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SHARP DERIVATIVE BOUNDS FOR SOLUTIONS OF DEGENERATE SEMI-L INEAR
PARTIAL DIFFERENTIAL EQUATIONS

DAN CRISAN AND FRANÇOIS DELARUE

ABSTRACT. The paper is a continuation of the Kusuoka-Stroock programme of establishing smooth-
ness properties of solutions of (possibly) degenerate partial differential equations by using probabilistic
methods. We analyze here a class of semi-linear parabolic partial differential equations for which the
linear part is a second order differential operator of the formV0+

∑N
i=1 V

2
i , whereV0, . . . , VN are first

order differential operators that satisfy the so-called UFG condition (see [18]), which is weaker than the
Hörmander one. Specifically, we prove that the bounds of thehigher order-derivatives of the solution
along the vector fields coincide with those obtained in the linear case when the boundary condition is
Lipschitz continuous, but that the asymptotic behavior of the derivatives may change because of the
simultaneity of the nonlinearity and of the degeneracy whenthe boundary condition is of polynomial
growth and measurable only.

KEYWORDS. Degenerate semi-linear parabolic PDE; Second-order differential operator satisfying the
Uniformly Finitely Generated condition; Derivative estimates; Backward SDE; Malliavin calculus

AMS CLASSIFICATION (MSC 2010). 60H10, 60H07, 35K58, 35B45

1. INTRODUCTION

In a series of papers [16, 17, 18, 19], Kusuoka and Stroock have analyzed the smoothness properties
of solutions of linear parabolic partial differential equations of the form

(1) ∂tu(t, x) =
1

2

N
∑

i=1

V 2
i u(t, x) + V0u(t, x), (t, x) ∈ (0,∞) × Rd,

with initial condition u(0, x) = h(x), x ∈ Rd. The condition (called the UFG condition) im-
posed on the vector fields{Vi, i = 0, . . . , N} under which they prove their results is weaker than
the Hörmander condition. This condition states that theC∞

b (Rd)-moduleW generated by the vec-
tor fields{Vi, i = 1, . . . , N} within the Lie algebra generated by{Vi, i = 1, . . . , N} is finite di-
mensional. In particular, the condition does not require that the vector space{W (x)|W ∈ W} is
homeomorphic toRd for anyx ∈ Rd. Hence, in this sense, the UFG condition is weaker than the
Hörmander condition. It is important to emphasize that, under the UFG condition, the dimension
of the space{W (x)|W ∈ W} is not required to be constant overRd. Such generality makes any
Frobenius type approach to prove smoothness of the solutionvery difficult. Indeed the authors are
not aware of any alternative proof of the smoothness resultsof the solution of (1) (under the UFG
condition) other than that given by Kusuoka and Stroock.

Kusuoka and Stroock use a probabilistic approach to deduce their results. To be more precise, they
use the Feynman-Kac representation of the solution of the PDE in terms of the semigroup associated
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2 DAN CRISAN AND FRANÇOIS DELARUE

to a diffusion process. LetX = {Xx
t , (t, x) ∈ [0,∞) × Rd} be the (time homogeneous) stochastic

flow

(2) Xx
t = x+

∫ t

0
V0(X

x
s )ds +

N
∑

i=1

∫ t

0
Vi(X

x
s ) ◦ dBi

s, t ≥ 0,

where the vector fields(Vi)0≤i≤N are smooth and bounded and the stochastic integrals in (2) are of
Stratonovich type. The corresponding diffusion semigroupis then given by

[

Ptg
]

(x) = E
[

g(Xx
t )
]

, t ≥ 0, x ∈ Rd,

for any given bounded measurable functiong : Rd → R. When the boundary conditionh in (1) is
continuous, the following representation holds true:

u(t, x) = Pth(x), ∀(t, x) ∈ [0,∞) × Rd.

Kusuoka and Stroock prove that, under the UFG condition,Pth is differentiable in the direction of
any vector fieldW belonging toW. Moreover they deduce sharp gradient bounds of the form:

(3) ‖W1 . . .WkPth‖p ≤ Cp,kt−l‖h‖p, p ∈ [1,∞],

wherel is a constant that depends explicitly on the vector fieldsWi ∈ W, i = 1, . . . , k. Their results
raise a number of fundamental questions related to the PDE (1). For example, the differentiability
of Pth in theV0 direction is not recovered. This is one of the fundamental differences between the
UFG case and the Hörmander case wherePth is shown to be differentiable in any direction, including
V0. So whilst, in the Hörmander case, it is straightforward toshow thatPth is indeed the (unique)
classical solution of (1), the situation is more delicate inthe absence of the Hörmander condition. As
explained in [21], it turns out thatPth remains differentiable in the directionV0 = ∂t − V0 when
viewed as a function(t, x) → Pth(x) over the product space(0,∞) × Rd. This together with the
continuity att = 0 implies thatPth is the unique (classical) solution of the equation

(4) V0u(t, x) =
1

2

N
∑

i=1

V 2
i u(t, x), (t, x) ∈ (0,∞) × Rd.

The introduction of a new class of numerical methods for approximating the law of solutions of
SDE (and, implicitly, the solution of PDEs as computed by means of the Feynman-Kac formula)
has brought a renewed interest in the work of Kusuoka and Stroock. Their fundamental results form
the theoretical basis of a recently developed class of high accuracy numerical methods. In the last
ten years, Kusuoka, Lyons, Ninomiya and Victoir [15, 20, 22,23, 24] developed several numerical
algorithms based on Chen’s iterated integrals expansion (see [7] for a unified approach for the analysis
of these methods). These new algorithms generate an approximation of the solution of the SDE in
the form of the empirical distribution of a cloud of particles with deterministic trajectories. The
particles evolve only in directions belonging toW. This ensures that the particles remain within
the support of the limiting diffusion, leading to more stable schemes. The global error of numerical
schemes depends intrinsically on the smoothness ofPth but only in directions belonging toW. As a
result they work under the (weaker) UFG condition rather than the ellipticity/Hörmander condition.
By contrast, the classical Euler based numerical method (combined with a Monte-Carlo procedure)
sends the component particles in any direction, hence they require the Hörmander condition.
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In recent works [5, 6] the applicability of these schemes hasbeen extended to semilinear PDEs.
One of the major hurdles in obtaining convergence results for these schemes has been the absence
of smoothness results of the type (3), again under the UFG condition. The authors are not aware of
the existence of such bounds proved under the Hörmander condition either. In the following we will
consider semilinear PDEs of the form:

(5) ∂tu(t, x) =
1

2

N
∑

i=1

V 2
i u(t, x)+V0u(t, x)+f

(

t, x, u(t, x), (V u(t, x))⊤
)

, (t, x) ∈ (0,∞)×Rd,

with initial conditionu(0, x) = h(x), x ∈ Rd. In (5) we used the notationV u(t, x) to denote the
row vector(V1u(t, x), . . . , VNu(t, x)). ((V u)⊤ stands for the transpose ofV u.) As we shall see,
u(t, x) is differentiable in any directionW ∈ W whenh is continuous just as in the linear case.
If, for example, the vectorsVi, i = 1, . . . , N , satisfy the uniform ellipticity condition, thenu(t, x)
is differentiable in any direction and the analysis covers semilinear PDEs written in the ‘standard’
format

∂tu(t, x) =
1

2

N
∑

i=1

V 2
i u(t, x) + V0u(t, x) + f

(

t, x, u(t, x), (∇xu(t, x))
⊤
)

, (t, x) ∈ (0,∞) × Rd,

where∇xu is the usual gradient ofu in x, i.e., the row vector of partial derivatives(∂x1u, . . . , ∂xN
u).

Following the tradition of Kusuoka and Stroock, we analyze the smoothness of the solution of the
semilinear PDE using probabilistic methods. The basis of the analysis is the corresponding Feynman-
Kac representation for the solution of (5). This representation was introduced by Pardoux and Peng
in [26, 27] and involves the solution of a backward stochastic differential equation (see Section 2.1
below).

1.1. The UFG condition. Let (Vi)0≤i≤N beN + 1 vector fields,V0 belonging toCK
b (Rd,Rd) and

Vi, 1 ≤ i ≤ N , to CK+1
b (Rd,Rd), K ≥ 0 , Cn

b (R
d,Rd) standing for the set of bounded and contin-

uous functions fromRd to Rd that aren-times differentiable, with bounded and continuous partial
derivatives up to ordern. We will make use of the standard notation introduced in [19], (see also [21]
and [7]):

V[i] = Vi, V[α⋆i] =
[

V[α], Vi
]

, i ∈ {0, . . . , N},
where[·, ·] stands for the Lie bracket of two vector fields, that is[V,W ] = V ·∇W −W ·∇V andα⋆i
stands for the multi-index(α1, . . . , αn, i) whenα is given by(α1, . . . , αn) with αj ∈ {0, . . . , N},
j = 1, . . . , n. The following “lengths” of a multi-indexα = (α1, . . . , αn) will be used:

|α| = |(α1, . . . , αn)| = n, ‖α‖ = ‖(α1, . . . , αn)‖ = n+ ♯{i : αi = 0}.
The set of all multi-indices is denoted byA, the set of all multi-indicesα different from(0) is denoted
by A0 and the set of non-empty multi-indicesα in A0 for which‖α‖ ≤ m is denoted byA0(m).

For n multi-indicesα1, . . . , αn, n ≥ 1, we often denote then-tuple (α1, . . . , αn) by α and then
set‖α‖ = ‖α1‖+ · · ·+ ‖αn‖.

Definition 1.1. Letm ∈ N∗ be a positive integer and assume thatK ≥ m + 3. The vector fields
{Vi, 0 ≤ i ≤ N} satisfythe UFG condition of orderm if, for anyα ∈ A0 such that‖α‖ = m+ 1 or
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α = α′ ⋆ 0 with ‖α′‖ = m, there existsϕα,β ∈ CK+1−|α|
b (Rd), with β ∈ A0(m), such that

V[α](x) =
∑

β∈A0(m)

ϕα,β(x)V[β](x), x ∈ Rd.

Remark 1.2. In [21], the constantK is required to be greater thanm+1. We here needK ≥ m+3
to ensure the existence of classical solutions to the nonlinear PDE, see Theorem 1.4 below.

The following example illustrates the difference between the UFG and the Hörmander condition ( see
[18]):

Example 1.3. AssumeN = 1 andd = 2. LetV0 andV1 be given by

V0(x1, x2) = sinx1
∂

∂x1
, V1(x1, x2) = sinx1

∂

∂x2

The vector fields{V0, V1} satisfy the UFG condition of orderm = 4, but not the Ḧormander condi-
tion.

The vector fields{Vi, 0 ≤ i ≤ N} satisfy theuniformHörmander condition if there existsm > 0
such that

inf
{x,ξ∈Rd| |ξ|=1}

∑

β∈A0(m)

(V[β](x), ξ)
2 > 0.

Obviously, if the vector fields{Vi, 0 ≤ i ≤ N} satisfy the uniform Hörmander condition then
they satisfy the UFG condition. In particular if the vector fields{Vi, 1 ≤ i ≤ N} satisfy the uniform
ellipticity condition then they satisfy the UFG condition.

Definition 1.1 is a (slight) generalization of the corresponding one given in [19]. In [19], both the
vector fields{Vi, 0 ≤ i ≤ N} and the coefficientsϕα,β are assumed to be smooth (infinitely differ-
entiable). If the smoothness assumption is imposed thenV[α] is well defined for anyα ∈ A and one
can interpret the UFG condition in the following manner. LetW be theC∞

b (Rd)-module generated
by the vector fields{Vi, i = 1, . . . , N} within the Lie algebra generated by{Vi, i = 1, . . . , N}. Then
W is finitely generatedas a vector spaceand{V[α], α ∈ A0(m)} is a finite set of generators forW.
In addition, the functionsϕα,β appearing in the decomposition of any vector fieldV ∈ W as a linear
combination of the elements of the set{V[α], α ∈ A0(m)} are assumed to be smooth and uniformly
bounded overRd. These are salient properties that are essential to make theproof of Kusuoka and
Stroock work and justify the use of the acronym UFG - uniformly finitely generated - for the assumed
property.

As shown in [21] the smoothness assumption on the vector fields {Vi, 0 ≤ i ≤ N} and the
coefficientsϕα,β is not necessary. The level of differentiability is dictated by the order of the UFG
condition assumed. In other words, the vector fields have to be sufficiently many times differentiable
for the repeated brackets to make sense up to the required level. Of course, in this case, we can no
longer talk about theC∞

b (Rd)-moduleW or about the Lie algebra generated by{Vi, i = 0, . . . , N}
as not all the Lie brackets will make sense (due to the reduceddifferentiability). Then, we will
denote byW the space generated by the vector fieldsV[α], with |α| ≤ K + 1, for which there exist

ϕα,β ∈ CK+1−|α|
b (Rd), with β ∈ A0(m), such that

V[α](x) =
∑

β∈A0(m)

ϕα,β(x)V[β](x), x ∈ Rd.
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Definition 1.1 then states that{V[α];α ∈ A0(m+ 1)} ∪ {V[α];α = α′ ⋆ 0, α′ ∈ A0(m)} ⊂ W. This
extension allows us to identify theminimal level of differentiabilitythat we need to impose on the
coefficients of the PDE so as to deduce the desired gradient bounds.

1.2. The Main Results. Under the UFG condition (see [21] and [19]) the solution of the linear
equation (1) is differentiable in any directionV ∈ W. Moreover, ifh is a smooth bounded function,
the following gradient bound holds true:

(6)
∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ C‖h‖∞t−‖α‖/2,

for α1, . . . , αn ∈ A0(m), whereC is a constant independent ofh and(t, x), and‖α‖ = ‖α1‖ +
· · ·+ ‖αn‖. If h is Lipschitz continuous function with Lipschitz constant

‖h‖Lip = sup
{x,y∈Rd,x 6=y}

|h(x)− h(y)|
|x− y| ,

then there exists a constantC independent ofh such that for all(t, x)

(7)
∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ C‖h‖Lipt(1−‖α‖)/2.

In the current paper we investigate the counterpart of theseresults for the solution of the semilinear
PDE (5). The results are summarized in the following:

Theorem 1.4. Assume that the vector fields{Vi, 0 ≤ i ≤ N} satisfythe UFG condition of orderm.
Then, ifh is of polynomial growth and continuous and iff satisfies additional conditions that are
specified below, the semilinear PDE(5) is uniquely solvable in a suitable space ofclassical solutions
and the solution is differentiable in any directionV ∈ W. Moreover, ifh is a Lipschitz continuous
function, then, for anyT > 0, there exists a constantC such that, for all(t, x) ∈ (0, T ]× Rd,

(8)
∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Ct(1−‖α‖)/2, n ≤ K −m− 1,

with α = (α1, . . . , αn) ∈ [A0(m)]n. (See Footnote1) If h is a continuous function of polynomial
growth, but not necessarily Lipschitz, then there exists a constantC such that, for all(t, x) ∈ (0, T ]×
Rd,

(9)
∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Ct−‖α‖/2

if n ≤ 2 or n = 3 andmin{‖αi‖, i = 1, 2, 3} = 1. However, if3 ≤ n ≤ K −m − 1, then, for any
δ > 0, there exists a constantC(δ) such that, for all(t, x) ∈ (0, T ] × Rd,

(10)
∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ C(δ)t−‖α‖/2
[

1 + t−n/2+1+min[1/‖α(1)‖,1/2+1/(2‖α(2)‖)]−δ
]

,

where‖α(1)‖ ≤ ‖α(2)‖ stand for the two smallest elements among‖α1‖, . . . , ‖αn‖. If h is of poly-
nomial growth and measurable only, the semilinear PDE(5) is uniquely solvable as well, but in a
suitable space ofgeneralized solutions. The solution admits generalized derivatives in any direction
V ∈ W and satisfies(9) and (10) almost everywhere. (And Footnote1 applies as well.)

1The reader now understands whyK is chosen to be greater thanm + 3: (8) holds at least forn = 1, 2, so that the
partial derivatives in space in (5) make sense.
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The details of the assumptions imposed on the functionf are given in Sections 3 and 4 below. We
make explicit the dependence of the constants appearing in equations (8), (9) and (10) on the initial
conditionh in Theorems 3.1 and 4.1. Theorems 3.1 and 4.1 also contain certain (nonlinear) Feynman-
Kac representations for the derivativesV[α1] . . . V[αn]u(t, x). Similar bounds and representations are
also valid forV[α1] . . . V[αn]Viu(t, x), i = 1, . . . , N . These representations are important for the
analysis of numerical algorithms for the approximation of the solution of (5).

Let us comment on the bounds contained in (8), (9) and (10). Despite the introduction of the
nonlinear term in (5), the solution of the semilinear PDE hasthe same small time asymptotics as
the solution of the linear PDE (1) when the initial conditionh is a Lipschitz continuous function.
The same applies for the case whenh is a measurable function of polynomial growth as long as
we differentiate no more than two times. For derivatives of order 3 or more the asymptotics may
deteriorate according to the degeneracy: whenn = 3 and‖α(1)‖ = 1, the asymptotic rates in (10) are
similar to the ones in the linear case; whenn = 3 and‖α(1)‖ = 2 orn = 4 and‖α(1)‖ = ‖α(2)‖ = 1,
it is almost the same as in the linear case up to the additionalδ; in all the other cases, the asymptotic
rates are strictly worse. In particular, the small time asymptotic behavior of the derivatives up to
the fourth order are the same as in the linear case when the operator is uniformly elliptic (up to the
additionalδ for the fourth derivatives). In Section 5, examples, both inthe uniformly elliptic and
degenerate cases, are given where the announced bound in (10) is attained (up to the additionalδ).
This shows the sharpness of the bound. As a consequence, it turns out that the simultaneity of the
nonlinearity and of the degeneracy will lead to a faster explosion (ast → 0) of the higher derivatives
above a certain threshold.

1.3. Structure of the article. The article is structured as follows. In Section 2, we collect a number
of preliminary results required for the proof of the main theorems. The Feynman-Kac formula for
the solution of the equation (5) is presented. It relates thesolution of the PDE to the solution of a
backward stochastic differential equation. We also give the rigorous definitions of a solution of (5).
In Sections 3 and 4, we analyze the smoothness of the solutionof (5) in the case whenh is a Lipschitz
continuous function and, respectively, whenh is a measurable function of polynomial growth. In
Section 5, we study two examples that show that we cannot expect the same asymptotic behaviour for
the case whenh is bounded, but not necessarily Lipschitz continuous, as inthe linear case. Finally,
in Section 6, we relax the Lipschitz condition imposed on thefunction f appearing in (5) and treat
the case whenf has quadratic growth andh is bounded. This is an important case with applications
in optimisation problems appearing in mathematical finance(see, e.g., [11, 28] and the references
therein).

2. PRELIMINARY RESULTS

2.1. The Feynman-Kac representation.Let (Ω,F , (Ft)t≥0,P) be a filtered probability space en-
dowed with an(Ft)t≥0-adapted Brownian motion(Bt)t≥0. On (Ω,F , (Ft)t≥0,P) we consider the
triplet (X,Y,Z) = {(Xt, Yt, Zt) , t ∈ [0, T ]} of Ft-adapted stochastic processes satisfying the fol-
lowing system of equations

(11)

{

dXt = V0(Xt)dt+
∑N

j=1 Vj(Xt) ◦ dBj
t

−dYt = f(T − t,Xt, Yt, Zt)dt− 〈Zt, dBt〉
.
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The system (11) is called a forward-backward stochastic differential equation (FBSDE). The process
X, called the forward component of the FBSDE, is ad-dimensional diffusion satisfying a stochastic
differential equation driven byVi : Rd → Rd, i = 0, 1, . . . , N . The notation “◦” indicates that
the stochastic term in the equation satisfied byX is a Stratonovitch integral. The processY , called
the backward component of the SDE is a one-dimensional stochastic process with final condition
YT = h(XT ), whereh : Rd → R is a measurable function of polynomial growth. The function
f : [0, T ]×Rd ×R×RN → R, referred to as “ the driver”, is assumed to be of polynomial growth in
x, of linear growth in(y, z), being bounded in timet and Lipschitz continuous2 in y andz, uniformly
in time t and spacex.

The existence and uniqueness question for the system (11) was first addressed by Pardoux and Peng
in [26, 27] and, since then, a large number of papers have beendedicated to the study of FBSDEs.
Pardoux and Peng proved that the stochastic flow

(

Xt,x, Y t,x, Zt,x
)

, t ∈ [0, T ], x ∈ Rd associated
to the system (11), in other words, the solution of the system

(12)







dXt,x
s = V0(X

t,x
s )ds +

∑N
j=1 Vj(X

t,x
s ) ◦ dBj

s ,

−dY t,x
s = f(T − s,Xt,x

s , Y t,x
s , Zt,x

s )ds − 〈Zt,x
s , dBs〉,

Xt,x
t = x, Y t,x

T = h(Xt,x
T ),

s ∈ [t, T ]

provides a non-linear Feynman-Kac representation for the solution of the semilinear PDE (5). More
precisely they showed that when the functionsf andh are continuous, then the function

(13) u(T − t, x) = Y t,x
t ,

is a continuous solution of (5)in viscosity sense. When the coefficientsf andh are smooth, it is
a solutionin classical senseandZt,x

s = (V u)⊤(T − s,Xt,x
s ). Therefore, the results in this paper

represent a strengthening of the results of Pardoux of Peng as we identify conditions under which
the stochastic flowY t,x

t generates aclassicalsolution, and respectively, a generalized solution (in
Sobolev sense) of (5), the terminal conditionh being possibly non-smooth.

We remark that the triplet
(

Xt,x, Y t,x, Zt,x
)

, t ∈ [0, T ], x ∈ Rd, which solves the system (12) is
adapted to the (augmented) filtration generated by the increments(Bs −Bt)t≤s≤T so thatY t,x

t has a
deterministic value (up to a zero-measure event).

2.2. Properties of the Flow. Whenu is continuous on(0, T ] × Rd, the relationship between the
deterministic mappingu and the pair(Y,Z) extends asYt = u(T − t,Xt), t ∈ [0, T ). GivenXt = x,
for somet ∈ [0, T ), this relationship reads:Y t,x

s = u(T − s,Xt,x
s ), s ∈ [t, T ). Moreover, (13) reads

(14) u(T − t, x) = E

[

h(Xt,x
T ) +

∫ T

t
f
(

T − s,Xt,x
s , Y t,x

s , Zt,x
s

)

ds

]

.

2.2.1. Shift Operator.Eq. (14) is the keystone for the probabilistic analysis of the regularity of
u. SinceX is a homogeneous diffusion process, we emphasize that(Xt,x

s )t≤s≤T , t ∈ [0, T ], may
be understood as a shifted version of(X0,x

s−t)0≤s−t≤T−t. Specifically, we can choose the canonical
Wiener space for(Ω,F , (Ft)t≥0,P) and thus introduce the shift operator(θt : ω 7→ θt(ω) = ω(t +

·)−ω(t))t≥0. Then,(Xt,x
s )t≤s≤T reads as(X0,x

s−t ◦θt)0≤s−t≤T−t, or simply as(Xx
s−t ◦θt)0≤s−t≤T−t,

with the conventionXx = X0,x.

2This assumption will be relaxed in Section 6.
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As basic application, we discuss below how to transfer differentiation at starting point into differ-
entiation along the flow. To do so, we first remind the reader ofso-called Kusuoka-Stroock functions
(see [21] and [19]).

2.2.2. Kusuoka-Stroock Functions.In the following, letE be a separable Hilbert space andDn,∞(E)
be the space ofE-valued functionals admitting Malliavin derivatives up toordern, see the monograph
by Nualart [25, Chapter 1, Section 2] for details.

Definition 2.1 (Kusuoka-Stroock functions). Givenr ∈ R andn ∈ N, we denote byKT
r (E,n) the

set of functions:g : (0, T ]× Rd → Dn,∞(E) satisfying the following:

(1) g(t, .) is n-times continuously differentiable and[∂αg/∂xα](., .) is continuous in(t, x) ∈
(0, T ]× Rd a.s., for any tupleα of elements of{1, . . . , d} of length|α| ≤ n.

(2) For all k ∈ N, p ∈ [1,∞), andk ≤ n− |α|, sup
t∈(0,T ],x∈Rd

t−r/2

∥

∥

∥

∥

∂αg

∂xα
(t, x)

∥

∥

∥

∥

Dk,p(E)

<∞.

DefineKT
r (n) := KT

r (R, n).

The functions belonging to the setKT
r (E,n) satisfy the following properties which form the basis of

our analysis (see [21] for details).

Lemma 2.2(Properties of Kusuoka-Stroock functions). Within the framework of Definition 1.1, the
followings hold

(1) The function(t, x) ∈ R+ × Rd 7→ Xx
t belongs toKT

0 (K), for anyT > 0.
(2) Supposeg ∈ KT

r (n), wherer ≥ 0. Then, fori = 1, . . . , d,
∫ .

0
g(s, x)dBi

s ∈ KT
r+1(n) and

∫ .

0
g(s, x)ds ∈ KT

r+2(n).

(3) If gi ∈ KT
ri(ni) for i = 1, . . . , N , then

N
∏

i=1

gi ∈ KT
r1+...+rN

(min
i
ni) and

N
∑

i=1

gi ∈ KT
mini ri(min

i
ni).

2.2.3. Transport of Differentiation.As announced, we claim as a consequence of Lemmas 2.2 and
3.9 in [21] (see also page 265 in [19]):

Lemma 2.3. DefineJt,x = [∂(Xx
t )i/∂xj ]1≤i,j≤d, t ≥ 0. Then, there exist two families of random

functions(aα,β : R+ × Rd → R)α,β∈A0(m) and (bα,β : R+ × Rd → R)α,β∈A0(m), aα,β, bα,β ∈
∩T>0KT

(‖β‖−‖α‖)+(K −m), such that for anyx ∈ Rd andα ∈ A0(m),

V[β]
(

Xt,x
s

)

= θ∗t [Js−t,x]
∑

α∈A0(m)

θ∗t
[

aβ,α
]

(s− t, x)V[α](x),

θ∗t [Js−t,x]V[α](x) =
∑

β∈A0(m)

θ∗t
[

bα,β
]

(s − t, x)V[β]
(

Xt,x
s

)

,
(15)

whereθ∗t [Js−t,x] = Js−t,x ◦ θt andθ∗t [aβ,α](s− t, x) = [aβ,α ◦ θt](s− t, x) (and the same forβα,β).

As we will see below, Lemma 2.3 is a key ingredient of the analysis.
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2.3. Classical Solutions for the PDE (5).We now define the notion of classical solutions in The-
orem 1.4. A classical solutionu of the PDE (5) will be twice continuously differentiable in the
directions of the vector fieldsVi, i = 1, . . . , d and once continuously differentiable in the direction
V0 = ∂t − V0, when viewed as a function(t, x) 7→ u(t, x) over the product space(0,∞)× Rd.

2.3.1. Space of Classical Solutions.For an open ballB ⊂ Rd and for a functionϕ in C∞
b (B), that is

a bounded (real-valued) functionϕ with bounded derivatives of any order onB, we set

‖ϕ‖V,1B,∞ = ‖ϕ‖B,∞ +
∑

α∈A0(m)

‖V[α]ϕ‖B,∞

and then defineD1,∞
V (B) as the closure ofC∞

b (B) in Cb(B̄) w.r.t. ‖ · ‖V,1B,∞. (See Footnote3 for the
closability argument.) More generally, for1 ≤ k ≤ K −m+ 2, we can define by induction

‖ϕ‖V,kB,∞ = ‖ϕ‖V,k−1
B,∞ +

∑

α1,...,αk∈A0(m)

‖V[α1] . . . V[αk]ϕ‖B,∞, ϕ ∈ C∞
b (B).

We emphasize thatV[α1] . . . V[αk]ϕ makes sense for any smooth function because of the boundk ≤
K −m+2: eachV[αi] is at leastK −m+1 times continuously differentiable, so that the last vector
field V[αk] in V[α1] . . . V[αk] can be differentiatedK −m+ 1 times.

We then defineDk,∞
V (B) as the closure ofC∞

b (B) in Cb(B̄) w.r.t. ‖·‖V,kB,∞. (The closability argument

is the same as above.) In particular, we can defineDk,∞
V (Rd) as

Dk,∞
V (Rd) =

⋂

r≥1

Dk,∞
V (B(0, r)), 1 ≤ k ≤ K −m+ 2,

whereB(0, r) stands for thed-dimensional ball of center0 and radiusr. For v ∈ Dk,∞
V (Rd), 1 ≤

k ≤ K −m+ 2, V[α1] . . . V[αk]v is understood as the derivative ofv in the directionsV[α1] . . . V[αk],
with α1, . . . , αk ∈ A0(m).

Similarly, forϕ ∈ C∞
b (B) and0 ≤ k ≤ K −m+ 1, we set

‖ϕ‖V,k+1/2
B,∞ = ‖ϕ‖V,kB,∞ +

N
∑

i=1

∑

α1,...,αk∈A0(m)

‖V[α1] . . . V[αk]Viϕ‖B,∞.

(Above,‖ · ‖V,0B,∞ = ‖ · ‖B,∞.) We then defineDk+1/2,∞
V (B) as the closure ofC∞

b (B) in Cb(B̄) w.r.t.

‖ · ‖V,k+1/2
B,∞ and we set

Dk+1/2,∞
V (Rd) =

⋂

r≥1

Dk+1/2,∞
V (B(0, r)), 0 ≤ k ≤ K −m+ 1.

Remark 2.4. Note that any function inD1,∞
V (Rd) is differentiable along the solutions of the ordinary

differential equationγ̇t = V (γt), t ≥ 0, for V ∈ A0(m). In particular, any function inD1,∞
V (Rd) is

continuously differentiable onRd when the uniform Ḧormander condition is satisfied.

3 We emphasize that the closure is well-defined: if(ϕn, (V[α]ϕn)α∈A0(m))n≥1 tends to(0, (Gα)α∈A0(m)) uniformly
onB asn tends to+∞, then for any test functionψ ∈ C∞(Rd) with compact support included inB,

∫
Rd G

i
α(x)ψ(x)dx =

limn→+∞ −
∫
Rd ϕn(x)∂xi

(V i
[α] × ψ)(x)dx = 0, i = 1, . . . , N , so thatGα is zero.
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2.3.2. Typical Example.A typical example of function inDn,∞
V (Rd), 1 ≤ n ≤ K−m, isx ∈ Rd 7→

(Ptϕ)(x), for t > 0 andϕ ∈ Cb(Rd). For this we need to recall the following integration by parts
formula (see Corollaries 3.13 and 3.18 in [21])

Theorem 2.5. Let (Vi)0≤i≤N satisfy the assumptions in Definition 1.1. Then, for anyT > 0, n ≤
K −m andα1, . . . , αn ∈ A0(m), there existsΦα1,...,αn ∈ KT

0 (K −m− n) such that

(16) V[α1] . . . V[αn](Pth)(x) = t−‖α‖/2E [Φα1,...,αn(t, x)h(X
x
t )] ,

for any h ∈ C∞
b (Rd), t ∈ (0, T ], x ∈ Rd, with α = (α1, . . . , αn). In particular, the following

gradient bound holds true:

(17) ‖V[α1] . . . V[αn]Pth‖∞ ≤ C‖h‖∞t−‖α‖/2,

whereC = sup0<t≤T supx∈Rd E [|Φα1,...,αn(t, x)|] < ∞. In addition, for anyn ≤ K − m and
α1, . . . , αn ∈ A0(m) there existΦi

α1,...,αn
∈ KT

0 (K −m− n+ 1), i = 1, . . . , d such that

(18) V[α1] . . . V[αn](Pth)(x) = t−(‖α1‖+...+‖αn−1‖)/2
d

∑

i=1

E
[

Φi
α1,...,αn

(t, x)∂xih(X
x
t )
]

,

for anyh ∈ C∞
b (Rd), t ∈ (0, T ], x ∈ Rd. Hence, in particular, the following gradient bound holds

true:

(19) ‖V[α1] . . . V[αn]Pth‖∞ ≤ CT (m−1)/2‖∇h‖∞t(1−‖α‖)/2,

whereC = maxi=1,..,d sup0<t≤T supx∈Rd E
[

|Φi
α1,...,αn

(t, x)|
]

<∞.4

To prove that the mappingx ∈ Rd 7→ (Ptϕ)(x), for t ∈ (0, T ] andϕ ∈ C0
b (R

d), is in Dn
V,∞(Rd),

1 ≤ n ≤ K −m, it is sufficient to consider a sequence(ϕℓ)ℓ≥1 of functions inC∞
b (Rd) converging

towardsϕ uniformly on compact subsets ofRd asℓ tends to+∞. Then, from the above theorem, we
have that

(20)
[

V[α1] . . . V[αn]Ptϕℓ

]

(x) = t−‖α‖/2E
[

ϕℓ(X
x
t )ψ(t, x)

]

,

with ψ ∈ KT
0 (K −m − n) is independent ofℓ. Clearly, on every compact subsets ofRd, the right-

hand side in (20) converges towards the continuous functionx ∈ Rd 7→ t−‖α‖/2E[ϕ(Xx
t )ψ(t, x)].

Therefore, the sequence(V[α1] . . . V[αn]Ptϕℓ)ℓ≥1 is Cauchy in any spaceC(B̄(0, r)), r > 0, so that
Ptϕ belongs toDn,∞

V (Rd) for 1 ≤ n ≤ K −m and (20) holds forϕ as well.

2.3.3. Definition of Classical Solutions.To define the notion of a classical solution to (5), we will
need to introduce the set of functions that are continuouslydifferentiable in the directionV0 = ∂t −
V0. Again, we proceed by a closure argument. For anyr ≥ 1 and any time-space functionϕ ∈
C∞
b ([1/r, r] × B(0, r)) with bounded derivatives of any order, we set

‖ϕ‖V0,1
[1/r,r]×B(0,r),∞ = ‖ϕ‖[1/r,r]×B(0,r),∞ + ‖V0ϕ‖[1/r,r]×B(0,r),∞.

4To be exact one has‖V[α1] . . . V[αn]Pth‖∞ ≤ C‖∇h‖∞t
−(‖α1‖+···+‖αn−1‖)/2 and inequality (17) follows as

t−(‖α1‖+···+‖αn−1‖) ≤ Tm−1t1−‖α‖ (recall thatt ≤ T ).
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We then defineD1,∞
V0

([1/r, r]×B(0, r)) as the closure ofC∞
b ([1/r, r]×B(0, r)) w.r.t. ‖·‖V0,1

[1/r,r]×B(0,r),∞

and then defineD1,∞
V0

((0,+∞)×Rd) as the intersection of the spacesD1,∞
V0

([1/r, r]× B(0, r)) over
r ≥ 1. (As above, the closability property is easily checked.)

We are now in position to define a classical solution to the PDE:

Definition 2.6. We call a functionv = {v(t, x), (t, x) ∈ [0,+∞) × Rd} a classicalsolution of the
PDE (5) if the followings are satisfied

(1) v belongs toD1,∞
V0

((0,+∞) × Rd) and, for anyt > 0, v(t, ·) is in D2,∞
V (Rd) such that, for

anyα1, α2 ∈ A0(m), the function(t, x) ∈ (0,+∞)×Rd 7→
(

V[α1]v(t, x), V[α1 ]V[α2]v(t, x)
)

is continuous,
(2) for any(t, x) ∈ (0,+∞)× Rd, it holds

V0v(t, x) =
1

2

N
∑

i=1

V 2
i v(t, x) + f

(

t, x, v(t, x), (V v(t, x))⊤
)

,

(3) the boundary conditionlim(t,y)→(0,x) v(t, y) = h(x) holds as well for anyx ∈ Rd.

Remark 2.7. We emphasize that we do not assume that a classical solution of the PDE (5) must
be differentiable in the time direction or in the directionV0. However this is the case if vector fields
satisfy the uniform Ḧormander condition. In this case the above definition coincides with the standard
definition of a classical solution.

As announced, here is the connection between the PDE and the BSDE (the proof is postponed to
Section 7 ):

Proposition 2.8. Under the standing assumption, ifh is a continuous function of polynomial growth
andf is bounded in(t, x), uniformly in (y, z), and twice continuously differentiable w.r.t.(x, y, z)
with bounded derivatives, the functionu given by(13) for a givenT > 0 is a classical solution to the
PDE (5) on (0, T ]× Rd.

Moreover, any other classical solutionv of the semilinear PDE (5) that has polynomial growth
matchesu. “Polynomial growth” means that there existC, r ≥ 0 such that

(21) ∀(t, x) ∈ [0, T ]× Rd, |v(t, x)| ≤ C(1 + |x|r).

2.4. Generalized Solutions to the PDE(5). We now specify the notion of generalized solutions.
A generalized solutionu of the PDE (5) will be a function that isp-locally-integrable and that has
p-locally-integrable generalized derivatives of second-order in the directions of the vector fieldsVi,
i = 1, . . . , d, and ap-locally-integrable generalized derivative of first-order in the directionV0 =
∂t − V0, when viewed as a function(t, x) 7→ u(t, x) over the product space(0,∞) × Rd.

2.4.1. Space of Generalized Solutions.As we definedDk,∞
V (B) as the closure ofC∞

b (B) in Cb(B̄)
w.r.t. ‖ · ‖V,kB,∞ for a given ballB, we can defineDk,p

V (B), for a given realp ≥ 1 and for1 ≤ k ≤
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K −m+ 2, as the closure ofC∞
b (B) in Lp(B) w.r.t. ‖ · ‖V,kB,p, where

‖ϕ‖V,1B,p = ‖ϕ‖B,p +
∑

α∈A0(m)

‖V[α]ϕ‖B,p,

‖ϕ‖V,kB,p = ‖ϕ‖V,k−1
B,p +

∑

α1,...,αk∈A0(m)

‖V[α1] . . . V[αk]ϕ‖B,p, ϕ ∈ Lp(B),

the notation‖ · ‖B,p here standing for theLp norm overB. Then, we can defineDk,p
V (Rd) as the

intersection of all theDk,p
V (B(0, r)), r > 0. Similarly, we can defineDk+1/2,p

V (B) andDk+1/2,p
V (Rd)

for 1 ≤ k ≤ K −m+ 1, D1,p
V ([1r , r]× B) for r > 0, andD1,p

V ((0,+∞) × Rd).

Remark 2.9. If the uniform Ḧormander condition is satisfied, thenDk,p
V (Rd) is the set of functionsϕ

that belong to the Sobolev spaceW k,p(B(0, r)) for anyr > 0.

2.4.2. Typical Example.A typical example of function inDk,n
V (Rd), 1 ≤ n ≤ K −m, isx ∈ Rd 7→

(Ptϕ)(x), for t > 0 andϕ ∈ Lp
loc(R

d), ϕ being at most of polynomial growth at the infinity. The
proof is almost the same as in the case whenp = +∞. The point is to consider an approximating
sequence(ϕℓ)ℓ≥1, converging towardsϕ in Lp

loc(R
d) (that is in anyLp(B(0, R)), R > 0) and then to

prove that the right-hand side in (20) is Cauchy inLp
loc(R

d). To prove it, we claim that for anyR > 0
andℓ, k ≥ 0,

(22)
∫

|x|<R

∣

∣E
[(

ϕℓ+k − ϕℓ

)

(Xx
t )ψ(t, x)

]
∣

∣

p
dx ≤ C

∫

|x|<R
E
[

|ϕℓ+k − ϕℓ|p(Xx
t )
]

dx,

with C = supx∈Rd E
[

ψ(t, x)p
′]p/p′

<∞, 1/p + 1/p′ = 1. Now, the result follows from

Lemma 2.10.Letθ1 andθ2 be two functions belonging toLp
loc(R

d), p ≥ 1, and at most of polynomial
growth of exponentr ≥ 0 (that is |θi(x)| ≤ C(1 + |x|r), i = 1, 2, for some constantC ≥ 0), then,
for anyA,R > 0,

∫

|x|<R
E
[

|θ1 − θ2|p(Xx
t )
]

dx ≤ C ′

∫

|y|<A
|θ1 − θ2|p(y)dy + C ′A−1/2(1 +Rrp+1/2),

the constantC ′ being independent ofA andR and depending onθ1 andθ2 throughC andr only.

The proof of Lemma 2.10 is left to the reader: the two terms in the right-hand side are obtained
by splitting the left-hand side along the events{|Xx

t | ≤ A} and{|Xx
t | > A}; the first term in the

right-hand side then follows from the boundedness of the inverse of the Jacobian matrix ofXx
t in any

Lq(P), q ≥ 1; the second one follows from the polynomial growth propertyof θ1 andθ2 and from
Cauchy-Schwarz and Markov inequalities. Choosingθ1 = ϕℓ+k andθ2 = ϕℓ therein, we deduce that
the right-hand side in (20) is indeed Cauchy inLp

loc(R
d). (Clearly, we can assume the(ϕℓ)ℓ≥1 to be

of polynomial growth, uniformly inℓ.)

2.4.3. Definition of Generalized Solutions.We are now in position to define the notion of generalized
solution to the PDE (5). Following Definition 2.6, we set

Definition 2.11. We call a functionv = {v(t, x), (t, x) ∈ [0,+∞) × Rd} a generalizedsolution of
the PDE (5) if the followings are satisfied



SHARP DERIVATIVE BOUNDS FOR SEMI-LINEAR PDE 13

(1) v is in∩p≥1D1,p
V0

((0,+∞)×Rd) and, for anyt > 0, v(t, ·) is in∩p≥1D2,p
V (Rd) such that, for

anyα1, α2 ∈ A0(m), the function(t, x) ∈ (0,+∞)×Rd 7→
(

V[α1]v(t, x), V[α1 ]V[α2]v(t, x)
)

is measurable and in anyLp
loc((0,+∞) × Rd), p ≥ 1,

(2) for almost every(t, x) ∈ (0,+∞)× Rd, it holds

V0v(t, x) =
1

2

N
∑

i=1

V 2
i v(t, x) + f

(

t, x, v(t, x), (V v(t, x))⊤
)

,

(3) on any compact set,v(t, ·) → h in Lebesgue-measure astց 0, that is, for any ballB ⊂ Rd,
for anyε > 0, limtց0 |{x ∈ B : |v(t, x)− h(x)| ≥ ε}| = 0, where|A| denotes the Lebesgue
volume ofA for a Borel subsetA ⊂ Rd.

In Section 7, we will show the following

Proposition 2.12. Under the standing assumption, ifh is measurable and of polynomial growth
andf is bounded in(t, x), uniformly in (y, z), and twice continuously differentiable w.r.t.(x, y, z)
with bounded derivatives, the functionu given by(13) is a generalized solution to the PDE(5) on
(0, T ] × Rd for anyT > 0. Moreover, any other generalized solutionv of the semilinear PDE (5)
that has polynomial growth matchesu almost everywhere.

2.5. Generalized Gronwall Lemma. In the following we will make use of the following:

Lemma 2.13. Consider two bounded measurable functionsg1, g2 : [0, T ] → R+ such that

(23) g1(t) ≤ C1 + C2

∫ T

t

g2(s)√
s− t

ds,

for some constantsC1, C2 ≥ 0. Then there existλ, µ > 0, depending onC2 andT only, such that
∫ T

0
g1(t) exp(λt)dt ≤ µC1 +

1

2

∫ T

0
g2(t) exp(λt)dt,

sup
0≤t≤T

[

g1(t)
]

≤ µC1 + 2C2
2

∫ T

0
g2(t)dt+

1

2
sup

0≤t≤T

[

g2(t)
]

.

(24)

In particular, if g1 = g2, theng1 is bounded byµ′C1, for a constantµ′ depending onC2 andT only.

Remark 2.14. By an obvious change of variable, the result also applies in the forward sense, that is
wheng1(t) ≤ C1 + C2

∫ t
0 (t− s)−1/2g2(s)ds.

Proof. Integrating (23) w.r.texp(λt), we obtain
∫ T

0
g1(t) exp(λt)dt ≤ C1

∫ T

0
exp(λt)dt+ C2

∫ T

0

[

g2(s)

∫ s

0

exp(λt)

(s− t)1/2
dt

]

ds

= C1

∫ T

0
exp(λt)dt+ C2

∫ T

0

[

g2(s) exp(λs)

∫ s

0

exp(λ(t− s))

(s− t)1/2
dt

]

ds

= C1

∫ T

0
exp(λt)dt+ C2

∫ T

0

[

g2(s) exp(λs)

∫ s

0

exp(−λt)
t1/2

dt

]

ds

≤ C1

∫ T

0
exp(λt)dt+ C2

∫ T

0

exp(−λt)
t1/2

dt

∫ T

0
g2(s) exp(λs)ds.
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Choosingλ large enough, this proves the first inequality in (24).
Prove now the second inequality. For anyε > 0, (23) yields

g1(t) ≤ C1 + C2

∫ (t+ε)∧T

t

g2(s)

(s− t)1/2
ds+ C2ε

−1/2

∫ T

(t+ε)∧T
g2(s)ds

≤ C1 + C2ε
−1/2

∫ T

0
g2(s)ds+ C2ε

1/2 sup
0≤s≤T

[

g2(s)
]

.

Choosingε1/2 = 1/(2C2), we complete the proof of (24).
Wheng1 = g2, the first inequality in (24) yields

∫ T
0 exp(λt)g1(t)dt ≤ 2µC1 so that

∫ T
0 g1(t)dt ≤

2µC1. By the second inequality in (24),

sup
0≤t≤T

[

g1(t)
]

≤ C1 + 4µC1C
2
2 +

1

2
sup

0≤s≤T

[

g1(s)
]

. �

3. LIPSCHITZ BOUNDARY CONDITION

3.1. Setting and Main Result. In the whole section, we assume that the boundary condition is Lip-
schitz continuous. We also assume that|f(t, x, y, z)| ≤ Λ(1 + |x| + |y| + |z|), x ∈ Rd, y ∈ R,
z ∈ RN , and thatf(t, ·) is (K −m− 1)-times continuously differentiable, the derivatives up to any
order1 ≤ n ≤ K −m− 1 being bounded by some constantΛn ≥ 0. (SinceK ≥ m+3, f(t, ·) is at
least twice differentiable.) To simplify things, we will assume thatΛn ≥ Λ.

In the following,α stands for a tuple of multi-indices(α1, . . . , αn) and‖α‖ for ‖α1‖ + · · · +
‖αn‖. We write ♯(α) = n to say thatα is ann-tuple of multi-indices and denoteM0

n(m) =
♯{(β1, . . . , βk) ∈ [A0(m)]k, 1 ≤ k ≤ n}. In the case when∇h does not exist at pointXx

t ,
|∇h(Xx

t )| will be understood as|∇h(Xx
t )| = lim supε→0,ε 6=0 Γ

−1
d |ε|−d

∫

{|y|≤ε} |∇h(Xx
t + y)|dy,

whereΓd stands for the volume of thed-dimensional ball of radius 1.
We will analyse the properties of our candidateu for the solution of the PDE as defined in (14).

That is

u(T − t, x) = E

[

h(Xt,x
T ) +

∫ T

t
f
(

T − s,Xt,x
s , Y t,x

s , Zt,x
s

)

ds

]

, 0 ≤ t ≤ T, x ∈ Rd.

(Note that by time homogeneity,u(T − t, x) depends on the pair(t, T ) through the differenceT − t
only, as indicated by the notation.) The objective is to prove

Theorem 3.1. Let (Vi)0≤i≤N beN + 1 vector fields satisfying Definition 1.1. Then, for anyt > 0,

u(t, ·) belongs toDK−m−1/2,∞
V (Rd) and is Lipschitz continuous;u(t, ·) is continuously differentiable

if h is continuously differentiable, i.e.∇xu(t, ·) exists as a continuous function.
Moreover, for anyT > 0, n ≤ K−m−1 andα1, . . . , αn ∈ A0(m), there exists a constantCn(p),

depending onΛn, n, p, T and the vector fieldsV0, . . . , VN only, such that, for all(t, x) ∈ (0, T ]×Rd,
∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(p)t
(1−‖α‖)/2

[

1 + E
[
∣

∣∇h(Xx
t )
∣

∣

np]1/p]
,

∣

∣V[α1] . . . V[αn]Viu(t, x)
∣

∣ ≤ Cn(p)t
−‖α‖/2

[

1 + E
[
∣

∣∇h(Xx
t )
∣

∣

np]1/p]
, 1 ≤ i ≤ N,

(25)

Moreover, given0 ≤ t < T , the derivative processes by indexedα = (α1, . . . , αn) ∈ [A0(m)]n
((

Y α
s = (V[α1] . . . V[αn]u)(T − s,Xt,x

s ), Zα
s = ((V[α1] . . . V[αn]Viu)(T − s,Xt,x

s ))1≤i≤N

)

t≤s<T

)

α
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are continuous and satisfy a generalized BSDE of the form

Y α
s = (S − s)[1−‖α‖]/2E

[

∇xu(T − S,Xt,x
S )θ∗s [φα](S − s,Xt,x

s )|Fs

]

+ E

[
∫ S

s
Fα

(

ω, s, r, x, Y t,x
r , Zt,x

r , (Y β
r )♯(β)≤n, (Z

β
r )♯(β)≤n

)

dr
∣

∣Fs

]

,

(Zα
s )i = (S − s)−‖α‖/2E

[

∇xu(T − S,Xt,x
S )θ∗s [ψ

i
α](S − s,Xt,x

s )|Fs

]

+ E

[
∫ S

s
(r − s)−1/2Gi

α

(

ω, s, r, x, Y t,x
r , Zt,x

r , (Y β
r )♯(β)≤n, (Z

β
r )♯(β)≤n

)

dr
∣

∣Fs

]

,

(26)

where1 ≤ i ≤ N , t ≤ s < S < T , φα and (ψi
α)1≤i≤N areRd-valued Kusuoka-Stroock functions

in KT
0 (K −m−n− 1), andFα(ω, s, r, x, y, z, ξ, ζ) and(Gi

α(ω, s, r, x, y, z, ξ, ζ))1≤i≤N are jointly
measurable random functionals fromΩ× [0, T ]2×Rd×R×RN ×RM0

n(m)×RNM0
n(m) intoR, such

that, a.s.,
∣

∣

(

Fα, (G
i
α)
)

(ω, s, r, x, y, z, 0, 0)
∣

∣ ≤ Φ(ω, s, r, x)(1 + |y|+ |z|),
∣

∣

(

Fα, (G
i
α)i

)

(ω, s, r, x, y′, z′, ξ′, ζ ′)−
(

Fα, (G
i
α)i

)

(ω, s, r, x, y, z, ξ, ζ)
∣

∣1{|y|,|y′|,|z|,|z′|≤R}

≤ Φ(ω, s, r, x)
(

Θ(ξ, ξ′, ζ, ζ ′) +R
)[

mR(y − y′, z − z′) + |ξ′ − ξ|+ |ζ ′ − ζ|
]

, R > 0,

whereΦ(ω, s, r, x) is a jointly measurable functional, such that, for anyp ≥ 1, E[|Φ(ω, s, r, x)|p]
is uniformly bounded inx in compact subsets ofRd and in 0 ≤ s < r ≤ T , Θ(ξ, ξ′, ζ, ζ ′) is a
(deterministic) polynomial function andmR(y, z) is a (deterministic) continuous function matching
0 at (0, 0). In (26), ∇xu(T − S,Xt,x

S ) stands for a boundedFS-measurable random variable when
∇xu(T − S, ·) doesn’t exist as a true function.

Equation (26) provides the stochastic dynamics of the derivative processes when the forward equa-
tion is initialized atx at time0. It must be seen as anon-linear integration by parts, that is the
equivalent to the integration by parts formula exhibited inthe linear case. It must be also compared
with the pathwise differentiation result in [27]. The difference between (26) and the result in [27]
lies in the lack of well-defined boundary condition in (26): it would be the higher-order derivatives
of h if they were well-defined. Here they don’t exist ash is assumed to be Lipschitz only. As a
consequence, the derivative processes are only defined up toany timeS ∈ [0, T ) and the boundary
like type condition is expressed as a conditional expectation: the first-order term therein is bounded
in s andS so that the leading coefficient(S − s)[1−‖α‖]/2 stands for the typical order of the boundary
condition in the neighborhood ofT .

A straightforward application of Lemma 2.13 shows that(Y α, Zα) is the unique solution to (26)
with continuous paths such thatE[supt≤s≤S |Y α

s |p +supt≤s≤S |Zα
s |p] < +∞ for anyS ∈ [t, T ) and

for anyp ≥ 1. This is done via a standard fixed point argument similar to that used in the classical
proof of the unique solvability of BSDEs driven byZ-independent drivers.

The strategy of the proof of Theorem 3.1 consists in proving the result first for the case when the
boundary condition of the equation (5) is smooth and then relax the assumption via a mollification
argument. Hence below, we will assume first thath is smooth inx.

3.2. One-Step Differentiation. The following one-step differentiation lemma permits the switch
from one derivative to another:
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Lemma 3.2. LetF be a continuously differentiable function fromRd × R × RN into R andϕ be in
D3/2,∞

V (Rd). Then, settingΘ(Xx
s ) = (Xx

s , ϕ(X
x
s ), ((Viϕ)(X

x
s ))1≤i≤N ), 0 ≤ s ≤ T , the mapping

x 7→ F (Θ(Xx
s )) is in D1

V (R
d) and, for anyα ∈ A0(m),

V[α]
[

F
(

Θ(Xx
s )
)]

=
∑

β∈A0(m)

{

bα,β(s, x)
[

V[β](X
x
s ) · ∇xF

(

Θ(Xx
s )
)

+∇yF
(

Θ(Xx
s )
)(

V[β]ϕ
)

(Xx
s ) +

∑

ℓ=1...N

∇zℓF
(

Θ(Xx
s )
)(

V[β]Vℓϕ
)

(Xx
s )
]

}

.

(Here,V[α] is understood asV[α](x) · ∇.)

Proof. Whenϕ is a smooth function, we can write

V[α]
[

F
(

Θ(Xx
s )
)]

=

d
∑

i=1

V i
[α](x)

d
∑

j=1

∂F ◦Θ
∂xj

(Xx
s )
∂(Xx

s )
j

∂xi
=

d
∑

i=1

d
∑

j=1

(Js,x)j,iV
i
[α](x)

∂F ◦Θ
∂xj

(Xx
s ).

Applying Lemma 2.3 witht = 0, the result easily follows (whenϕ is smooth). By a closure argument,
the result is still valid whenϕ is inD3/2,∞

V (Rd). �

In the following, for anya = (a1, . . . , an) ∈ [A0(m)]n, we denote‖a‖ =
∑n

i=1 ‖ai‖ and we
defineIk(n) as the set of non-decreasing sequences of (possibly zero) integersi1, . . . , ik such that
i1 + · · · + ik ≤ n. For anyk ∈ {0, . . . , n}, we also defineUk(ϕ) as the set ofk-tuples of functions
of the form(v1, . . . , vk), with vi being equal either toϕ or Vℓϕ, 1 ≤ ℓ ≤ N . (Whenk = 0, we set
Uk(ϕ) = ∅). We deduce the following:

Corollary 3.3. LetF be a(K−m− 1)-times differentiable function fromRd×R×RN intoR, with

bounded derivatives of any order1 ≤ k ≤ K −m− 1, andϕ be inDn+1/2
V (Rd), n ≤ K −m− 1.

Then, for anyn-tuple of indicesα = (α1, . . . , αn) ∈ [A0(m)]n

V[αn] . . . V[α1]E
[

F
(

Θ(Xx
s )
)]

=

n
∑

k=0

∑

i∈Ik(n)

∑

v∈Uk(ϕ)

∑

β=(βℓ,j)1≤ℓ≤ij ,1≤j≤k∈
∏

1≤j≤k [A0(m)]ij

E

[( k
∏

j=1

(

V[β1,j ] . . . V[βij ,j
]vj

)

(Xx
s )

)

φi,v,β(s, x)ψi,v,β

(

Θ(Xx
s )
)

]

,

whereφi,v,β ∈ KT
(‖β‖−‖α‖)+ (K − m − n) and ψi,v,β is bounded and(K − m − n − 1)-times

differentiable with bounded derivatives.

Proof. We proceed by induction. The case whenn = 1 follows from Lemma 3.2. Assume then
that the result holds true for a givenn ≥ 1. Then, for a givenαn+1 ∈ A0(m), we are to consider for
any(k, i,v,β) as above

V[αn+1]E with E =

( k
∏

j=1

(

V[β1,j ] . . . V[βij ,j
]vj

)

(Xx
s )

)

φi,v,β(s, x)ψi,v,β

(

Θ(Xx
s )
)

.
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Clearly, the term obtained by lettingV[αn+1] act onφi,v,β gives a new Kusuoka-Stroock function
belonging toKT

(‖β‖−‖α‖)+(K −m− (n+ 1)), which is included inKT
(‖β‖−‖α‖−‖αn+1‖)+

(K −m−
(n + 1)). To differentiateψi,v,β(Θ(Xx

s )), we apply Lemma 3.2. There are two cases: (i) the first
term in Lemma 3.2 does not add a new term of the formV[β]v; (ii) the two last terms in Lemma 3.2
add new terms of the formV[β]v. It is clear that (i) keeps the general form of the formula butthe
newψ is (K −m − n − 2)-times differentiable. We explain now what happens for (ii). Following
Lemma 3.2, the functionψi,v,β is differentiated; for anyβ1,k+1 ∈ A0(m), the termE at rankn is
multiplied byV[β1,k+1]vk+1 for vk+1 being eitherϕ or one of the(Vℓϕ)1≤ℓ≤N and the sum is then
performed over all theβ1,k+1 ∈ A0(m). It means thatk is increased intok + 1 and thatφi,v,β is
changed intoφi,v,βbαn+1,β1,k+1

. Now, bαn+1,β1,k+1
is in KT

(‖β1,k+1‖−‖αn+1‖)+
(K −m). In particular,

we can say thatφi,v,βbαn+1,β1,k+1
belongs toKT

(‖β‖−‖α‖)++(‖β1,k+1‖−‖αn+1‖)+
(K−m−n). Since the

positive part is sub-additive, that is(x+ y)+ ≤ x+ + y+, we deduce thatφi,v,βbαn+1,β1,k+1
belongs

to KT
(‖β‖+‖β1,k+1‖−‖α‖−‖αn+1‖)+

(K −m− n).

It remains to say what happens when differentiating each of the terms(V[β1,j ] . . . V[βij ,j
]vj)(X

x
s ).

We use Lemma 2.3 with(t, α) = (0, αn+1), i.e. Js,xV[αn+1](x) =
∑

β∈A0(m) bαn+1,β(s, x)V[β](X
x
s ).

The result is that we are increasing the lengthij for some1 ≤ j ≤ k from ij to ij + 1, all the other
lengthes being preserved, and that the Kusuoka-Stroock functionφi,v,β is changed intoφi,v,βbαn+1,β

for anyβ ∈ A0(m), which as we already argued belongs toKT
(‖β‖+‖β‖−‖α‖−‖αn+1‖)+

(K −m− n).
(Note that some of the weight functionsφi,v,β andψi,v,β in the formula at rankn+1 may be zero so
that the sums therein run over all the possible indices.) �

3.3. Proof of Theorem 3.1 in the Smooth Setting.As announced, we assume first that the boundary
conditionh in (12) is aC∞

b function. For any1 ≤ n ≤ K −m − 1, we denote byΛn the common
bound for the Lipschitz constant ofh and for the derivatives of the coefficients up to the ordern. We
will make us of the following results whose proofs are postponed for the next subsection.

Lemma 3.4. In the smooth setting, the mappingsu andV u are (K − m − 1)-times continuously
differentiable on(0,+∞)×Rd with respect to the variablex; moreover, for anyT > 0 and1 ≤ n ≤
K −m− 1, ∇n

xu and∇n
xV u are bounded on[0, T ]× Rd.

Proposition 3.5. In the smooth setting, for anyp > 1 and 1 ≤ n ≤ K − m − 1, there exists a
constantCn(p), depending onΛn, n, p,T and the vector fields only, such that, for any(α1, . . . , αn) ∈
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(A0(m))n and any(t, x) ∈ (0, T ] × Rd,

∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(p)

[

1 + t(1−‖α‖)/2E
[
∣

∣∇h(Xx
t )
∣

∣

p]1/p
]

+

∫ t

t/2

n
∑

k=1

∑

i,v,β

(t− s)(‖β‖−‖α‖)+/2
k
∏

j=1

E

[

∣

∣

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)|np/ij

]ij/(np)

ds,

∣

∣V[α1] . . . V[αn]Viu(t, x)
∣

∣ ≤ Cn(p)

[

1 + t−‖α‖/2E
[
∣

∣∇h(Xx
t )
∣

∣

p]1/p
]

+

∫ t

t/2

n
∑

k=1

∑

i,v,β

[

(t− s)[(‖β‖−‖α‖)+−1]/2

×
k
∏

j=1

E

[

∣

∣

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)

∣

∣

np/ij

]ij/(np)]

ds

]

.

Above, both sums run over the indicesi = (i1, . . . , ik) ∈ Ik(n), v = (v1, . . . , vk) ∈ Uk(u(s, ·)) and
β = ((β1,j , . . . , βij ,j) ∈ [A0(m)]ij )1≤j≤k.

We prove Theorem 3.1 by induction. For every1 ≤ n ≤ K − m − 1, we denote byPn the
following property: for anyp > 1, there exists a constantCn(p), depending onΛn, n, p, T and the
vector fields only, such that, for any(α1, . . . , αn) ∈ (A0(m))n and any(t, x) ∈ (0, T ] × Rd,

∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(p)t
(1−‖α‖)/2

[

1 + E
[
∣

∣∇h(Xx
t )
∣

∣

np]1/p]
,

∣

∣V[α1] . . . V[αn]Viu(t, x)
∣

∣ ≤ Cn(p)t
−‖α‖/2

[

1 + E
[∣

∣∇h(Xx
t )
∣

∣

np]1/p]
, i ∈ {1, . . . , N},

(Pn)

with ‖α‖ =
∑n

i=1 ‖αi‖.
We first proveP1. For a givenp > 1, we set for anyβ1 ∈ A0(m)

Q1
β1
(s, t, x) = E

[∣

∣

(

V[β1]u
)

(s,Xx
t−s)

∣

∣

p]1/p
+ s1/2

N
∑

j=1

E
[∣

∣

(

V[β1]Vju
)

(s,Xx
t−s)

∣

∣

p]1/p
.

Choosen = 1 in Proposition 3.5 andα1 ∈ A0(m). Sincet− s ≤ s for anys ∈ [t/2, t], we get

∣

∣V[α1]u(t, x)
∣

∣ ≤ C1(p)

[

1 + t(1−‖α1‖)/2E
[
∣

∣∇h(Xx
t )
∣

∣

p]1/p

+

∫ t

t/2

∑

β1∈A0(m)

(t− s)[(‖β1‖−‖α1‖)+−1]/2Q1
β1
(s, t, x)ds

]

,

t1/2
∣

∣V[α1]Viu(t, x)
∣

∣ ≤ C1(p)

[

1 + t(1−‖α1‖)/2E
[∣

∣∇h(Xx
t )
∣

∣

p]1/p

+

∫ t

t/2

∑

β1∈A0(m)

(t− s)[(‖β1‖−‖α1‖)+−1]/2Q1
β1
(s, t, x)ds

]

,
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wherei = 1, . . . , N . By the bounds ≥ t/2 again, both inequalities can be incorporated into:

t(‖α1‖−1)/2

[

∣

∣V[α1]u(t, x)
∣

∣+ t1/2
N
∑

i=1

∣

∣V[α1]Viu(t, x)
∣

∣

]

≤ C1(p)

[

1 + E
[∣

∣∇h(Xx
t )
∣

∣

p]1/p
+

∑

β1∈A0(m)

∫ t

t/2
(t− s)−1/2s(‖β1‖−1)/2Q1

β1
(s, t, x)

]

ds,

the constantC1(p) possibly varying from line to line hereafter.
Choosingx of the formXx

r−t, with r ≥ t, taking theLp moment, applying Minkowski’s integral
inequality, and then summing overα1 ∈ A0(m) andi ∈ {1, . . . , N}, we eventually obtain

∑

α1∈A0(m)

t(‖α1‖−1)/2

[

E
[∣

∣

(

V[α1]u
)

(t,Xx
r−t)

∣

∣

p]1/p
+

N
∑

i=1

t1/2E
[∣

∣

(

V[α1]Viu
)

(t,Xx
r−t)

∣

∣

p]1/p
]

≤ C1(p)

[

1 + E
[
∣

∣∇h(Xx
r )
∣

∣

p]1/p
+

∑

β1∈A0(m)

∫ t

t/2
(t− s)−1/2s(‖β1‖−1)/2Q1

β1
(s, r, x)ds

]

.

We emphasize that the left-hand side is nothing but
∑

α1∈A0(m) t
(‖α1‖−1)/2Q1

β1
(t, r, x). By Lemma

2.13 (applied in the forward sense), we complete the proof ofP1.
We turn to the proof of the induction property. Assume thatPk holds for every1 ≤ k ≤ n − 1,

for some rank2 ≤ n ≤ K −m − 1. We make use of Proposition 3.5 at rankn. We have two cases:
ik = n andik < n. Whenik = n, the sum overβ actually reduces to a sum overβ = (β1, . . . , βn) ∈
[A0(m)]n and the product of theV ’s reduces to a single term of the formV[β1] . . . V[βn]v, v running
over the set{u(s, ·), Vℓu(s, ·), 1 ≤ ℓ ≤ N}. In this case, we do not use the induction property. When
ik < n, all the possibleij ’s, 1 ≤ j ≤ k, are also (strictly) less thann. That is, the terms of the form
V[β1,j ] . . . V[βij ,j

]vj fulfill the induction property, i.e., for any1 ≤ j ≤ k,

∣

∣

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)

∣

∣ ≤ Cn(p)s
δ/2−(

∑ij
ℓ=1 ‖βℓ,j‖)/2

[

1 + E
[
∣

∣∇h(Xx
t )
∣

∣

ijp|Ft−s

]1/p]
,

with δ being equal to1 whenvj(s, ·) matchesu(s, ·) and being equal to0 whenvj(s, ·) matches some
Viu(s, ·), 1 ≤ i ≤ N . Clearly, the worst rates hold for the term

(27)
∣

∣

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)

∣

∣ ≤ Cn(p)s
−(

∑ij
ℓ=1 ‖βℓ,j‖)/2

[

1 + E
[∣

∣∇h(Xx
t )
∣

∣

ijp|Ft−s

]1/p]
.

We then obtain
k
∏

j=1

[

E
[
∣

∣

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)

∣

∣

np/ij]
]ij/(np)

≤ Cn(p)s
−(

∑k
j=1

∑ij
ℓ=1 ‖βℓ,j‖)/2

k
∏

j=1

[

1 + E
[∣

∣∇h(Xx
t )
∣

∣

np]]ij/(np)

≤ Cn(p)s
−‖β‖/2E

[(

1 +
∣

∣∇h(Xx
t )
∣

∣

)np]1/p
,

(28)

whereβ stands for thek-tuple of multi-indices((βℓ,j)1≤ℓ≤ij )1≤j≤k.
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Plugging these bounds into Proposition 3.5, we obtain (up toa modification of the constantCn(p))

∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(p)

[

1 + t(1−‖α‖)/2E
[
∣

∣∇h(Xx
t )
∣

∣

p]1/p
]

+ Cn(p)
∑

β=(β1,...,βk)∈[A0(m)]k ,k<n

∫ t

t/2
s−‖β‖/2(t− s)(‖β‖−‖α‖)+/2R(t, x)ds

+ Cn(p)
∑

β1,...,βn∈A0(m)

∫ t

t/2
(t− s)[(‖β‖−‖α‖)+−1]/2Qn

β1,...,βn
(s, t, x)ds

= T1(t, x) + T2(t, x) + T3(t, x),

(29)

with

R(t, x) = E
[(

1 +
∣

∣∇h(Xx
t )
∣

∣

)np]1/p

Qn
β1,...,βn

(s, t, x) = E
[
∣

∣

(

V[β1] . . . V[βn]u
)

(s,Xx
t−s)

∣

∣

p]1/p

+ s1/2
N
∑

i=1

E
[
∣

∣

(

V[β1] . . . V[βn]Viu
)

(s,Xx
t−s)

∣

∣

p]1/p
.

By replacingx withXx
r−t, r ≥ t, taking theLp moment and using Minkowski’s integral inequality

we get

(30) t(‖α‖−1)/2E
[∣

∣T2(t,X
x
r−t)

∣

∣

p]1/p ≤ Cn(p)t
1/2E

[(

1 +
∣

∣∇h(Xx
r )
∣

∣

)np]1/p
.

Similarly,

t(‖α‖−1)/2E
[∣

∣T3(t,X
x
r−t)

∣

∣

p]1/p

≤ Cn(p)
∑

β1,...,βn∈A0(m)

∫ t

t/2
(t− s)−1/2s(‖β‖−1)/2Qn

β1,...,βn
(s, r, x)ds.

(31)

By (29), (30) and (31), we deduce

t(‖α‖−1)/2E
[∣

∣

(

V[α1] . . . V[αn]u
)

(t,Xx
r−t)

∣

∣

p]1/p ≤ Cn(p)E
[(

1 +
∣

∣∇h(Xx
r )
∣

∣

)np]1/p

+ Cn(p)
∑

β1,...,βn∈A0(m)

∫ t

t/2
(t− s)−1/2s(‖β‖−1)/2Qn

β1,...,βn
(s, r, x)ds.

(32)

By a similar argument,

t‖α‖
N
∑

i=1

E
[
∣

∣

(

V[α1] . . . V[αn]Viu
)

(t,Xx
r−t)

∣

∣

p]1/p ≤ Cn(p)E
[(

1 +
∣

∣∇h(Xx
r )
∣

∣

)np]1/p

+ Cn(p)
∑

β1,...,βn∈A0(m)

∫ t

t/2
(t− s)−1/2s(‖β‖−1)/2Qn

β1,...,βn
(s, r, x)ds.

(33)
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Summing (32) and (33) over(α1, . . . , αn) ∈ [A0(m)]n, we obtain
∑

α1,...,αn∈A0(m)

t(‖α‖−1)/2Qn
α1,...,αn

(t, r, x) ≤ Cn(p)E
[(

1 +
∣

∣∇h(Xx
r )
∣

∣

)np]1/p

+ Cn(p)
∑

β1,...,βn∈A0(m)

∫ t

t/2
(t− s)−1/2s(‖β‖−1)/2Qn

β1,...,βn
(s, x)ds.

(34)

By Lemma 2.13 (applied in the forward sense), we complete theinduction proof. �

3.4. Proofs of Lemma 3.4 and Proposition 3.5.The proofs rely on the technical lemma:

Lemma 3.6. Consider three random jointly measurable functionsΨ : (ω, t, x) ∈ Ω× [0, T ]×Rd 7→
Ψ(ω, t, x) ∈ Rd1, Φ : (ω, t, s, x) ∈ Ω × [0, T ]2 × Rd 7→ Φ(ω, t, x) ∈ R+ andF : (ω, t, s, x, ζ) ∈
Ω × [0, T ]2 × Rd × Rd1 7→ F (ω, t, s, x, ζ) ∈ Rd1 such that, a.s., for anyt ∈ [0, T ], the mappings
x 7→ Ψ(ω, t, x) and (x, ζ) 7→ F (ω, t, x, ζ) are continuously differentiable. Assume in addition that
(Φ(ω, s, t, x))0≤s<t≤T,x∈Rd is in Lp(Ω), uniformly in0 ≤ s < t ≤ T andx ∈ Rd, for anyp ≥ 1.
Assume finally that

|Ψ(ω, t, 0)| ≤ Φ(ω, 0, t, 0), |F (ω, s, t, x, 0)| ≤ Φ(ω, s, t, x),

|∇xΨ(ω, t, x)| ≤ Φ(ω, 0, t, x), |∇xF (ω, s, t, x, ζ)| ≤ Φ(ω, s, t, x)(1 + |ζ|),
|∇ζF (ω, s, t, x, ζ)| ≤ Φ(ω, s, t, x).

(35)

If v̄ : [0, T ] × Rd → Rd1 is a function inL∞([0, T ], Cb(Rd)) that satisfies

(36) v̄(t, x) = E

[

Ψ(t, x) +

∫ T

t
(s− t)−1/2F

(

ω, t, s, x, v̄(s,Xt,x
s )

)

ds

]

,

then v̄(t, ·) is Lipschitz continuous, uniformly int. Moreover, if, a.s., for anys ∈ [0, T ], x ∈ Rd,
ζ ∈ Rd1 , the functionst ∈ [0, T ] 7→ Ψ(t, x) and t ∈ (0, s) 7→ F (ω, t, s, x, ζ) are continuous, then̄v
is continuous on[0, T ]× Rd.

Proof. We introduce the following mapping

Φ : L∞
(

[0, T ], Cb(Rd)
)

→ L∞
(

[0, T ], Cb(Rd)
)

v 7→
(

w : (t, x) ∈ [0, T ]× Rd 7→ E

[

Ψ(t, x) +

∫ T

t

F
(

ω, t, s, x, v(s,Xt,x
s )

)

(s − t)1/2
ds

])

.

There exists a constantC (whose value may vary below ) such that, for anyt ∈ [0, T ] andx ∈ Rd,

(37) ‖(w1 − w2)(t, ·)‖∞ ≤ C

∫ T

t

‖(v1 − v2)(s, ·)‖∞
(s− t)1/2

ds,

with w1 = Φ(v1) andw2 = Φ(v2). By Lemma 2.13,
∫ T

0
exp(λt)‖(w1 − w2)(t, ·)‖∞dt ≤

1

2

∫ T

0
exp(λs)‖(v1 − v2)(s, ·)‖∞ds,

for someλ > 0. Thus, the mappingΦ is a contraction onL∞([0, T ], Cb(Rd)) endowed with the
semi-normv 7→

∫ T
0 exp(λt)‖v(t, ·)‖∞dt. In particular, ifv̄ satisfies (36) and̃v is a fixed point ofΦ,
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then, for a.e.t ∈ [0, T ], ṽ(t, ·) = v̄(t, ·). By (37), ṽ(t, ·) = v̄(t, ·) for anyt ∈ [0, T ]. Similarly, for a
recursive sequence(vn+1 = Φ(vn))n≥0, v0 = 0, we get

lim
n→+∞

∫ T

0
exp(λt)‖(vn − v̄)(t, ·)‖∞dt = 0.

By (37) and Lemma 2.13 again,

(38) sup
0≤t≤T

‖(vn+1 − v̄)(t, ·)‖∞ ≤ 1

2
sup

0≤s≤T
‖(vn − v̄)(s, ·)‖∞ + C

∫ T

0
‖(vn − v̄)(s, ·)‖∞ds.

We deduce thatsup0≤t≤T ‖vn(t, ·) − v̄(t, ·)‖∞ converges towards0. Therefore, if the functions
((vn(t, ·))t∈[0,T ])n≥1 are Lipschitz continuous, uniformly int and inn, v̄(t, ·) is Lipschitz continu-
ous as well, uniformly int ∈ [0, T ]. By induction, it is clear that all thevn(t, ·) are continuously
differentiable. By (35),

(39) ‖∇xvn+1(t, ·)‖∞ ≤ C + C

∫ T

t

‖∇xvn(s, ·)‖∞
(t− s)1/2

ds,

since the functions(vn)n≥1 are bounded, uniformly inn. (The value ofC may vary below.) We use
Lemma 2.13 again. For a possibly new value ofλ,

∫ T

0
exp(λt)‖∇xvn+1(t, ·)‖∞dt ≤ C +

1

2

∫ T

0
exp(λt)‖∇xvn(t, ·)‖∞dt.

Iterating the bound, we get
∫ T
0 exp(λt)‖∇xvn(t, ·)‖∞dt ≤ C. In particular, by (39) and Lemma 2.13

(40) ‖∇xvn+1(t, ·)‖∞ ≤ C +
1

2
sup

0≤s≤T
‖∇xvn(s, ·)‖∞.

Iterating, we obtain thatsupn≥1 sup0≤t≤T ‖∇xvn(t, ·)‖∞ < +∞.
When the random functionsΨ andF satisfy the prescribed continuity conditions w.r.t. the time

parameter, all the functions(vn)n≥1 are continuous on[0, T ] × Rd; by local uniform convergence of
the sequence(vn)n≥1 towardsv̄, v̄ is continuous. �

Proof (Lemma 3.4). The first-order continuous differentiability ofu(t, ·) is a straightforward
consequence of Pardoux and Peng [27]. Moreover, for any initial condition(t, x) ∈ [0, T ] × Rd, the
solution(∇xY

t,x
s ,∇xZ

t,x
s )t≤s≤T to the derivative BSDE

∇xY
t,x
s = ∇h(Xt,x

T )∇xX
t,x
T −

∫ T

s
dB⊤

r ∇xZ
t,x
r

+

∫ T

s

[

∇xf
(

Θt,x
r

)

∇xX
t,x
r +∇yf

(

Θt,x
r

)

∇xY
t,x
r +∇zf

(

Θt,x
r

)

∇xZ
t,x
r

]

dr,

(41)
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with Θt,x
r = (T − r,Xt,x

r , Y t,x
r , Zt,x

r ), satisfies

lim
h→0

E
[

sup
t≤s≤T

|Y
t,x+h
s − Y t,x

s

h
−∇xY

t,x
s

∣

∣

2
+ sup

t≤s≤T
|∇xY

t,x+h
s −∇xY

t,x
s

∣

∣

2]
= 0, x ∈ Rd,(42)

lim
h→0

E

[
∫ T

t

∣

∣

Zt,x+h
s − Zt,x

s

h
−∇xZ

t,x
s

∣

∣

2
ds +

∫ T

t

∣

∣∇xZ
t,x+h
s −∇xZ

t,x
s

∣

∣

2
ds

]

= 0, x ∈ Rd.(43)

Clearly, (41) yieldssup0≤t≤T ‖∇xu(t, ·)‖∞ < +∞, since∇xf , ∇yf and∇zf are bounded, that is

(44) sup
0≤t≤T

∥

∥∇xu(t, ·)
∥

∥

∞
≤ C(Λ1, T ),

whereC(Λ1, T ) depends onΛ1, T and the bounds of the derivatives of the vector fieldsV0, . . . , VN
only. Precisely, by Proposition 3.2 in Briand et al. [2], we have that for anyp > 1

(45) ∀(t, x) ∈ [0, T ) × Rd,
∣

∣∇xu(t, x)
∣

∣ ≤ C(Λ1, p, T )
[

1 + E
[
∣

∣∇h(Xx
t )
∣

∣

p]1/p]
,

for some constantC(Λ1, p, T ) depending onΛ1, p, T and the bounds of the derivatives of the vector
fieldsV0, . . . , VN only.

We now go back to the backward formulation ofu(t, ·):

u(T − t, x) = E
[

h(Xt,x
T )

]

+

∫ T

t
E
[

f
(

T − s,Xt,x
s , u(T − s,Xt,x

s ), (V u)⊤(T − s,Xt,x
s )

)]

ds.

By the example in Subsection 2.3 and by Lebesgue dominated theorem, we know that the right-hand
side is inD1/2

V (Rd) and that for any1 ≤ i ≤ N ,

Viu(T − t, x) = E
[

∇h(Xt,x
T )ViX

t,x
T

]

+

∫ T

t
(s− t)−1/2E

[

f
(

T − s,Xt,x
s , u(T − s,Xt,x

s ), (V u)⊤(T − s,Xt,x
s )

)

θ∗t (ψi)(s − t, x)
]

ds,

whereViX
t,x
T being understood as∇xX

t,x
T Vi(x). Above,ψi stands for a Kusuoka-Stroock function in

KT
0 (K−m−1) andθ∗t (ψi) indicates that the randomness is evaluated after shifting.(See Subsection

2.2.) Clearly, we can rewrite the above expression as

(46) Viu(T−t, x) = E
[

∇h(Xt,x
T )ViX

t,x
T

]

+

∫ T

t

E
[

f
(

T − s,Xt,x
s , Y t,x

s , Zt,x
s

)

θ∗t (ψi)(s − t, x)
]

(s − t)1/2
ds.

We need to apply (42) and (43) to differentiate the right-hand side under the integral. However
(∇xZ

t,x
s )t≤s≤T is inL2([t, T ]×Ω) only so that the convergence of the integral of(s−t)−1/2|∇xZ

t,x
s |

is not guaranteed.
We now make use of Lemma 3.6. Sinceθ∗t (ψi)(s − t, x) is centered, we can replacef(T −

s,Xt,x
s , Y t,x

s , Zt,x
s ) by f(T − s,Xt,x

s , Y t,x
s , Zt,x

s ) − f(T − s, x, u(s, x), 0) in (46) and then apply
Lemma 3.6 withΨ(t, x) = ∇h(Xt,x

T )ViX
t,x
T , F (t, s, x, ζ) = [f(T − s,Xt,x

s , u(s,Xt,x
s ), ζ)− f(T −

s, x, u(s, x), 0)]θ∗t (ψ)(s − t, x), and obviously,̄v(t, x) = (V u)⊤(t, x). We then deduce thatV u(t, ·)
is Lipschitz continuous, uniformly int. Writing E[f(T − s,Xt,x

s , Y t,x
s , Zt,x

s )θ∗t (ψi)(s − t, x)] as
E[f(T − s,Xx

s−t, u(s,X
x
s−t), (V u)

⊤(s,Xx
s−t))ψi(s − t, x)] and then taking advantage of the time-

continuity ofX andψi, we also deduce from Lemma 3.6 thatV u is continuous on(0, T ] × Rd. In
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particular, for any0 ≤ t ≤ s ≤ T , the mappingx 7→ Zt,x
s = (V u)⊤(s,Xt,x

s ) is locally Lipschitz
continuous, i.e. for anyx ∈ Rd,

sup
y,y′∈B(x,1)

|Zt,y′
s − Zt,y

s | ≤ ϑ(x)|y′ − y|,

whereϑ is a random variable in anyLp, uniformly inx ands. In particular, by (43), we can choose a
version of∇xZ

t,x
s that is in anyLp(Ω), uniformly in s andx.

We now go back to (46). By (43), we know that the term inside theintegral is continuously
differentiable for anys > t. Since∇xZ

t,x
s is in anyLp(Ω), uniformly in s andx, we deduce that

V u(t, ·) is continuously differentiable as well and that∇xV u(t, ·) is bounded uniformly int.
The proof is completed by an induction step. We now assume that, for a given1 ≤ n ≤ K−m−2,

u(t, ·) andV u(t, ·) aren-times continuously differentiable in all the directions of the space, with
bounded derivatives, uniformly int. We also assume that, for any0 ≤ k ≤ n− 1, the functions∇k

xu
and∇k

xV u are continuous on(0, T ]× Rd.
By Lemma 2.2, we can differentiate the pair(Y t,x

s , Zt,x
s )t≤s≤T pathwisen times. The dynamics of

the derivative process(∇n
xY

t,x
s ,∇n

xZ
t,x
s )t≤s≤T may be summarized as follows:

∇n
xY

t,x
s = Hn(t, x) +

∫ T

s

[

Fn(t, s, x) +∇yf(Θ
t,x
r )∇n

xY
t,x
r +∇zf(Θ

t,x
r )∇n

xZ
t,x
r

]

dr

−
∫ T

s
dB⊤

r ∇n
xZ

t,x
r ,

(47)

whereHn(t, x) is anFT -measurable r.v., bounded in anyLp(Ω), p ≥ 1, uniformly in (t, x), and
(Fn(t, s, x))t<s≤T is a progressively-measurable process (w.r.t.s), bounded in anyLp(Ω), p ≥ 1,
uniformly in 0 ≤ t < s ≤ T and inx. Obviously,Hn(t, x) is given by the differentiation of
the boundary condition andFn(t, s, x) by the differentiation of the driver of the BSDE:Fn(t, s, x)
contains all the derivatives ofX up to ordern and all the derivatives of(Y,Z) up to ordern − 1.
In particular,Fn(t, s, x) is a.s. continuously differentiable w.r.t.x, with bounded derivatives in any
Lp(Ω), p ≥ 1, uniformly in 0 ≤ t < s ≤ T and inx (by the induction assumption).

Following the strategy developed in (46) and differentiating n times therein, we obtain as generic
equation for∇n

xV u(t, ·):
∇n

xViu(T − t, x) = E
[

Hn+1/2(t, x)
]

+

∫ T

t

E
[

Gn(t, s, x) +
(

∇yf(Θ
t,x
r )∇n

xY
t,x
r +∇zf(Θ

t,x
r )∇n

xZ
t,x
r

)

θ∗t (ψi)(s− t, x)
]

(s− t)1/2
dr,

(48)

1 ≤ i ≤ N , for someψi ∈ KT
0 (K −m− 1). Above,Gn is obtained by differentiating both the driver

of the BSDE and the Kusuoka-Stroock function in (46). In particular, by centeringf as in (46), we
can assume thatGn satisfies the same properties asFn. Moreover,Hn+1/2(t, x) is a.s. continuously
differentiable, with derivatives in anyLp(Ω), for anyp ≥ 1. (Basically,Hn+1/2(t, x) is obtained by
differentiating(n + 1)-times the boundary condition. Sincen + 2 ≤ K and(t, x) 7→ Xx

T−t is in
K0

T (K),Hn+1/2 is continuously differentiable w.r.t.x.)
Making use of (47) and (48) and applying the time-space continuity argument in Lemma 3.6 to the

pair(∇n
xu,∇n

xV u), we deduce that(∇n
xu,∇n

xV u) is continuous on(0, T ]×Rd. By the same strategy
as in (41), we also deduce that the pair(∇n+1

x Y t,x
s ,∇n+1

x Zt,x
s )t≤s≤T exists as in (42) and (43). (See
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also Footnote5.) Clearly,∇n+1
x u(t, ·) is well-defined and continuous, and it is bounded, uniformly

in t. To establish the continuous differentiability of∇n
xV u(T − t, ·), we use the same strategy as

in the casen = 1 by applying first Lemma 3.6 to (48). This proves that∇n+1
x V u(T − t, ·) is a

continuous function and that it is bounded, uniformly int. Writing the dynamics for∇n+1
x u(T − t, ·)

and∇n+1
x V u(T − t, ·) and applying the time-space continuity argument in Lemma 3.6, we finally

establish that∇n+1
x u(T − ·, ·) and∇n+1

x V u(T − ·, ·) are continuous on[0, T )× Rd. �

At last we are in a position to give the proof of Proposition 3.5. In the following we estimate the
higher order-derivatives ofu along the vector fields. We write, for allt > 0 andx ∈ Rd,

(49) u(t, x) = Pt/2

[

u
( t

2
, ·
)]

(x) +

∫ t

t/2
Pt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)ds.

Forn given multi-indicesα1, . . . , αn in A0(m),

V[α1] . . . V[αn]u(t, x) = V[α1] . . . V[αn]Pt/2

[

u
( t

2
, ·
)]

(x)

+

∫ t

t/2
V[α1] . . . V[αn]Pt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)ds

= T1(t, x) + T2(t, x).

(50)

By Theorem 2.5 (see also Corollaries 3.10 and 3.14 in [21]), we can find a family of Kusuoka-Stroock
functions(φjα1,...,αn)1≤j≤N in KT

0 (K −m− n+ 1) such that

T1(t, x) = V[α1] . . . V[αn−1]E
[

V[αn]

(

u
( t

2
,Xx

t/2

))]

=

d
∑

j=1

V[α1] . . . V[αn−1]E
[(

Jt/2,xV[αn](x)
)

j

∂u

∂xj

( t

2
,Xx

t/2

))]

= t−(1/2)
∑n−1

i=1 ‖αi‖
d

∑

j=1

E
[

φjα1,...,αn

( t

2
, x

) ∂u

∂xj

( t

2
,Xx

t/2

)]

.

(51)

Therefore, for anyp > 1, we can find a constantCn(p), depending onT and the bounds for the
higher-order derivatives of the vector fields only and possibly varying from line to line, such that

|T1(t, x)| ≤ Cn(p)t
1/2−(1/2)‖α‖E

[∣

∣∇xu
( t

2
,Xx

t/2

)∣

∣

p]1/p

≤ Cn(p)t
1/2−(1/2)‖α‖E

[

1 +
∣

∣∇h
(

Xx
t

)
∣

∣

p]1/p
,

(52)

the last line following from (45). We emphasize that the exponent in t is 1/2(1 − ‖α‖), where
‖α‖ = |α1|+ · · ·+ |αn|. Compared with (51), the additional1/2 follows from the term|αn|, which
is not taken into account in (51). We here see that the smoothing decay of the boundary condition
behaves as in the linear case exactly. The major hurdle is to handle the nonlinear term.

5We note that (42) and (43) stand for continuous differentiability in L2-mean. Although, this is weaker than pathwise
continuous differentiability, it is sufficient in our setting. To establish differentiability inL2-mean, there is no need to apply
Kolmogorov continuity theorem and thus no need to assume Hölder continuity of the derivatives of the coefficients.
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By Corollary 3.3 with(ϕ, θ) therein possibly depending ons, that is withϕ of the formu(s, ·) and
Θ(Xx

t−s) of the formΘ(s,Xx
t−s) = Θ(s,Xx

t−s, u(s,X
x
t−s), (Viu(s,X

x
t−s))1≤i≤N ), we write

T2(t, x) =

∫ t

t/2

∑

k,i,v,β

E

[( k
∏

j=1

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)

)

× φi,v,β(t− s, x)ψi,v,β

(

Θ(s,Xx
t−s)

)

]

ds,

(53)

where the shorten notation(k, i,v,β) is as in Corollary 3.3: it stands fork ∈ {0, . . . , n}, i ∈ Ik(n),
v ∈ Uk(u(s, ·)) andβ = (β1,ℓ, . . . , βiℓ,ℓ)1≤ℓ≤k ∈ ∏k

ℓ=1[A0(m)]iℓ . Keeping in mind thatφi,v,β ∈
K(‖β‖−‖α‖)+ (K −m− n) and thatψi,v,β is bounded, we deduce that, for anyp > 1,

|T2(t, x)|

≤ Cn(p)
∑

k,i,v,β

∫ t

t/2
(t− s)(‖β‖−‖α‖)+/2E

[ k
∏

j=1

∣

∣V[β1,j ] . . . V[βij ,j
]vj(s,X

x
t−s)

∣

∣

p
]1/p

ds

≤ Cn(p)
∑

k,i,v,β

∫ t

t/2
(t− s)(‖β‖−‖α‖)+/2

k
∏

j=1

E

[

∣

∣V[β1,j ] . . . V[βij ,j
]vj(s,X

x
t−s)

∣

∣

np/ij

]ij/(np)

ds,

(54)

the constantCn(p) possibly depending onΛn as well. Similarly, we can compute, for any index
i ∈ {1, . . . , N}, V[α1] . . . V[αn]Viu(t, x)

V[α1] . . . V[αn]Viu(t, x) = V[α1] . . . V[αn]ViPt/2

[

u
( t

2
, ·
)]

(x)

+

∫ t

t/2
V[α1] . . . V[αn]ViPt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)ds

= S1(t, x) + S2(t, x).

(55)

Following the proof of (52), we obtain

|S1(t, x)| ≤ Cn(p)t
−‖α‖/2E

[∣

∣∇xu
( t

2
,Xx

t/2

)∣

∣

p]1/p ≤ Cn(p)t
−‖α‖/2

[

1 + E
[∣

∣∇h
(

Xx
t

)∣

∣

p]1/p]
.

We now turn toS2. By Integration by Parts (see Corollary 3.12 in [21]), we emphasize that

ViPt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x) = ViE
[

f
(

Θ(s,Xx
t−s)

)]

= (t− s)−1/2E
[

f
(

Θ(s,Xx
t−s)

)

φ0i (t− s, x)
]

,

for some Kusuoka-Stroock functionφ0i ∈ KT
0 (K −m− 1). Therefore,

V[α1] . . . V[αn]ViPt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)

= (t− s)−(1/2)V[α1] . . . V[αn]E
[

f
(

Θ(s,Xx
t−s)

)

φ0i (t− s, x)
]

.
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Differentiating the product, we obtain

V[α1] . . . V[αn]ViPt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)

= (t− s)−(1/2)
n
∑

k=1

∑

1≤ℓ1<···<ℓk≤n

E
[

V[αℓ1
] . . . V[αℓk

]{f
(

Θ(s,Xx
t−s)

)

}φℓ1,...,ℓki (t− s, x)
]

+ (t− s)−(1/2)E
[

f
(

Θ(s,Xx
t−s)

)

φni (t− s, x)
]

= T3(s, t, x) + T4(s, t, x)

(56)

for new Kusuoka-Stroock functionsφℓ1,...,ℓki , φni ∈ KT
0 (K −m− n− 1).

To boundT4(s, t, x), we observe thatφni (t− s, x) is centered, so that

(57) |T4(s, t, x)| = (t− s)−1/2
∣

∣E
[{

f(Θ(s,Xx
t−s))− E

[

f(Θ̃(s, x))
]}

φni (t− s, x)
]
∣

∣,

with Θ̃(s, x) = (s, x, u(s,Xx
t−s),E[(V u)

⊤(s,Xx
t−s)]). By the Lipschitz property off , we deduce

|T4(s, t, x)| ≤ C(t− s)−1/2
(

1 + E
[

|V u(s,Xx
t−s)|p

]1/p)

+ (t− s)−1/2
∣

∣E
[{

f(Θ̃(s, x))− E
[

f(Θ̃(s, x))
]}

φni (t− s, x)
]
∣

∣.

By Clark-Ocone formula and then by integration by parts formula,

|T4(s, t, x)| ≤ C(t− s)−1/2
(

1 + E
[

|V u(s,Xx
t−s)|p

]1/p)

+ (t− s)−1/2

∣

∣

∣

∣

E

∫ t−s

0
〈E[∂yf(Θ̃(s, x))Dr[u(s,X

x
t−s)]|Fr],Drφ

n
i (t− s, x)〉dr

∣

∣

∣

∣

.

By definition of a Kusuoka-Stroock function, the process(Drφ
n
i (r, x))0≤r≤t−s belongs to the space

Lq(Ω, dP;L2([0, t − s], dr)), for anyq ≥ 1, so that, for anyε > 0,

|T4(s, t, x)| ≤ C(p, ε)(t− s)−1/2

(

1 + E
[

|V u(s,Xx
t−s)|p

]1/p

+ E

[(
∫ t−s

0
E[|Dr[u(s,X

x
t−s)]| |Fr]

2dr

)(1+ε)/2]1/(1+ε))

.

(58)

By the well-known relationshipDi
rX

x
t−s = Jx

t−s(J
x
r )

−1Vi(X
x
r ) and by Lemma 2.3, we claim

Di
ru(s,X

x
t−s) = ∇xu(s,X

x
t−s)J

x
t−s(J

x
r )

−1Vi(X
x
r )

=
∑

γ1∈A0(m)

ai,γ1(r, x)∇xu(s,X
x
t−s)J

x
t−sV[γ1](x)

=
∑

γ1,γ2∈A0(m)

ai,γ1(r, x)bγ1,γ2(t− s, x)∇xu(s,X
x
t−s)V[γ2](X

x
t−s).

(59)
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Sinceai,γ1 is time-progressively measurable and belongs toKT
(‖γ1‖−1)+(K −m) andbγ1,γ2 belongs

to KT
(‖γ2‖−‖γ1‖)+

(K −m), we deduce, for the specific choice1 + 3ε = p,

E

[(
∫ t−s

0
E
[

|Dr

(

u(s,Xx
t−s)

)

| |Fr

]2
dr

)(1+ε)/2]1/(1+ε)

≤
∑

γ1,γ2∈A0(m)

E

[(
∫ t−s

0
a2i,γ2(r, x)E

[

|bγ1,γ2(t− s, x)V[γ2]u(s,X
x
t−s)| |Fr

]2
dr

)(1+ε)/2]1/(1+ε)

≤
∑

γ1,γ2∈A0(m)

E
[

sup
0≤r≤t−s

E
[

|bγ1,γ2(t− s, x)V[γ2]u(s,X
x
t−s)| |Fr

](1+2ε)]1/(1+2ε)

× E

[(
∫ t−s

0
a2i,γ2(r, x)dr

)(1+ε)(1+2ε)/(2ε)]ε/[(1+ε)(1+2ε)]

≤ C(p)
(

1 +
∑

γ∈A0(m)

(t− s)(‖γ‖−1)/2E
[

|V[γ]u(s,Xx
t−s)|p

]1/p)
,

the last line following from Doob’s inequality for martingales. By (58)

(60) |T4(s, t, x)| ≤ C(t− s)−1/2
(

1 +
∑

γ∈A0(m)

(t− s)(‖γ‖−1)/2E
[

|V[γ]u(s,Xx
t−s)|p

]1/p)
.

To handleT3(s, t, x), we apply Corollary 3.3 again. For any1 ≤ ℓ1 < · · · < ℓk ≤ n, we can write

V[αℓ1
] . . . V[αℓk

]{f
(

Θ(s,Xx
t−s)

)

}

=

k
∑

k′=0

∑

i,v,β

[ k′
∏

j=1

(

V[β1,j ] . . . V[βij ,j
]vj(s,X

x
t−s)

)

φℓ1,...,ℓki,v,β (t− s, x)ψℓ1,...,ℓk
i,v,β

(

Θ(s,Xx
t−s)

)

]

,
(61)

where the notation(i,v,β) stands fori ∈ Ik′(k), v ∈ Uk′(u(s, ·)) andβ = (β1,j , . . . , βij ,j)1≤j≤k′ ∈
∏k′

j=1[A0(m)]ij , φℓ1,...,ℓk
i,v,β stands for a Kusuoka-Stroock function belonging toKT

(‖β‖−
∑k

p=1 ‖αℓp‖)
+
(K−

m− k) andψℓ1,...,ℓk
i,v,β stands for a bounded function.

Therefore, denoting byℓ the increasing sequence1 ≤ ℓ1 < · · · < ℓk ≤ n and gathering (56), (60)
and (61)

V[α1] . . . V[αn]ViPt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)

≤ Cn(p)(t− s)−1/2

×
n
∑

k=0

∑

ℓ

k
∑

k′=0

∑

i,v,β

(t− s)(‖β‖−‖α‖)+/2
k′
∏

j=1

E

[

∣

∣V[β1,j ] . . . V[βij ,j
]vj(s,X

x
t−s)

∣

∣

np/ij

]ij/(np)

≤ Cn(p)

n
∑

k=0

∑

i,v,β

(t− s)(‖β‖−‖α‖)+/2−1/2
k
∏

j=1

E

[

∣

∣V[β1,j ] . . . V[βij ,j
]vj(s,X

x
t−s)

∣

∣

np/ij

]ij/(np)

,

where the shorter notation in the last line above stands fori ∈ Ik(n), v ∈ Uk(u(s, ·)) andβ =

(β1,j , . . . , βij ,j)1≤j≤k ∈ ∏k
j=1[A0(m)]ij . We emphasize that the casek = 0 is the constant case: the
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product is understood as being equal to 1; we also notice thatthe casek = 1 contains inequality (60):
choosei1 = 1, β1,1 = γ andv1(s, ·) = u(s, ·). On the right-hand sides of the two estimates in the
statement of Proposition 3.5, the sum overk starts fromk = 1: the case whenk = 0 is contained in
the additional1 in the boundary term. �

3.5. Proof of Theorem 3.1 in the general case.The first step is to obtain the representation formula
(26) in the smooth setting. For a givens ∈ [t, S), it follows from (50), (53), (55), (56) and (61)
replacing therein the initial point(t, x) of the diffusion process by its current position(s,Xt,x

s ) and
noting that the random variableE[∇xu(T−S,Xx

S−s)φα(S−s, x)]|x=Xt,x
s

is a version ofE[∇xu(T−
S,Xt,x

S )θ∗s [φα](S − s,Xt,x
s )|Fs]. To prove that, almost-surely, (26) holds for anys ∈ [t, S), some

continuity argument is necessary. By Lemma 3.4,(Y α
s )t≤s<S and(Zα

s )t≤s<S are continuous w.r.t.
s. Clearly, the conditional expectations of the integrals from s to S of Fα andGα are continuous as
well. Finally,E[∇xu(T − S,Xy

S−s)φα(S − s, y)]|y=Xt,x
s

is continuous with respect tos since∇xu

is time-continuous.

3.5.1. Mollification of the Boundary Condition.When the boundary conditionh is Lipschitz contin-
uous only, we denote by(hℓ)ℓ≥1 a sequence of mollifications ofh converging towardsh uniformly
on compact sets and we denote by(uℓ)ℓ≥1 the associated family of solutions. Using the stability
property (see for example [26] and [27]) of the BSDE (11), thesequence of corresponding solutions
(uℓ)ℓ≥1 converges towardsu uniformly on compact subsets of[0, T ]×Rd. By the standard maximum
principle, there exists a constantC, independent ofℓ, such that

(62) ∀(t, x) ∈ [0, T ]× Rd, |uℓ(t, x)| ≤ C(1 + |x|).
By (44) (for a possibly new value ofC),

(63) ∀(t, x) ∈ [0, T ]× Rd, ∀1 ≤ i ≤ N, |Viuℓ(t, x)| ≤ C.

3.5.2. Representation Formula for the Mollified Solutions.To get the convergence of the derivatives
of uℓ, we notice that the terminal condition in (26) may be writtenin terms ofu(T − S,Xt,x

S ) itself
instead of∇xu(T − S,Xt,x

S ). Specifically, for any1 ≤ n ≤ K − m − 1, ℓ ≥ 1 andx ∈ Rd, the
family of derivative pair processes
((

Y ℓ,α
s = (V[α1] . . . V[αn]uℓ)(T−s,Xt,x

s ), Zℓ,α
s = ((V[α1] . . . V[αn]Viuℓ)(T−s,Xt,x

s ))1≤i≤N

)

t≤s<T

)

indexed by sequences of multi-indicesα = (α1, . . . , αn) ∈ [A0(m)]n, satisfies

Y ℓ,α
s = (S − s)−‖α‖/2E

[

uℓ(T − S,Xt,x
S )θ∗s [φα](S − s,Xt,x

s )|Fs

]

+ E

[
∫ S

s
Fα

(

ω, s, r, x, Y ℓ,t,x
r , Zℓ,t,x

r , (Y ℓ,β
r )♯(β)≤n, (Z

ℓ,β
r )♯(β)≤n

)

dr
∣

∣Fs

]

,

(Zℓ,α
s )i = (S − s)−[1+‖α‖]/2E

[

uℓ(T − S,Xt,x
S )θ∗s [ψα](S − s,Xt,x

s )|Fs

]

+ E

[
∫ S

s
(r − s)−1/2Gi

α

(

ω, s, r, x, Y ℓ,t,x
r , Zℓ,t,x

r , (Y ℓ,β
r )♯(β)≤n, (Z

ℓ,β
r )♯(β)≤n

)

dr
∣

∣Fs

]

,

(64)

with 1 ≤ i ≤ N , whereY ℓ,t,x
r = uℓ(T − r,Xt,x

r ) andZℓ,t,x
r = (Viuℓ(T − r,Xt,x

r ))1≤i≤N and where
the functionsφα andψα will differ from the original ones in (26). (Here they areR-valued.)
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3.5.3. Convergence of the Sequence(Zℓ,t,x)ℓ≥1. We emphasize that the second line in (64) makes
sense whenα = ∅. It provides a representation formula for(Zℓ,t,x

s )t≤s<T of the form

Zℓ,t,x
s = (S − s)−1/2E

[

uℓ(T − S,Xt,x
S )θ∗s [ψ∅](S − s,Xt,x

s )|Fs

]

+ E

[
∫ S

s
(r − s)−1/2G∅(ω, s, r, x)f(r,X

t,x
r , Y ℓ,t,x

r , Zℓ,t,x
r )

∣

∣Fs

]

,
(65)

t ≤ s < S, G∅(ω, s, r, x) being a random functional with values inRN such that, for anyp > 1,
E[|G∅(ω, s, r, x)|p|Fs] is uniformly bounded in randomness, inx ∈ Rd and int ≤ s < r < S. By
Cauchy-Schwarz inequality, we can find a constantC (independent ofℓ1, ℓ2, t andx) such that

|Zℓ1,t,x
s − Zℓ2,t,x

s |2 ≤ C(S − s)−1E
[

|uℓ1(T − S,Xt,x
S )− uℓ2(T − S,Xt,x

S )|2|Fs

]

+ C

∫ S

s
(r − s)−1/2

(

E
[

|Zℓ1,t,x
r − Zℓ2,t,x

r |2|Fs

]

+ E
[

|Y ℓ1,t,x
r − Y ℓ2,t,x

r |2|Fs

])

dr.
(66)

Taking the expectation and then the supremum overℓ1, ℓ2 ≥ ℓ, we get by (63), that for anyS′ ∈ (t, S)
ands ∈ [t, S′], we have

sup
ℓ1,ℓ2≥ℓ

E
[

|Zℓ1,t,x
s − Zℓ2,t,x

s |2
]

≤ C(S − S′)−1 sup
ℓ1,ℓ2≥ℓ

E
[

|uℓ1(T − S,Xt,x
S )− uℓ2(T − S,Xt,x

S )|2
]

+ C(S − S′)1/2

+C sup
ℓ1,ℓ2≥ℓ

sup
t≤r≤S

E
[

|Y ℓ1,t,x
r − Y ℓ2,t,x

r |2
]

+ C

∫ S′

s
(r − s)−1/2 sup

ℓ1,ℓ2≥ℓ
E
[

|Zℓ1,t,x
r − Zℓ2,t,x

r |2
]

dr.

By Lemma 2.13, for anyt ≤ s ≤ S′

sup
ℓ1,ℓ2≥ℓ

E
[

|Zℓ1,t,x
s − Zℓ2,t,x

s |2
]

≤ C(S − S′)−1 sup
ℓ1,ℓ2≥ℓ

E
[

|uℓ1(T − S,Xt,x
S )− uℓ2(T − S,Xt,x

S )|2
]

+ C(S − S′)1/2

+C sup
ℓ1,ℓ2≥ℓ

sup
t≤r≤S

E
[

|uℓ1(T − r,Xt,x
r )− uℓ2(T − r,Xt,x

r )|2
]

.

(67)

Taking the supremum w.r.t.x ∈ K in (67),K standing for a compact subset ofRd, we deduce that

(68) lim
ℓ→+∞

sup
x∈K

sup
ℓ1,ℓ2≥ℓ

sup
t≤s≤S′

E
[

|Zℓ1,t,x
s − Zℓ2,t,x

s |2
]

= 0.

Below, we show that the supremum overs ∈ [t, S′] can be put inside the expectation. Going back
to (66), taking the supremum therein w.r.t.s ∈ [t, S′], applying Doob’s inequality for martingales to
the first term in the right-hand side and applying Hölder’s inequality with exponents(4/3, 4) to the
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second term in the right-hand side, we obtain

E
[

sup
t≤s≤S′

|Zℓ1,t,x
s − Zℓ2,t,x

s |2
]

≤ C(S − S′)−1E
[

|uℓ1(T − S,Xt,x
S )− uℓ2(T − S,Xt,x

S )|2
]

+ CE

[

sup
t≤s≤S′

∫ S

s
(r − s)−1/2

(

E
[

|Zℓ1,t,x
r − Zℓ2,t,x

r |2 + |Y ℓ1,t,x
r − Y ℓ2,t,x

r |2|Fs

])

dr

]

≤ C(S − S′)−1E
[

|uℓ1(T − S,Xt,x
S )− uℓ2(T − S,Xt,x

S )|2
]

+ C sup
t≤s≤S′

(
∫ S

s
(r − s)−2/3dr

)3/4

×
(
∫ S

t
E
[

sup
t≤s≤S′

(

E
[

|Zℓ1,t,x
r − Zℓ2,t,x

r |8|Fs

]

+ E
[

|Y ℓ1,t,x
r+s − Y ℓ2,t,x

r+s |8|Fs

])]

dr

)1/4

.

By Doob’s inequality again, we deduce

E
[

sup
t≤s≤S′

|Zℓ1,t,x
s − Zℓ2,t,x

s |2
]

≤ C(S − S′)−1E
[

|uℓ1(T − S,Xt,x
S )− uℓ2(T − S,Xt,x

S )|2
]

+ C

(
∫ S

t
E
[

|Zℓ1,t,x
r − Zℓ2,t,x

r |16 + |Y ℓ1,t,x
r − Y ℓ2,t,x

r |16
]

dr

)1/8

.

By the bounds (62) and (63) and by (68), we finally deduce that,for anyt ≤ S′ < S,

(69) lim
ℓ→+∞

sup
x∈K

sup
ℓ1,ℓ2≥ℓ

E
[

sup
t≤s≤S′

|Zℓ1,t,x
s − Zℓ2,t,x

s |2
]

= 0.

We deduce that, for anyt ≤ S < T , the processes((Zℓ,t,x
s )t≤s≤S)ℓ≥1 are convergent w.r.t. the norm

E[supt≤s≤S | ·s |2]1/2, uniformly with respect tox taking value in compact subsets ofRd.

3.5.4. Proof thatu(t, ·) Belongs toD1/2,∞
V (Rd). Takings = t in (69), we deduce that(V uℓ(t, x))ℓ≥1

is uniformly convergent w.r.t.x in compact subsets ofRd. This shows thatu(t, ·) ∈ D1/2,∞
V (Rd) for

anyt > 0.

3.5.5. Existence of Higher-Order Derivatives.From the preliminary result (69) and from the bounds
we have for(Y ℓ,α, Zℓ,α) (see Theorem 3.1 in the mollified setting), we know that, for any p ≥ 1,

δ
(p)
ℓ (S) = sup

t≤s<r≤S
sup

ℓ1,ℓ2≥ℓ
E
[∣

∣

(

Fα, (G
i
α)i

)(

ω, s, r, x, Y ℓ1,t,x
r , Zℓ1,t,x

r , (Y ℓ1,β
r )♯(β)≤n, (Z

ℓ1,β
r )♯(β)≤n

)

−
(

Fα, (G
i
α)i

)(

ω, s, r, x, Y ℓ2,t,x
r , Zℓ2,t,x

r , (Y ℓ1,β
r )♯(β)≤n, (Z

ℓ1,β
r )♯(β)≤n

)
∣

∣

p]

in (64) converges towards0 asℓ tends to+∞, uniformly inx in compact sets. We can follow (67) to
derive from (64)

sup
♯α≤n

sup
ℓ1,ℓ2≥ℓ

E
[

|Y ℓ1,α
s − Y ℓ2,α

s |2 + |Zℓ1,α
s − Zℓ2,α

s |2
]

≤ C(S − S′)1/2 + Cδ
(2)
ℓ (S)

+C(S − S′)−(n+1)/2 sup
ℓ1,ℓ2≥ℓ

E
[

|uℓ1(T − S,Xt,x
S )− uℓ2(T − S,Xt,x

S )|2
]

.
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Note thatC depends onS. Following the proof of (69), we can also prove that, for anyt ≤ S < T ,

(70) lim
ℓ→+∞

sup
♯α≤n

sup
x∈K

sup
ℓ1,ℓ2≥ℓ

E
[

sup
t≤s≤S

|Y ℓ1,α
s − Y ℓ2,α

s |2 + sup
t≤s≤S

|Zℓ1,α
s − Zℓ2,α

s |2
]

= 0,

so that, for anyt ≤ S < T , the sequence((Y ℓ,α
s , Zℓ,α

s )t≤s≤S)ℓ≥1 is Cauchy with respect to the norm
E[supt≤s≤S | ·s |2]1/2. In particular, it converges towards some(Y α

s , Z
α
s )t≤s≤S for the same norm.

Taking in particulars = t in (70), we deduce that the sequences(V[α1] . . . V[αn]uℓ(t, x))ℓ≥1 and
((V[α1] . . . V[αn]Viuℓ(T − t, x))1≤i≤N )ℓ≥1 are convergent, uniformly with respect tox in an arbitrary

compact subset ofRd. This shows thatu(t, ·) belongs toDK−m−1/2,∞
V (Rd) for anyt > 0.

We use now (26) but in the mollified setting. (That is replacing u by uℓ and (Y α, Zα) by
(Y ℓ,α, Zℓ,α) therein.) We know that the sequence(∇xuℓ(T − S,Xt,x

S ))ℓ≥1 is bounded. We can
denote by∇xu(T −S,Xt,x

S ) a possible weak limit inL2(Ω). (We will show below that∇xu exists as
a true function whenh is continuously differentiable.) Multiplying the dynamics ofY ℓ,α in (26) by a
test random variableξs that is square integrable andFs-measurable and then lettingℓ tend to+∞, we
deduce that, for anys ∈ [t, S), (26) holds true almost-surely in the limit setting. To prove that, almost-
surely, it holds true for anys ∈ [t, S), we apply a continuity argument. By (70), we know that the
limit processes(Y α

s )t≤s<T and(Zα
s )t≤s<T are almost-surely continuous. In particular, the left-hand

sides in (26) are continuous. By the martingale representation theorem, the conditional expectations
of the integrals involvingFα andGα are continuous as well. This says that there exists a continu-
ous modification of the conditional expectation(E[∇xu(T −S,Xt,x

S )θ∗s [φα](S−s,Xt,x
s )|Fs])t≤s<S .

Choosing this modification of the conditional expectation,we deduce that the formula holds true
almost-surely for anyt ≤ s < S.

3.5.6. Continuously Differentiable Case.If h is continuously differentiable, then∇h exists as a con-
tinuous function. In this case we apply (41) withhℓ instead ofh. Using standard stability ([26],
[27]) results for BSDEs and taking the expectation in (41), we deduce the equicontinuity property
for the family of functions(∇xuℓ)ℓ≥1 over compact subsets of[0, T ] × Rd. Letting ℓ tend to+∞,
we deduce that∇xu exists as a continuous function over the whole space. By the convergence of
(∇xuℓ)ℓ≥1 towards∇xu on compact subsets (up to a subsequence), this shows that∇xu(T−S,Xt,x

S )
in (26) is understood as thetruegradient ofu: in particular, we check that the conditional expectation
E[∇xu(T − S,Xt,x

S )θ∗s [φα](S − s,Xt,x
s )|Fs] also readsE[∇xu(T − S,Xy

S−s)φα(S − s, y)]|y=Xt,x
s

,
which is a continuous process, as expected.

3.5.7. Bounds in the Lipschitz Setting.The bounds in Theorem 3.1 are obtained by passing to the
limit along the bounds obtained in the mollified setting. When ∇h exists as a continuous func-
tion, it is immediate to pass to the limit in the right-hand side in (25). When,h is not continuously
differentiable, it is possible to bound the limit quantity in the right-hand side in terms of the limit
lim supε→0 |ε|−d

∫

{|y|≤ε} |∇h(Xx
t + y)|dy, as specified in the statement. �

4. MEASURABLE BOUNDARY CONDITION

In this section we dispense with the Lipschitz condition andassume that the boundary conditionh
is of polynomial growth and possibly discontinuous. The driver f satisfies the same assumption as in
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Section 3 together with the stronger growth condition:|f(t, x, y, z)| ≤ Λ(1 + |y| + |z|). Basically,
this growth condition ensures that, for anyT > 0 andp > 1, there exists a constantCp > 0 such that

(71) |u(t, x)| ≤ Cp

(

1 + E
[

|h(Xx
t )|p

]1/p)
.

Eq. (71) must be seen as the counterpart of (45). It follows from Briand et al. [2] as well.
As already stated (see Theorem 2.5) whenf = 0 andh is bounded and smooth, it is known that,

for anyT > 0, p > 1, n ≥ 1, (α1, . . . , αn) ∈ [A0(m)]n and(t, x) ∈ (0, T ] × Rd,

(72)
∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(p)t
−‖α‖/2E

[
∣

∣h(Xx
t )
∣

∣

p]1/p
.

for some constantCn(p), independent ofh. The main result of this section is

Theorem 4.1. Let (Vi)0≤i≤N beN + 1 vector fields satisfying Definition 1.1. Then, for anyt > 0,

u(t, ·) belongs to∩p≥1DK−m−1/2,p
V (Rd). Moreover, for anyT > 0, p > 1, n = 1, 2 andα1, αn ∈

A0(m), there exists a constantCn(p), depending onΛn, n, p, T and the vector fieldsV0, . . . , VN
only, such that for allt ∈ [0, T ) and almost everyx ∈ Rd,

(73)
∣

∣V[α1]V[αn]u(t, x)
∣

∣ ≤ Cn(p)t
−‖α‖/2

[

1 + E
[

|h|np(Xx
t )
]1/p]

,

and for anyδ > 0, 3 ≤ n ≤ K −m− 1 andα1, . . . , αn ∈ A0(m), there exists a constantCn(p, δ),
depending onδ, Λn, n, p, T and the vector fieldsV0, . . . , VN only, such that for allt ∈ (0, T ] and
almost everyx ∈ Rd,

∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣

≤ Cn(p, δ)t
−‖α‖/2

[

1 + t−n/2+1+min(1/‖α(1)‖,1/2+1/(2‖α(2)‖))−δ
][

1 + E
[

|h|np(Xx
t )
]1/p]

,
(74)

with 1 ≤ i ≤ N , whereα(1) and α(2) stand for multi-indices in the familyα1, . . . , αn such that
‖α(1)‖ ≤ ‖α(2)‖ are the two smallest elements in the family‖α1‖, . . . , ‖αn‖. In particular, when
n = 3 and‖α(1)‖ = 1, Eq. (73) holds as well.

Finally, given0 ≤ t < S < T , for any boundedFt-measurable random variableξ with an
absolutely continuous distribution onRd (see6), the derivative pair processes
((

Y α
s = (V[α1] . . . V[αn]u)(T − s,Xt,ξ

s ), Zα
s = ((V[α1] . . . V[αn]Viu)(T − s,Xt,ξ

s ))1≤i≤N

)

t≤s<T

)

α

indexed by then-tuples of multi-indicesα = (α1, . . . , αn) ∈ [A0(m)]n are continuous and satisfy
the generalized BSDE

Y α
s = (S − s)−‖α‖/2E

[

u(T − S,Xt,ξ
S )θ∗s [φα](S − s,Xt,ξ

s )|Fs

]

+ E

[
∫ S

s
Fα

(

s, r, x, Y t,ξ
r , Zt,ξ

r , (Y β
r )♯(β)≤n, (Z

β
r )♯(β)≤n

)

dr
∣

∣Fs

]

,

(Zα
s )i = (S − s)−(1+‖α‖)/2E

[

u(T − S,Xt,ξ
S )θ∗s [ψ

i
α](S − s,Xt,ξ

s )|Fs

]

+ E

[
∫ S

s
(r − s)−1/2Gi

α

(

s, r, x, Y t,x
r , Zt,x

r , (Y β
r )♯(β)≤n, (Z

β
r )♯(β)≤n

)

dr
∣

∣Fs

]

,

(75)

6Here, the probability spaceΩ must be enlarged to define random variables that are independent of the Wiener process.
A standard way consists in considering the tensorial product of Rd and of the canonical Wiener space. This construction
preserves the shift operator as defined in Subsubsection 2.2.1.
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with t ≤ s < S, the coefficients satisfying the same properties as in Theorem 3.1. (Here,φα andψi
α,

1 ≤ i ≤ N , areR-valued.)
Whenh is continuous,u(t, ·) belongs toDK−m−1/2,∞

V (Rd) for anyt > 0, and(73) and (74) hold
for anyx ∈ Rd. Moreover,(75) hold for ξ = x, i.e. ξ deterministic.

We observe thatn = 3 is the threshold after which the small time behaviour of the solution to the
nonlinear equation is worse than in the linear case. In the following section we give an example of
a simple degenerate semilinear PDE for which the small time asymptotic behaviour is indeed worse
than in the linear case beyondn ≥ 3. In the uniformly elliptic setting, all theα’s in A0(m) have
length 1, so that−n/2 + 1 + min(1/‖α(1)‖, 1/2 + 1/(2‖α(2)‖)) = −n/2 + 2 = −(n − 4)/2: the
threshold isn = 4 or evenn = 5 if the additionalδ in the bound for the fourth-order derivatives is
forgotten. In what follows we also give an example of a nondegenerate semilinear PDE for which
the small time asymptotic behaviour is indeed worse than in the linear case beyondn ≥ 5. In the
uniformly elliptic setting, it is not clear whether the additional δ whenn = 4 is sharp or not.

From a technical point of view, the threshold occurs becauseof the product

(76) Gn(s, t; k, i,v,β) =

k
∏

j=1

E

[

∣

∣

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)

∣

∣

np/ij

]ij/(np)

,

that appears in Proposition 3.5 (and which will be used in this case). Fork = n (i.e. when all the
β’s in (76) are of length 1), this product is of orders−n whereas it was of orders−n/2 under the
assumption of Theorem 3.1. Clearly, this is much more than the gap between the rates in theL∞ and
W 1,∞ cases for a linear equation: in the linear setting, the gap isconstant, equal to1/2.

Nevertheless, the gap in the product is not felt for low values of n since the nonlinear termf
is integrated over the interval[0, t]: for n small, this additional integration permits to balance the
gap between theL∞ andW 1,∞ cases. Obviously, the effect of the integration is limited:beyond
some rank, the gap in the termGn(s, t; k, i,v,β) affects the small time asymptotic behaviour of the
derivatives.

4.1. Keystone in the Smooth Setting.Again, we investigate first the case of a smooth boundary
condition: below we will assume thath is bounded, infinitely differentiable with bounded derivatives
of any order. The precise mollifying procedure is discussedin Subsection 4.5 following the model of
Subsection 3.5. The keystone for the estimate is the following analogue of Proposition 3.5:

Proposition 4.2. For anyp > 1 andT > 0, there exists a constantCn(p), depending onΛn, p and
T only, such that, for any(α1, . . . , αn) ∈ (A0(m))n and any(t, x) ∈ (0, T ]× Rd,

∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(p)

[

1 + t−‖α‖/2E
[∣

∣h(Xx
t )
∣

∣

p]1/p
]

+

∫ t

t/2

n
∑

k=1

∑

i,v,β

(t− s)(‖β‖−‖α‖)+/2
k
∏

j=1

E

[

∣

∣

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)|np/ij

]ij/(np)

ds,
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and

∣

∣V[α1] . . . V[αn]Viu(t, x)
∣

∣ ≤ Cn(p)

[

1 + t−(1+‖α‖)/2E
[
∣

∣h(Xx
t )
∣

∣

p]1/p
]

+

∫ t

t/2

n
∑

k=1

∑

i,v,β

(t− s)[(‖β‖−‖α‖)+−1]/2
k
∏

j=1

E

[

∣

∣

(

V[β1,j ] . . . V[βij ,j
]vj

)

(s,Xx
t−s)

∣

∣

np/ij

]ij/(np)

ds

]

.

Above, both sums run over the indicesi = (i1, . . . , ik) ∈ Ik(n), v = (v1, . . . , vk) ∈ Uk(u(s, ·)) and
β = ((β1,ℓ, . . . , βiℓ,ℓ)1≤ℓ≤k) ∈

∏k
ℓ=1[A0(m)]iℓ .

The proof is identical to that of Proposition 3.5 up to the additional estimate (71) in place of (45).
Clearly, the price to pay in comparison with Proposition 3.5is the additional exponent−1/2 in the
boundary terms of both upper bounds. As announced above, this correction doesn’t propagate linearly
to the estimates of the higher order derivatives: because ofthe non-linearity, a break occurs beyond
which the small time asymptotic behaviour of the derivatives is higher than in the analogue linear
case.

4.2. Proof of the Estimates for the first and second order derivatives in the Smooth Setting.We
start by proving the announced estimates whenn = 1, 2.

Forn = 1, the proof is similar to that of Theorem 3.1. The only difference comes from the linear
bounds of the first and second order derivatives (put it differently, it comes from the boundary terms in
Proposition 4.2). At this stage of the proof, the nonlinearity doesn’t affect the small time asymptotic
behaviour: the product in (76) always reduces to a single term sincek matches 1, that is everything
works as in a linear setting with a non-zero source term.

Actually, one can deduce better estimate than the announcedbound forn = 1. As in the proof of
Theorem 3.1, we also obtain a bound for|V[α1]Viu(t, x)|, i ∈ {1, . . . , N}. Clearly, we get the same
bound as for|V[α1]u(t, x)|, but the exponent of the explosion rate is augmented by 1/2, i.e.

(77)
∣

∣V[α1]Viu(t, x)
∣

∣ ≤ C1(p)t
−1/2−‖α1‖/2

(

1 + E
[

|h(Xx
t )|p

]1/p)
,

for some constantC1(p), depending onΛ1, p, T and the vector fields only. (Eq. (77) is a little bit
better than the announced estimate since the exponent in thepower of|h| is p and not2p as it would
be by applying (73) directly.)

Forn = 2, the method consists in examining the factors in (76) carefully. Sincek ≤ 2 therein, we
notice that the factors in the product (76) are of three possible forms:E[|(V[β1]v1)(s,X

x
t−s)|2p]1/(2p),

E[|(V[β1]v1)(s,X
x
t−s)|2p]1/(2p)×E[|(V[β2]v2)(s,X

x
t−s)|2p]1/(2p) andE[|(V[β1]V[β2]v1)(s,X

x
s−t)|p]1/p,

with β1, β2 ∈ A0(m) andv1, v2 ∈ {u, Viu}, 1 ≤ i ≤ N . Using the bounds forn = 1, we can follow
the proof of Theorem 3.1 (see (29)) and then deduce that thereexists a constantC2(p), depending on
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Λ2, p, andT only (the value ofC2(p) possibly varying from line to line), such that

t(‖α1‖+‖α2‖)/2
∣

∣V[α1]V[α2]u(t, x)
∣

∣ ≤ C2(p)
(

1 + E
[

|h|p(Xx
t )
]1/p)

+ C2(p)

∫ t

t/2

[

s−1/2
(

1 + E
[

|h|2p(Xx
t )
]1/(2p))

+ s−1
(

1 + E
[

|h|2p(Xx
t )
]1/p)]

ds

+ C2(p)
∑

β1,β2

[
∫ t

t/2
s(‖β1‖+‖β2‖)/2E

[

|
(

V[β1]V[β2]u
)

(s,Xx
t−s)|p

]1/p
ds

+
∑

j=1...N

∫ t

t/2
(t− s)−1/2s(1+‖β1‖+‖β2‖)/2E

[

|
(

V[β1]V[β2]Vju
)

(s,Xx
t−s)|p

]1/p
ds

]

,

(78)

the sum running overβ1, β2 ∈ A0(m).
Similarly, for any1 ≤ i ≤ N ,

t(1+‖α1‖+‖α2‖)/2
∣

∣V[α1]V[α2]Viu(t, x)
∣

∣ ≤ C2(p)
(

1 + E
[

|h|2p(Xx
t )
]1/p)

+ C2(p)
∑

β1,β2

[
∫ t

t/2
(t− s)−1/2s(‖β1‖+‖β2‖)/2E

[

|
(

V[β1]V[β2]u
)

(s,Xx
t−s)|p

]1/p
ds

+
∑

j=1...N

∫ t

t/2
(t− s)−1/2s(1+‖β1‖+‖β2‖)/2E

[

|
(

V[β1]V[β2]Vju
)

(s,Xx
t−s)|p

]1/p
ds

]

.

(79)

By (78) and (79),

t(‖α1‖+‖α2‖)/2
∣

∣V[α1]V[α2]u(t, x)
∣

∣ + t(1+‖α1‖+‖α2‖)/2
∣

∣V[α1]V[α2]Viu(t, x)
∣

∣

≤ C2(p)
(

1 + E
[

|h|2p(Xx
t )
]1/p)

+ C2(p)
∑

β1,β2

[
∫ t

t/2
(t− s)−1/2s(‖β1‖+‖β2‖)/2E

[

|
(

V[β1]V[β2]u
)

(s,Xx
t−s)|p

]1/p
ds

+
∑

j=1...N

∫ t

t/2
(t− s)−1/2s(1+‖β1‖+‖β2‖)/2E

[

|
(

V[β1]V[β2]Vju
)

(s,Xx
t−s)|p

]1/p
ds

]

.

Summing overα1, α2 ∈ A0(m) andi ∈ {1, . . . , N}, choosingx of the formXx
r−t, r ≥ t > 0, as in

(34), taking theLp moment and applying Lemma 2.13, we complete the proof whenn = 2. �

4.3. Crude Estimates forn ≥ 3. Whenn is larger than 3, we first prove the following crude esti-
mates:

Proposition 4.3. For anyT > 0, p > 1 and1 ≤ n ≤ K −m − 1, there exists a constantCn(p),
depending onΛn, n, p, T and the vector fields only, such that, for any(α1, . . . , αn) ∈ (A0(m))n and
(t, x) ∈ (0, T ] ×Rd,

∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(p)t
−‖α‖/2−(n−2)+/2

[

1 + E
[
∣

∣h(Xx
t )
∣

∣

np]1/p]
,

∣

∣V[α1] . . . V[αn]Viu(t, x)
∣

∣ ≤ Cn(p)t
−‖α‖/2−(n−2)+/2−1/2

[

1 + E
[∣

∣h(Xx
t )
∣

∣

np]1/p]
, 1 ≤ i ≤ N.
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Proof. We proceed by induction. By Subsection 4.2, the estimates hold true whenn = 1, 2.
Assume next that they hold true up ton − 1, wheren is such that2 ≤ n ≤ K −m − 1. We then
establish the announced bounds for rankn.

The strategy is the same as for the Lipschitz case. It relies on Proposition 4.2, applied at rankn.
We thus considerα1, . . . , αn ∈ (A0(m))n. With the same notation as in (76), we are to analyze
Gn(s, t; k, i,v,β).

When all the(ij)1≤j≤k in Gn(s, t; k, i,v,β) are less than or equal ton − 1, we make use of the
induction property to boundGn(s, t; k, i,v,β). Following (27) and (28), we obtain

∣

∣Gn(s, t; k, i,v,β)
∣

∣ ≤ Cn(p)

k
∏

j=1

[

s
−
∑ij

ℓ=1 ‖βℓ,j‖/2−(ij−2)+/2−1{ij≥1}/2
(

1 + E
[∣

∣h(Xx
t )
∣

∣

np]ij/(np))
]

≤ Cn(p)s
−‖β‖/2−

∑k
j=1[(ij−2)++1{ij≥1}]/2

(

1 + E
[∣

∣h(Xx
t )
∣

∣

np]1/p)
.

Since
∑k

j=1[(ij − 2)+ + 1{ij≥1}] =
∑k

j=1 ij +
∑k

j=1(1{ij=1} − 1) ≤ n, we deduce that

(80)
∣

∣Gn(s, t; k, i,v,β)
∣

∣ ≤ Cs−‖β‖/2−n/2
(

1 + E
[
∣

∣h(Xx
t )
∣

∣

np]1/p)
,

when all the(ij)1≤j≤k in Gn(s, t; k, i,v,β) are less than or equal ton − 1. Plugging (80) into
Proposition 4.2 and following (29) and (33), we deduce that

∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(p)

[

(

1 + t−‖α‖/2−(n−2)/2
)

E
[
∣

∣h(Xx
t )
∣

∣

np]1/p

+
∑

β1,...,βn

∫ t

t/2
(t− s)(‖β‖−‖α‖)+/2s−1/2Qn

β1,...,βn
(s, t, x)ds

]

,
(81)

and,
∣

∣V[α1] . . . V[αn]Viu(t, x)
∣

∣ ≤ Cn(p)

[

(

1 + t−‖α‖/2−(n−1)/2
)

E
[
∣

∣h(Xx
t )
∣

∣

p]1/p

+
∑

β1,...,βn

∫ t

t/2
(t− s)−1/2+(‖β‖−‖α‖)+/2s−1/2Qn

β1,...,βn
(s, t, x)ds

]

,
(82)

where

Qn
β1,...,βn

(s, t, x) = E
[
∣

∣

(

V[β1] . . . V[βn]u
)

(s,Xx
t−s)

∣

∣

p]1/p

+ s1/2
N
∑

i=1

E
[∣

∣

(

V[β1] . . . V[βn]Viu
)

(s,Xx
t−s)

∣

∣

p]1/p
.

Choosing(t, x) of the form (t,Xx
r−t) in (81) and (82) for somer ≥ t, taking theLp-norm and

applying Minkowski’s integral inequality, we deduce
∑

α1,...,αn

t‖α‖/2+(n−2)/2Qn
α1,...,αn

(t, r, x) ≤ Cn(p)

[

1 + E
[
∣

∣h(Xx
r )
∣

∣

np]1/p

+
∑

β1,...,βn

∫ t

t/2
(t− s)−1/2s‖β‖/2+(n−2)/2Qn

β1,...,βn
(s, r, x)ds

]

,

(83)
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for any0 < t ≤ r. By Lemma 2.13, the proof is easily completed. �

4.4. Proof of Theorem 4.1 in the Smooth Setting.The proof of Theorem 4.1 relies on a suitable
version of Corollary 3.3. Recall thatIk(n) is the set of non-decreasing sequences of (possibly zero)
integersi1, . . . , ik such thati1+· · ·+ik ≤ n. Also for anyk ∈ {0, . . . , n}, letUk(ϕ) stands for the set
of k-tuples of functions of the form(v1, . . . , vk), with vi being equal either toϕ or Vℓϕ, 1 ≤ ℓ ≤ N
(Whenk = 0, Uk(ϕ) = ∅). We claim the following:

Corollary 4.4. LetF be a(K −m− 3)-times differentiable function fromRd ×R×RN intoR with

bounded derivatives of any order up toK −m− 3 andϕ be inDn+1/2
V (Rd), 3 ≤ n ≤ K −m− 1.

Then, for anyn-tuple of indicesα = (α1, . . . , αn) ∈ [A0(m)]n

V[αn] . . . V[α1]E
[

F
(

Θ(Xx
s )
)]

= s−(‖α(1)‖+‖α(2)‖)/2

(

E
[

F (Θ(Xx
s ))φ0(s, x)

]

+
n−2
∑

k=0

∑

i∈Ik(n−2)

∑

v∈Uk(ϕ)

∑

β=(βℓ,j)1≤ℓ≤ij ,1≤j≤k∈
∏

1≤j≤k [A0(m)]ij

(84)

E

[ k
∏

j=1

(

V[β1,j ] . . . V[βij ,j
]vj

)

(Xx
s )φi,v,β(s, x)ψi,v,β

(

Θ(Xx
s )
)

])

,

where‖α(1)‖ ≤ ‖α(2)‖ stand for the two smallest lengthes among the family(‖αi‖)1≤i≤n, where
φ0 ∈ KT

0 (K−m−n) andφi,v,β ∈ KT
(‖β‖−‖α‖+‖α(1)‖+‖α(2)‖)+

(K−m−n), with‖α‖ =
∑n

i=1 ‖αi‖
and‖β‖ =

∑k
j=1

∑ij
i=1 ‖βi,j‖, and whereψi,v,β is bounded.

A similar version holds with‖α(1)‖ only. In this case,F is assumed to be(K − m − 2)-time
differentiable andk runs over{0, · · · , n− 1}.

Proof. The proof is quite straightforward. Assume that the smallest indices at whichα(1) and
α(2) appear in the sequenceα1, . . . , αn are p1 and p2 (not necessarily in a respective way), with
p1 < p2. Apply then Corollary 3.3 toV[αp1−1] . . . V[α1][F (Θ(Xs))] and then take the expectation
to get a representation ofV[αp1−1] . . . V[α1]E[F (Θ(Xs))]. Apply an integration by parts to compute
V[αp1 ]

V[αp1−1] . . . V[α1]E[F (Θ(Xs))] without differentiating the function ofX involved in the repre-
sentation ofV[αp1−1] . . . V[α1]E[F (Θ(Xs))]. (See, for example, Corollary 3.12 in [21].) Next apply
Corollary 3.3 again to writeV[αp2−1] . . . V[α1]E[F (Θ(Xs))] and, then, a new integration by parts again,
and finally Corollary 3.3 again.

The first term in the right-hand side in (84) appears whenp1 = 1: in such a case, we first perform
an integration by parts; the resulting Kusuoka-Stroock function is then differentiatedn−1 times. �

We are now in position to complete the proof of Theorem 4.1 when the boundary condition is
smooth. We go back to (49) and (50). Clearly, we can boundT1(t, x) therein by (compare with (52))

|T1(t, x)| ≤ Cn(p)t
−‖α‖/2

(

1 + E
[

|h(Xt)|p
]1/p)

.
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To boundT2(t, x) in (50), we use an interpolation argument. Forε ∈ [0, 1], we have the trivial
inequality

|T2(t, x)| ≤
∫ t

t/2

∣

∣V[α1] . . . V[αn]Pt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)
∣

∣

1−ε

×
∣

∣V[α1] . . . V[αn]Pt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)
∣

∣

ε
ds.

To bound the first factor|Ps−t[f(s, ·, u(s, ·), V u(s, ·))](x)|1−ε in the integral above, we follow (53)
and (54). Using Proposition 4.3, we deduce that, for anyp > 1,

|T2(t, x)| ≤ Cn(p)

n
∑

k=0

∑

i

∫ t

t/2

{

s
−‖α‖/2−

∑k
j=1[(ij−2)++1{ij≥1}]/2

[

1 + E
[

|h|np(Xx
t )
]1/p]}1−ε

×
∣

∣V[α1] . . . V[αn]Pt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)
∣

∣

ε
ds,

i running over the indices(i1, . . . , ik) such that
∑k

j=1 ij ≤ n. Following the proof of Proposition

4.3,
∑k

j=1[(ij − 2)+ + 1{ij≥1}]/2 ≤ n/2, so that

|T2(t, x)| ≤ Cn(p)

∫ t

t/2

{

s−‖α‖/2−n/2
[

1 + E
[

|h|np(Xx
t )
]1/p]}1−ε

×
∣

∣V[α1] . . . V[αn]Pt−s

[

f
(

s, ·, u(s, ·), (V u)⊤(s, ·)
)]

(x)
∣

∣

ε
ds.

To bound the second factor in the above integral, we apply Corollary 4.4 together with Proposition
4.3. Basically, it permits to reducen into n− 1 or n− 2. We then obtain

|T2(t, x)| ≤ Cn(p)
[

1 + E
[

|h|np(Xx
t )
]1/p]

∫ t

t/2
s−‖α‖/2−n/2

{

(t− s)−‖α(1)‖/2s‖α(1)‖/2+1/2
}ε1

×
{

(t− s)−(‖α(1)‖+‖α(2)‖)/2s(‖α(1)‖+‖α(2)‖)/2+1
}ε2ds,

with ε1 + ε2 = ε, 0 ≤ ε1, ε2 ≤ 1. (The first term in (84) is handled as in (57) and (60).) The critical
values for(ε1, ε2) to ensure integrability satisfy:ε1‖α1‖/2+ ε2(‖α(1)‖+ ‖α(2)‖)/2 = 1. Forgetting
for a while the divergence of the integral of(t− s)−1, we then understand that the critical bound for
|T2(t, x)| isCn(p)[1 +E[|h|np(Xx

t )]
1/p]t−‖α‖/2−n/2+1+ε1/2+ε2 . Therefore, the point is to maximize

ε1/2+ε2 under the constraintsε1, ε2 ≥ 0, ε1+ε2 ≤ 1 andε1‖α1‖/2+ε2(‖α(1)‖+‖α(2)‖)/2 = 1. It
is plain to see that it is the same as maximizing2/(‖α(1)‖+‖α(2)‖)+(‖α(2)‖−‖α(1)‖)/[2(‖α(1)‖+
‖α(2)‖)]ε1 under the constraints0 ≤ ε1 ≤ min(1, 2/‖α(1)‖, (‖α(1)‖ + ‖α(2)‖ − 2)/‖α(2)‖). The
optimum is given byε1 = min(1, 2/‖α(1)‖, (‖α(1)‖ + ‖α(2)‖ − 2)/‖α(2)‖) since‖α(2)‖ ≥ ‖α(1)‖.
Therefore, the critical values are

{

ε1 = (‖α(2)‖ − 1)/‖α(2)‖, ε2 = 1/(‖α(2)‖), if ‖α(1)‖ = 1,
ε1 = 2/‖α(1)‖, ε2 = 0, if ‖α(1)‖ ≥ 2.

(In short, the above result says that we try to saturate the integral with a first-order derivative. When
the first order derivative doesn’t saturate the integral, wesaturate it with a second-order derivative. In
this way, the integral is always saturated and there is no need to look at higher-order derivatives.) To
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take into account the divergence of the intregal of(t − s)−1, we must subtract some smallδ > 0 to
ε1. We finally obtain, for anyδ > 0,

|T2(t, x)| ≤ Cn(p, δ)
[

1 + E
[

|h|np(Xx
t )
]1/p]

t−‖α‖/2−n/2+1+min(1/‖α(1)‖,1/2+1/(2‖α(2)‖))−δ . �

4.5. Proof of Theorem 4.1 in the General Setting.We follow here the same strategy as in Subsec-
tion 3.5.

4.5.1. Mollification of the Boundary Condition.If h is continuous, it can be mollified as in Subsec-
tion 3.5. If it is measurable only, the sequence of mollified coefficients(hℓ)ℓ≥1 converges towardsh,
in Lp

loc(R
d) only, for anyp ≥ 1. In any case, the sequence of solutions(uℓ)ℓ≥1 is at most of linear

growth on the whole[0, T ] × Rd, uniformly in ℓ. (See (71).)
Following Subsection 7.3, for anyt > 0, uℓ(t, ·) → u(t, ·) asℓ → +∞ in anyLp

loc(R
d), for any

p ≥ 1. If h is continuous, the convergence holds in supremum norm on compact sets, as in subsection
3.5. Following Subsubsection 3.5.2, (64) holds here as well.

4.5.2. Convergence of the Sequence(Zℓ,t,ξ)ℓ≥1. Eq. (67) holds true, but we cannot pass to the limit
on it since the convergence of the sequence(uℓ)ℓ≥1 holds in

⋂

p≥1 L
p
loc(R

d) only. To overcome
this difficulty, we choose as initial condition forX at timet a random variableξ, bounded andFt-
measurable, with an absolutely continuous distributionµ over Rd. (See Footnote6.) There is no
difficulty to replace(t, x) by (t, ξ) in (67). By Lemma 2.10,limℓ→+∞ supℓ1,ℓ2≥ℓ E[|uℓ1(S,Xt,ξ

S ) −
uℓ2(S,X

t,ξ
S )|2] = 0, so that (68) and (69) holds with(t, x) replaced by(t, ξ). (And forgetting the sup

with respect tox therein.) By the new version of (69),limℓ→+∞ supℓ1,ℓ2≥ℓ E[|Zℓ1,t,ξ
t −Zℓ2,t,ξ

t |2] = 0,
for anyt ∈ [0, T ), that islimℓ→+∞ supℓ1,ℓ2≥ℓ

∫

Rd |V uℓ1(t, x)− V uℓ2(t, x)|2dµ(x) = 0.
By the a priori bounds we have on(V uℓ(t, ·))ℓ≥1 (see Theorem 4.1), we deduce that, for any

t ∈ [0, T ), (V uℓ(t, ·))ℓ≥1 converges towardsV u(t, ·) in anyLp
loc(R

d), p > 1.

4.5.3. Completion of the proof.The end of the proof is then similar to Subsection 3.5. (Usingin
particular the bounds for(V[α1] . . . V[αn]Viu(t, x))1≤i≤N in Proposition 4.3 whenn = K −m − 1,
since nothing is said about it in Theorem 4.1.)

Whenh is continuous, there is no need to introduceξ, since the convergence of(uℓ)ℓ≥1 towardsu
is uniform on compact subsets. The whole argument is then similar to Subsection 3.5. Moreover, by
standard stability properties on BSDEs,u is continuous on the whole[0, T ]× Rd. �

5. COUNTER-EXAMPLES

In this section we give two counter-examples:

(1) In the first example, the second order differential operator is the one-dimensional Laplace op-
erator and the boundary condition is bounded but not Lipschitz (it is, in fact, discontinuous).
Since the operator is uniformly elliptic, Theorem 4.1 says that the exponent of the explosion
rate of the derivatives of order less than 3 is the same as in the linear case and that the ex-
ponent of the explosion rate of the derivatives of order 4 is almost the same as in the linear
case, up to a small correction of the exponent. On the opposite, Theorem 4.1 suggests that
the exponent of the explosion rate of the derivatives of order greater than 5 might be higher.
For a specific choice of the boundary condition and of the nonlinear term, we show that the
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exponent of the derivatives of order greater than 5 is indeedworse than the corresponding ex-
ponent in the linear setting. This confirms that, as suggested by Theorem 4.1, order 5 appears
as a threshold above which the small time behaviour of the derivatives deteriorates because
of the nonlinearity.

(2) In the second example, we investigate a nonlinear equation driven by a weak Hörmander op-
erator of dimension 2, close to the hypoelliptic Kolmogorovoperator. Basically, the operator
is driven by two vector fieldsV0 andV1 satisfying UFG condition withm = 3 and weak
Hörmander condition as well. Theorem 4.1 says that the bound for the derivatives of order
less than 2 is the same as in the linear case but suggests that athreshold might exist at order 3.
For a suitable boundary condition and a suitable nonlinear term, we show that bound for the
derivatives of order 3 is indeed worse than in the linear case. In other words, the simultaneity
of the nonlinearity and of the degeneracy here modifies the threshold above which the small
time behaviour of the derivatives deteriorates.

In both cases, we show that the right exponent for the rate of the derivatives exactly fits the exponent
suggested by Theorem 4.1, up to the additional correctionδ therein. This may be seen as a justification
of the title of the paper: “sharp estimates”.

5.1. Counter-Example in the Uniformly Elliptic Setting. In the whole subsection, we assume that
d = N = 1 and we choose a smooth functionf from R to [−1, 1]. By Theorem 4.1, we know that
the solutionu to the nonlinear equation

(85) ∂tu(t, x) =
1

2
∂2x,xu(t, x) + f

(

∂xu(t, x)
)

, t ∈ (0, 1], x ∈ R,

with u(0, x) = 1{x>0} as boundary condition satisfies|∂nx,...,xu(t, x)| ≤ Cnt
−n/2, t ∈ (0, 1], x ∈ R,

n=1,2,3, whereCn is some nonnegative constant. Moreover, for anyδ > 0 and anyn ≥ 4, there
exists a constantCn(δ) such that|∂nx,...,xu(t, x)| ≤ Cn(δ)t

2−n−δ , t ∈ (0, 1], x ∈ R.

5.1.1. Diffusive Scaling.Having in mind to take advantage of the diffusive scaling, wethen set, for
any integerp ∈ N∗, up(t, x) = u(p−2t, p−1x), so that, for anyt ∈ (0, 1], x ∈ R,

|∂nx,...,xup(t, x)| ≤ Cnt
−n/2, n = 1, 2, 3,

|∂nx,...,xup(t, x)| ≤ Cn(δ)p
2δ+n−4t2−n−δ, δ > 0, n ≥ 4,

(86)

and

(87) ∂tup(t, x) =
1

2
∂2x,xup(t, x) + p−2f

(

p∂xup(t, x)
)

, t ∈ (0, 1], x ∈ R.

In particular, the functions(∂tup)p≥1 are uniformly bounded in compact subsets of(0, 1]×R, so that
the functions(up)p≥1 are uniformly convergent on compact subsets of(0, 1]×R towards the solution
of the linear equation

∂tu0(t, x) =
1

2
∂2x,xu0(t, x), t ∈ (0, 1], x ∈ R,

with u(0, x) = 1{x>0} as boundary condition. That is,u0(t, x) = (2πt)−1/2
∫ +∞
−x exp[−y2/(2t)]dy.

We first identify the rate of convergence:
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Lemma 5.1. For any(t, x) ∈ (0, 1] × R and anyp ≥ 1,

|up(t, x)− u0(t, x)| ≤ p−2, |∂xup(t, x)− ∂xu0(t, x)| ≤ Cp−2,

for some universal constantC ≥ 0.

Proof. It is clear that

up(t, x) = u0(t, x) + p−2

∫ t

0

∫

R

f
(

p∂xup(t− s, y)
)

g(s, x − y)dsdy,

whereg is the standard Gaussian kernel, hence the first inequality.To get the second inequality, we
differentiate the above formula to obtain

|∂xup(t, x) − ∂xu0(t, x)| ≤ p−2

∫ t

0
s−1

∫

R

|f |
(

p∂xup(t− s, y)
)

|x− y|g(s, x− y)dsdy. �

The rate of convergence of the second-order derivative is slightly different:

Lemma 5.2. There exists a constantC ≥ 0, such that for any(t, x) ∈ (0, 1] × R,

|∂2x,x(up − u0)(t, x)| ≤ Cp−1t−1/2.

Proof. We write

(up − u0)(t, x) =

∫

R

(up − u0)(t/2, x − y)g(t/2, y)dy

+ p−2

∫ t/2

0

∫

R

f
(

p∂xup(t− s, x− y)
)

g(s, y)dsdy,

so that, after differentiating once, making a change of variable and differentiating once again, we get

∂2x,x(up − u0)(t, x)

= −2t−1

∫

R

∂x(up − u0)(t/2, y)(x − y)g(t/2, x − y)dy

− p−1

∫ t/2

0
s−1

∫

R

f ′
(

p∂xup(t− s, y)
)

∂2x,xup(t− s, y)(x− y)g(s, x− y)dsdy.

Therefore, by (86) and by Lemma 5.1, we can find a constantC, such that

|∂2x,x(up − u0)(t, x)| ≤ Ct−1/2p−2 + Cp−1t−1/2. �

5.1.2. Sharpness of the Bounds of the Derivatives.We are now ready to complete the analysis of the
first counter-example. By differentiating the PDE (85)n times and by applying the chain rule formula
(or the so-called Faà di Bruno’s formula),

∂t∂x,...,xu
n
p (t, x) =

1

2
∂x,...,xu

n+2
p (t, x)

+ p−2
∑

βn,m1,...,mnp
m1+···+mnf (m1+···+mn)

(

p∂xup(t, x)
)

n
∏

j=1

(

∂j+1
x,...,xup(t, x)

)mj ,

for some weights(βn,m1,...,mn)n,m1,...,mn , the sum running overn-tuples(mj)1≤j≤n such thatm1 +
2m2 + · · ·+ nmn = n.
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By Itô’s formula, we deduce for a given stopping timeτ less than some prescribed realθ < 1/2,

∂x,...,xu
n
p (1,−1)

= E
[

∂x,...,xu
n
p (1− τ,−1 +Bτ )

]

+
∑

βn,m1,...,mnp
m1+···+mn−2T (p)

n,m1,...,mn
,

(88)

where

T (p)
n,m1,...,mn

= E

∫ τ

0
f (m1+···+mn)

(

p∂xup(1− s,−1 +Bs)
)

n
∏

j=1

(

∂j+1
x,...,xup(1− s,−1 +Bs)

)mjds

and(Bt)t≥0 stands for a one-dimensional Brownian motion.
Below, we chooseτ as the first exit timeτ = inf{t ≥ 0 : |Bt| ≥ θp−1} ∧ (θ2p−2), so thatτ

has the same law asθ2p−2(ρ ∧ 1), whereρ stands for the first exit time of a Brownian motion from
(−1, 1). We deduce thatθ2p−2P{ρ ≥ 1} ≤ E(τ) ≤ θ2p−2E(ρ).

By (86), for everyδ > 0, we can find a constantCδ such that

pm1+···+mn−2|T (p)
n,m1,...,mn

| ≤ Cδθ
2pδ−4p

∑n
j=1 mj

n
∏

j=1

p(j−3)+mj

≤ Cδθ
2pδ−4p

∑n
j=1 mjp

∑n
j=1(j−3)mj+

∑2
j=1(3−j)mj

= Cδθ
2pn+δ−4p−2

∑n
j=3 mj−m2 .

(89)

(Keep in mind that
∑n

j=1 jmj = n.) Therefore, whenm1 < n (i.e.mi ≥ 1 for somei ∈ {2, . . . , n}),

(90) lim sup
p→+∞

p4−npm1+···+mn−2|T (p)
n,m1,...,mn

| = 0.

Now, whenm1 = n,

pn−2T
(p)
n,n,0,...,0 = pn−2E

∫ τ

0
f (n)

(

p∂xup(1− s,−1 +Bs)
)(

∂2x,xup(1− s,−1 +Bs)
)n
ds.

By Lemmas 5.1 and 5.2 and by Taylor’s formula, we can find a constantC ≥ 1 such that

pn−2T
(p)
n,n,0,...,0

= pn−2E

∫ τ

0
f (n)

(

p∂xu0(1− s,−1 +Bs)
)(

∂2x,xu0(1− s,−1 +Bs)
)n
ds+Op(p

n−3)E(τ)

≥ pn−2E(τ) inf
|x|≤Cθ

[

f (n)
(

p∂xu0(1,−1) + x
)]

inf
|x|≤Cθ

[

∂2x,xu0(1,−1) + x
]n

+Op(p
n−3)E(τ)

≥ Cθ2pn−4 inf
|x|≤Cθ

[

f (n)
(

p∂xu0(1,−1) + x
)]

inf
|x|≤Cθ

[

∂2x,xu0(1,−1) + x
]n

+Op(p
n−5),

whereOp(·) stands for the Landau notation (asp tends to+∞). We now compute

∂xu0(t, x) = (2πt)−1/2 exp[−x2/(2t)], ∂2x,xu0(t, x) = −(2π)−1/2t−3/2x exp[−x2/(2t)],
so that∂xu0(1,−1) = c1 > 0, ∂2x,xu0(1,−1) = c2 > 0. Choose nowf(z) = cos[(2π/c1)z −
n(π/2)]. Then,f (n)(z) = (2π/c1)

n cos[(2π/c1)z], so that

f (n)
(

p∂xu0(1,−1) + x
)

= (2π/c1)
n cos[(2π/c1)x] ≥ (2π/c1)

n/2,

for (2π/c1)|x| ≤ π/4.
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Therefore, forθ small enough,pn−2T
(p)
n,n,0,...,0 ≥ c3p

n−4 +Op(p
n−5), with c3 > 0. Finally,

(91) lim inf
p→+∞

[

p4−n(pn−2T
(p)
n,n,0,...,0)

]

> 0.

5.1.3. Conclusion.Assume now that, for someδ > 0 andn ≥ 5, the bound

(92) |∂nx,...,xu(t, x)| ≤ Cnt
−n+2+δ, t ∈ (0, 1], x ∈ R,

holds. By scaling,

|∂nx,...,xup(t, x)| ≤ Cnp
n−4−2δt−n+2+δ, t ∈ (0, 1], x ∈ R.

Plugging the above inequality in (88) and multiplying (88) by p4−n, we understand from (90) that all
the terms butp4−n(pn−2T

(p)
n,n,0,...,0) vanish asp tends to+∞. By (91), there is a contradiction hence

the bound (92) cannot hold. �

5.2. Counter-Example in the Degenerate Setting.Consider now the following family of PDEs:

(93) ∂tup(t, x, y) =
1

2
∂2x,xup(t, x, y)+ϕ(x)∂yup(t, x, y)+f

(

∂xup(t, x, y)
)

, t > 0, (x, y) ∈ R2,

with up(0, x, y) = −sign(x)sign(y) + λsign(x+1/p) as boundary condition, the function|f | being
bounded by 1 and the parameterλ being real. Bothf andλ will be chosen later on.

In Eq. (93) above,ϕ stands for the function

ϕ(x) =

∫ x

0
exp[−φ(u)]du,

whereφ is a nonnegative smooth function with bounded derivatives of any order satisfying:

φ(u) = u2, |u| ≤ 1 ; φ(u) = |u|, |u| ≥ 2 ; φ(u) ≤ min(u2, 2|u|), u ∈ R.

In particularϕ is smooth and has bounded derivatives of any order. Moreover, ϕ(0) = 0 and
ϕ′(0) = 1. Eq. (93) is degenerate but satisfies the weak Hörmander condition since[∂x, ϕ(x)∂y ] =
exp[−φ(x)]∂y , that isA0(3) = {∂x, exp[−φ(x)]∂y} spansR2 at any point(x, y) ∈ R2. Simi-
larly, [∂x, exp[−φ(x)]∂y] = −φ′(x) exp[−φ(x)]∂y so thatA0(4) may be expressed asA0(4) =
{∂x, exp[−φ(x)]∂y ,−φ′(x) exp[−φ(x)]∂y}. Sinceφ′ is smooth and bounded, we deduce that all the
elements ofA0(4) can be expressed as a smooth and bounded combination of the elements ofA0(3).
In other words, the UFG property is checked withm = 3 andK = +∞ (see Definition 1.1).

Equation (93) may be seen as a nonlinear generalization of the so-called Kolmogorov hypoelliptic
example: in the earlier paper [14], Kolmogorov noticed thatthe operator driving the nonlinear equa-
tion above admitted a smooth density of Gaussian type whenϕ(x) = x, despite the degeneracy of the
diffusion matrix. (Below, the operator(1/2)∂2x,x + x∂y will be referred to as Kolmogorov operator.)

5.2.1. Gaussian Fundamental Solution whenϕ(x) = x. We notice that

(94) |ϕ(x) − x| ≤
∫ |x|

0
φ(u)du ≤

∫ |x|

0
u2du = |x|3/3, x ∈ R,

that isϕ(x) is very close tox in the neighborhood of zero. In particular, the derivativesof the
solutionu to (93) are expected to be close to the derivatives of the solution to (93) but driven by the
Kolmogorov operator. (Obviously, we cannot chooseϕ(x) = x, x ∈ R, since it is not bounded.)
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The Kolmogorov operator is of great interest since its fundamental solution is explicitely known.
It is given by the Gaussian density associated with the covariance matrix of the two-dimensional
Gaussian processGt = (Bt,

∫ t
0 Bsds)t≥0, (Bt)t≥0 here standing for a one-dimensional Brownian

motion. The covariance matrix ofGt, at a given timet > 0, reads

Kt =

(

t t2/2
t2/2 t3/3

)

.

Therefore, the kernel of Eq. (93) whenϕ(x) = x, may be expressed asP{Gt ∈ dx′dy′|G0 =
(x, y)} = g(t, x′ − x, y′ − (y + tx)) with

(95) g(t, x, y) =
31/2

πt2
exp

(

−|K−1/2
t (x, y)∗|2

2

)

=
31/2

πt2
exp

(

−2
x2

t
− 6

y2

t3
+ 6

xy

t2
)

.

That is,up has the form

up(t, x, y) =

∫

R2

up(0, x
′, y′)g(t, x − x′, y + tx− y′)dx′dy′

+

∫

R2

∫ t

0
f
(

∂xup(t− s, x′, y′)
)

g(s, x − x′, y + sx− y′)dx′dy′, t > 0, x, y ∈ R2,

whenϕ(x) = x.
We observe that the covariance matrix has two scales:1/2 stands for the exponent of the fluctua-

tions of the coordinatex and3/2 for the exponent of the fluctuations of the coordinatey; 1/2 may
also be understood as the half-length of the vector fieldV1(x) = 1 and3/2 as the half-length of the
vector field[V1, V0], with V0 = x∂y.

5.2.2. Rescaling Argument.Following the previous subsection, we consider a rescaled version ofup
according to the scaling exponents(1/2, 3/2). We set:

ûp(t, x, y) = up
(

p−2t, p−1x, p−3y
)

, t > 0, x, y ∈ R,

for anyp ≥ 1. By Theorem 4.1 (and by maximum principle to boundûp itself), we have

Lemma 5.3. There exists a constantC, independent ofp, such that|ûp(t, x, y)| ≤ C and

|∂xûp(t, x, y)| ≤ Ct−1/2, |∂yûp(t, x, y)| ≤ C exp[φ(x/p)]t−3/2, |∂2x,xûp(t, x, y)| ≤ Ct−1,

|∂2x,yûp(t, x, y)| ≤ C exp[φ(x/p)]t−2, |∂2y,yûp(t, x, y)| ≤ C exp[2φ(x/p)]t−3,

|∂3x,x,yûp(t, x, y)| ≤ C exp[φ(x/p)]t−5/2, |∂3x,y,yûp(t, x, y)| ≤ C exp[2φ(x/p)]t−7/2,

x, y ∈ R and t ∈ (0, 1]. Moreover, for anyδ > 0 and anyn ≥ 3, there exists a constantCn(δ),
independent ofp, such that

|∂ny,...,yûp(t, x, y)| ≤ Cn(δ) exp[nφ(x/p)]p
n−8/3+2δt−2n+4/3−δ,

|∂n+1
x,y,...,yûp(t, x, y)| ≤ Cn(δ) exp[nφ(x/p)]p

n−7/3+2δt−2n+2/3−δ,

|∂n+2
x,x,y,...,yûp(t, x, y)| ≤ Cn(δ) exp[nφ(x/p)]p

n−2+2δt−2n−δ,

x, y ∈ R andt ∈ (0, 1]. The last inequality above is also true whenn = 2.
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We now investigate the limit behaviour ofûp, asp tends to+∞. The equation for̂up has the form

(96) ∂tûp(t, x, y) =
1

2
∂2x,xûp(t, x, y) + pϕ(x/p)∂y ûp(t, x, y) + p−2f

(

p∂xûp(t, x, y)
)

,

t > 0, x, y ∈ R, with ûp(0, x, y) = sign(x)sign(y) + λsign(x + 1) as boundary condition. Below,
we setû(0, x, y) = sign(x)sign(y) + λsign(x + 1). (That is, we get rid of the indexp in ûp(0, ·, ·)
since it is independent ofp.) Sinceϕ(0) = 0 andϕ′(0) = 1, the limit is expected to bêu0, solution
to the PDE

(97) ∂tû0(t, x, y) =
1

2
∂2x,xû0(t, x, y) + x∂yû0(t, x, y), t > 0, x, y ∈ R,

with û0(0, ·, ·) = û(0, ·, ·) as boundary condition. It is immediate to see that Eq. (97) iswell-posed
and that the solution̂u0 is given by

û0(t, x, y) =

∫

R2

û(0, x′, y′)g(t, x − x′, y + tx− y′)dx′dy′,

with g as in (95). As a corollary, we deduce

Lemma 5.4. We can find a constantC such that

|ûp(t, x, y)− û0(t, x, y)| ≤ C(1 + |x|3) exp(2|x|)p−2t−1/2, t ∈ (0, 1], x, y ∈ R.

Proof. We write ûp as the solution of the PDE

∂tûp(t, x, y) =
1

2
∂2x,xûp(t, x, y) + x∂yûp(t, x, y)

+
(

pϕ(x/p)− x
)

∂yûp(t, x, y) + p−2f
(

p∂xûp(t, x, y)
)

, t ∈ (0, 1], x, y ∈ R,

so that

ûp(t, x, y) = û0(t, x, y) +R(1)
p (t, x, y) +R(2)

p (t, x, y),

R(1)
p (t, x, y) =

∫ t

0

∫

R2

(

pϕ(x′/p)− x′
)

∂yûp(t− s, x′, y′)g(s, x− x′, y + sx− y′)dx′dy′ds,

R(2)
p (t, x, y) = p−2

∫ t

0

∫

R2

f
(

p∂xû(t− s, x′, y′)
)

g(s, x− x′, y + sx− y′)dx′dy′ds.

(98)

By boundedness off , we can find a constantC, independent ofp, such that|R(2)
p (t, x, y)| ≤ Cp−2,

t ∈ (0, 1], x, y ∈ R. (C may vary below.) We turn now toR(1)
p (t, x, y). By integration by parts,

R(1)
p (t, x, y) ≤

∫ t

0

{∣

∣

∣

∣

∫

R2

(

pϕ(x′/p)− x′
)

∂yûp(t− s, x′, y′)g(s, x − x′, y + sx− y′)dx′dy′
∣

∣

∣

∣

1/2

×
∣

∣

∣

∣

∫

R2

(

pϕ(x′/p)− x′
)

ûp(t− s, x′, y′)∂yg(s, x− x′, y + sx− y′)dx′dy′
∣

∣

∣

∣

1/2}

ds

=

∫ t

0

{∣

∣

∣

∣

∫

R2

R(1,1)
p (t− s, x′, y′)g(s, x− x′, y + sx− y′)dx′dy′

∣

∣

∣

∣

1/2

×
∣

∣

∣

∣

∫

R2

R(1,2)
p (t− s, s, x′, y′)g(s, x− x′, y + sx− y′)dx′dy′

∣

∣

∣

∣

1/2}

ds.
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By (94) and Lemma 5.3, we deduce that|R(1,1)
p (t − s, x′, y′)| ≤ C(t − s)−3/2p−2|x′|3 exp(2|x′|),

0 ≤ s < t ≤ 1, x′, y′ ∈ R, for some possibly new value ofC. Similarly, by (95),|R(1,2)
p (t −

s, x′, y′)| ≤ Cs−3/2p−2|x′|3(s−1/2|x′ − x| + s−3/2|y + sx − y′|), 0 ≤ s < t ≤ 1, x′, y′ ∈ R.
Performing a change of variable in the integrals above, we obtain

|R(1)
p (t, x, y)| ≤ C(1+|x|3) exp(2|x|)p−2

∫ t

0
s−3/4(t−s)−3/4ds ≤ C(1+|x|3) exp(2|x|)p−2t−1/2.

This completes the proof. �

As a corollary, we deduce

Lemma 5.5. We can find a constantC such that, for anyt ∈ (0, 1], x, y ∈ R,

|∂xûp(t, x, y)− ∂xû0(t, x, y)| ≤ C(1 + |x|3) exp(2|x|)p−2t−1,

|∂x,yûp(t, x, y) − ∂x,yû0(t, x, y)| ≤ C(1 + |x|3) exp(4|x|)p−1t−5/2.

Proof. We consider a variation of (98).

ûp(t, x, y) = û0(t, x, y) + S(1)
p (t, x, y) + S(2)

p (t, x, y) + S(3)
p (t, x, y),

S(1)
p (t, x, y) =

∫

R2

[

ûp(t/2, x
′, y′)− û0(t/2, x

′, y′)
]

g(t/2, x − x′, y + (t/2)x − y′)dx′dy′,

S(2)
p (t, x, y) =

∫ t/2

0

∫

R2

[

pϕ
(x′

p

)

− x′
]

∂yûp(t− s, x′, y′)g(s, x− x′, y + sx− y′)dx′dy′ds,

S(3)
p (t, x, y) = p−2

∫ t/2

0

∫

R2

f
(

p∂xû(t− s, x′, y′)
)

g(s, x− x′, y + sx− y′)dx′dy′ds.

(99)

Convergence of∂xûp. We start with∂xS
(1)
p . By Lemma 5.4,

∂xS
(1)
p (t, x, y) =

∫

R2

[

ûp(t/2, x
′, y′)− û0(t/2, x

′, y′)
]

∂x
[

g
(

t/2, x− x′, y + (t/2)x − y′
)]

dx′dy′,

so that
∣

∣∂xS
(1)
p (t, x, y)

∣

∣ ≤ Cp−2t−1/2

∫

R2

{

(1 + |x′|3) exp(2|x′|)
(

t−1|x− x′|+ t−2|y + t

2
x− y′|

)

× g(
t

2
, x− x′, y +

t

2
x− y′)

}

dx′dy′

≤ C(1 + |x|3) exp(2|x|)p−2t−1.

(100)

By a similar argument and by Lemma 5.3,

∣

∣∂xS
(2)
p (t, x, y)

∣

∣ ≤ Cp−2t−3/2

∫ t/2

0

∫

R

|x′|3 exp(2|x′|)
(

s−1|x− x′|+ s−2|y + sx− y′|
)

× g(s, x− x′, y + sx− y′)dx′dy′ds

≤ C(1 + |x|3) exp(2|x|)p−2t−1.

(101)

By the same method, it is plain to check that|∂xS(3)
p (t, x, y)| ≤ Cp−2. Together with (100) and

(101), we complete the proof of the convergence of∂xûp.
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Convergence of∂2x,yûp. We start with∂2x,yS
(1)
p . Following (100),

∣

∣∂x,yS
(1)
p (t, x, y)

∣

∣

≤ Cp−2t−1/2

∫

R2

{

(1 + |x′|3) exp(2|x′|)
[

t−1
(

t−1|x− x′|+ t−2|y + sx− y′|
)2

+ t−2
]

× g(s, x− x′, y + sx− y′)
}

dx′dy′

≤ C(1 + |x|3) exp(2|x|)p−2t−5/2.

(102)

To deal with∂x,yS
(2)
p (t, x, y), we perform a change of variable:

∂x,yS
(2)
p (t, x, y) =

∫ t/2

0

∫

R2

(

pϕ(x′/p)− x′
)

∂2y,yûp(t− s, x′, y + sx− y′)

×
[

∂xg(s, x− x′, y′) + s∂yg(s, x− x′, y′)
]

dx′dy′ds,

so that, by (94) and Lemma 5.3,
∣

∣∂x,yS
(2)
p (t, x, y)

∣

∣

≤ Ct−3p−2

∫ t/2

0

∫

R2

|x′|3 exp(4|x′|)(s−1|x− x′|+ s−2|y′|)g(s, x− x′, y′)dx′dy′ds

≤ C(1 + |x|3) exp(4|x|)t−5/2p−2.

(103)

By a similar argument,

∂x,yS
(3)
p (t, x, y) = p−1

∫

R2

∫ t/2

0

{

f ′
(

p∂xûp(t− s, x′, y + sx− y′)
)

× ∂2x,yûp(t− s, x′, y + sx− y′)
[

∂xg(s, x− x′, y′) + s∂yg(s, x− x′, y)
]}

dx′dy′,

so that, by Lemma 5.3,
∣

∣∂x,yS
(3)
p (t, x, y)

∣

∣

≤ Cp−1t−2

∫ t/2

0

∫

R2

exp(2|x′|)(s−1|x− x′|+ s−2|y′|)g(s, x − x′, y′)dx′dy′ds

≤ C exp(2|x|)p−1t−3/2.

(104)

By (102), (103) and (104), the proof is over. �

5.2.3. Criticality of order 3 in Theorem 4.1.We investigate∂3y,y,yûp. Specifically, we assume that it

satisfies the bound|∂3y,y,yûp(t, x, y)| ≤ C(δ)p1/3−2δt−9/2−1/6+δ for any t ∈ (0, 1], |x| ≤ 1, y ∈ R

and someδ > 0. (Compare with Lemma 5.3.) We will establish below a contradiction showing that
the order 3 iny is critical.

In what follows, we denote by(X1,p
t ,X2,p

t )t≥0 the two-dimensional process associated with the
operator(1/2)∂2x,x + pϕ(x/p)∂y. Differentiating three times equation (96) w.r.t.y, we apply Itô’s

formula to(∂3y,y,yûp(t − s,X1,p
s ,X2,p

s ))0≤s<t, t > 0 being given. (WithX1,p
0 = x andX2,p

0 = y.)
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For a stopping timeτ less thanθ, for θ small (in particular,θ < t/2 ≤ 1/2), we have

∂3y,y,yûp(t, x, y) = E
[

∂3y,y,yûp(t− τ,X1,p
τ ,X2,p

τ )
]

+ pE

∫ τ

0
f (3)

(

p∂xûp(t− s,X1,p
s ,X2,p

s )
)(

∂2x,yûp(t− s,X1,p
s ,X2,p

s )
)3
ds

+ 3E

∫ τ

0
f (2)

(

p∂xûp(t− s,X1,p
s ,X2,p

s )
)

∂2x,yûp(t− s,X1,p
s ,X2,p

s )

× ∂3x,y,yûp(t− s,X1,p
s ,X2,p

s )ds

+ p−1E

∫ τ

0
f ′
(

p∂xûp(t− s,X1,p
s ,X2,p

s )
)

∂4x,y,y,yûp(t− s,X1,p
s ,X2,p

s )ds

= T (1)
p (t, x, y) + T (2)

p (t, x, y) + T (3)
p (t, x, y) + T (4)

p (t, x, y).

(105)

By Lemma 5.3, for anyδ > 0, p−2/3−δ∂4x,y,y,yûp is bounded on every compact subset of(0, 1] ×R2,
uniformly in p. Similarly,∂3x,y,yûp is bounded on every compact subset of(0, 1]×R2, uniformly inp.

Whenτ is the first exit time of a compact subset of(0, 1]× [−1, 1]×R, T (3)
p (t, x, y) andT (4)

p (t, x, y)
are bounded, uniformly inp.

By Lemma 5.5, the asymptotic behavior ofT (2)
p (t, x, y) is given by

T (2)
p (t, x, y)

= pE

∫ τ

0
f (3)

(

p∂xû0(t− s,X1,p
s ,X2,p

s )
)(

∂2x,yû0(t− s,X1,p
s ,X2,p

s )
)3
ds+Op(1),

(106)

whereOp(1) stands for the Landau symbol and denotes a bounded sequence in p. (Again, τ is the
first exit time from a compact subset of(0, 1] × [−1, 1] × R.)

Assume now that we can findt ∈ (0, 1] such that∂yû0(t, 0, 0) = ∂2x,xû0(t, 0, 0) = ∂3x,x,xû0(t, 0, 0) =

0 (see Subsubsection 5.2.5). Choose thenX1,p
0 = X2,p

0 = 0 andτ as the first exit timeτ = inf{t ≥
0 : |X1,p

t | ≥ θp−1/3, |X2,p
t | ≥ θ3p−1} ∧ θ2p−2/3. Differentiating PDE (97) w.r.t.x, we also have

∂2t,xû0(t, 0, 0) = 0. Performing a Taylor expansion in (106), we obtain

T (2)
p (t, 0, 0)

= pE

∫ τ

0
f (3)

(

p∂xû0(t, 0, 0) + θOp(1)
)(

∂2x,yû0(t, 0, 0) + θOp(p
−1/3)

)3
ds+Op(1).

(107)

In particular, there exists a constantγ ≥ 0, such that, for any powerδ > 0,

lim inf
p→+∞

p−δT (2)
p (t, 0, 0) ≥ lim inf

p→+∞

{

p1−δE[τ ] inf
|x|≤γθ

[

f (3)
(

p∂xû0(t, 0, 0) + x
)]

× inf
|x|≤γθ

[(

∂2x,yû0(t, 0, 0) + x
)3]}

.
(108)

Let us return to (105). We claim that the bound|∂3y,y,yûp(s, x, y)| ≤ Cpηs−9/2−η/2, s ∈ [t/2, t],
|x| ≤ 1, y ∈ R, cannot be true if the limit below is infinite:

(109) lim inf
p→+∞

{

p1−ηE[τ ] inf
|x|≤γθ

[

f (3)
(

p∂xû0(t, 0, 0) + x
)]

inf
|x|≤γθ

[(

∂2x,yû0(t, 0, 0) + x
)3]}

= +∞.



50 DAN CRISAN AND FRANÇOIS DELARUE

Indeed, by (108), (109) implieslim infp→+∞ p−ηT
(2)
p (t, x, y) = +∞. Multiplying (105) byp−η, we

then obtain a contradiction.
In particular, the bound|∂3y,y,yup(t, x, y)| ≤ Ct−9/2−η/2, t ∈ (0, 1], |x| ≤ 1, y ∈ R, cannot be true

if (109) holds true. Indeed, if|∂3y,y,yup(t, x, y)| ≤ Ct−9/2−η/2, then, fort ∈ (0, 1], |x| ≤ 1, y ∈ R,

|∂3y,y,yûp(t, x, y)| = p−9
∣

∣∂3y,y,yup
(

p−2t, p−1x, p−3y
)
∣

∣ ≤ Cpηt−9/2−η/2.

5.2.4. Lower Bound forE[τ ]. It now remains to boundE(τ) from below. Defineτ ′ = inf{t ≥ 0 :

|X1,p
t | ≥ θp−1/3}. Since

∣

∣X2,p
t

∣

∣ =

∣

∣

∣

∣

p

∫ t

0
ϕ
(

X1,p
s /p

)

ds

∣

∣

∣

∣

≤
∫ t

0

∣

∣X1,p
s

∣

∣ds, t ≥ 0,

we obtain that|X2,p
t | < θtp−1/3, t < τ ′. In particular,|X2,p

t | < θ3p−1, t < τ ′ andt ≤ θ2p−2/3.
Therefore,E[τ ] ≥ θ2P{τ ′ ≥ θ2p−2/3}p−2/3. Sinceτ ′ ∼ θ2p−2/3ρ, whereρ is the first exit time of a
Brownian motion from(−1, 1), we deduce that

(110) E[τ ] ≥ θ2P{ρ ≥ 1}p−2/3.

Therefore, (109) holds forη < 1/3, provided

(111) lim inf
p→+∞

{

inf
|x|≤γθ

[

f (3)
(

p∂xû0(t, 0, 0) + x
)]

inf
|x|≤γθ

[(

∂2x,yû0(t, 0, 0) + x
)3]}

> 0.

That is, the bound|∂3y,y,yup(t, x, y)| ≤ Ct−9/2−η/2, t > 0, x, y ∈ R, cannot be true forη < 1/3.
This exactly fits the threshold in Theorem 4.1 and Lemma 5.3.

5.2.5. Computation of the Derivatives.It now remains to findt ∈ (0, 1] such that∂yû0(t, 0, 0) =
∂2x,xû0(t, 0, 0) = ∂3x,x,xû0(t, 0, 0) = 0 and to check (111).

We first notice that̂u0 can be split into termŝu0 = û
(1)
0 + λû

(2)
0 , û(1)0 and û(2)0 both satisfying

Equation (97) but with different boundary conditions:

û
(1)
0 (0, x, y) = −sign(x)sign(y), û

(2)
0 (0, x) = sign(x+ 1).

We emphasize that

û
(1)
0 (t, x, y) =

∫

R2

û
(1)
0 (0, x′, y′)g(t, x− x′, y + tx− y′)dx′dy′.

Sinceû(1)0 (0,−x′,−y′) = û
(1)
0 (0, x′, y′), it is immediate to see, by a change of variable, that

û
(1)
0 (t,−x,−y) = û

(1)
0 (t, x, y), t > 0, x, y ∈ R.

By differentiation, we deduce that∂yû
(1)
0 (t, 0, 0) = ∂3x,x,xû

(1)
0 (t, 0, 0) = 0.

We now compute

∂xû
(1)
0 (t, x, y) = −2

∫

R

sign(y + tx− y′)g(t, x, y′)dy′ − 2t

∫

R

sign(x− x′)g(t, x′, y + tx)dx′

∂2x,yû
(1)
0 (t, x, y) = −4g(t, x, y + tx)− 2t

∫

R

sign(x− x′)
(

−12
y + tx

t3
+ 6

x′

t2
)

g(t, x′, y + tx)dx′.
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In particular,

∂2x,yû
(1)
0 (t, 0, 0) = −4g(t, 0, 0) − 12t−1

∫

R

sign(−x′)x′g(t, x′, 0)dx′ = c1t
−2,

with c1 = 2
√
3/π > 0.

We now investigatêu(2)0 (t, x). It is given by

û
(2)
0 (t, x) = (2π)−1/2

∫

R

sign(x− t1/2x′ + 1) exp
(

−(x′)2

2

)

dx′.

Therefore,

∂xû
(2)
0 (t, x) = 2(2π)−1/2t−1/2 exp

(

−(x+ 1)2

2t

)

,

∂2x,xû
(2)
0 (t, x) = −2(2π)−1/2t−3/2(x+ 1) exp

(

−(x+ 1)2

2t

)

,

∂3x,x,xû
(2)
0 (t, x) = 2(2π)−1/2

(

t−5/2(x+ 1)2 − t−3/2
)

exp
(

−(x+ 1)2

2t

)

.

In particular,∂2x,xû
(2)
0 (1, 0) = −c2 < 0 and∂3x,x,xû

(2)
0 (1, 0) = 0. Finally,

∂2x,xû0(1, 0, 0) = ∂2x,xû
(1)
0 (1, 0, 0) + λ∂2x,xû

(2)
0 (1, 0) = ∂2x,xû

(1)
0 (1, 0, 0) − λc2,

∂3x,x,xû0(1, 0, 0) = ∂3x,x,xû
(1)
0 (1, 0, 0) + λ∂3x,x,xû

(2)
0 (1, 0) = 0,

∂2x,yû0(1, 0, 0) = ∂2x,yû
(1)
0 (1, 0, 0) = c1 > 0.

(112)

Choose nowλ so that∂2x,xû
(1)
0 (1, 0, 0) − λc2 = 0. (This is possible sincec2 > 0.) For this choice,

the required conditions∂yû0(1, 0, 0) = ∂2x,xû0(1, 0, 0) = ∂3x,x,xû0(1, 0, 0) = 0 are satisfied.

5.2.6. Conclusion.We now choosef :

f(z) = − sin
(

2πz/|∂xû0(1, 0, 0)|
)

, z ∈ R, if ∂xû0(1, 0, 0) 6= 0,

f(z) = − sin
(

z
)

, z ∈ R, if ∂xû0(1, 0, 0) = 0.
(113)

In particular, there are two cases in (111). If∂xû0(1, 0, 0) 6= 0,

inf
|x|≤γθ

[

f (3)
(

p∂xû0(1, 0, 0) + x
)]

≥
(

2π/|∂xû0(1, 0, 0)|
)3

inf
|x|≤γθ

[

cos
(

±2πp + 2πx/|∂xû0(1, 0, 0)|
)]

=
(

2π/|∂xû0(1, 0, 0)|
)3

inf
|x|≤γθ

[

cos
(

2πx/|∂xû0(1, 0, 0)|
)]

.

Choosingγθ < |∂xû0(1, 0, 0)|/8, we then obtain

(114) inf
|x|≤γθ

[

f (3)
(

p∂xû0(1, 0, 0) + x
)]

≥ 2−1/2
(

2π/|∂xû0(1, 0, 0)|
)3
.

If ∂xû0(1, 0, 0) = 0,

inf
|x|≤γθ

[

f (3)
(

p∂xû0(1, 0, 0) + x
)]

= inf
|x|≤γθ

[

cos(x)
]

.



52 DAN CRISAN AND FRANÇOIS DELARUE

Choosingγθ < π/4, we then obtain

(115) inf
|x|≤γθ

[

f (3)
(

p∂xû0(1, 0, 0) + x
)]

≥ 2−1/2.

Let us examine now the second term in (109). Forγθ < c1/2,

(116) inf
|x|≤γθ

[(

∂2x,yû0(t, 0, 0) + x
)3] ≥ (c1/2)

3.

From (110), (114), (115) and (116), we deduce that (109) holds true withη < 1/3. This shows
criticallity at order 3.

5.2.7. Generalization at any Ordern ≥ 3. Following Subsubsection 5.1.2, we can generalize the
result to any ordern ≥ 3. The point is to differentiate (96)n times w.r.t.y and to apply Itô’s formula
as in (105). We then obtain

∂ny,...,yûp(t, x, y)

= E
[

∂ny,...,yûp(t− τ,X1,p
τ ,X2,p

τ )
]

+ p−2
∑

βn,m1,...,mnp
m1+···+mnE

∫ τ

0

[

f (m1+···+mn)
(

p∂xûp(t− s,X1,p
s ,X2,p

s )
)

×
n
∏

j=1

(

∂j+1
x,y,...,yûp(t− s,X1,p

s ,X2,p
s )

)mj
]

ds

= E
[

∂ny,...,yûp(t− τ,X1,p
τ ,X2,p

τ )
]

+
∑

βn,m1,...,mnp
m1+···+mn−2T (p)

n,m1,...,mn
.

(117)

(The sum running overm1, . . . ,mn such that
∑n

j=1 jmj = n.) Following (89) and applying Lemma
5.3, for anyδ > 0, we can find a constantCδ > 0 such that

pm1+···+mn−2|T (p)
n,m1,...,mn

| ≤ CδE(τ)p
δ−2p

∑n
j=1 mj

n
∏

j=1

p(j−7/3)+mj

≤ CδE(τ)p
δ−2p

∑n
j=1 mjp

∑n
j=1(j−7/3)mj+m2/3+4m1/3

= CδE(τ)p
n+δ−2p−(4/3)

∑n
j=3 mj−m2 .

Keeping in mind thatτ ≤ p−2/3, we deduce thatlimp→+∞ p−n+8/3pm1+···+mn−2|T (p)
n,m1,...,mn | = 0

whenm1 < n.
Whenm1 = n, we can follow (107), (108) and (110). We deducelim infp→+∞ p−n+8/3T

(p)
n,1,0,...,0 >

0, provided

(118) lim inf
p→+∞

inf
|x|≤γθ

[

f (n)
(

p∂xû0(t, 0, 0) + x
)]

inf
|x|≤γθ

[(

∂x,xû0(t, 0, 0) + x
)n]

> 0.

Following (113), (118) holds true for

f(z) = cos
(

2πz/|∂xû0(1, 0, 0)| − n(π/2)
)

, z ∈ R, if ∂xû0(1, 0, 0) 6= 0,

f(z) = cos
(

z − n(π/2)
)

, z ∈ R, if ∂xû0(1, 0, 0) = 0.

Going back to (117), we deduce that the bound|∂ny,...,yûp(t, x, y)| ≤ Cpn−8/3−2δt−2n+4/3+δ, t ∈
(0, 1], |x| ≤ 1, y ∈ R, cannot be true for someδ > 0. By scaling, we deduce that the bound
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|∂ny,...,yup(t, x, y)| ≤ Ct−2n+4/3+δ, t ∈ (0, 1], |x| ≤ 1, y ∈ R, cannot be true. This shows sharpness
of the bound in Theorem 4.1 for the current example. �

6. QUADRATIC CASE

Semilinear PDEs with quadratic nonlinearities appear in solving certain optimization problems
encountered in mathematical finance (see [11, 28]). Their corresponding BSDE (11) is said to
be quadratic if the growth of the driverf with respect toz is quadratic. Here, we will assume
|f(t, x, y, z)| ≤ Λ1(1 + |y| + |z|2), for some constantΛ1 (independent oft). The exponent 2 is the
critical one for the growth of the nonlinear term with respect to the spatial derivatives: it is known
that existence and uniqueness may fail for higher exponents.

Following Dos Reis [9] (see Assumptions (HY1) and (HY1+) in Theorems 3.1.9 and 3.1.11 therein),
we here investigate the case when the source term in (5) isK −m− 1 times continuously differen-
tiable w.r.t.x, y andz,K ≥ m+ 3, with bounded derivatives of order greater than or equal to 2, and
with first order derivatives of the following growth:

|∇xf(t, x, y, z)| ≤ Λ1(1 + |z|2), |∇yf(t, x, y, z)| ≤ Λ1, |∇zf(t, x, y, z)| ≤ Λ1(1 + |z|).
(Below,Λn denotes a bound for the derivatives of orderk between2 andn, with 2 ≤ n ≤ K−m−1.)

In this framework, BSDE (11) is well-posed provided the boundary conditionh is bounded: we
refer the reader to the original paper by Kobylanski [13]. Basically, the boundedness property ensures
that the martingale driving the BSDE (11) is BMO. The BMO property plays a crucial role: under
the BMO condition of the martingale part, one can apply Girsanov transformation to get rid of the
quadratic part of the equation. We refer to Hu, Imkeller and Müller [11], Ankirchner, Imkeller and
Dos Reis [1] and Dos Reis [9] for a review of this strategy. Forthis reason, the most natural approach
is to estimate the first-order derivatives in terms of theL∞ norm ofh (and not in terms ofLp norms
of h as in Theorem 4.1). We remind the reader of the following (seee.g. Lemma 1.2.13 in Dos Reis
[9]):

Proposition 6.1. Choose the driverf in (11)as above, then(11) is uniquely solvable for any starting
point (t, x) ofX. Moreover, the BMO-norm of the martingale part

∥

∥

∥

∥

∫ ·

t
〈Zs, dBs〉

∥

∥

∥

∥

BMO

= sup
Stopping Times t≤τ≤T

E

[
∫ T

τ
Z2
sds

∣

∣Fτ

]1/2

is finite and bounded by a constantC, depending onΛ1, T and‖h‖∞ only.

As announced, Girsanov assumption holds under BMO property(see Theorem 3.1 in Kazamaki
[12]):

Proposition 6.2. For any progressively-measurable process(µt)0≤t≤T with values inRN such that
(Mt =

∫ t
0 〈µs, dBs〉)0≤t≤T has a finite BMO-norm, there exists an exponentq∗ > 1, depending

on the BMO-norm of(Mt)0≤t≤T only, such that theLq∗(P)-norm of the exponential martingale of
(Mt)0≤t≤T is finite and bounded by a constant, depending on the BMO-normof (Mt)0≤t≤T only.

We have the following:

Theorem 6.3. Let (Vi)0≤i≤N beN +1 vector fields satisfying Definition 1.1. Assume that the source
term in (5) is as in Proposition 6.1 and thath is a bounded Lipschitz function. Then, for anyt > 0,
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u(t, ·) belongs toDK−m−1/2,∞
V (Rd). Moreover, for anyT > 0, n ≤ K −m− 1 andα1, . . . , αn ∈

A0(m), there exists a constantCn, depending onΛ1, Λn, n, T , theL∞-bound ofh, the Lipschitz
constant ofh and the vector fieldsV0, . . . , VN only, such that for all(t, x) ∈ (0, T ] ×Rd,

∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cnt
(1−‖α‖)/2,

∣

∣V[α1] . . . V[αn]Viu(t, x)
∣

∣ ≤ Cnt
−‖α‖/2, 1 ≤ i ≤ N.

Proof. The proof is identical with the case whenf is assumed to be Lipschitz. The reason is quite
simple: whenh is smooth, the gradient is known to exist and to be bounded in any directions of
the space in terms of the Lipschitz constant ofh. This is proved by Dos Reis [9], see Lemma 3.1.4
and Theorem 3.1.11 therein. As a consequence, quadratic growth does not affect the small time
asymptotic behaviour of the higher order derivatives, but only the dependence of the constantCn on
theL∞-bound and Lipschitz constant ofh. Using a mollification argument as in the proof of Theorem
3.1, we complete the proof. �

The non-Lipschitz case is much more involved. Here we no longer have available the result of Dos
Reis [9] for the control of the first order derivatives. The first step is to obtain a bound for the first
order derivatives. Once obtained, the analysis is handled as in the non-quadratic case.

Lemma 6.4. Let (Vi)0≤i≤N beN + 1 vector fields satisfying Definition 1.1. Assume that the source
term in(5) has the same structure as in Proposition 6.1 and thath is a bounded continuous function7.
Then, for anyt > 0, u(t, ·) belongs toD3/2,∞

V (Rd) and, for anyT > 0, there exists a constantC,
depending onΛ1, T , ‖h‖∞ and the vector fields only, such that, for anyα ∈ A0(m) and (t, x) ∈
(0, T ] ×Rd, |V[α]u(t, x)| ≤ Ct−‖α‖/2.

Proof. As above, we first mollify the boundary condition. We then need to prove (in the mollified
setting) the announced estimates in terms of the parametersΛ1, T and‖h‖∞ only.

By Kobylanski [13], we know thatu is bounded in terms ofΛ1 andT only. This point is crucial in
what follows. Let(Xt,x

s , Y t,x
s , Zt,x

s )t≤s≤T be the solution of the equation (11), withXx
t = x ∈ Rd

as initial condition. By Lemma 1.2.13 in Dos Reis [9], for anyp ≥ 1, there exists a constantCp,
depending onΛ1, T and‖h‖∞ only, such that

(119) E

[(
∫ T

t
|Zt,x

r |2dr
)p]

≤ Cp.

By Theorem 3.1.9 in Dos Reis [9], we can differentiate(Xt,x
s , Y t,x

s , Zt,x
s )t≤s≤T with respect tox as

a function fromRd into the space ofRd×R×RN -valued processes(ξs,Υs, ζs)t≤s≤T endowed with
the normE[supt≤s≤T (|ξs|2 + |Υs|2) +

∫ T
t |ζs|2ds]1/2. The derivative process satisfies

d
[

V[α](x)Y
t,x
s

]

= −∇xf(Θs)V[α](x)X
t,x
s ds−∇yf(Θs)V[α](x)Y

t,x
s ds

−∇zf(Θs)V[α](x)Z
t,x
s ds+ dB⊤

s V[α](x)Z
t,x
s ,

whereΘs = (s,Xt,x
s , Y t,x

s , Zt,x
s ). By Theorem 3.1.11 in [9], the process(Y t,x

s )t≤s≤T is pathwise
continuously differentiable w.r.t.x. In particular, for anyt > 0, u(t, ·) is continuously differentiable
andV[α](x)[Y

t,x
s ] = ∇xu(T − s,Xt,x

s )∇xX
t,x
s V[α](x).

7For the sake of clarity, we only give the statement for continuous boundary condition. The statement for the discontin-
uous case follows the model of Theorem 4.1.
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First Step. Girsanov Transformation.Owing to Propositions 6.1 and 6.2 (or taking advantage of the
mollified setting), we know that the exponential martingale

dQ

dP
= exp

(
∫ T

t
∇zf(Θr)dBr −

1

2

∫ T

t

∣

∣∇zf(Θr)
∣

∣

2
dr

)

defines a new probability measureQ under which the process(B̄s = Bs −
∫ s
t (∇zf)

⊤(Θr)dr)t≤r≤s

is a Brownian motion.
In particular, underQ, the process(V[α](x)Y

t,x
s )t≤s≤T admits the following semi-martingale de-

composition:

d
[

V[α](x)Y
t,x
s

]

= −∇xf(Θs)V[α](x)X
t,x
s ds−∇yf(Θs)V[α](x)Y

t,x
s ds+ (dB̄s)

⊤V[α](x)Z
t,x
s .

(120)

By standard BSDE results (see, for example, [2]), for anyp ≥ 1, we can find a constantC ′
p (whose

value may vary from line to line), depending onΛ1, p, T and‖h‖∞ only, such that

EQ

[(
∫ (T+t)/2

t
|V[α](x)Zt,x

s |2ds
)p]

≤ C ′
p sup
t≤r≤(T+t)/2

EQ
[∣

∣V[α](x)Y
t,x
r

∣

∣

2p]

+ C ′
pE

Q

[

sup
t≤s≤(T+t)/2

|∇xX
t,x
s |2p ·

∣

∣

∣

∣

∫ (T+t)/2

t

(

1 + |Zt,x
r |2

)

dr

∣

∣

∣

∣

2p]

.

By the BMO condition (see Proposition 6.2), we know that the densitydQ/dP belongs to the space
Lq∗(P), for someq∗ > 1, theLq∗(P)-norm being bounded in terms of known parameters. By (119),
we deduce that

(121) EQ

[(
∫ (T+t)/2

t
|V[α](x)Zt,x

s |2ds
)p]

≤ C ′
p

(

1 + sup
t≤r≤(T+t)/2

EQ
[∣

∣V[α](x)Y
t,x
r

∣

∣

2p])
.

By Lemma 2.3, we have

V[α](x)Y
t,x
r = ∇xu

(

T − r,Xt,x
r

)

∇xX
t,x
r V[α](x)

=
∑

β∈A0(m)

θ∗t (bα,β)
(

r − t, x
)

(V[β]u)
(

T − r,Xt,x
r

)

.(122)

Using again the bound fordQ/dP in Lq∗(P), we deduce that

(123) EQ
[
∣

∣V[α](x)Y
t,x
r

∣

∣

2p] ≤ C ′
p

∑

β∈A0(m)

(r − t)p(‖β‖−‖α‖)+ sup
y∈Rd

∣

∣(V[β]u)
(

T − r, y
)
∣

∣

2p
.

Finally, we emphasize from Definition 2.2 in Kazamaki [12] thatdP/dQ is inLr∗(P) for somer∗ > 0,
that isdP/dQ is in L1+r∗(Q). (The norms inLr∗(P) andL1+r∗(Q) being controlled in terms of
known parameters, see Theorem 2.4 in [12].) Therefore,

E

[(
∫ (T+t)/2

t
|V[α](x)Zt,x

s |2ds
)p]

≤ CEQ

[(
∫ (T+t)/2

t
|V[α](x)Zt,x

s |2ds
)p(1+r∗)/r∗]r∗/(1+r∗)

.
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Finally, (121) and (123) yield

E

[(
∫ (T+t)/2

t
|V[α](x)Zt,x

s |2ds
)p]

≤ C ′
p

∑

β∈A0(m)

sup
t≤r≤(T+t)/2

[

(T − r)p(‖β‖−‖α‖)+
∥

∥V[β]u
(

r, ·
)
∥

∥

2p

∞

]

.
(124)

Second Step. Integration by Parts.By (119) and the trivial inequality

C2p ≥ E

[(
∫ t+3(T−t)/4

t+(T−t)/2
|Zt,x

r |2dr
)2p]

≥
L
∑

ℓ=1

E

[(
∫ tℓ

tℓ−1

|Zt,x
r |2dr

)2p]

that holds for any mesht + (T − t)/2 = t0 ≤ t1 ≤ · · · ≤ tL = t + 3(T − t)/4, we deduce, by
choosingtℓ = t+[1/2+ ℓ/(4L)](T − t), that, for a given value ofp (that will be chosen later on) and
for any large enough integerL, there exists a certains ∈ [t+ (T − t)/2, t+ [3/4− 1/(4L)](T − t)]
such that

(125) E

[(
∫ s+(T−t)/(4L)

s
|Zt,x

r |2dr
)2p]

≤ C2p/L.

We now come back to (11). By integration by parts (see Theorem2.5), we know that

(V[α]u)(T − t, x)

= [(T − t)/(4L)]−‖α‖/2E
[

u
(

[1− 1/(4L)](T − t),Xt,x
t+(T−t)/(4L)

)

θ∗t [φα]
(

(T − t)/(4L), x
)]

+ E

∫ t+(T−t)/(4L)

t

[

∇xf(Θr)V[α](x)X
t,x
r +∇yf(Θr)V[α](x)Y

t,x
r +∇zf(Θr)V[α](x)Z

t,x
r

]

dr.

Taking the power2p and using the boundedness ofu, we obtain
∣

∣V[α]u(T − t, x)
∣

∣

2p ≤ C ′
p

[

1 + Lp‖α‖(T − t)−p‖α‖
]

+ C ′
p[(T − t)/L]2p sup

t≤r≤t+(T−t)/(4L)
E
[∣

∣V[α](x)Y
t,x
r

∣

∣

2p]

+ C ′
pE

[(
∫ t+(T−t)/(4L)

t
(1 + |Zt,x

r |2)dr
)2p]1/2

E

[(
∫ t+(T−t)/(4L)

t

∣

∣V[α](x)Z
t,x
r

∣

∣

2
dr

)2p]1/2

.

Applying Lemma 2.3 to expandV[α](x)Y
t,x
r as in (122) and using (124) to bound theL2p(P)-moment

of
∫ t+(T−t)/(4L)
t

∣

∣V[α](x)Z
t,x
r

∣

∣

2
dr,

∣

∣V[α]u(T − t, x)
∣

∣

2p ≤ C ′
p

(

1 + Lp‖α‖(T − t)−p‖α‖
)

+ C ′
p

[

[(T − t)/L]p + E

[(
∫ t+(T−t)/(4L)

t
|Zt,x

r |2dr
)2p]1/2]

×
∑

β∈Am
0

sup
t≤r≤(T+t)/2

[

(T − r)p(‖β‖−‖α‖)+‖(V[β]u)(T − r, ·)
∥

∥

2p

∞

]

.
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Clearly, we can replacet by s and thenx byXt,x
s in the above inequality, withs as in (125). Taking

the expectation and using the Markov property, we obtain

E
[
∣

∣V[α]u(T − s,Xt,x
s )

∣

∣

2p] ≤ C ′
p

(

1 + Lp‖α‖(T − s)−p‖α‖
)

+ (C ′
p/L

1/2)

[

1 +
∑

β∈A0(m)

sup
s≤r≤(T+s)/2

[

(T − r)p(‖β‖−‖α‖)+
∥

∥(V[β]u)(T − r, ·)
∥

∥

2p

∞

]

]

.

Sinces ≤ t+3(T − t)/4, we can replaceT − s in the second term above byT − t by modifyingC ′
p.

Moreover,s ≤ t+ 3(T − t)/4 implies(T + s)/2 ≤ (7T + t)/8. We deduce

E
[∣

∣V[α]u(T − s,Xt,x
s )

∣

∣

2p] ≤ C ′
p

(

1 + Lp‖α‖(T − t)−p‖α‖
)

+ (C ′
p/L

1/2)

[

1 +
∑

β∈A0(m)

sup
t≤r≤(7T+t)/8

[

(T − r)p(‖β‖−‖α‖)+
∥

∥(V[β]u)(T − r, ·)
∥

∥

2p

∞

]

]

.
(126)

Third Step. Girsanov Transformation again.By (120), keep in mind that (with the sames as above)

V[α](x)u(T − t, x)

= EQ

[

V[α]u(T − s,Xt,x
s ) +

∫ s

t

[

∇xf(Θr)V[α](x)X
t,x
r +∇yf(Θr)V[α](x)Y

t,x
r

]

dr

]

.

Recall that the densitydQ/dP belongs toLq∗(P), with a well-controlled norm. (See Theorem 2.4 in
[12].) Choosing2p greater than the conjugate exponent ofp∗ (sinces depends onp, this says thats
is now fixed), we deduce from Hölder’s inequality and from (122) that

∣

∣V[α](x)u(T − t, x)
∣

∣

2p

≤ C ′
pE

[
∣

∣V[α](x)u(T − s,Xt,x
s )

∣

∣

2p]

+ C ′
pE

[∣

∣

∣

∣

∫ s

t

[

∇xf(Θr)V[α](x)X
t,x
r +∇yf(Θr)V[α](x)Y

t,x
r

]

dr

∣

∣

∣

∣

2p]

≤ C ′
pE

[∣

∣V[α](x)u(T − s,Xt,x
s )

∣

∣

2p]

+ C ′
p(T − t)2p−1

[

1 +
∑

β∈A0(m)

sup
t≤r≤(3T+t)/4

[

(T − r)p(‖β‖−‖α‖)+
∥

∥V[β]u(T − r, ·)
∥

∥

2p

∞

]

dr

]

.

By (126),
∣

∣V[α]u(T − t, x)
∣

∣

2p ≤ C ′
p

(

1 + Lp‖α‖(T − t)−p‖α‖
)

+ C ′
p

(

T − t+ 1/L1/2
)

∑

β∈A0(m)

sup
t≤r≤(7T+t)/8

[

(T − r)p(‖β‖−‖α‖)+
∥

∥(V[β]u)(T − r, ·)
∥

∥

2p

∞

]

.

Multiplying by (T − t)p‖α‖, using the bound(T − t)p‖α‖(T − r)p(‖β‖−‖α‖)+ ≤ C(T − r)p‖β‖ for
t ≤ r ≤ (7T + t)/8, taking the supremum overx ∈ Rd and then choosingL large enough and
T − t small enough, we complete the proof. (Clearly, the bound is proven on some small interval
of the form [T − δ, T ), δ > 0. By a similar argument, the bound holds on any[t − δ/2, t + δ/2),
δ/2 ≤ t ≤ T − δ/2. That is,V[α]u(t, ·) is uniformly bounded for0 ≤ t ≤ T − δ/2.) �
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The lemma gives us the gradient bounds for the higher order derivatives as in the case whenf is
Lipschitz.

Theorem 6.5.Let(Vi)0≤i≤N beN+1 vector fields satisfying Definition 1.1, letf be as in Proposition
6.1, and leth be a bounded continuous function (see Footnote7). Then, for anyt > 0, u(t, ·) belongs

to DK−m−1/2,∞
V (Rd).

Moreover, for anyT > 0 andα1, α2 ∈ A0(m), there exists a constantC2, depending onΛ1, Λ2,
T , ‖h‖∞ and the vector fieldsV0, . . . , VN only, such that for allt ∈ [0, T ) andx ∈ Rd,

(127)
∣

∣V[α1]V[α2]u(t, x)
∣

∣ ≤ C2t
−(‖α1‖+‖α2‖)/2,

and for anyδ > 0, 3 ≤ n ≤ K −m − 1 andα1, . . . , αn ∈ A0(m), there exists a constantCn(δ),
depending onδ, Λ1, Λn, n, T , ‖h‖∞ and the vector fieldsV0, . . . , VN only, such that for allt ∈ (0, T ]
andx ∈ Rd,

(128)
∣

∣V[α1] . . . V[αn]u(t, x)
∣

∣ ≤ Cn(δ)t
−‖α‖/2

[

1 + t−n/2+1+min(1/‖α(1)‖,1/2+1/(2‖α(2)‖))−δ
]

.

with 1 ≤ i ≤ N , whereα(1) and α(2) stand for multi-indices in the familyα1, . . . , αn such that
‖α(1)‖ ≤ ‖α(2)‖ are the two smallest elements in the family‖α1‖, . . . , ‖αn‖.

Proof. There are not so many differences with the case whenf is at most of linear growth: most
of the work has been done in Lemma 6.4. Comparing with the proof of Theorem 4.1, we understand
that we first have to check the validity of Propositions 4.2 and 4.3 and of Corollary 4.4.

Extension of Proposition 4.2 to the quadratic case.We first notice that Lemma 3.4 holds in the qua-
dratic but smooth framework: following the proof of Theorem6.3 (or applying Theorem 6.3 directly),
we know thatV u exists and is bounded when the boundary condition is Lipschitz continuous, that is
the driverf may be assumed to be bounded when the boundary condition is smooth, so that Lemma
3.4 applies in the smooth framework. The first line in Proposition 4.2 is then proven by differen-
tiating the representation formula foru(t, x) n times. Since the derivatives off of order greater
than 2 are here bounded, most of the terms in Proposition 4.2 remain unchanged in the quadratic
case. Basically, we must pay attention to the boundary condition, which is now estimated inL∞

through a non-explicit constant as in Lemma 6.4. We must alsopay attention to the terms involving
the first derivatives off w.r.t. x or z, i.e. to the term∇xf(Θ(s,Xx

t−s))V[α1] . . . V[αn][X
x
t−s] and

to the term∇zf(Θ(s,Xx
t−s))V[α1] . . . V[αn][(V u)

⊤(s,Xx
t−s)] in the proof of Corollary 3.3, Corol-

lary 3.3 being the keystone of the proof of Proposition 4.2. Here,Θ(s,Xx
t−s) stands for the 4-tuple

(s,Xx
t−s, u(s,X

x
t−s), (V u)

⊤(s,Xx
t−s)). Clearly, ∇xf(Θ(s,Xx

t−s))V[α1] . . . V[αn][X
x
t−s] is of order

s−1 by Lemma 6.4. Since it is integrated over an interval of length t/2, it doesn’t affect the decay of
the boundary condition. The term∇zf(Θ(s,Xx

t−s))V[α1] . . . V[αn][(V u)
⊤(s,Xt,x

s )] is more difficult
to handle. By the linear growth of∇zf in z, it is of orders−1/2|V[α1] . . . V[αn][(V u)(s,X

x
t−s)]|. Fol-

lowing the proof of Corollary 3.3, we are to evaluate the(V[αj ])1≤j≤n atXx
t−s. Using Lemma 2.3, in

the first line in Proposition 4.2, we get new terms of the form

(129)
n
∑

k=1

∑

β

∫ t

t/2
s−1/2(t− s)(‖β‖−‖α‖)+/2E

[
∣

∣

(

V[β1] . . . V[βk]V u
)

(s,Xx
t−s)

∣

∣

p]1/p
ds,
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β running over thek-tuples of multi-indices(β1, . . . , βk) ∈ [A0(m)]k. Below, the terms in the
integral in (129) will be referred to as “non-product terms”since the iterated derivatives are not
multiplied between them (compare with Proposition 4.2).

Now, we must do the same job for the second line, that is for theterms deriving from the integra-
tion by parts used to obtain the second line. Clearly, the terms∇xf(s,Θs)V[α1] . . . V[αn][X

x
t−s] and

∇zf(s,Θs)V[α1] . . . V[αn][(V u)
⊤(s,Xx

t−s)] modify the second inequality as they modify the first one:
the term∇xf(Θ(s,Xx

t−s))V[α1] . . . V[αn][X
x
t−s] doesn’t change anything to the final rate; and the term

∇zf(Θ(s,Xx
t−s))V[α1] . . . V[αn][(V u)

⊤(s,Xx
t−s)] generates a news−1/2 in the integrals of the non-

product terms. Anyhow, we must also pay attention toT4(s, t, x) in (56). Since we do not take into
account the dependence of the final constants upon‖h‖∞, it is here enough to bound|f(Θ(s,Xx

t−s))|
by C(1 + s−1). Obviously, this doesn’t affect the resulting control of the boundary condition in the
second line in Proposition 4.2.

Extension of Proposition 4.3 to the quadratic case.As for Proposition 4.2, the dependence upon
‖h‖∞ cannot be made explicit in the new version of Proposition 4.3. Up to this restriction, Proposition
4.3 holds true forn = 1: this is Lemma 6.4.

To see how the property propagates withn, we are to analyse how the new version of Proposi-
tion 4.2 affects the induction. Assuming that Proposition 4.3 holds true up ton − 1 ≥ 1 in the
quadratic case (up to the shape of the dependence upon‖h‖∞), we then plug (129) in the induc-
tion property: fork = 1, . . . , n − 1, the worst contribution in the first line of Proposition 4.3 is
of order t−‖α‖/2t−(n−3)/2; in the second line of Proposition 4.3, the worst contribution is of order
t−‖α‖/2t−(n−2)/2; in the end, the final bound is not affected. (Actually, this is well-expected: nonlin-
earity affects the final bound through product terms only.) The difficult point is in (81) and (82): there
is an additionals−1/2 in the second lines because of the additionals−1/2 in (129). As a consequence,
(83) reads

∑

α1,...,αn

t‖α‖/2+(n−2)/2Qn
α1,...,αn

(t, r, x) ≤ Cn(p)

[

1+

+
∑

β1,...,βn

∫ t

t/2
(t− s)−1/2s−1/2s‖β‖/2+(n−2)/2Qn

β1,...,βn
(s, r, x)ds

]

,

To make it tractable, we proceed as follows. Following the proof of Lemma 6.4, the idea is to replace
the lower boundt/2 in the integral by[(L − 1)/L]t for L large. This makes very short the length
of the interval over which the integration is performed. Basically, this just deteriorates the constant
of the integration by parts in the new version of Proposition4.2, that is the bound therein reads as
L‖α‖/2t−‖α‖/2. Therefore, we get

∑

α1,...,αn

t‖α‖/2+(n−2)/2Qn
α1,...,αn

(t, r, x) ≤ Cn(p)

[

1 + L‖α‖/2

+
∑

β1,...,βn

sup
0<s≤r

[

s‖β‖/2+(n−2)/2Qn
β1,...,βn

(s, r, x)
]

∫ t

[(L−1)/L]t
(t− s)−1/2s−1/2ds

]

,

(130)
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Now, notice that
∫ t

[(L−1)/L]t
(t− s)−1/2s−1/2ds ≤ L1/2(L− 1)−1/2t−1/2 × L−1/2t1/2 = (L− 1)−1/2.

Therefore, choosingL large enough and taking the supremum w.r.t.t ∈ (0, r] in (130), we can
complete the proof of the new version of Proposition 4.3.

Extension of Corollary 4.4 to the quadratic case.The new version of Corollary 4.4, that is whenF
therein satisfies the same growth properties asf , is obtained as the new version of Proposition 4.2:
the terms for whichk = 1 in (84) are affected by an additionals−1/2 following from the growth of
∇zf , on the same model as in (129); the terms for whichk = 0 are affected by an additionals−1

following from the growth of∇xf ; andF itself, in the productF (Θ(Xx
s ))φ0(s, x), increases ass−1

for s small.

Completion of the Proof in the Smooth Setting.For n = 2, the extension of Proposition 4.2 al-
ready applies. Forn ≥ 3, we follow the end of the proof of Theorem 4.1. We must check that
the additional terms in the new versions of Proposition 4.2 and Corollary 4.4 do not affect the fi-
nal estimate. In the original proof of Theorem 4.1, the worstpossible bound iss−‖α‖/2−n/2 when
differentiatingn timesf(Θ(s,Xx

s )), s
−‖α‖/2−n/2s(‖α(1)‖+1)/2 when differentiating it(n − 1) times

and s−‖α‖/2−n/2s(‖α(1)‖+‖α(2)‖)/2+1 when differentiating it(n − 2) times. We now compare this
bound with the bound of the so-called “non-product terms”, that is the terms affected by the addi-
tional s−1/2, as in (129). All these terms count a single factor of the formV[β1] . . . V[βk]V u: using
Proposition 4.3, the worst bound for all of them iss−1/2s−‖α‖/2−(n−2)/2−1/2, i.e. s−‖α‖/2−n/2 ex-
actly! Obviously, the same holds when differentiating(n − 1) or (n− 2) times only. It then remains
to see how the terms affected by the additionals−1 behave: keep in mind that all these ones are free
of any terms of the formV[β1] . . . V[βk]V u. The worst bound for all these terms iss−1, which is less
thans−‖α‖/2−(n−2)/2.

The general case.Generally speaking, the proof is the same as in the case whenf is at most of linear
growth w.r.t.z. Basically, only the starting point is different: we here use stability results for quadratic
BSDEs to derive the convergence of the mollified sequence(uℓ)ℓ≥1 towardsu, with the same notation
as in Subsubsection 4.5.1. Stability results for quadraticBSDEs may be found in Lemma 2.1.2 in Dos
Reis [9]. The end of the proof is completely similar: away from the boundary, Lemma 6.4 applies
and the driverf is bounded. �

7. CONNECTION WITH PDES

We prove here Propositions 2.8 and 2.12.

7.1. Proof of Proposition 2.8. The proof relies on the following version of Itô’s formula :

Proposition 7.1. Let v satisfy part (1) in Definition 2.6 and be at most of polynomialgrowth as in
(21). Then, for anyT > 0 andx ∈ Rd, a.s., for anyt ≤ s < T ,

v(T − s,Xt,x
s ) = v(T, x) +

∫ s

t

[

−V0v +
1

2

N
∑

i=1

V 2
i v

]

(T − r,Xt,x
r )dr +

∫ s

t
V v(T − r,Xt,x

r )dBr.
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We first assume that Proposition 7.1 holds true and prove firstthat the unique solvability of the
PDE (5) holds.

7.1.1. Solvability. We first check thatu satisfies (1) and (3) in Definition 2.6. To do so, we consider
an approximating sequence(hℓ)ℓ≥1 of h as in Subsection 3.5 or as in Subsection 4.5 for the continuous
case and we denote byuℓ the associated solutions to the PDE (5). Sinceh is continuous,(hℓ)ℓ≥1 here
converges towardsh uniformly on compact sets. Following Subsection 3.5, we know that (uℓ)ℓ≥1

converges towardsu uniformly on compact subsets of[0, T ]×Rd. In particular,u is continuous up to
the boundary. Taking the supremum over(t, x) in a compact subset of(0, T ]×Rd in (67), we deduce
that (V uℓ)ℓ≥1 converges towardsV u uniformly on compact subsets of(0, T ] × Rd. By the same
argument, for anyα1, α2 ∈ A0(m), (V[α1]uℓ)ℓ≥1 and(V[α1]V[α2]uℓ)ℓ≥1 converge towardsV[α1]u and
V[α1]V[α2]u uniformly on compact subsets of(0, T ] × Rd. This proves thatV[α1]u andV[α1]V[α2]u

are continuous on(0, T ] × Rd. In the smooth setting, we know from Pardoux and Peng [27] that uℓ
satisfies PDE (5) in the classical sense. Therefore,(V0uℓ)ℓ≥1 is uniformly convergent on compact
subsets of(0, T ] × Rd: this shows thatu belongs toD1,∞

V0
((0,+∞) × Rd). Passing to the limit in

PDE in (5), we deduce thatu satisfies (2).

7.1.2. Uniqueness.Uniqueness also follows from Proposition 7.1. Note first that the martingale
term in Proposition 7.1 is local only. However, we can prove it to be a true martingale under the
standing assumption (see Subsection 2.1). Indeed, by the PDE structure, for any starting point(t, x) ∈
[0, T ) × Rd, the pair(v(T − s,Xt,x

s ), V v(T − s,Xt,x
s ))t≤s<T satisfies the BSDE (12) on[t, T ). By

standard Young’s inequality, it is then possible to prove that

E

∫ T

t
|V v(T − s,Xt,x

s )|2ds ≤ C sup
t≤s≤T

E
[

|v(T − s,Xt,x
s )|2

]

,

for a constantC possibly depending onT . By the growth property ofv, this proves that the martingale
term is square integrable. Moreover, by the continuity ofv up to the boundary, Eq. (12) is shown
to hold up to timeT . The initial condition of the diffusion being given, uniqueness of the classical
solution easily follows by uniqueness of the solution to theBSDE (12).

7.2. Proof of Proposition 7.1. Clearly, Proposition 7.1 is true whenv is smooth. Whenv is not
smooth, the point is to approximate it by a sequence of smoothfunctions(vp)p≥1 such that

(131) ∀r ≥ 1, lim
p→+∞

sup
1/r≤t≤T

‖vp(t, ·)−v(t, ·)‖V,2B(0,r),∞ = 0, lim
p→+∞

‖vp−v‖V0,1
[1/r,T ]×B(0,r),∞ = 0.

Indeed, introducing the stopping times(τq = inf{s ≥ t : |Xt,x
s | ≥ q})q≥1 (inf ∅ = +∞), we can

apply Itô’s formula to(vp(T − s,Xx
s ))0≤s≤τq∧(T−ε), ε standing for a small positive real, and then let

p tend to+∞. Property (131) then implies Itô’s formula for(v(T − s,Xx
s ))0≤s≤τq∧(T−ε) until time

τq ∧ (T − ε). Lettingq tend to+∞, this completes the proof.
It thus remains to prove (131). It is a consequence of the following convolution argument, the proof

of which is left to the reader. �
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Lemma 7.2. For two smooth densitiesρ1 andρd overR andRd, both with compact support, and for
a solutionv to the PDE as in Definition 2.6, define for allε > 0

vε(t, x) =

∫

Rd+1

v(t− εs, x− εy)1{t−εs>0}ρ1(s)ρd(y)dsdy.

Then,

∀r ≥ 1, lim
ε→0

sup
1/r≤t≤r

‖vε(t, ·)− v(t, ·)‖V,2
B(0,r),∞ = 0, lim

ε→0
‖vε − v‖V0,1

[1/r,r]×B(0,r),∞ = 0.

7.3. Proof of Proposition 2.12. The proof of the proposition is based on a suitable version ofItô’s
formula. Because of theLp setting, it cannot be true for any given starting point. We prove the
following:

Proposition 7.3. Let v satisfy part (1) in Definition 2.11 and be at most of polynomial growth as in
(21). Then, for anyT > 0 and any boundedFt-measurable (see Footnote6) andRd-valued random
vectorξ, 0 ≤ t < T , with an absolutely continuous distribution w.r.t. the Lebesgue measure onRd,
Itô’s formula holds on the same model as in Proposition 7.1, butreplacingXt,x

s byXt,ξ
s therein.

In particular, the process(v(T − s,Xt,ξ
s ))t≤s≤T admits a continuous version.

We emphasize that, in Itô’s formula, all the terms are uniquely defined even if the derivatives ofv
are defined up to sets of zero Lebesgue measure. This a consequence of Lemma 2.10.

We first assume that Proposition 7.3 holds true and then provethat the unique solvability of the
PDE (5) holds as well.

7.3.1. Solvability. We first check thatu satisfies (1) in Definition 2.11. To do so, we consider an
approximating sequence(hℓ)ℓ≥1 of h as in Subsection 4.5 and we denote by(uℓ)ℓ≥1 the associated
solutions to the PDE (5). By (71), all the(uℓ)ℓ≥1 are at most of polynomial growth on[0, T ] × Rd,
uniformly in ℓ. For a realt ∈ [0, T ) and anFt-measurable bounded random variableξ with an
absolutely continuous distribution, we deduce from standard stability results on BSDEs:

sup
t≤s≤T

E
[

|(u− uℓ)(T − s,Xt,ξ
s )|2

]

= sup
t≤s≤T

∫

Rd

E
[

|(u− uℓ)(T − s,Xt,x
s )|2

]

µ(x)dx

≤ C

∫

Rd

E
[

|(h− hℓ)(X
t,x
T )|2

]

µ(x)dx,

(132)

whereµ stands for the density of the distribution ofξ. By Lemma 2.10, the above right-hand side
converges to0 as ℓ tends to+∞, uniformly w.r.t. t in [0, T ]. By polynomial growth of(uℓ)ℓ≥1,
the sequence(uℓ(t, ·))ℓ≥1 converges towardsu(t, ·) in ∩p≥1L

p
loc(R

d), uniformly in t ∈ [0, T ]. Ap-
plying (67) with s = t, S = T , S′ = T − δ, for δ small, andx replaced byξ therein and then
taking the supremum w.r.t.t in [0, T − δ], we deduce that(V uℓ(t, ·))ℓ≥1 converges towardsV u(t, ·)
in L2

loc(R
d), uniformly in t in compact subsets of(0, T ]. By the bounds in Theorem 4.1, the con-

vergence holds in anyLp
loc(R

d), p ≥ 1, uniformly in t in compact subsets of(0, T ]. By the same
argument, for anyα1, α2 ∈ A0(m), (V[α1]uℓ)ℓ≥1 and(V[α1]V[α2]uℓ)ℓ≥1 converge towardsV[α1]u and
V[α1]V[α2]u in ∩p≥1L

p
loc(R

d), uniformly in t in compact subsets of(0, T ]. This proves thatV[α1]u

and V[α1]V[α2]u are measurable on(0, T ] × Rd. (For anyt ∈ (0, T ], V[α1]u(t, x) is the almost-
everywhere limit ofε−d

∫

|r|≤ε V[α1]u(t, x + r)dr, which is time-space measurable. The same for
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V[α1]V[α2]u(t, x).) By PDE (5) (which holds in the classical sense in the smoothsetting),(V0uℓ)ℓ≥1

converges in∩p≥1L
p
loc(R

d), uniformly in t in compact subsets of(0, T ]: this shows thatu belongs to
∩p≥1D1,p

V0
((0,+∞) ×Rd). Passing to the limit in (5), this proves (2) in Definition 2.11.

It finally remains to check thatu satisfies the boundary condition (3) in Definition 2.11. By (71),
the solutionu is at most of polynomial growth. Taking the expectation in (12) and using thea priori
estimates in Theorem 4.1, we then writeE[Y t,x

t ] asE[h(Xt,x
T )]+O((T − t)1/2), the Landau notation

O(·) being uniform w.r.t. x on compact subsets. Therefore, withµ as above,limt→T

∫

Rd |u(T −
t, x)− E[h(Xt,x

T )]|µ(x)dx = 0. We deduce that

(133) lim
t→T

∫

Rd

∣

∣u(T − t, x)− h(x)
∣

∣µ(x)dx = 0,

provided

(134) lim
t→T

∫

Rd

∣

∣E[h(Xt,x
T )]− h(x)

∣

∣µ(x)dx = 0.

Eq. (134) holds true whenh is continuous. Whenh is not continuous, we can approximate it by a
smooth function inL1

loc(R
d) and then apply Lemma 2.10. This implies (3) in Definition 2.11. �

7.3.2. Connection with BSDE(12). We emphasize here that, for an initial conditionξ as in Proposi-
tion 7.3,(Y t,ξ

s )t≤s≤T is a continuous version of(u(T − s,Xt,ξ
s ))t≤s≤T . Whenh is smooth, it holds

true since((Y t,x
s )t≤s≤T )t∈[0,T ),x∈Rd defines a continuous flow (w.r.t the initial conditionx): see Par-

doux and Peng [27]. In the case whenh is measurable only, things are less obvious sinceu might be
discontinuous. Nevertheless, it can be proven that(Y t,ξ

s )t≤s≤T and(u(T − s,Xt,ξ
s ))t≤s≤T coincide

by approximating the terminal condition: we can approximate h by a sequence of bounded smooth
functions(hℓ)ℓ≥1, uniformly of a polynomial growth and converging towardsh almost everywhere
(for the Lebesgue measure). Then, by standard stability results on BSDEs, it is known that

(135) E
[

sup
t≤s≤T

|Y t,ξ
s − uℓ(T − s,Xt,ξ

s )|2
]

≤ CE
[

|h(Xt,ξ
T )− hℓ(X

t,ξ
T )|2

]

,

whereuℓ is associated with the boundary conditionhℓ by (13). Above, the right-hand side tends to
0 since the law ofXt,ξ

T is absolutely continuous w.r.t. the Lebesgue measure (apply Lemma 2.10).

By (132), we deduce that(Y t,ξ
s )t≤s≤T is a continuous version of(u(T − s,Xt,ξ

s ))t≤s≤T . (Put it
differently, (Y t,ξ

s )t≤s≤T coincides with the continuous version of(u(T − s,Xt,ξ
s ))t≤s≤T given by

Proposition 7.3.)

7.3.3. Uniqueness.Given a solutionv to the PDE with polynomial growth, the point is to prove
that (v(T − s,Xt,ξ

s ))t≤s≤T satisfies the BSDE (12) (for the sameξ as above). Basically, this fol-
lows from Itô’s formula. As in the continuous case, the polynomial growth property together with
the standing assumption onf imply the martingale part in the BSDE to be square integrableon
[t, T ], that isE

∫ T
t |V v(T − s,Xt,ξ

s )|2ds < +∞. As a consequence, the martingale part(
∫ s
t V v(T −

s,Xt,ξ
s )dBs)t≤s<T has an a.s. limit ass tends toT , as the limit of anL2-martingale. Similarly, by

the Cauchy criterion,
(
∫ s

t
f
(

T − r,Xt,ξ
r , v(T − r,Xt,ξ

r ), (V v)⊤(T − r,Xt,ξ
r )

)

dr

)

t≤s<T
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has an a.s. limit as well. Therefore,(v(T − s,Xt,ξ
s ))t≤s<T has also an a.s. limit ass tends toT . We

can identify it as anL1 limit:

E
[

|v(T − s,Xt,ξ
s )− h(Xt,ξ

T )|
]

≤ E
[

|v(T − s,Xt,ξ
s )− h(Xt,ξ

s )|
]

+ E
[

|h(Xt,ξ
T )− h(Xt,ξ

s )|
]

.

By Lemma 2.10 and by (3) in Definition 2.11, the first term in theright-hand side tends to0 ass
tends toT . The second one also tends to0 whenh is continuous: approximatingh in L1

loc(R
d) by a

continuous function and applying Lemma 2.10 again, it tendsto 0 as well whenh is measurable only.
Finally, there is a version of(v(T − s,Xt,ξ

s ))t≤s≤T that satisfies (12) withh(Xt,ξ
T ) as boundary

condition. By uniqueness of the solution to the BSDE, we deduce that(Y t,ξ
s )t≤s≤T and the continuous

version of(v(T − s,Xt,ξ
s ))t≤s≤T coincide, that is(v(T − s,Xt,ξ

s ))t≤s≤T and(u(T − s,Xt,ξ
s ))t≤s≤T

have the same continuous version. Here, we emphasize that wecannot chooses = t directly because
of the possible discontinuities ofv andu. Anyhow, we can always claim that

∀t ∈ [0, T ), ∀t ≤ s < T, E

∫ s

t

∣

∣v(T − r,Xt,ξ
r )− u(T − r,Xt,ξ

r )
∣

∣dr = 0.

By Lemma 7.4 below, we deduce thatu andv match almost everywhere. �

Lemma 7.4. Let ψ : [0, T ] × Rd → R be a function such that, for anyt ∈ [0, T ] and x ∈ Rd,
|ψ(t, x)| ≤ C(1+|x|r) for somer ≥ 0, and, for anyt ∈ [0, T ) ands ∈ [t, T ), E

∫ s
t ψ(r,X

t,ξ
r )dr = 0.

Then,ψ is zero almost-everywhere for the Lebesgue measure.

Proof (Lemma 7.4).For anyt ∈ [0, T ), there exists a Borel subsetNt ⊂ [t, T ], of zero Lebesgue
measure, such that, for alls ∈ N ∁

t ∩ [t, T ), the integral
∫

Rd ψ(s, y)dPXt,ξ
s
(y) is zero. SettingN =

∪t∈Q∩[0,T )Nt, we deduce, that for alls ∈ N ∁ ∩ [0, T ), for all t ∈ [0, s) ∩ Q, the integral is zero. In

particular, we can lett tend tos: ast tends tos, Xt,ξ
s tends in law towardsξ. Sinceξ has a density,

there is no need of continuity onψ to pass to the limit in the above expression. (That is, by Lemma
2.10, we can approximateψ by a continuous function inL1

loc([0, T ] × Rd).) We deduce that, for all
s ∈ N ∁ ∩ [0, T ),

∫

Rd ψ(s, y)µ(y)dy = 0. Choosingµ in a countable total subset of densities with
compact support, we deduce thatψ is zero almost-everywhere. �

7.4. Proof of Proposition 7.3. Again, the proof follows via a mollification argument. We need to
find a sequence(vℓ)ℓ≥1 of smooth functions such that, for allp ≥ 1,

(136) ∀r ≥ 1, lim
ℓ→+∞

sup
1/r≤t≤T

‖vℓ(t, ·)− v(t, ·)‖V,2
B(0,r),p = 0, lim

ℓ→+∞
‖vℓ − v‖V0,1

[1/r,T ]×B(0,r),p = 0.

Indeed, introducing the stopping times(τq = inf{s ≥ t : |Xt,x
s | ≥ q})q≥1 (inf ∅ = +∞), we can

apply Itô’s formula to(vℓ(T − s,Xx
s ))0≤s≤τq∧(T−ε), for some small positive realε.

Therefore, for anyℓ ≥ 1 and anyt ≤ s < T , we havevℓ(T − s,Xt,ξ
s )− vℓ(T − t, ξ) = Iℓ(s), with

Iℓ(s) =
∫ s

t

[

−V0vℓ +
1

2

N
∑

i=1

V 2
i vℓ

]

(T − r,Xt,ξ
r )dr

∫ s

t
V vℓ(T − r,Xt,ξ

r )dBr.
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By Lemma 2.10, the following quantity makes sense:

I(s) =
∫ s

t

[

−V0v +
1

2

N
∑

i=1

V 2
i v

]

(T − r,Xt,ξ
r )dr +

∫ s

t
V v(T − r,Xt,ξ

r )dBr.

By Lemma 2.10 again,limℓ→+∞ E
[

supt≤s≤τq∧(T−ε) |I(s)− Iℓ(s)|
]

= 0. Therefore,

lim
ℓ→+∞

sup
k≥0

E
[

sup
t≤s≤τq∧(T−ε)

|vℓ+k(T − s,Xt,ξ
s )− vℓ(T − s,Xt,ξ

s )|
]

= 0.

We deduce that we can find a continuous adapted process(Ξs)t≤s<T such that

(137) lim
ℓ→+∞

E
[

sup
t≤s≤τq∧(T−ε)

|Ξs − vℓ(T − s,Xt,ξ
s )|

]

= 0.

The point is now to identify(Ξs)t≤s<T as a version of(v(T − s,Xt,ξ
s ))t≤s<T . By Lemma 2.10,

(138) lim
ℓ→+∞

E
[

|v(T − s,Xt,ξ
s )− vℓ(T − s,Xt,ξ

s )|
]

= 0.

By (137) and (138), we deduce that, for anys ∈ [t, T ), P{Ξs 6= v(T − s,Xt,ξ
s ), supt≤s≤T |Xt,ξ

s | ≤
q} = 0. Lettingq tend to+∞, this completes the proof. �

Now, (136) follows again from a convolution argument, the proof of which is left to the reader.�

Lemma 7.5. For two smooth densitiesρ1 andρd overR andRd, both with compact support, and for
a solutionv to the PDE as in Definition 2.11, define for allε > 0

vε(t, x) =

∫

Rd+1

v(t− εs, x− εy)1{t−εs>0}ρ1(s)ρd(y)dsdy.

Then, for allp ≥ 1,

∀r ≥ 1, lim
ε→0

sup
1/r≤t≤r

‖vε(t, ·)− v(t, ·)‖V,2
B(0,r),p = 0, lim

ε→0
‖vε − v‖V0,1

[1/r,r]×B(0,r),p = 0.
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[26] É. Pardoux and S.G. Peng. Adapted solution of a backward stochastic differential equation.Systems Control Lett. 14

(1990), 55–61.
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