...+mn) (p@mup(l — s, -1 + B H a]—i—l 1 — s, 1 —I—B ))mjds

and(B;)¢>o stands for a one-dimensional Brownian motion.

Below, we choose as the first exit timer = inf{t > 0 : |B;| > 0p~'} A (0*p2), so thatr
has the same law #p~2(p A 1), wherep stands for the first exit time of a Brownian motion from
(—1,1). We deduce that®p—?P{p > 1} < E(r) < 0*p~2E(p).

By (86), for everys > 0, we can find a constaidf; such that

pm1+ +mn—2’TT(me1’ ,mn‘ < 0692175 4 Z LMy Hpg —3)tm;
89
( ) < 0592p5_4p2j:1 meZj:1(1—3)m1+23:1(3_j)mj
_ C 92 n+6—4 —22?:3 mj—ms
(Keep in mind tha@ _, jmj = n.) Therefore, whem; < n (i.e.m; > 1forsomei € {2,...,n}),
(90) lim sup p*~"p™ Tt +mn—2|T7(me1’ ,mn| =0.

p——+00
Now, whenm = n,

P 2p(p) 0= p"_2E/O f(") (p@xup(l —s,—1+ BS)) (8:%71,%(1 —s,—1+ Bs))nds.

n,n,0,.

By Lemmas 5.1 and 5.2 and by Taylor’s formula, we can find ateonn€’ > 1 such that

n—2p(p)
p nnO7 5,0

= p"°E / F™ (pyuo(1 — s, —1 + By)) (82 yuo(1 — s, —1 + By))"ds + Op(p"*)E(r)
0

>y E() int [0 (pdun(L, 1) +2)] nf [02,u0(L, 1) + ] + 05" E(?)

|z|<C0 2| <Co
> 2, n—4 (n) _ : 2 _ n n—>5
Co%p ‘ 1‘I<1f(’)6 [f"™) (pOyuo(1, —1) + )] |:(:TI§1£'9 107 uo(1,—1) +z]" + O,(p" ),

whereQO,(-) stands for the Landau notation (agends to+oc). We now compute
Dpuo(t, ) = (2mt)~Y2 exp[—a?/(21)], 8§7xu0(t,x) = —(2m) V2732 exp|—a? /(2t)),
so thatd,up(1,—1) = ¢1 > 0, 97 ,up(1,—1) = ¢ > 0. Choose nowf(z) = cos[(2m/c1)z —
n(m/2)]. Then,f"(z) = (2r/¢1)™ cos[(2r/e1)z], so that
™ (p0yuo(1, —1) + ) = (27 /c1)™ cos[(27/c1)x] > (27 /e1)" /2,
for (2w /cy)|x| < m/4.
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Therefore, fo small enoughp™ 27"

77/771,07...7

0 > csp™ 4+ O,(p" ), with ¢3 > 0. Finally,

(91) lim inf [p4_”(p”_2T(p)

P00 n,n,0,...,

0)] >0.

5.1.3. Conclusion. Assume now that, for some> 0 andn > 5, the bound
(92) 0y gu(t,z)] < Cot "2 1 €(0,1], z € R,
holds. By scaling,

|00 up(t,x)| < Cop™ 7204720 e (0,1], z € R

Plugging the above inequality in (88) and multiplying (8§)3—", we understand from (90) that all
the terms bup®—" (p"—27%) ) vanish ag tends to+oo. By (91), there is a contradiction hence

n,n,0,...,0

the bound (92) cannot hold. d

5.2. Counter-Example in the Degenerate Setting.Consider now the following family of PDESs:
1
(93) dpup(t, z,y) = §8§,xup(t,x,y)+so(x)0yup(t,x,y)+f (Orup(t,z,y)), >0, (z,y) € R,

with u, (0, z,y) = —sign(z)sign(y) + Asign(x + 1/p) as boundary condition, the functigyi| being
bounded by 1 and the paramefebeing real. Bothf and\ will be chosen later on.
In Eq. (93) abovey stands for the function

o) = [ expl=olu)ldn.
where¢ is a nonnegative smooth function with bounded derivatiieeng order satisfying:
o) =u?, Jul <13 o) =lul, |ul>2; ¢(u)<min(u?2ul), ueR.

In particular ¢ is smooth and has bounded derivatives of any order. Moregy®) = 0 and
¢'(0) = 1. Eq. (93) is degenerate but satisfies the weak Hormandelitmmsince[0,, p(x)0,] =
exp[—¢(x)]9y, that is Ay(3) = {0.,exp[—¢(x)]d,} spansR? at any point(z,y) € R Simi-
larly, [0z, exp[—¢(2)]0,] = —¢'(z)exp[—¢(z)]0, so thatAy(4) may be expressed ady(4) =
{0z, exp[—@(x)]0y, —¢'(x) exp[—d(x)]d, }. Since¢’ is smooth and bounded, we deduce that all the
elements 0fd,(4) can be expressed as a smooth and bounded combination oéthergs of4(3).
In other words, the UFG property is checked with= 3 and K = +oo (see Definition 1.1).
Equation (93) may be seen as a nonlinear generalizatioreadcalled Kolmogorov hypoelliptic
example: in the earlier paper [14], Kolmogorov noticed that operator driving the nonlinear equa-
tion above admitted a smooth density of Gaussian type wiieh = x, despite the degeneracy of the
diffusion matrix. (Below, the operatcéﬂ/2)8§7x + x0, will be referred to as Kolmogorov operator.)

5.2.1. Gaussian Fundamental Solution whefx) = z. We notice that
|z| |]
(©4) o) ol < [ dwdus [ utdu=jaPss ser
0 0

that is ¢(x) is very close tor in the neighborhood of zero. In particular, the derivatieéshe
solutionu to (93) are expected to be close to the derivatives of thdisaolto (93) but driven by the
Kolmogorov operator. (Obviously, we cannot chogge) = x, « € R, since it is not bounded.)
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The Kolmogorov operator is of great interest since its funeatal solution is explicitely known.
It is given by the Gaussian density associated with the émvee matrix of the two-dimensional
Gaussian process; = (Bt,f(f Bgds)i>0, (Bt)i>0 here standing for a one-dimensional Brownian
motion. The covariance matrix ¢f,, at a given timeg > 0, reads

B t 122
K= ( t2/2 t%/3 )
Therefore, the kernel of Eq. (93) wher(z) = z, may be expressed & G; € da'dy'|Gy =
312 K Py P 32 ey Ly
(95) g(t,z,y) = gy exp(— 5 ) =5 exp(—27 — 6t_3 + 6t_2)
That is,u, has the form

wn(t..9) = [ (0.5 gt~y ot — o )y

R
t
+ / f(amup(t - 873:/7:'/))9(871' - ZL'/,y + 5T — y/)d:n/dy/, > 07 T,y € R27
R2 JO

whenp(z) = =.

We observe that the covariance matrix has two scdlgg:stands for the exponent of the fluctua-
tions of the coordinate: and3/2 for the exponent of the fluctuations of the coordingtd /2 may
also be understood as the half-length of the vector figld:) = 1 and3/2 as the half-length of the
vector field[V7, Vp], with Vy = z0,.

5.2.2. Rescaling ArgumentEFollowing the previous subsection, we consider a rescaesion ofu,
according to the scaling exponerits'2, 3/2). We set:

Up(t,z,y) = up(p_2t,p_1w,p_3y), t>0, z,y €R,
for anyp > 1. By Theorem 4.1 (and by maximum principle to bounylitself), we have
Lemma 5.3. There exists a constant, independent g, such thata, (¢, z,y)| < C and
|Oui (£, 2, y)| < CEV2, 1yt (t, 2, y)| < Cexpl(x/p)lt=>?, |03 iy (t, 2, y)| < Ct,
102 iy (t, 2. y)| < Cexpl(a/p)t2, 105 ,ap(t,2,y)| < Cexpl2¢(z/p)]t >,
103 .y (t, 7, y)| < Cexplg(a/p)t™2, |03, ip(t, 2, )| < Cexp[26(x/p)]t™ "/,
xz,y € Randt € (0,1]. Moreover, for anyy > 0 and anyn > 3, there exists a constart, (d),
independent of, such that

0t 2, y)| < Cn(6) exp[ng(z/p)|p"~ /32— 2n+4/8=0

onTL Lyt @, y)| < Cu(0) explng(z/p)|p™ /3204202370,

002t y)| < Cn(6) explne(a/p)lp" 22020,

T,XT3Y,s- Y

x,y € Randt € (0,1]. The last inequality above is also true whenr- 2.
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We now investigate the limit behaviour 0f, asp tends to+-oco. The equation fofi, has the form

. 1 . . _ .
(96)  Oyy(t,z,y) = §5§,zup(t,x,y) + po(x/p)dytiy(t, x,y) + p2 f (pOaiip(t, x,y)),

t>0,z,y € R, with 4,(0, z,y) = sign(z)sign(y) + Asign(z + 1) as boundary condition. Below,
we setu(0, x,y) = sign(z)sign(y) + Asign(z + 1). (That is, we get rid of the index in 4,(0, -, -)
since it is independent gf.) Sincep(0) = 0 andy’(0) = 1, the limit is expected to b&y, solution
to the PDE

1
(97) 8tﬂ0(t7 €T, y) = §8£,x&0(t7 €L, y) + l‘ay?lo(t, €T, y)7 t>0, z,y €R,

with 44(0, -, -) = @(0, -, -) as boundary condition. It is immediate to see that Eq. (9W)ek-posed
and that the solution is given by

Uo(t, z,y) = /R2 (0,2, 9" )g(t,x — ',y + to — o )d2'dy,
with ¢ as in (95). As a corollary, we deduce
Lemma 5.4. We can find a constardt such that
|ty (t, 2, y) — o (t, z,y)] < C(1+ |z)?) exp(2]z))p~2t~ Y2, t€(0,1], 2,y € R.
Proof. We write,, as the solution of the PDE
Otiy(t,x,y) = %893@71;,(75,3:,3/) + 20yty(t, x,y)

+ (pe(x/p) — )0yt (t, z,y) + p 2 f (POrip(t, z,y)), te€(0,1], 7,y € R,
so that
Up(t, ,y) = o(t, z,y) +R(1)(t x,y) +R(2)(t x,y),

98) & )(t,2,y) / / po(a' [p) — a")Oyt,(t — s, 2",y )g(s,x — 2,y + sz — o )da'dy'ds,

R()txy / / p@ut—sw y))g( x—a y+ sz —y)da'dy'ds.
R2

By boundedness of, we can find a constardt, independent op, such that|R;(,2) (t,z,y)| < Cp~2,
t € (0,1], z,y € R. (C may vary below.) We turn now tﬁf},l)(t, x,y). By integration by parts,

¢ 1/2
RIV(t,z,y) < /0 {‘/Rz (pe(2'[p) — 2")Byiy(t — s, 2",y )g(s, 2 — 2’y + sz — o )dz' dy

1/2
}ds

X

/ (pp(@'/p) — ') lp(t — s, 2,y )Oyg(s, @ — &',y + sa — y)da'dy’

RQ
t 1/2

— /0' { - RI(7171) (t — S, x/’ y/)g(37 T — Z'/7 y 4 osm— y/)dx/dy/

1/2
/ Rl(,m) (t—s,82,9y)g(s,2 — 2,y + sz — 3 )da'dy }ds.
R2

X
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By (94) and Lemma 5.3, we deduce th&b"V (¢ — s,2/,3/)| < C(t — s)~3/2p=2|2’ | exp(2]2)),
0<s<t<l1a,y e R, for some possibly new value @. Similarly, by (95), RS (t —
s, y)| < Cs™32p 2|/ P(s™ V22! — 2|+ s 2y + sz —y]),0 < s <t <1, 2,y € R,
Performing a change of variable in the integrals above, waiob

\Rél)(t,x,y)\ < C(l—i—]w\?’) exp(2\x!)p‘2 /Ot 3_3/4(t—3)_3/4ds < C(l—i—]w\?’) exp(2\x!)p‘2t_1/2.
This completes the proof. O
As a corollary, we deduce
Lemma 5.5. We can find a constardt such that, for any € (0, 1], z,y € R,
|0,y (t, 2,y) — Ouito(t, z,y)| < C(1+ |z|?) exp(2|z|)p~ 2,
00,y ip(t, 2,y) — O ylio(t, 2, )| < C(1+ [2*) exp(dfa])p~tt~5/2.
Proof. We consider a variation of (98).
Up(t, x,y) = Go(t,z,y) + SI(,l)(t, x,y) + Sz(,z) (t,z,y) + Sz(,s) (t,z,y),

S\ (t,,y) = /[Rz [ap(t/2,2",4') = a0(t/2,2",9)]g(t/2,2 — 2,y + (t/2)x — y)da’dy/,
(99) t/2 2 )
51(72) (t,z,y) = /0 /R2 [pgp(g) — :L'/] Oytip(t —s,2' 9y )g(s,x — 2,y + sz — ¢ )da'dy ds,

t/2
SO (t,z,y) =p~ /0 /R2 f@ozu(t —s,2',y))g(s,x — 2,y + sz —y')dz'dy' ds.
Convergence af,u,. We start withaxsl(,l). By Lemma 5.4,

8xS:,(,1)(t,x,y) :/R [, (t/2,2",y") — a0(t/2,2", )] 0: [g(t/2,2 — 2’y + (t/2)x — o) | da'dy/,
so that

t
0,851 (t,2,y)| < Cp~ 2t H/2 /R {1+ 2]} exp(2]a]) (t o — 2’| + 72|y + 57— y'))

t
(100) Xg(§7x_w/7y+%w_y/)}dwldy/
< C(1+ [a|*) exp(2lz|)p~2t~".
By a similar argument and by Lemma 5.3,

0.5 (¢, 2, y))| SCp‘2t‘3/2/ /Iw > exp(2la’]) (s |z — /| + 57|y + sz — o)
X g(s,x — ',y + sz —y)da'dy'ds
< C(1+ [2]*) exp(2lz|)p~2¢ .

(101)

By the same method, it is plain to check tH\@JS}f’) (t,z,y)| < Cp~2. Together with (100) and
(101), we complete the proof of the convergencéaf,,.
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Convergence af? i,. We start With@iﬁ,@”. Following (100),

1025, SSV (2, )]

< C'p_zt_l/2/ {(1+ & P)exp@la/ ) [t (¢ o — o |+t 2y + sz — ') > + 172
(102) R2
X g(s,x — ',y + sz — y/)}daz/dy/

< C(1+ [a|) exp(2la|)p~2t /2.

To deal Withax,ySI(f) (t,z,y), we perform a change of variable:

t/2
0y S (t, 2,y) = / / (po(a' /p) — 2')0; iy (t — s,2",y + sz — )
0 R2
X [&cg(s, z—a2y) + s0yg(s,x — 2, y')]d:ﬂ'dy/ds,
so that, by (94) and Lemma 5.3,
|02y S52 (¢, 2, )|
t/2
109) <y [ [ P e s e o]+ 52 gl - o'y )il dy ds
0 R2
< C(1+ |z]*) exp(4z|)t >/ *p~2.
By a similar argument,
t/2
02y S (t,2,y) = p~" / / {f' (pOrtip(t — 5,2,y + sz —y'))
R2 JO
x 02 ip(t — s, 2’y + sz — o) [Oug(s,x — ', y) + s0yg(s, x — ', y)] }da'dy/,
so that, by Lemma 5.3,
1024 SS) (£, 2, )|

t/2
(104) < C’p‘lt_2/ / exp(2|2]) (s 7tz — 2| + 572y )g(s,x — 2,y )da' dy' ds
0 R2
< Cexp(2z|)p~ 13/
By (102), (103) and (104), the proof is over. O

5.2.3. Criticality of order 3 in Theorem 4.1We investigateag’,yvyap. Specifically, we assume that it
satisfies the bounb? , i, (t, z,y)| < C(6)p'/3-20¢=9/2-1/6%0 foranyt € (0,1], [z| < 1,y € R
and some > 0. (Compare with Lemma 5.3.) We will establish below a contah showing that
the order 3 iny is critical.

In what follows, we denote bYth”’,Xf”’)tZO the two-dimensional process associated with the
operator(1/2)8§,x + po(z/p)0,. Differentiating three times equation (96) w.rit, we apply Itd’s

formula to (93, i, (t — s, Xa7, X37))o<s<r, t > 0 being given. (WithXy? = z andX;? = y.)
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For a stopping time less thard, for  small (in particularg < ¢t/2 < 1/2), we have

aiy,yap(t’ T, y) = E[ag,y,yﬂp(t -7, X P, X2P)]

+pE / F® (08, (t — 5, X127, X2P)) (82 (t — 5, X 1P, X27))*ds
0

+3E / T (pOytiy(t — 5, X3P, X2P))O2 iy (t — 5, X 1P, X2P)
(105) 0 ’
x O3, it — 5, X2 X2P)ds

x?y7y7y

+p'E / F (pOpiy(t — 5, X2, X2P)) O, ) lp(t — 8, X 2P, X2P)ds
0
=TV (t,2,y) + TPt 2,y) + TP (¢, 2, y) + TV (¢, 2, ).

By Lemma 5.3, for any > 0, p~*/3-%9% i, is bounded on every compact subset@®fl] x R?,

uniformly in p. Similarly, 93, @, is bounded on every compact subsef(@®fl] x R?, uniformly inp.

Whenr is the first exit time of a compact subset(6f 1] x [-1,1] xR, Tf’) (t,z,y) andTZ§4) (t,z,y)
are bounded, uniformly ip.
By Lemma 5.5, the asymptotic behavioriqf) (t,z,y) is given by

2
TP (t, 2,y)

(106) T . . 3
= pE /0 PO (pOatio(t — 5, X7, X2)) (97 yito(t — 5, X3P, X2P)) ds + Op (1),

whereO, (1) stands for the Landau symbol and denotes a bounded sequepcéAgain, 7 is the
first exit time from a compact subset @f, 1] x [—1,1] x R.)

Assume now that we can firids (0, 1] such thab, i (t, 0,0) = 02 4o (t,0,0) = 03, ,Gio(t,0,0) =
0 (see Subsubsection 5.2.5). Choose thgf = X = 0 andr as the first exit time- = inf{t >
0: |X}P| > 6p~1/3, | X2P| > 63p~1} A 62p~2/3. Differentiating PDE (97) w.r.tz, we also have
agwao(t, 0,0) = 0. Performing a Taylor expansion in (106), we obtain

T(t,0,0)
(107) T (3) N 2 . —1/3y\3
:pE/ 9 (p0rtin(t,0,0) 4+ 00,(1)) (85 00 (t,0,0) 4+ 00, (p~ /%)) "ds + Op(1).
0

In particular, there exists a constant> 0, such that, for any powey > 0,

lim inf p~ T3 (¢,0,0) > lim inf{p' 7] Jof £ (ptto(,0,0) + )]
(108) ) 5 3
X ‘xl‘rét;e[(ax,yuo(t, 0,0) + )] }.

Let us return to (105). We claim that the bouf@ , , a,(s,,y)| < Cpls=9/271/2, s € [t/2,1],
|x] <1,y € R, cannot be true if the limit below is infinite:

o 1—-n . (3) N . 2 A 3 _
(109) lim inf{p*™"E[r] inf |f®(p0:do(t,0,0)+2)] inf [(9;,ao(t,0,0) + )]} = +oo.
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Indeed, by (108), (109) implieém inf,_, 0 p~"T\> (¢, 2,3) = +oo. Multiplying (105) byp~", we
then obtain a contradiction.

In particular, the boun¢d , ,u,(t, z,y)| < Ct=9/277/2 ¢ € (0,1], |z| < 1,y € R, cannot be true
if (109) holds true. Indeed, D], ,u,(t,2,y)| < Ct=%/2=1/2 then, fort € (0,1], |z < 1,y € R,

105 .0t 2, 9)| = p7°|0), yup (072t 0™ 2, p~0y)| < Cpt?20,
5.2.4. Lower Bound fofE[7]. It now remains to bound(r) from below. Definer’ = inf{t > 0 :

|X}P| > 6p~1/3}. Since

%] -

t
p/o o(XJP/p)ds

we obtain thal X*| < 0tp~1/3, ¢ < 7'. In particular,| X?| < 3p~!,t < 7/ andt < §%p~2/3.
Therefore E[r] > 62P{r’ > 6%p=2/3}p=2/3. Sincer’ ~ #%p~—2/3p, wherep is the first exit time of a
Brownian motion from(—1, 1), we deduce that

(110) El7] > 6*P{p > 1}p~*/".
Therefore, (109) holds fay < 1/3, provided

(111) 11m+1g{| ﬁréfg[f(?’ (PO (t,0,0) + z)] Ixilr%fye[(a ,0(t,0,0) +2)°]} > 0.

t
g/ |XP|ds, t>0,
0

That is, the boundd; , ,u,(t, z,y)| < Ct=%/27"/2 ¢ > 0, 2,y € R, cannot be true fon < 1/3.
This exactly fits the threshold in Theorem 4.1 and Lemma 5.3.

5.2.5. Computation of the Derivativedt now remains to find € (0, 1] such thatd,a(t,0,0) =
92 o (t,0,0) = 92, ,iig(t,0,0) = 0 and to check (111).

x,r,Tr

We first notice thatiy can be split into termg, = u(l) + /\u(() ), ( ) and “(2) both satisfying

Equation (97) but with different boundary conditions:
a§(0,2,y) = —sign(x)sign(y), ) (0,2) = sign(x +1).
We emphasize that

i (ta) = [ a0 ot~y ey )asdy.

Since&él)(o, —2' —y) = af)”(o, 2',y'), itisimmediate to see, by a change of variable, that

21(1)(t —z,—y) = ﬁél)(t,a;,y) t>0, z,y e R

By differentiation, we deduce th@g“(1 (t,0,0) = 8§MA(1)(t 0,0) = 0.

We now compute

85,;1181)(15, x,y) = —2/ sign(y +tx — 3 )g(t, z,y )dy' — 2t/ sign(x — 2')g(t, 2,y + tz)da’
R R

Ne! . Y+ tx x’
8§7yu(() )(t, x,y) = —4g(t,x,y + tx) — 2t /R sign(z — a:')(—th—3 + 6t—2)g(t, 2y + tx)d'
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In particular,

8%72/@((]1)(15, 0,0) = —4g(t,0,0) — 12t~ / sign(—az')a'g(t, ', 0)dz’ = 1172,
R

with ¢; = 2\/§/ﬂ' > 0.
We now investigatétéz) (t,z). Itis given by

' e) = ()7t /RSign(”“’ ~ #1220 4 1) exp(~ 5—)da',
Therefore,
022 ) = 2(2m) 20 (- A,
83’96&((]2) (t,z) = _2(27T)_1/2t_3/2($ +1) eXP(_W)a
O oatiy (1) = 202m) 2 (702 (w4 1) = 777) exp(— EF 1Y)

2t

In particular,@%xagm(l,o) = —cp < 0ando? ag2)(1, 0) = 0. Finally,

02 410(1,0,0) = 82,28 (1,0,0) + A2 a8 (1,0) = 82 ,a (1,0,0) — Aes,
(112) 8, 0(1,0,0) = &2, al (1,0,0) + 202, Ll (1,0) =0,

82 io(1,0,0) = 92,4 (1,0,0) = ¢ > 0.

Choose now\ so thatagvxa(()l)(l, 0,0) — Acg = 0. (This is possible since, > 0.) For this choice,
the required conditiond,tio(1,0,0) = 92 ,iig(1,0,0) = 93 , ,i(1,0,0) = 0 are satisfied.

5.2.6. Conclusion.We now choos¢':

f(z) = —sin(27rz/\8xﬁ0(1,0,0)]), zeR, if 0,00(1,0,0) # 0,
f(z) = —sin(z), z€R, ifdyip(1,0,0)=0.

In particular, there are two cases in (111)0}fio(1,0,0) # 0,

| i|1if€[f(3) (pOytin(1,0,0) + z)] > (2m/|0xa0(1,0, 0)\)3 | i|1;f€[cos(:t27rp + 271 /|0400(1,0,0)|) ]
=Y T|=7Y

— (27/]9x10(1,0,0)])° lxilge[cos(2m/|aza0(1,0,0)|)].

(113)

Choosingyf < |0;10(1,0,0)|/8, we then obtain

(114) ‘ i‘gfe[f(g’) (pBiin(1,0,0) + )] > 27Y2(21/|8,i0(1,0,0)[)°.
x| <y

If 9,i0(1,0,0) =0,

‘xi‘]%fw [f(?») (pdytin(1,0,0) + z)] = ‘xiéfw [cos(z)].
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Choosingyf < /4, we then obtain

(115) | 1|Iif€[f( (pOsiin(1,0,0) +z)] > 271/2.
T
Let us examine now the second term in (109). O ¢ /2,
(116) inf [(82,a0(t,0,0) +)°] > (c1/2)°.
ERSTAR

From (110), (114), (115) and (116), we deduce that (109)shtilege withn < 1/3. This shows
criticallity at order 3.

5.2.7. Generalization at any Order > 3. Following Subsubsection 5.1.2, we can generalize the
result to any orden > 3. The point is to differentiate (96) times w.r.t.y and to apply Itd’s formula

as in (105). We then obtain
837,...,3;,&10@7 x, y)

=E[0] iyt — 7, X]}P, X2P)]

.
+972) " Bognayema @™ T TR / [Flmttma) (po,duy (t — 5, X7, X2P))
0

(117)
H (0IFL it — s, X212, X2P)) ™ |ds
=E[0] . ap(t — 7, X}P, X2P)] + Z B esmap™ TR
(The sum running ovem, ..., m, such tha®_"_, jm,; = n.) Following (89) and applying Lemma
7j=1 J

5.3, for anys > 0, we can find a constaudis > 0 such that

n
prit s Te) < GGE(r)p®2pTie s [ pl s
7=1
SC&E(T) 6—2 Z 1meZJ 1(3=7/3)m;+m2/3+4m1 /3
:C5E(T) n+0—2 _(4/3)2 =3 Mj—m2
Keeping in mind that < p_2/3, we deduce thdﬁmp_H_oo p—n+8/3pm1+~~~+mn—2|T7(L{2H7___7mn| =0

whenm, < n.

Whenm, = n, we can follow (107), (108) and (110). We dedlice inf,_, ; o p ”+8/3T(’7’), 0>
0, provided

(118) liminf inf [f( (pdyio(t,0,0) +2)] inf [(prio(t,0,0) +2)"] > 0.

p—+00 |z[<~6 |z]<~0

Following (113), (118) holds true for
f(z) = cos(2m2/|0,10(1,0,0)| — n(n/2)), z€R, if Oytin(1,0,0) #0,
f(z) =cos(z —n(r/2)), z€R, ifdyiig(1,0,0) =0.

Going back to (117), we deduce that the boudifl i, (t,2,y)| < Cpn=8/37204=2n+4/3+0 4 ¢
(0,1], , cannot be true for somé > 0. By scaling, we deduce that the bound
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00 up(t,x,y)| < Ct=2 /30 ¢ € (0,1], Jz| < 1,y € R, cannot be true. This shows sharpness
of the bound in Theorem 4.1 for the current example. d

6. QUADRATIC CASE

Semilinear PDEs with quadratic nonlinearities appear inisg certain optimization problems
encountered in mathematical finance (see [11, 28]). Theiesponding BSDE (11) is said to
be quadratic if the growth of the drivef with respect toz is quadratic. Here, we will assume
|f(t,x,y,2)| < A1(1 + |y| + |2|?), for some constank; (independent of). The exponent 2 is the
critical one for the growth of the nonlinear term with regptcthe spatial derivatives: it is known
that existence and uniqueness may fail for higher exponents

Following Dos Reis [9] (see Assumptions (HY1) and (HY1+) imebrems 3.1.9 and 3.1.11 therein),
we here investigate the case when the source term in §)-ism — 1 times continuously differen-
tiable w.r.t.z, y andz, K > m + 3, with bounded derivatives of order greater than or equal smé
with first order derivatives of the following growth:

IV f(tz,y,2)] < AL+ [2%), [Vyf(t oy, 2)] < Ay VL f(t 2y, 2)] < AL+ 2]).

(Below, A,, denotes a bound for the derivatives of oréidretweer2 andn, with2 <n < K—m—1.)

In this framework, BSDE (11) is well-posed provided the baany conditionk is bounded: we
refer the reader to the original paper by Kobylanski [13]siBally, the boundedness property ensures
that the martingale driving the BSDE (11) is BMO. The BMO pedy plays a crucial role: under
the BMO condition of the martingale part, one can apply Giesatransformation to get rid of the
guadratic part of the equation. We refer to Hu, Imkeller andl®&t [11], Ankirchner, Imkeller and
Dos Reis [1] and Dos Reis [9] for a review of this strategy. fhis reason, the most natural approach
is to estimate the first-order derivatives in terms of fi¥&@ norm of A (and not in terms of.? norms
of h as in Theorem 4.1). We remind the reader of the following ésge Lemma 1.2.13 in Dos Reis

[9):

Proposition 6.1. Choose the drivef in (11) as above, thefil1)is uniquely solvable for any starting
point (¢, z) of X. Moreover, the BMO-norm of the martingale part

. T 1/2
/ (Zs,dBy) = sup E { / Z?dsp-}}
t T

BMO  Stopping Times t<7<T
is finite and bounded by a constafif depending om\;, 7" and || ||, only.

As announced, Girsanov assumption holds under BMO progeety Theorem 3.1 in Kazamaki
[12]):

Proposition 6.2. For any progressively-measurable procégs)o<,<r With values inR”" such that
(M = fot(us,st>)0§t§T has a finite BMO-norm, there exists an exponght> 1, depending
on the BMO-norm of M, )o<;< only, such that the.¢" (P)-norm of the exponential martingale of
(My)o<i<7 is finite and bounded by a constant, depending on the BMO-0b(d; )o<:<7 only.

We have the following:

Theorem 6.3. Let (V;)o<i<n be N + 1 vector fields satisfying Definition 1.1. Assume that thea®ur
term in(5) is as in Proposition 6.1 and thdt is a bounded Lipschitz function. Then, for any 0,
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u(t,-) belongs tODK m=1/2.0(Rd) Moreover, for anyl’ > 0,n < K —m — 1 anday, ..., a, €
Ap(m), there eX|sts a constardt,,, depending on\y, A,,, n, T, the L*°-bound ofh, the Lipschitz
constant of, and the vector field§p, . . ., Viy only, such that for al(t, z) € (0, T] x R,

[View] - - - Viampu(t, )| < Gt lleD/2]

Vi - - - Viaw) Viu(t, )| < Cut=lel/2 1 <4 < N.
Proof. The proof is identical with the case whenis assumed to be Lipschitz. The reason is quite
simple: whenh is smooth, the gradient is known to exist and to be boundedyndirections of
the space in terms of the Lipschitz constantofThis is proved by Dos Reis [9], see Lemma 3.1.4
and Theorem 3.1.11 therein. As a consequence, quadratiglgooes not affect the small time
asymptotic behaviour of the higher order derivatives, mly the dependence of the constany on

the L>°-bound and Lipschitz constant bf Using a mollification argument as in the proof of Theorem
3.1, we complete the proof. d

The non-Lipschitz case is much more involved. Here we nodohgve available the result of Dos
Reis [9] for the control of the first order derivatives. Thesffistep is to obtain a bound for the first
order derivatives. Once obtained, the analysis is handiéd the non-quadratic case.

Lemma 6.4. Let (V;)o<i<n be N + 1 vector fields satisfying Definition 1.1. Assume that thes®ur
term in(5) has the same structure as in Proposition 6.1 and thista bounded continuous function
Then, for anyt > 0, u(t,-) belongs toD?’/zoo(Rd) and, for anyI' > 0, there exists a constaudt,
depending oMy, T, ||h||s and the vector fields only, such that, for amyc Aq(m) and (t,z) €
(0,77 u(t,z)| < Ctledl/2,

Proof. As above, we first mollify the boundary condition. We thenaée prove (in the mollified
setting) the announced estimates in terms of the paramétefS and|| ||, only.

By Kobylanski [13], we know that: is bounded in terms of; andT only. This point is crucial in
what follows. Let(X5", Y™, Zb"),< < be the solution of the equation (11), witi = = € R?
as initial condition. By Lemma 1.2.13 in Dos Reis [9], for gmy> 1, there exists a constant,,
depending om\;, 7" and||h||« only, such that

T p
(119) E[(/t ]Zﬁ’m\2dr> ] < C,.

By Theorem 3.1.9 in Dos Reis [9], we can differentiéfé.”, ", Zo") ;< .« with respect tar as
a function fromR? into the space aR? x R x RV -valued processe§;, Ys, (s )i<s<7 endowed with
the normE[sup,< < (|&s|2 + |Ts[2) + [ |¢s|%ds]'/2. The derivative process satisfies

d[Vi) (2)Y7] = =V f(05)Via) (2) X7 ds — Uy f(©5)Vig) ()Y " dis
= V2 f(0:)Vi) () Z"ds + dB, Vi) (2) 257,

where®, = (s, Xo*,Y&*, Zb"). By Theorem 3.1.11 in [9], the proce$E.”);< < is pathwise
continuously differentiable w.r.tz. In particular, for any > 0, u(¢, -) is continuously differentiable
andViy (z)[Ys"] = Vou(T — 5, Xe") Vo X Vi ().

For the sake of clarity, we only give the statement for camdirs boundary condition. The statement for the discontin-
uous case follows the model of Theorem 4.1.
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First Step. Girsanov TransformatiorOwing to Propositions 6.1 and 6.2 (or taking advantage of the
mollified setting), we know that the exponential martingale

%:expu V.f(© /Wf |dr>

defines a new probability measu@eunder which the proces$s = B, — [ (V.f) T (0,)dr)i<r<s
is a Brownian motion.

In particular, undefQ, the procesgV, (2)Y™) << admits the following semi-martingale de-
composition:

d[Vig) (2) Y]

(120) t,x t,x t,x
=~V f (05)Vio) (€)X ds — Vy [ (05) Vi) (€)Y ds + (dBy) " Vi) () Z2*.

By standard BSDE results (see, for example, [2]), for any 1, we can find a constan@’;, (whose
value may vary from line to line), depending dn, p, T and|| k||« only, such that

(T+t)/2 p 9
EQ |V (2) Z5%|2ds <C! sup HVa )Y, 7]
[a] s P [a]
¢ t<r<(T+t)/2
2p:|

(T+1)/2
[ iz
t

By the BMO condition (see Proposition 6.2), we know that teesity dQ/dP belongs to the space
L7 (P), for someg* > 1, the L? (P)-norm being bounded in terms of known parameters. By (119),
we deduce that

(T+t)/ P
(121) EQK/ |V[a](a:)Z§’m|2ds> ] <C)(1+ sup E%[|Vy(z Y”F”])
t t<r<(T+t)/2

+ C’;EQ [ sup |V X072
t<s<(T+t)/2

By Lemma 2.3, we have
Via)(@)Y,2" = Vou(T — r, X7 )V XV (2)

(122) = D 0i(ap)(r - t,x)(Vigu) (T — r, X17).
BEAo(m)

Using again the bound fatQ/dP in L4 (P), we deduce that

12 BNV <Ch Y (0PI sup (V) (7 — 1) 7
BeAo(m) yeRd

Finally, we emphasize from Definition 2.2 in Kazamaki [123tiP/dQ s in L"" (P) for somer* > 0,
that isdP/dQ is in L'*""(Q). (The norms inL"" (P) and L'*""(Q) being controlled in terms of
known parameters, see Theorem 2.4 in [12].) Therefore,

(T+t)/2 p (T+t)/2 p(I4r*)/rqr*/(1+r")
E[( / \V[a}(w)Zﬁ’x]st> ] < CE@K / yv[a](x)zgvﬂ?ds> } .
t t
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Finally, (121) and (123) yield

(T+t)/2 P
E[( / Mamzz’ﬂ?ds) }
t

<o sup  [(T— )P I81-1aD* [V (r, ) [2].
p%%:(m)tqqﬂt)ﬂ[ [Vigru(r,)[|]

(124)

Second Step. Integration by ParBy (119) and the trivial inequality

t+3(T—t)/4 2p
027021&[(/ |Z;Ev~’v|2dr> } ZEK/ Zt’x|2dr> ]
t+(T—t)/2 o1

that holds for any mesh+ (T' — t)/2 = tp < t; < --- <ty =t + 3(T — t)/4, we deduce, by
choosingt, = t+[1/2+¢/(4L)|(T —t), that, for a given value af (that will be chosen later on) and
for any large enough integdr, there exists a certaine [t + (T' — t)/2,t + [3/4 — 1/(4L)|(T — t)]
such that

s+(T—t)/(4L) 2p
(125) E[( / \foﬂ%lr) } < Oy, /L.

We now come back to (11). By integration by parts (see The@&) we know that
(V[a}u)(T —t, ‘T)
= (T = )/ (AL IIPE (1 = 1/(AD)UT = 1), X,y jar) ) 05 [00] (T = 1)/ (AL), )]

t+(T—t)/(AL)
*E/t [V f(O0) Vi) (5) XE7 + Yy F(O)Vie) ()Y, + V. £(6,) Vi () 257 dr-

Taking the poweep and using the boundednesswofive obtain
“/[a]U(T —t, x)|21’7 < C;l/i [1 4 LPHQH(T _ t)—p||a||]

|2
+Cp[(T — 1)/ L] sup E[|Via)(z)Y,2* 7]
t<r<t+(T—t)/(4L)

t-+(T—t)/(4L) 2p71/2 t+(T—t)/(4L) ) 2p1/2
+C;E[</ (1+|Zﬁ’w|2)dr> } E[(/ |Viay (@) Z)" | dr> ] :
t t

Applying Lemma 2.3 to expant, (a:)Y,,t’x as in (122) and using (124) to bound th& (P)-moment
Of j;t‘f‘(T—t)/(ﬁlL) “/[a] (;U)Zf«’x |2d’l",

“/[a]u(T —t, x)|2p < C;)(l 4 LPHOJH(T _ t)—pHaH)

X CI,) [[(T s E[(/tt+(T_t)/(4L) |Zf,’x|2dr> 2p:| 1/2}

% sup  [(T — r)pUIBI=llal)* DT — I,
Bgcx:g)ntgrs(TH)m[( )’ I(Vig)( )|12]
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Clearly, we can replaceby s and thenz by X’ in the above inequality, witk as in (125). Taking
the expectation and using the Markov property, we obtain

E[|Viaul(T — s, X2")["'] < Cp (1 4+ L7101 — )77l
+(Cy/L1?) [1 T sup [T = US| (Vg (T ')Uiﬂ |
BeAo(m) s<r<(T+s)/2

Sinces <t +3(T —t)/4, we can replacé — s in the second term above ty— ¢ by modifying C;,.
Moreover,s < t + 3(T —t)/4 implies (T + s)/2 < (7T + t)/8. We deduce

EH‘/[Q]U(T _ S,Xz,r)‘2pj| S Cll)(l + Lp”a”(T _ t)_pHaH)
(126)

+(C;/L1/2)[1+ S sup [ — D | (Vg (T — ')Hiﬂ]-
BEAo(m) t<r<(7TT+t)/8

Third Step. Girsanov Transformation agaiBy (120), keep in mind that (with the sames above)
‘/[a] (m)u(T —t, :L')
= B2 Vogu( = 5, X2%) + [ [Vaf(©, Vi (0)XE" + ¥, 1(0,) Vi )3 |

Recall that the densityQ/dP belongs toL4" (P), with a well-controlled norm. (See Theorem 2.4 in
[12].) Choosing2p greater than the conjugate exponenpbdisinces depends om, this says that
is now fixed), we deduce from Holder’s inequality and fror@Z} that

|V[a] (x)u(T — t,w)‘zp
< CUE[| Vi) (2)u(T — 5, X5%)[*7)

.

Lo -ty 1[1+ 3 sup (T — )P0 | [Vigau(T — 7, ) [ 27]

+ OB | [ 19200V 0) X1 + ¥, (6, Vi )]

< CVR | Vi (2)u(T — 5, X17)| ]

BeAo(m) LSTSGBTH)/4
By (126),
[Vigu(T — t,2)|* < € (1 + L1l (7 — ¢)=rlell)
+Cp (T —t+1/L'?) > sup  [(T — rp US| (Vigr) (T = 7, )] 7).

Bedg(m) IST<(TT+)/8

Multiplying by (T — t)?llell, using the boundT — ¢)?llell(T — »)pUBI=lle)™ < ¢(T — r)PlIAl for
t < r < (7T + t)/8, taking the supremum over ¢ R? and then choosind. large enough and
T — t small enough, we complete the proof. (Clearly, the boundasgn on some small interval
of the form[T" — 0,7, § > 0. By a similar argument, the bound holds on dhy- 6/2,t + 6/2),
§/2 <t <T —4/2. Thatis,V|yu(t,-) is uniformly bounded fod <t <7 —4/2.) O
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The lemma gives us the gradient bounds for the higher ordaratiges as in the case whehis
Lipschitz.

Theorem 6.5.Let(V;)o<i<n be N+1 vector fields satisfying Definition 1.1, |ébe as in Proposition
6.1, and leth be a bounded continuous function (see FoothotEhen, for any > 0, u(t, -) belongs
to D A (R,

Moreover, for anyl’ > 0 andaq, as € Ap(m), there exists a constaidt,, depending o\, Ao,
T, || k|| and the vector field$p, . . ., Viy only, such that for alt € [0,7) andz € R,

(127) Vi) Viaju(t, )| < Cot~(leali+llazD/2,

andforanyd > 0,3 <n < K-m-—1anday,...,a, € Ayp(m), there exists a constait, (),
depending 0@, A;, A, n, T, ||h]|o and the vector fields, . . ., Vi only, such that for alt € (0,7
andz € RY,

(128) Vi) Vi, jult, )| < Co(@)t101/2[1 4 /2 4min/llay 11/241/ @l 1)-0].

with 1 <4 < N, wherea(;) and a(,) stand for multi-indices in the family,, ..., «;, such that
ol < llez)|l are the two smallest elements in the fanffity ||, . . . , [[au |-

Proof. There are not so many differences with the case whenat most of linear growth: most
of the work has been done in Lemma 6.4. Comparing with thefgbdheorem 4.1, we understand
that we first have to check the validity of Propositions 4.8 4r8 and of Corollary 4.4.

Extension of Proposition 4.2 to the quadratic cas¥e first notice that Lemma 3.4 holds in the qua-
dratic but smooth framework: following the proof of Theoré8 (or applying Theorem 6.3 directly),
we know thatl « exists and is bounded when the boundary condition is Ligsdaintinuous, that is
the driver f may be assumed to be bounded when the boundary conditioroistisnso that Lemma
3.4 applies in the smooth framework. The first line in Propmsi4.2 is then proven by differen-
tiating the representation formula fai(¢, ) n times. Since the derivatives g¢f of order greater
than 2 are here bounded, most of the terms in Propositionefiain unchanged in the quadratic
case. Basically, we must pay attention to the boundary tondiwhich is now estimated ih>°
through a non-explicit constant as in Lemma 6.4. We must gdgoattention to the terms involving
the first derivatives off w.r.t. = or z, i.e. to the termV,f(O(s, X{ ;))Via ] - - - Via, [Xi-s] @and
to the termV.. f(O(s, X" 5))Vjay] - - - V[an}[(Vu)T(s,Xf_s)] in the proof of Corollary 3.3, Corol-
lary 3.3 being the keystone of the proof of Proposition 4.2r&jO (s, X} ,) stands for the 4-tuple
(s, X g u(s, XF ), (Vu) (s, X7 ,)). Clearly, Vo f(O(s, X ))Viay] - - - Vian][XF_] is of order
s~ by Lemma 6.4. Since it is integrated over an interval of larig®, it doesn't affect the decay of
the boundary condition. The terRi. f(O(s, X¥,))Viay] - - - Vi) [(Vu) T (s, X¢*)] is more difficult

to handle. By the linear growth &7 f in z, itis of orders='/2|V,,; ... Vi, [(Vu)(s, X{_,)]|. Fol-
lowing the proof of Corollary 3.3, we are to evaluate th&, j)i1<j<, at X{" ;. Using Lemma 2.3, in
the first line in Proposition 4.2, we get new terms of the form

029) 32 [ A R VgVt X
k=1 B
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B running over thek-tuples of multi-indices(3i, ..., 8r) € [Ao(m)]*. Below, the terms in the
integral in (129) will be referred to as “non-product ternssiice the iterated derivatives are not
multiplied between them (compare with Proposition 4.2).

Now, we must do the same job for the second line, that is fotafmas deriving from the integra-
tion by parts used to obtain the second line. Clearly, th@sér, f(s,05)Via,] - - - Via,[Xis] and
Vo f(8,05)Viay] - - - Vian] [(Vu)T (s, XF )] modify the second inequality as they modify the first one:
the termV, f(O(s, X)) Via] - - - Vian [X7- s] doesn’t change anything to the final rate; and the term
Vo (008, XE ))WViay] - - - Vian][(Vu) T (s, X, )] generates a new /2 in the integrals of the non-
product terms. Anyhow, we must also pay attentioff’t¢s, ¢, z) in (56). Since we do not take into
account the dependence of the final constants {pdR., it is here enough to bourjd (O (s, X7 ,))|
by C(1 + s~!). Obviously, this doesn't affect the resulting control o thoundary condition in the
second line in Proposition 4.2.

Extension of Proposition 4.3 to the quadratic cages for Proposition 4.2, the dependence upon
|||l cannot be made explicit in the new version of Proposition @3to this restriction, Proposition
4.3 holds true forn = 1: this is Lemma 6.4.

To see how the property propagates withwe are to analyse how the new version of Proposi-
tion 4.2 affects the induction. Assuming that Propositiof Holds true up to» — 1 > 1 in the
quadratic case (up to the shape of the dependence |fghg), we then plug (129) in the induc-
tion property: fork = 1,...,n — 1, the worst contribution in the first line of Proposition 43 i
of ordert—llell/2¢=(n=3)/2: in the second line of Proposition 4.3, the worst contritis of order
t~llell/2¢=(n=2)/2- in the end, the final bound is not affected. (Actually, tisisviell-expected: nonlin-
earity affects the final bound through product terms onlf¢ difficult point is in (81) and (82): there
is an additionak—'/2 in the second lines because of the additiondl? in (129). As a consequence,
(83) reads

S dlelzndizgn (4 a) < Colp) |14

a1,..,0n

t
+ Z /t/z(t— 3)_1/23_1/23”ﬁ||/2+(n_2)/2le,...,ﬁn(s,T,x)ds 7
617“‘7677,

To make it tractable, we proceed as follows. Following theopof Lemma 6.4, the idea is to replace
the lower bound /2 in the integral by[(L — 1)/L]t for L large. This makes very short the length
of the interval over which the integration is performed. iBaly, this just deteriorates the constant
of the integration by parts in the new version of PropositdoB, that is the bound therein reads as
Llledl/2¢=llell/2 Therefore, we get

S dlal/zHa-Dizgn () < Cu(p) {1+ ladi/2

ALy..Qn

(130)

t
+ sup [sIBI/2+m=2/2gn (o o / {52512
61;5n0<5<’”[ O [(L—l)/L]t( )
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Now, notice that

/t (t — s)" V2571205 < LV2(L — 1) V2712 5 7Y% = ([, — 1)~ 12,
[(L—1)/L]t

Therefore, choosind. large enough and taking the supremum w.t.te (0,r] in (130), we can
complete the proof of the new version of Proposition 4.3.

Extension of Corollary 4.4 to the quadratic casehe new version of Corollary 4.4, that is whéh
therein satisfies the same growth propertied as obtained as the new version of Proposition 4.2:
the terms for whichk = 1 in (84) are affected by an additionat /2 following from the growth of
V.f, on the same model as in (129); the terms for whick: 0 are affected by an additional™
following from the growth ofV . f; and F itself, in the product(©(X?))e (s, ), increases as™*

for s small.

Completion of the Proof in the Smooth Settikgpr n = 2, the extension of Proposition 4.2 al-
ready applies. Fon > 3, we follow the end of the proof of Theorem 4.1. We must checek th
the additional terms in the new versions of Proposition 4@ &orollary 4.4 do not affect the fi-
nal estimate. In the original proof of Theorem 4.1, the wersssible bound is—l«1/2=7/2 when
differentiatingn times f(0(s, X¥)), s~llall/2=n/24(lew)|1+1)/2 when differentiating i{n — 1) times
and s~ llal/2=n/2g(le@ll+le@ 1)/2+1 when differentiating it(n — 2) times. We now compare this
bound with the bound of the so-called “non-product termiat tis the terms affected by the addi-
tional s~/2, as in (129). All these terms count a single factor of the fofpy . . . Vig, Vu: using
Proposition 4.3, the worst bound for all of themsis/2s~llell/2=(n=2)/2-1/2 ' o - g=llall/2=n/2 @x.
actly! Obviously, the same holds when differentiating— 1) or (n — 2) times only. It then remains
to see how the terms affected by the additiostal behave: keep in mind that all these ones are free
of any terms of the forn¥is,; . .. Vj5,;Vu. The worst bound for all these termssis’, which is less
thans—lledl/2—(n—2)/2

The general caseGenerally speaking, the proof is the same as in the case yvisest most of linear
growth w.r.t.z. Basically, only the starting point is different. we here sgability results for quadratic
BSDEs to derive the convergence of the mollified seque¢ngg>; towardsu, with the same notation
as in Subsubsection 4.5.1. Stability results for quadB8DEs may be found in Lemma 2.1.2 in Dos
Reis [9]. The end of the proof is completely similar. awaynfrthe boundary, Lemma 6.4 applies
and the driverf is bounded. O

7. CONNECTION WITH PDEs
We prove here Propositions 2.8 and 2.12.
7.1. Proof of Proposition 2.8. The proof relies on the following version of 1td’s formula :

Proposition 7.1. Let v satisfy part (1) in Definition 2.6 and be at most of polynongalwth as in
(21). Then, for anyl” > 0 andz € R?, a.s., foranyt < s < T,

N
S 1 S
v(T — 5, X0%) = v(T, z) + / |:—V0U +5 Z va] (T —r, X\%)dr + / Vo(T — r, X2")dB,..
t i—1 t
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We first assume that Proposition 7.1 holds true and provetfiegtthe unique solvability of the
PDE (5) holds.

7.1.1. Solvability. We first check that; satisfies (1) and (3) in Definition 2.6. To do so, we consider
an approximating sequentky ).~ of i as in Subsection 3.5 or as in Subsection 4.5 for the contguou
case and we denote ly the associated solutions to the PDE (5). Sihégcontinuous(hy),>; here
converges towardas uniformly on compact sets. Following Subsection 3.5, wevktioat (u,)¢>1
converges towards uniformly on compact subsets [6f, 7] x R<. In particular,u is continuous up to
the boundary. Taking the supremum oygrz) in a compact subset ¢6, 7] x R? in (67), we deduce
that (Vug)e>1 converges toward¥« uniformly on compact subsets ¢6, 7] x R?. By the same
argument, for anyvy, ag € Aog(m), (Viay ue)e>1 and(Viq,1Via, ue)e>1 converge toward¥|,,ju and
Via11Vjap)u uniformly on compact subsets ¢, 7' x R?. This proves that/,,ju and Vig, Ve, v

are continuous o0, 7] x R<. In the smooth setting, we know from Pardoux and Peng [27]«#ha
satisfies PDE (5) in the classical sense. TherefOrgu,),>1 is uniformly convergent on compact
subsets of0, 7] x R?: this shows that: belongs toD]I,fO((O, +00) x R%). Passing to the limit in
PDE in (5), we deduce thatsatisfies (2).

7.1.2. Uniqueness.Uniqueness also follows from Proposition 7.1. Note first tthe martingale
term in Proposition 7.1 is local only. However, we can pravioibe a true martingale under the
standing assumption (see Subsection 2.1). Indeed, by tBesBOcture, for any starting poift, z) €
[0,7) x R?, the pair(v(T — s, Xo), Vo(T — 5, Xe™))1<s<7 satisfies the BSDE (12) din, T'). By
standard Young's inequality, it is then possible to prow th

T
E/ Vo(T — s, X5%)|2ds < C sup E[|o(T — s,Xﬁ’x)|2],
t t<s<T
for a constanC’ possibly depending ofi. By the growth property of, this proves that the martingale
term is square integrable. Moreover, by the continuity afp to the boundary, Eq. (12) is shown
to hold up to time€l". The initial condition of the diffusion being given, uniquess of the classical
solution easily follows by uniqueness of the solution toB&DE (12).

7.2. Proof of Proposition 7.1. Clearly, Proposition 7.1 is true whanis smooth. When is not
smooth, the point is to approximate it by a sequence of smiooittions(v,),>1 such that

. V,2 o . Vo,1 _
(131) vr > 1, pllffoo 1/f1§1tp§T va(ta )=t ')”B(o,r)po =0, pllf}rloo ”vp_UH[lo/7«7T}><B(o77«),oo =0.

Indeed, introducing the stopping timés, = inf{s > ¢ : [X5"| > ¢}),>1 (inf@ = +00), we can
apply Itd's formula to(v,, (1" — s, X7))o<s<r,n(T—<), € Standing for a small positive real, and then let
p tend to+oo. Property (131) then implies 1to’s formula foo (7" — s, X{'))o<s<r,n(7—<) UNtil time
74 N\ (T — €). Letting ¢ tend to+oo, this completes the proof.

It thus remains to prove (131). Itis a consequence of theviatig convolution argument, the proof
of which is left to the reader. O
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Lemma 7.2. For two smooth densities; and p; overR andRR?, both with compact support, and for
a solutionv to the PDE as in Definition 2.6, define for al> 0

vta) = [ olt - es - eyl cmoym(s)palu)dsdy.
Rd+1
Then,

€ _ : e _ . Vo,l _
Vr > 1, gl_rfl 1/512)@ |5 (¢, ) — v(t, )HB 000 =05 gl_r% llv UH[I/M]X]B(O’T)@O =0.
7.3. Proof of Proposition 2.12. The proof of the proposition is based on a suitable versiobdaf
formula. Because of thé? setting, it cannot be true for any given starting point. Wevprthe
following:

Proposition 7.3. Letwv satisfy part (1) in Definition 2.11 and be at most of polyndrgrawth as in
(21). Then, for anyl’ > 0 and any boundedr;-measurable (see Footn&jeand R¢-valued random
vectorg, 0 < t < T, with an absolutely continuous distribution w.r.t. the eegue measure dR?,
Itd's formula holds on the same model as in Proposition 7.1rdplacing X5 be§’5 therein.

In particular, the proces$v(T — s, Xﬁ’g))tgsg admits a continuous version.

We emphasize that, in 1td’s formula, all the terms are ueigulefined even if the derivatives of
are defined up to sets of zero Lebesgue measure. This a censeqof Lemma 2.10.

We first assume that Proposition 7.3 holds true and then pghatethe unique solvability of the
PDE (5) holds as well.

7.3.1. Solvability. We first check that, satisfies (1) in Definition 2.11. To do so, we consider an
approximating sequendéy),>; of h as in Subsection 4.5 and we denote(by),~, the associated
solutions to the PDE (5). By (71), all thex),>; are at most of polynomial growth df, 7' x R,
uniformly in ¢. For a realt € [0,7") and anF;-measurable bounded random variablevith an
absolutely continuous distribution, we deduce from stash@gability results on BSDES:

sup E[|(u —ug)(T — s, X562 | = sup / Ell(u—u)(T —s, Xﬁ’x)|2]u(a:)da:
t<s<T t<s<T

<C [ Bl = h) (X5 ula)da,

wherep stands for the density of the distribution £f By Lemma 2.10, the above right-hand side
converges td) as/ tends to+oo, uniformly w.r.t. ¢ in [0,7]. By polynomial growth of(u);>1,
the sequencéu,(t,-)),>1 converges towards(t, -) in Ny>1 LY (R?), uniformly in¢ € [0,7]. Ap-
plying (67) withs = ¢, S = T, 8" = T — ¢, for 6 small, andz replaced by¢ therein and then
taking the supremum w.r.t.in [0, 7 — ¢], we deduce thatV u,(¢, -)),>1 converges toward®u(t, -)

in L2 (R%), uniformly in ¢ in compact subsets df), 7]. By the bounds in Theorem 4.1, the con-
vergence holds in any} (R 4), p > 1, uniformly in ¢ in compact subsets df), 7]. By the same
argument, for anyvy, as € Ap(m), (Vay)ue)e>1 @and(Via,1Viayue)e>1 converge toward$|,,ju and
ViaaVjao]t in Np>1 LY (R?), uniformly in ¢ in compact subsets df), T]. This proves that/,,u
and Vi, Vi, u are measurable o0, 7] x R<. (For anyt € (0,77, Viaju(t, =) is the almost-
everywhere limit ofe—¢ f|r|<€ Via,ju(t, @ + r)dr, which is time-space measurable. The same for

(132)
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Via11Vjas)u(t, z).) By PDE (5) (which holds in the classical sense in the smeetting),(Vou,)¢>1
converges im,>1 L} (R<), uniformly int in compact subsets @6, 7: this shows that: belongs to

loc
mpzlbb’f((o, +00) x R%). Passing to the limit in (5), this proves (2) in Definition 2.1
It finally remains to check thai satisfies the boundary condition (3) in Definition 2.11. B$)(7
the solutionu is at most of polynomial growth. Taking the expectation iR)(&nd using th& priori
estimates in Theorem 4.1, we then wiitgy,*] asE[h(X2")] + O((T —t)'/?), the Landau notation
O(-) being uniform w.r.t. z on compact subsets. Therefore, withas abovelim; 7 [pa [u(T —

t,x) — E[h(X5")]|p(x)dz = 0. We deduce that

(133) lim [ |u(T —t,x)— h(z)|px)de =0,
t—=T JRd

provided

(134) lim | |E[R(X7")] — h(z)|p(z)dz = 0.
t—=T JRd

Eq. (134) holds true wheh is continuous. Whet is not continuous, we can approximate it by a
smooth function inLlloc(Rd) and then apply Lemma 2.10. This implies (3) in Definition 2.11 [

7.3.2. Connection with BSDEL2). We emphasize here that, for an initial conditipas in Proposi-
tion 7.3,(}@t’5)t§sg is a continuous version @fu(7 — s, Xﬁ’f))gsg. Whenh is smooth, it holds
true since((}gt’x)tgsg)te[oj),xew defines a continuous flow (w.r.t the initial conditiajt see Par-
doux and Peng [27]. In the case whieiis measurable only, things are less obvious sincgight be
discontinuous. Nevertheless, it can be proven that),<,<7 and (u(T — s, X2*))i<.<7 coincide
by approximating the terminal condition: we can approxinaby a sequence of bounded smooth
functions (hs)¢>1, uniformly of a polynomial growth and converging towardsimost everywhere
(for the Lebesgue measure). Then, by standard stabilititsesn BSDES, it is known that

(135) E[ sup [ —ud(T =5, Xp1*] < CE[IA(XES) = he(XF5)],

t<s<
whereuy is associated with the boundary conditibpby (13). Above, the right-hand side tends to
0 since the law ofX;5 is absolutely continuous w.r.t. the Lebesgue measure y{dmyhma 2.10).
By (132), we deduce thafi*),< < is a continuous version ofu(T — s, X2%));<s<r. (Put it
differently, (Y:*),<,<7 coincides with the continuous version @f(T — s, X"*)),<.<r given by
Proposition 7.3.)

7.3.3. Uniqueness.Given a solutionv to the PDE with polynomial growth, the point is to prove
that (v(T" — s,Xﬁ’f))tgng satisfies the BSDE (12) (for the sarfieas above). Basically, this fol-
lows from Itd’s formula. As in the continuous case, the palyial growth property together with
the standing assumption ofiimply the martingale part in the BSDE to be square integraivie
t, T], that iSE ftT V(T — s, X5%)[2ds < +oo. As a consequence, the martingale et Vo (T —
s,Xﬁ’ﬁ)st)tSKT has an a.s. limit as tends to7’, as the limit of anL?-martingale. Similarly, by
the Cauchy criterion,

</ f(T -, X,t;g, o(T —r, X,t;g)7 (Vv)T(T -, Xﬁ’g))dr>
t t<s<T
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has an a.s. limit as well. Therefore,(1" — s, Xﬁ’f))tSKT has also an a.s. limit astends tol". We
can identify it as ar.! limit:

E[Jo(T — s, X0%) = H(X7")[] < E[|o(T - s, X0%) = R(XE)|] + E[|A(XF) — X)),

By Lemma 2.10 and by (3) in Definition 2.11, the first term in tight-hand side tends t0 as s
tends tol'. The second one also tendstavhenh is continuous: approximating in L%OC(Rd) by a
continuous function and applying Lemma 2.10 again, it teéodsas well wherk is measurable only.

Finally, there is a version ofv(T — s,Xﬁ’g))tSSg that satisfies (12) Witlh(X;g) as boundary
condition. By uniqueness of the solution to the BSDE, we dedhat(Yst’ﬁ)tSsST and the continuous
version of(v(T — s, X1*)),<s<7 coincide, that iSv(T — s, X5°))i<o<r and (u(T — s, Xe%)) <o
have the same continuous version. Here, we emphasize thetirwet choose = ¢ directly because
of the possible discontinuities efandu. Anyhow, we can always claim that

S
Vte[0,T), Vt<s<T, IE/ [o(T — 7, XE°) — (T — r, X}1%)|dr = 0.
t

By Lemma 7.4 below, we deduce thaaindv match almost everywhere. O

Lemma 7.4. Let+ : [0,7] x RY — R be a function such that, for any € [0,7] andz € R,
[i(t,z)] < C(1+]|z|") for somer > 0, and, foranyt € [0,T) ands € [t,T), E [ ¢ (r, X)dr = 0.
Then,y is zero almost-everywhere for the Lebesgue measure.

Proof (Lemma 7.4). For anyt € [0,T), there exists a Borel subs&f C [¢, T], of zero Lebesgue
measure, such that, for alle NT N [t, T), the integral [, (s, y)dP ¢ (y) is zero. SettingV’ =
Useqno,r)Ni, we deduce, that for all NN [0,7), forallt € [0,s) N Q, the integral is zero. In

particular, we can let tend tos: ast tends tos, X%* tends in law towards. Since¢ has a density,
there is no need of continuity af to pass to the limit in the above expression. (That is, by Lamm
2.10, we can approximate by a continuous function i. ([0,7] x R%).) We deduce that, for all
se NN [0,7), [ga®(s,y)u(y)dy = 0. Choosingu in a countable total subset of densities with
compact support, we deduce thats zero almost-everywhere. O

7.4. Proof of Proposition 7.3. Again, the proof follows via a mollification argument. We dee
find a sequencév),>; of smooth functions such that, for all> 1,

. V,2 . Vo,1
> ) — . ) = — ] = 0.
(136) ¥r= 1, lim /S;l}';T”W(t’ ) = vt llgjonp = 0, lim lve =Vl o, = O

Indeed, introducing the stopping timés, = inf{s > ¢ : |X§’m| > q})g>1 (inf @ = +o00), we can
apply 1td's formula to(ve (7' — s, X¢))o<s<r,n(T—c), fOr Some small positive real

Therefore, forany > 1 and anyt < s < T', we havev, (T — s, Xﬁ’g) — (T —t,&) = Zy(s), with

N
S 1 S
Ty(s) = / [—vow +3 > vﬁw} (T — 7, X2%)dr / V(T — 7, X54)dB,..
t =1 t
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By Lemma 2.10, the following quantity makes sense:

N
S 1 S
I(s) = / [—vou +52. Vi%} (T —r, X28)dr + / Vo(T —r, X24)dB,.
t im1 t

By Lemma 2.10 agaifimg; oo E[sup;< <, A (7—e) [Z(s) — Ze(s)|] = 0. Therefore,

lim supE[  sup ek (T — 5, X58) — 0p(T — s, X§’5)|] = 0.
=400 k>0 t<s<ryA(T—e)

We deduce that we can find a continuous adapted pr@ggs$s: ;< such that

(137) lim B[ sup  [Ss—v(T -5, XL)|] =0.
f=to0 <<, AN(T—¢)

The point is now to identify{=;):<s<7 as a version ofv (1" — s, Xﬁ’g))tSKT. By Lemma 2.10,
(138) lim E[|v(T — s, X)) —0(T — 5, X5%)[] = 0.
{—~+o0

By (137) and (138), we deduce that, for any [t,T), P{Z=s # v(T — s,Xﬁ’ﬁ),suptSsST X5 <
q} = 0. Letting ¢ tend to+oo, this completes the proof. O

Now, (136) follows again from a convolution argument, thegdrof which is left to the reader. [

Lemma 7.5. For two smooth densities; and p; overR andRR?, both with compact support, and for
a solutionv to the PDE as in Definition 2.11, define for alt> 0

ve(t, 7) = /Rd+1 v(t —es, @ — ey) 1 cos0y01(8)paly)dsdy.

Then, for allp > 1,

. V,2 _ : Vo,1 _
vr>1, ili%l/fli?q [V (E,-) = ot 5o, = 00 m 0% =0l o, = O
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