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Abstract: 

Many species appear to be undergoing shifts in phenology, arising 

from climate change. To predict the direction and magnitude of 
future changes requires an understanding of how phenology 
depends on climatic variation.  Species show large-scale spatial 
variation in phenology (affected by differentiation among 
populations) as well as variation in phenology from year-to-year at 
the same site (affected predominantly by local plasticity). Teasing 
apart spatial and temporal variation in phenology should allow 
improved predictions of phenology under climate change. This 
study is the first to quantify large-scale spatial and temporal 
variation in the entire emergence pattern of species, and to test the 
relationships found by predicting future data. We use data from up 
to 33 years of permanent transect records of butterflies in the UK 

to fit and test models for 15 butterfly species. We use generalised 
additive models (GAMs) to model spatial and temporal variation in 
the distribution of adult butterflies over the season, allowing us to 
capture changes in the timing of emergence peaks, relative sizes of 
peaks and/or number of peaks in a single analysis. We develop 
these models using data for 1973-2000, and then use them to 
predict phenologies from 2001-2006. For 6 of our study species, a 
model with only spatial variation in phenology is the best predictor 
of the future, implying that these species have limited plasticity. For 
the remaining 9 species, the best predictions come from a model 
with both spatial and temporal variation in phenology; for 4 of 

these, growing-degree-days have similar effects over space and 
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time, implying high levels of plasticity. The results show that 
statistical phenology models can be used to predict phenology shifts 
in a second time period, suggesting that it should be feasible to 
project phenologies under climate change scenarios, at least over 
modest time scales 
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Abstract 18 

Many species appear to be undergoing shifts in phenology, arising from climate change. To 19 

predict the direction and magnitude of future changes requires an understanding of how 20 

phenology depends on climatic variation.  Species show large-scale spatial variation in 21 

phenology (affected by differentiation among populations) as well as variation in phenology 22 

from year-to-year at the same site (affected predominantly by local plasticity). Teasing apart 23 

spatial and temporal variation in phenology should allow improved predictions of phenology 24 

under climate change. This study is the first to quantify large-scale spatial and temporal 25 

variation in the entire emergence pattern of species, and to test the relationships found by 26 

predicting future data. We use data from up to 33 years of permanent transect records of 27 

butterflies in the UK to fit and test models for 15 butterfly species. We use generalised 28 

additive models (GAMs) to model spatial and temporal variation in the distribution of adult 29 

butterflies over the season, allowing us to capture changes in the timing of emergence peaks, 30 

relative sizes of peaks and/or number of peaks in a single analysis. We develop these models 31 

using data for 1973-2000, and then use them to predict phenologies from 2001-2006. For 6 of 32 

our study species, a model with only spatial variation in phenology is the best predictor of the 33 

future, implying that these species have limited plasticity. For the remaining 9 species, the 34 

best predictions come from a model with both spatial and temporal variation in phenology; for 35 

4 of these, growing-degree-days have similar effects over space and time, implying high 36 

levels of plasticity. The results show that statistical phenology models can be used to predict 37 

phenology shifts in a second time period, suggesting that it should be feasible to project 38 

phenologies under climate change scenarios, at least over modest time scales. 39 
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 40 

Introduction 41 

Many species appear to be undergoing shifts in phenology as a result of climate change 42 

(Sparks & Carey 1995; Crick et al. 1997; Menzel & Fabian 1999; Roy & Sparks 2000; 43 

Stefanescu et al. 2003), and phenological changes constitute a high proportion of all of the 44 

evidence that species are responding to climate change (Walther et al. 2002; IPCC 2007). 45 

Thanks to comprehensive biological recording, butterflies have become a model group in 46 

detecting the impacts of climate change, including impacts on phenology (Sparks & Yates 47 

1997; Roy & Sparks 2000; Forister & Shapiro 2003; Stefanescu et al. 2003; Dell et al. 2005; 48 

Gordo & Sanz 2006; Menzel et al. 2006). However, understanding and predicting these 49 

changes remains more of a challenge (Visser 2008).  The climate change literature is replete 50 

with statements about the potential detrimental effects of phenology shifts because they could 51 

lead to significant changes in population growth rates and in community interactions (van 52 

Asch et al. 2007; Doi et al. 2008). For example, temporal mismatches between plants and 53 

their pollinators could reduce seed set in plants (including crops) and reduce food availability 54 

for the pollinators (Memmott et al. 2007).  To predict whether such issues will become greater 55 

in the future demands an ability to predict phenology shifts, based on climatic variation.   56 

 57 

In insects, a variety of life history parameters (e.g. induction of diapause, size at pupation, 58 

maternal investments, etc.) may evolve in order to maximize fitness under the prevailing 59 

climate and the historic range of variability of that climate (Davidson 1944; Lees 1950; Manly 60 

1974; Visser 2008). Insects respond to very specific cues which, over their evolutionary 61 

history, have helped them to stay in synchrony with important seasonal events, such as the 62 

bud burst of trees (van Asch et al. 2007). Temperature and day length (photoperiod) may both 63 
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be used as cues (Bale et al. 2002). Because different species have evolved to use different 64 

cues, and because climate change affects temperature but not day length, this could lead to 65 

maladaptive responses (Doi et al. 2008). 66 

 67 

A number of studies have used year-to-year variation in phenology (usually earliest 68 

emergence or mean emergence date) regressed on yearly climate to predict future changes 69 

(e.g. Roy & Sparks 2000; Gordo & Sanz 2006). As well as temporal changes, many species 70 

also show spatial variation in phenology (e.g. Zhou et al. 1995; Langvatn et al. 1996; White et 71 

al. 1997), but a given climate variable may have different effects over space and over time 72 

(Pollard 1991; Rock et al. 1993; Thompson & Clark 2006; Doi et al. 2008; Doi & Takahashi 73 

2008; Forkner et al. 2008). For example, the leafing date of japanese trees varies less with the 74 

gradient of temperature over space than it does with changes in temperature over time at a 75 

single site (Doi & Takahashi 2008). If phenology varies to different extents in space and in 76 

time this implies that species do not simply respond physiologically to temperature cues.  77 

Instead they are likely to be, in part, locally adapted and/or responsive to spatially fixed cues, 78 

such as daylength (Bradshaw & Holzapfel 2001; Visser 2008). 79 

 80 

Teasing apart the spatial variation in phenology, which is affected by local differentiation of 81 

populations, and the temporal variation, which is affected by phenotypic plasticity within a 82 

population, should allow much better predictions of phenology under climate change than 83 

looking at one (space/time) dimension in isolation. However, few studies have considered 84 

both spatial and temporal variation in phenology (Rock et al. 1993; Doi et al. 2008; Doi & 85 

Takahashi 2008), and none of these has explicitly attempted to predict the future. 86 

 87 
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In this study we use data from up to 33 years of permanent transect records of butterflies in 88 

the UK to fit and test models of the phenology of 15 butterfly species, modelling both spatial 89 

and temporal variation in relation to the climate. We use generalised additive models (GAMs) 90 

(Wood 2006) to model the distribution of adult butterflies over the season, independently of 91 

the overall abundance at a particular site and year, allowing us to capture changes in the 92 

timing of emergence peaks, relative sizes of peaks and/or number of peaks in a single 93 

analysis. We develop these models using data for the time period 1973-2000, and then use 94 

each model to predict phenologies for the period 2001-2006. The testing data enables us to 95 

assess our ability to predict detailed phenological patterns into the future. Furthermore, the 96 

relative predictive power of alternative models that have different predictor variables allows 97 

us to make inferences about the factors that regulate phenology in different species. 98 
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Methods 99 

Butterfly data 100 

We used butterfly abundance data from UK Butterfly Monitoring Scheme (collected and 101 

maintained by Butterfly Conservation and the Centre for Ecology and Hydrology; Pollard & 102 

Yates 1993; Asher et al. 2001). Butterflies of all species are recorded along a permanent 103 

transect at weekly intervals between April and September at a network of sites across the 104 

country. The number of sites taking part in the scheme has increased from 1 in 1973 to 750 in 105 

2006. In order to fit models to roughly half the data, and use the other half to test model 106 

predictions, we split the data set into 1973-2000 and 2001-2006 periods. 107 

 108 

We focused on the 15 species that are known to have multiple generations per year in at least 109 

part of their British range, since these have the most complex phenological patterns and might 110 

be expected to be the most difficult to model and predict future changes. We ran all the 111 

analyses separately for each species, using only sites where the species was found at a 112 

reasonable frequency (usually using the condition that the median count over all weeks and 113 

years should be greater than one, but this condition had to be relaxed for 4 species that were 114 

particularly rare and/or temporally variable: holly blue, wall brown, small blue and wood 115 

white; common English and Latin names are given in Table 2). 116 

 117 

Climate data 118 

We used historical monthly mean temperature data at the 10 km grid resolution, from 119 

averages of the 5 km grid resolution data available from the Met Office (“UKCP09” data, 120 

Met_Office 2009). We decided to use growing degree days above 5° Celsius (henceforth 121 

“GDD5”) as a measure of the warmth available for development and reproduction that is 122 
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relevant to all butterfly species (even though there will also be various effects of winter 123 

minima, summer maxima, rainfall, cloudiness, etc.) (Romo & Eddleman 1995; Bryant et al. 124 

2002). From the monthly mean temperatures we calculated the GDD5 for each UKBMS site 125 

(henceforth actual GDD5) in each year; defining “year” as the months between October of the 126 

previous year (just after the previous transect season finished) and September (when the 127 

transect season in question finished). Across the UK, GDD5 has been increasing in the time 128 

period of this study, but there is also considerable year-to-year variation (Fig. 1). The average 129 

increase in GDD5 between the period 1973-2000 and the period 2001-2006 is c.200, which is 130 

nearly half of the inter-annual variation (variation in medians among years), and 10% of the 131 

spatial variation in GDD5 that exists across all British 10km grid squares within a single year 132 

(Fig. 1). 133 

 134 

Because we wanted to separate the effects of spatial variation in the climate from temporal 135 

variation in the climate, we also calculated (a) mean GDD5 for each site over the period 1973-136 

2000 (henceforth “site GDD5”), and (b) the difference between each site’s actual GDD5 in 137 

each year and the site mean (henceforth “GDD5 differential”). Hence each site and year has 3 138 

interrelated GDD5 measures: (actual GDD5)t = (site GDD5) + (GDD5 differential)t where t 139 

indexes years. 140 

 141 

Statistical analyses 142 

We used generalised additive models (GAMs) with a negative binomial error structure to 143 

model the emergence pattern as a flexible, smooth function of the time of year (measured as 144 

weeks from the first week in April). By using 2-D and 3-D smooths, we could represent the 145 

fact that emergence pattern would change gradually with the climate over space and/or time. 146 

We used the GAM implementation in the mgcv package in R (Wood 2003; Wood 2008; 147 
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R_Development_Core_Team 2009) with the extension to negative binomial family in the 148 

MASS package (Venables & Ripley 2002). Because the data consisted of butterfly counts (of 149 

a certain species at a given site, week and year), but we wanted to investigate the emergence 150 

pattern independently of the overall abundance of butterflies, we always included the average 151 

abundance for the site and year as a linear covariate in the GAM. Specifically, this linear 152 

covariate was calculated as: mean[ln(counti+1/27)] where i indexes the week, and there are 153 

usually 26 weeks (sometimes fewer because of missed surveys). The mean is calculated in log 154 

space because the negative-binomial GAM has a log link function, and a constant 1/27 is 155 

added to the count because zeros cannot be logged. Using this average abundance as a 156 

covariate means that the variation remaining to be explained is the distribution of individuals 157 

among the weeks of a given year – which is the main quantity of interest – and that the 158 

observation error structure relevant to such count data is retained. 159 

 160 

We fitted 7 GAMs, representing different hypotheses about the drivers of phenology, to each 161 

species' data for the early time period (1973-2000). We evaluated the GAMs on their ability to 162 

predict the later time period (2001-2006). Details of the 7 models used are given in Table 1. 163 

The spatial component of climate is represented either by site GDD5 or by site northing: the 164 

latter should be a better predictor of phenology if the species responds more to day length 165 

than temperature. The temporal component is represented by GDD5 differential. If the basic 166 

responses to temperature are the same everywhere (i.e. different populations are not adapted 167 

to the climate differently) then the actual GDD5 experienced by each site in each year might 168 

be the best predictor of phenology. 169 

 170 

Model comparison 171 
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The exact likelihood of each observation (x) given our model can be calculated as the 172 

probability density at x of the negative binomial distribution with mean given by the GAM 173 

prediction (according to the explanatory variables specific to that observation), and shape 174 

parameter as fitted by the GAM (the same shape parameter for all observations under a given 175 

model). Taking logs of these probabilities and summing over all observations (either 176 

observations in the fitting period, or observations in the testing period) gave us the log 177 

likelihood, L. The proportion of deviance “explained” was taken to be how far L lies between 178 

Lnull (likelihood under model 00, see Table 1) and Lsat. Lsat is the maximum likelihood 179 

possible for those data: that which would occur under a model where predictions are exactly 180 

the same as observations (i.e. a saturated model) and where a Poisson distribution (no 181 

overdispersion) is assumed. So proportion deviance explained = 1- (L-Lsat)/(Lnull-Lsat). 182 

 183 

Our results focus on comparing the log likelihood of the testing (2001-2006) data under each 184 

GAM. Using a separate test data set effectively penalizes overfitted models, and the model 185 

with the highest log likelihood can be said to be the best model (i.e., no GAM parameters 186 

were estimated for any model using the testing data). We can also use -2L to calculate Akaike 187 

weights (Burnham & Anderson 2002) to give us a “degree of belief” in a certain model 188 

compared to others. However, the Akaike weighting is strongly dependent on the assumption 189 

that observations are independent – an assumption that was not really tenable for our data, 190 

where there were multiple observations from exactly the same site. To show which of our 191 

conclusions are robust to this assumption, we report raw model weights, and weights where 192 

each observation only counts as 1/12 of a degree of freedom (L becomes L/12). The factor 12 193 

was chosen based on the autocorrelation of residuals in the testing data. Residuals from 194 

consecutive weeks at the same site and the same year had rank correlation coefficients >0.5, 195 

but correlation dropped quickly with lag> 1 week, so roughly every other week’s data could 196 
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be considered a pseudoreplicate. Residuals from the same week at the same site for different 197 

years had rank correlation coefficients >0.5, irrespective of the time lag in years – suggesting 198 

that of 6 years of data, 5 may be pseudoreplicates. Dividing by 2 for non-independent weeks 199 

and by 6 for non-independent years resulted in the factor 12. Although this “correction factor” 200 

is crude, it should be noted that there is no perfect way of assessing independence, and that 201 

the main results in this paper are robust to quite large changes in the weighting. 202 
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Results 203 

For all species except the small tortoiseshell, the GAMs predict 15-30% of the deviance in the 204 

testing data (Table 2). The amount of deviance explained is only slightly lower in the testing 205 

than in the training data (Table 2), showing relatively good explanatory performance of the 206 

models. There is strong support for at least some spatiotemporal variability in phenology for 207 

all the species (i.e., models incorporating variation in space and/or time perform consistently 208 

and significantly better than “null” week-only models; final two columns in Table 2). 209 

 210 

For 6 species, phenologies are spatially variable but seem little affected by year-to-year 211 

changes in temperature; a model with only spatial variation in phenology is the best predictor 212 

of the “future” 2001-2006 dynamics (model 1 or 2 have the best fit: Table 2, Fig. 2).  Of these 213 

6 species, latitude alone is the best predictor for 5 species (common blue, speckled wood, 214 

brown argus, small blue, wood white), whereas for the remaining one (holly blue) the site’s 215 

average GDD5 is the best predictor.  This implies that, for these 6 species, phenology is 216 

relatively fixed at a given site (or that it responds to climate variables that are not correlated 217 

with GDD5). 218 

 219 

The best-fitting models for the remaining 9 species suggest that they exhibit some temporal 220 

variation in their phenology, depending on the thermal conditions from year to year and site to 221 

site.  For 4 of these species (small white, large white, Adonis blue, wall brown), the model 222 

based on actual GDD5 (the GDD5 experienced in year X at site Y, model 3) is the best at 223 

predicting the future - their phenologies appear entirely flexible with respect to GDD5 (Table 224 

2, Fig. 2). For the remaining 5 species (green-veined white, small tortoiseshell, small heath, 225 

small copper, comma), fixed spatial variables (northing or average site GDD5) combine with 226 
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responses to annual variation in GDD5 to determine observed emergence patterns (model 4 or 227 

5 best; Table 2, Fig. 2).  For these 5 species, the model based on actual GDD5 (model 3) still 228 

outperforms purely spatial models (models 1-2, Table 2, Fig. 2). This demonstrates that, even 229 

though there may not be perfect space-for-time equivalence, there is a degree of consistency 230 

in the response to temperature in different places (Table 2, Fig. 2). 231 

 232 

For 9 species, northing is a consistently better spatial covariate than site average GDD5, i.e. 233 

the Akaike weight of models with northing versus those with GDD5 is close to 1 (Table 2). 234 

This suggests that day length could play a role in determining their phenologies, without 235 

necessarily implying site-specific local adaptation. For 6 species, the opposite is true (low 236 

weight of models with northing, compared to site average GDD5; Table 2); this suggests that 237 

phenological changes are triggered by cues that are correlated with the average GDD5 of each 238 

site, and this could potentially include population-specific photoperiod responses. Hypotheses 239 

about population and species differences in photoperiod responses remain to be tested 240 

experimentally. 241 

 242 

There is great variation between species in exactly how phenology varies over space and time.  243 

The number of emergence peaks appears to change in space and/or time for 7 out of the 15 244 

species (Fig. 3, Fig. 4, Fig. S2).  Six of these species show a greater number of peaks in the 245 

southern (hotter) parts of their ranges than in the north (common blue (Fig. 3a), wood white, 246 

small blue, small tortoiseshell, small copper, small heath (Fig S2)).  Two of these species 247 

show an increased tendency to produce an extra peak in the south in relatively hot years 248 

(small copper (Fig. 4a-b), small heath (Fig S2)). The speckled wood (Fig 3b) appears to be an 249 

exception in that there are fewer emergence peaks in the far south (2) than further north (3).  250 
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However, because of the complex life cycle of this species, fewer peaks might not imply 251 

fewer generations per year (see discussion).  252 

 253 

For other species, the number of peaks does not seem to change, but the relative sizes of the 254 

different peaks do change.  The holly blue (Fig 3c), green veined white, and large white (Fig 255 

S2), show higher late summer peaks in the south than in the north. The brown argus (Fig. 3d) 256 

shows a higher first peak in the south.  In the comma butterfly, the relative size of the middle 257 

peak is larger in the south than in the north (Fig 4c-d). Finally, for some species the timing of 258 

the peaks changes, with earlier emergences in the south and in hotter years (e.g. wall brown, 259 

green-veined white, large white, Fig. S2). 260 
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Discussion 261 

This is the first study to quantify large-scale spatial and temporal variation in the entire 262 

emergence pattern of species, and to test the relationships found by predicting future data. 263 

Even though a large proportion of the deviance remained unexplained, predictions from our 264 

models were surprisingly robust (similar amounts of deviance were explained in the testing as 265 

in the training data). Because the data we fitted consisted of transect counts in particular 266 

weeks and sites, which are inherently variable for many reasons, we would never expect 267 

predictions to have a very high precision, but this should not prevent them from predicting 268 

large-scale trends. The results show that statistical phenology models can be used to predict 269 

phenology shifts in a second time period, suggesting that it should be feasible to project 270 

phenologies under climate change scenarios, at least over modest time scales.   271 

 272 

Our method isolates “phenology” in the sense of the distribution of adults over the season, 273 

independently of the overall abundance in a particular site or year. This is a desirable first step 274 

to understanding the underlying biology: it is more meaningful than other commonly used 275 

metrics such as the date of first observation, mean date or date range, which can be biased by 276 

changes in overall abundance or changes in voltinism. The entire pattern of emergence is 277 

relevant to the interactions between species, such as between herbivores and plants or 278 

between plants and pollinators. Observing the distribution of adults over the season in relation 279 

to habitat and climate factors also permits fuller consideration of how climate change alters 280 

the interactions among species, and how it might change selection pressures. 281 

 282 

The variety of phenological patterns observed 283 
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One of the desirable features of our GAM modelling approach is its flexible ability to 284 

represent the variety of phenological patterns seen in butterflies, especially multivoltine 285 

butterflies. The patterns of emergence peaks in the GAMs (Fig. 3-4 and S2) are largely what 286 

we would expect given what is known about the voltinism of these species. For example, the 287 

common blue was already known to have univoltine populations in the north and bivoltine 288 

ones in the south and this is picked up very clearly in the GAM (Fig. 3a). The northern peak is 289 

timed midway between the two southern peaks, suggesting that it would not be simple for a 290 

population to switch between the two modes over time, and thus is not surprising that the 291 

northing-only model predicted best for this species. 292 

 293 

The speckled wood also shows a complex pattern, broadly consistent with what is known 294 

about its phenology. This species has a complex life cycle, overwintering in both larval and 295 

pupal stages (Nylin et al. 1995; Blakeley 1997). The pupae emerge somewhat before the 296 

larvae in spring, producing two small peaks in the first half of the flight season (Fig. 3b). 297 

Going from north to south, the two small peaks overlap more and more until they appear as 298 

one extended peak. So we do not think this decrease in number of emergence peaks represents 299 

a decrease in the numbers of generations the speckled wood achieves in a year – in fact it may 300 

represent an increase. There could be 2 generations per year in the south but only 3 301 

generations per 2 years in the north (the 3
rd

 peak being the offspring of the 1
st
 peak and the 2

nd
 302 

peak being the offspring of the 3
rd

 peak in the previous year). It is a little surprising that the 303 

northing-only model gave the best predictions for this species, because it has been observed 304 

elsewhere that development times are very dependent on temperature, and that the flight 305 

period can be extended (start earlier and finish later) in relatively warm years at a single site 306 

(Shreeve 1986). This highlights the potential for more detailed species-specific models to 307 
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explain more of the observed variation by including additional climatic and other variables 308 

(see below). 309 

 310 

For other species, the GAMs pick up changes in the relative sizes of the different peaks.  The 311 

holly blue (Fig 3c), green veined white, and large white (Fig S2), show higher late summer 312 

peaks in the south than in the north. For the holly blue and the green-veined white, the second 313 

peak in the north is smaller than the first, and may represent only a partial second generation. 314 

For the large white the second peak is always substantially bigger than the first, so it seems 315 

more reasonable to assume that there are 2 complete generations per year, but that high 316 

breeding success and/or survival during summer are higher in the warm south.  The brown 317 

argus (Fig. 3d) shows a higher first peak in the south, seemingly because the first adult peak is 318 

extremely small in northern locations rather than because summer breeding success is 319 

increased in the north (although the latter is possible because of reduced parasitism in the 320 

north; Menendez et al. 2008).  In the comma butterfly, the relative size of the middle peak is 321 

larger in the south than in the north (Fig 4c-d).  Two types of comma adults are produced in 322 

the mid-summer peak: bright orange, active individuals that breed again in the same year, 323 

with their offspring emerging in late summer; and darker, less active individuals that will 324 

overwinter directly as adults and that will not breed until the following year (Nylin 1989; 325 

1992).  Therefore, the shift most likely reflects an increase in the frequency of two 326 

generations per year in the south. 327 

 328 

Insight into the drivers of phenology 329 

Our statistical models can potentially capture the net effects of phenological adaptations (the 330 

average and slope of the reaction norms) that differ between populations, and make successful 331 

predictions without necessarily knowing what the climate triggers are. It is likely, as has been 332 
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shown for many insects, that phenological events are triggered by a combination of 333 

temperature and day-length cues. For example, the developmental pathways of the comma 334 

butterfly, for which model 5 (indicating an interaction effect of latitude and GDD5 335 

differential) was the best predictor, are known to be affected by both photoperiod and 336 

temperature (Nylin 1989; 1992). Any ongoing evolution of the reaction norms will cause 337 

mismatches between our models and future data. To predict this evolution is a very difficult 338 

task, and would require more detailed knowledge of the traits that underlie the realised 339 

phenology (Visser 2008). However, our results suggest testable predictions about which 340 

species respond to which triggers. 341 

 342 

The relative performance of our 5 alternative models suggest that different species currently 343 

have different amounts of regional adaptation of phenology, and different levels of plasticity 344 

in phenology.  Some species show quite flexible space-for-time substitution (i.e., the 345 

phenology can simply be predicted by knowing the temperature accumulated in a given 346 

site/year), but others show patterns of emergence that are less flexible over time. Six out of 347 

the 15 species’ phenologies were best fit solely by fixed spatial effects (latitude or average 348 

GDD5 of a site), four species showed flexible space-for-time substitution, while five species 349 

showed complex patterns that were best fitted by an interaction between spatial and temporal 350 

variation in phenology (i.e. change in phenology over time was dependent on the spatial 351 

location of the site).  Species with fixed spatial effects have, prima facie, no plasticity and 352 

therefore may only respond to climate change gradually, through evolutionary changes (for 353 

example evolution of critical photoperiods that induce diapause, Bradshaw & Holzapfel 354 

2001).  When species exhibit space-for-time equivalence this suggests that reaction norms are 355 

the same in all populations, and that no evolution is required to respond to moderate climate 356 

change. Therefore we may expect these species to “keep up” with climate change, and we 357 
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might also have greater confidence in the predictions of our models for future years for these 358 

species. When species exhibit space-time interactions, this suggests that reaction norms are 359 

different in different geographic areas. Therefore we may expect these species to show an 360 

intermediate rate of response to climate change, or to respond in some geographic areas but 361 

not others.  It is not clear whether year-to-year plasticity necessarily increases fitness, 362 

compared to a fixed phenology strategy – presumably this would also depend on the 363 

phenological responses of the resources, mutualists and natural enemies of the species under 364 

consideration. 365 

 366 

Limitations 367 

We have focused on how the GDD5 summed over a whole year affects the entire sequence of 368 

emergence, and in doing so we have inevitably glossed over many of the climatic and 369 

biological details that underlie these phenomena. Better fits could undoubtedly be obtained in 370 

future studies by including additional climate variables, particularly those that show little 371 

correlation with GDD5. The small tortoiseshell in particular could be an interesting subject 372 

for further study because so much variation was left unexplained by temperature or northing.  373 

The speckled wood deserves further consideration because its phenology responds to early 374 

and late season temperatures (Shreeve 1986) that were not fully encapsulated within our 375 

GDD5 approach, and the same may be true for additional species. It may be argued that better 376 

predictions of the future would be obtained from a mechanistic model of the species’ 377 

development, life-history and population dynamics. In several experimental studies it has 378 

been shown that degree-days have quite a direct relationship to the development rate of each 379 

larval instar of insects (Manel & Debouzie 1997; Gu & Novak 2006; Thompson & Clark 380 

2006; Raworth 2007; Trnka et al. 2007). These relationships are often used to build 381 

sophisticated models of the phenology of certain well-known species, such as crop pests (e.g. 382 
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Collier & Finch 1985; Trnka et al. 2007). However, such models usually need to be calibrated 383 

differently for different geographic areas, reflecting the variability of development conditions 384 

in the field relative to laboratory conditions, microclimate differences among sites and 385 

individuals, and the genetic differentiation of populations (Collier & Finch 1985; Bryant et al. 386 

2002; Trnka et al. 2007). Because physiological data will be required for large numbers of 387 

populations of every species, it is unlikely to be feasible to parameterize such models for the 388 

majority of species for which we would like to predict phenological responses.   389 

 390 

Whilst our model projections performed well in testing data, the predictions were only for a 391 

relatively short testing period (2001-2006), immediately following the model training period 392 

(1973-2000), and the climate during the testing period remained largely within the bounds of 393 

conditions experienced during the training period (Fig. 1).  As such, the testing data were 394 

independent, but we remain cautious about the capacity of such models (or other models) to 395 

project phenologies far into the future.  Reaction norms may evolve, especially once the new 396 

climate falls outside the range of the conditions previously experienced by those populations, 397 

and cause future phenologies to deviate systematically from model projections.  This would 398 

be true even for species that already have high levels of phenotypic plasticity in phenology.  399 

For multivoltine species, such as these butterflies, extra generations may be observed under 400 

future, hotter climates, which could accelerate the pace of demographic and evolutionary 401 

responses.   402 

 403 

Although we remain cautious about long-term projections, the approach we have taken 404 

appears suitable to model and predict short-term phenology patterns in space and time. The 405 

statistical models presented here can be parameterized from the sort of phenology data that 406 

are regularly collected by volunteer recorders, and this approach can straightforwardly be 407 
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applied to large numbers of species. The models have a predictive power which is reasonably 408 

high and surprisingly consistent across species.  We see this as an important step towards 409 

anticipating which species might be threatened as a result of phenological mismatches as the 410 

climate changes. 411 
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Tables 551 

Table 1: summary of 7 GAM models fitted to each species’ data 552 

Code number Model variables† Max. # of 

parameters 

Interpretation 

00 abundance 2 No climate effects and no seasonality 

0 00+ smooth(week) 12 No climate effects 

1 00+ smooth(week * site gdd5) 25 Spatial variation only (suggests response to fixed 

site-specific cues that are correlated with site 

temperature; possibly local photoperiod 

adaptation) 

 

2 00+ smooth(week * northing) 25 Spatial variation only (suggests response to fixed 

cues that are correlated with latitude; probably 

photoperiod) 

 

3 00+ smooth(week * actual gdd5) 25 Space-for-time substitution (suggests plastic 

response to temperature) 

 

4 00+ smooth(week * site gdd5 * gdd5 diff ) 41 Different spatial & temporal effects (suggests site-

specific responses, as in model 1, combined with 

flexible temperature responses) 

 

5 00+ smooth(week * northing * gdd5 diff) 41 Different spatial & temporal effects (suggests 

likely photoperiod response, as in model 2, 

combined with flexible temperature response) 

 

† each site and year has 3 interrelated GDD5 measures: (actual GDD5)t= (site GDD5) + (GDD5 differential) t. Site GDD5 is the mean 

GDD5 for the site for the period 1973-2000. 
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Table 2: summary of results for each species 553 
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Holly blue Celastrina argiolus 38157 33980 18 15 1 0 0.00000 0.00003 0.00000 0.00260 0.08465 0.08465 

Common blue Polyommatus icarus 21900 17347 23 23 2 5 0.00000 0.00000 1.00000 1.00000 0.00000 0.00000 

Speckled wood Pararge aegeria 42782 33303 18 16 2 3 0.00000 0.00299 1.00000 0.99998 0.00000 0.00000 

Brown argus Aricia agestis 2488 2151 24 22 2 0 0.00000 0.00011 1.00000 0.88283 0.12504 0.12504 

Small blue Cupido minimus 877 933 37 30 2 5 0.00001 0.18354 0.99999 0.76765 0.06272 0.06272 

Wood white Leptidea sinapis 911 803 37 23 2 3 0.08686 0.31741 0.99784 0.53666 0.07144 0.07144 

Small white Pieris rapae 29420 20736 20 19 3 4 1.00000 1.00000 0.00000 0.25855 0.00000 0.00000 
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Large white Pieris brassicae 20281 15059 20 20 3 4 1.00000 1.00000 0.04052 0.43445 0.00000 0.00000 

Adonis blue Polyommatus 

bellargus 

1030 591 36 27 3 1 0.99997 0.60770 0.00000 0.18239 0.05358 0.05358 

Wall brown Lasiommata megera 35070 15463 25 20 3 5 1.00000 0.99991 1.00000 0.99950 0.00000 0.00000 

Green-veined 

white 

Pieris napi 35484 20578 20 19 4 5 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000 

Small 

tortoiseshell 

Aglais urticae 14272 8252 10 4 4 3 1.00000 0.99984 0.00000 0.00000 0.00000 0.00000 

Small heath Coenonympha 

pamphilus 

20111 12892 22 21 5 4 0.99988 0.64557 1.00000 0.93065 0.00000 0.00000 

Small copper Lycaena phlaeas 7184 3087 22 18 5 4 1.00000 0.90559 1.00000 0.91856 0.00001 0.00001 

Comma Polygonia c-album 2021 2538 21 18 5 3 1.00000 0.77540 1.00000 0.75212 0.00335 0.00335 

*model weights are by definition between 0 and 1, but are only shown to 5 decimal places 
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Figure legends 554 

 555 

Figure 1: the distribution of GDD5 across all 10 km squares in the UK (boxplots of the 556 

median, interquartile range and extremes) in each of the 33 years of the study. Red lines show 557 

the overall mean for the period of fitting data (1973-2000) and the period of testing data 558 

(2001-2006). 559 
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Figure 2: Comparison of deviance in an independent test dataset explained by GAMs 1-5 560 

compared to GAM 0 (where phenology is a smooth function of week of the year, with no 561 

spatial or temporal variation). Bars are shaded to aid the comparison of similar models: light 562 

grey when site GDD5 is the spatial covariate, dark grey when northing is the spatial covariate, 563 

and white when actual GDD5 is the covariate (combining both spatial and temporal 564 

variation). For the absolute amounts of deviance explained, see supplementary material, Fig. 565 

S1. 566 
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Figure 3: Spatio-temporal variation in phenology of selected species where the best-predicting 567 

GAM included only spatial variation. In each panel, the unlogged, GAM-fitted distribution of 568 

butterflies across the 26 weeks of transect surveys is shown by lines, standardized so that the 569 

sum of all weeks equals 1. Different lines represent different values of Northing: equally-570 

spaced steps between the southernmost (red) and the northernmost (blue) parts of the species’ 571 

data (the range, in British National Grid10 km squares is also printed in the panel). For 572 

example, the common blue shows one peak in the north and two in the south.  Equivalent 573 

figures for all other species are given in supplementary material, Fig. S2. 574 

 575 
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Figure 4: Spatio-temporal variation in phenology of selected species where the best-predicting 576 

GAM included temporal as well as spatial variation. In each panel, the unlogged, GAM-fitted 577 

distribution of butterflies across the 26 weeks of transect surveys is shown by lines, 578 

standardized so that the sum of all weeks equals 1. Different lines represent different values of 579 

Northing: equally-spaced steps between the southernmost (red) and the northernmost (blue) 580 

parts of the species’ data (the range, in British National Grid10 km squares is also printed in 581 

the panel). To illustrate temporal variation, predictions for an average year (GDD5 582 

differential= 0) and a hot year (GDD5 differential= 200), are shown in adjacent panels. For 583 

example, the small copper exhibits two distinct peaks in mid-late summer in the hot south, but 584 

only in hot years. Equivalent figures for all other species are given in supplementary material, 585 

Fig. S2. 586 
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