

Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater Mesocosms

Gabriel Yvon-Durocher, Jose Maria Montoya, Guy Woodward, Iwan John Jones, Mark Trimmer

▶ To cite this version:

Gabriel Yvon-Durocher, Jose Maria Montoya, Guy Woodward, Iwan John Jones, Mark Trimmer. Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater Mesocosms. Global Change Biology, 2010, 17 (2), pp.1225. 10.1111/j.1365-2486.2010.02289.x . hal-00599522

HAL Id: hal-00599522 https://hal.science/hal-00599522

Submitted on 10 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Global Change Biology

Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater Mesocosms

	1
Journal:	Global Change Biology
Manuscript ID:	GCB-10-0294
Wiley - Manuscript type:	Primary Research Articles
Date Submitted by the Author:	08-Apr-2010
Complete List of Authors:	Yvon-Durocher, Gabriel; Queen Mary University of London, School of Biological and Chemical Sciences Montoya, Jose; 2 Institute of Marine Sciences Woodward, Guy; Queen Mary University of London, School of Biological and Chemical Sciences Jones, Iwan; Queen Mary University of London, School of Biological and Chemical Sciences Trimmer, Mark; Queen Mary University of London, School of Biological and Chemical Sciences
Keywords:	Global Warming, Methane, Carbon Cycle, Metabolic Theory, Primary Production, Ecosystem Respiration
Abstract:	Methane and carbon dioxide are the dominant gaseous end products of the remineralisation of organic carbon and also the two largest contributors to the anthropogenic greenhouse effect. We investigated whether warming altered the balance of methane efflux relative to primary production and ecosystem respiration in a freshwater mesocosm experiment. Whole ecosystem CH4 efflux was strongly related to temperature with an apparent activation energy of 0.85eV. Furthermore, CH4 efflux increased faster than ecosystem respiration or primary production with temperature, with all three processes having sequentially lower activation energies. Warming of 4°C increased the fraction of primary production effluxing as methane by 20% and the fraction of ecosystem respiration as methane by 9%, inline with the offset in their respective activation energies. Because methane is 21 times more potent as a greenhouse gas, relative to CO2, these results suggest freshwater ecosystems could drive a previously unknown positive feedback between warming and the carbon cycle.

2		
3 4 5	1	Warming Increases the Proportion of Primary Production Emitted as
5 6 7	2	Methane from Freshwater Mesocosms
8 9 10	3	
11 12 13	4	Running title: Warming Alters Methane Emissions in Freshwater Mesocosms
14 15	5	
16 17	6	Gabriel Yvon-Durocher ¹ , José M. Montoya ^{1, 2} , Guy Woodward ¹ , J. Iwan Jones ³ and Mark
18 10	7	Trimmer ¹
20	8	
21 22 23	9	¹ School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS.
23 24	10	U.K.
25 26 27 28	11	² Institute of Marine Sciences (ICM-CSIC) Pg. Marítim de la Barceloneta, 37-49
	12	E-08003 Barcelona, Spain
20 29 20	13	³ Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford,
30 31	14	Wallingford, OX10 8BB, UK.
32 33	15	
34 35	16	Authors for correspondence: Mark Trimmer (m.trimmer@qmul.ac.uk) and Gabriel Yvon-
35 36 37 38 39 40 41 42	17	Durocher (g.yvon-durocher@qmul.ac.uk)
	18	School of Biological & Chemical Sciences,
	19	Queen Mary University of London,
	20	London E1 4NS. U.K.
43 44	21	TEL:+44 20 7882 3007
45 46	22	
47 48 49	23	Keywords: Global Warming, Methane, Carbon Cycle, Metabolic Theory, Primary Production,
50 51	24	Ecosystem Respiration.
52 53	25	
54 55 56	26	
57 58 59 60	27	

Abstract

3 4 5 6 , 8 9 25 27 32 37 44 51

29	Methane and carbon dioxide are the dominant gaseous end products of the remineralisation of
30	organic carbon and also the two largest contributors to the anthropogenic greenhouse effect. We
31	investigated whether warming altered the balance of methane efflux relative to primary
32	production and ecosystem respiration in a freshwater mesocosm experiment. Whole ecosystem
33	CH ₄ efflux was strongly related to temperature with an apparent activation energy of 0.85eV.
34	Furthermore, CH ₄ efflux increased faster than ecosystem respiration or primary production with
35	temperature, with all three processes having sequentially lower activation energies. Warming of
36	4°C increased the fraction of primary production effluxing as methane by 20% and the fraction
37	of ecosystem respiration as methane by 9%, inline with the offset in their respective activation
38	energies. Because methane is 21 times more potent as a greenhouse gas, relative to CO ₂ , these
39	results suggest freshwater ecosystems could drive a previously unknown positive feedback
40	between warming and the carbon cycle.
41	
42	
43	

51 Introduction

The two most important gaseous end products of the remineralisation of organic carbon, carbon dioxide (CO_2) and methane (CH_4) , are also the two largest contributors to the anthropogenic greenhouse effect (IPCC 2007). The net emission of greenhouse carbon gases from an ecosystem is the balance between the CO_2 absorbed by the ecosystem by gross primary production (GPP) and the carbon that is respired and released as CO_2 and/or CH_4 (Whiting & Chanton 2001). Further, the fraction of fixed carbon that is respired and released as either CO_2 or CH_4 may be decisive for future global warming, as shifts in this balance will affect the greenhouse gas efflux potential of ecosystems, because CH_4 has 21 times the radiative forcing potential of CO_2 over periods of up to 20 years (Rodhe 1990, Lelieveld et al. 1991, Whiting & Chanton 2001). Methanogenesis in freshwater ecosystems is the result of complex and often interrelated biotic and abiotic processes (Christensen *et al.* 2003a). Methane is produced under strictly anaerobic conditions during organic matter mineralisation but the net efflux of CH₄ from ecosystems can be considerably reduced through oxidation by methanotrophs, which can consume significant quantities of the CH₄ produced in the sediments of lakes (Kuivila et al. 1988) and wetlands (Bartlett & Harriss 1991, Segers 1998). Primary production by plants also influences CH₄ production (Joabsson et al. 1998, 1999, Christensen et al. 2003b), and this has been attributed to the co-variability of organic carbon through root exudation (Chanton et al. 1995), the turnover of labile carbon, and/or litter production (Joabsson et al. 1999, Christensen et al. 2003b). These lines of evidence are supported by isotopic data which have shown that a large fraction of the organic material that fuels methanogenesis in wetlands is derived from recently synthesised carbon (Chanton et al. 1995, Joabsson et al. 1999). Vascular plants can also enhance

Global Change Biology

1 2		
2 3 4	73	emissions of CH ₄ to the atmosphere via root aerenchyma that act as conduits across zones of
5 6 7	74	potential CH ₄ oxidation in soils and sediments (Kelker & Chanton 1997, King et al. 1998).
7 8 9	75	Clearly the mechanisms that influence CH ₄ efflux are diverse, however, when all other
10 11	76	limiting factors (e.g. substrate limitation, water-table depth) are equal, temperature, via the
12 13	77	physiological stimulation of microbial metabolism, has been shown to exert strong control on
14 15 16	78	CH ₄ efflux (Schutz et al. 1990, Christensen et al. 2003a, Gedney et al. 2004). Recently,
17 18	79	significant focus has been given to the temperature dependence of the biotic components of the
19 20	80	carbon cycle, and how the "metabolic balance" of ecosystems, that is the balance between the
21 22 23	81	gross sequestration and release of CO ₂ , may respond to future global warming (Allen <i>et al.</i> 2005,
24 25	82	Lopez-Urrutia et al. 2006, Yvon-Durocher et al. in press). Recent evidence suggests that
26 27 28	83	autotrophic and heterotrophic metabolisms (e.g. photosynthesis and respiration) have different
20 29 30	84	temperature dependencies (or activation energies when depicted in an Arrhenius plot) at the
31 32	85	ecosystem level, such that respiration increases more rapidly with temperature than does
33 34 35	86	photosynthesis (Allen et al. 2005, Lopez-Urrutia et al. 2006, Yvon-Durocher et al. in press). We
36 37	87	have recently shown in an aquatic mesocosm experiment, that the differential temperature
38 39	88	dependence of these two processes reduced the ability of the warmed systems to sequester CO ₂
40 41 42	89	because more of the carbon fixed by primary production was respired (Yvon-Durocher et al. in
43 44	90	press). The response of the greenhouse gas efflux potential of aquatic ecosystems to warming is
45 46	91	further complicated by considering the balance of CH ₄ efflux in relation to carbon sequestration
47 48 49	92	and CO ₂ emission.
50 51	93	A substantial body of work over the last two decades has established the strong

A substantial body of work over the last two decades has established the strong temperature dependence of methanogenesis in a wide range of ecosystems (i.e. from landfill sites to high latitude wetlands) and from pure cultures of methanogens to whole ecosystem-level

1	
2	
3	
4	
5	
6	
7	
γ Q	
0	
9 10	
10	
10	
12	
13	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
<u>4</u> 1	
12	
<u>ד∠</u> ⊿२	
11	
44	
40	
40	
47	
4ð 40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

96	production (Schutz et al. 1989, Westermann et al. 1989, Conrad & Wetter 1990, Schutz et al.
97	1990, Walter & Heimann 2000, Christensen et al. 2003a, Gedney et al. 2004). Studies of the
98	temperature dependence of methanogenesis in pure cultures (under optimal conditions) have
99	revealed that its activation energy is typically higher than for other forms of metabolism, due to
100	the relatively large entropy change of the reaction (Westermann et al. 1989, Conrad & Wetter
101	1990, Segers 1998). Methanogenesis and potentially CH4 efflux may, therefore, be especially
102	sensitive to increases in temperature which raises a number of important unanswered questions.
103	First, does the temperature dependence of CH_4 efflux at the ecosystem scale differ from that of
104	primary production and ecosystem respiration? Second, how will the balance between carbon
105	sequestration, ecosystem respiration and CH ₄ efflux respond to warming?
106	Although our knowledge of CH_4 efflux and its regulation by temperature is extensive, it
107	is largely based on seasonal field surveys (e.g. in wetlands, soils, lakes) and laboratory
108	experiments (e.g. with peat monoliths and rice paddy-soil incubations) which cannot fully
109	address these unanswered questions. We sort to extend this knowledge using a controlled
110	freshwater mesocosm experiment where we compared the efflux of CH ₄ with rates of gross
111	primary production (GPP) and whole ecosystem respiration (ER) in replicated mesocosms
112	maintained at either ambient temperature or ~ 4°C above ambient, in line with warming scenarios
113	predicted for temperate latitudes by the end of the 21 st century (IPCC 2007).

114 Materials and Methods

115 Experimental Design

The experiment was carried out between December 2005 and April 2008 at the Freshwater Biological Association River Laboratory (2°10[°]W, 50°13[°]N) East Stoke, Dorset, UK. The experiment consisted of twenty freshwater mesocosms ($\sim 1 \text{ m}^3$, 0.5 m water depth): ten replicates remained at ambient temperature, whilst the other ten were maintained at 3-5°C (mean 4°C) above ambient. Warming was achieved by an electronic heating element at the base of the mesocosm connected to a thermocouple which monitored the temperature in a given heated and unheated treatment pair. Treatments were arranged in a randomised block design (5 blocks of 4 mesocosms) such that each block contained two replicates of each treatment. The mesocosms were seeded in December 2005 with organic substrates and a suite of organisms [species list in (Yvon-Durocher *et al. in press*)] to mimic the organismal composition and physical structure of shallow lake ecosystems [e.g., after (McKee et al. 2003)]. The submerged macrophytes Elodea canadensis Michaux, Myriophyllum spicatum L. and Ceratophyllum spicatum L. were added to each pond in equal quantities (250g wet weight) and Chara contraria A. Braun ex Kutz colonised all 20 ponds during the experiment. The biota was left to establish for ten months prior to experimental warming, which commenced in September 2006.

Dissolved Methane

133 The concentration of dissolved CH_4 was measured by removing a water sample (30 mL in a gas-134 tight syringe) and gently transferring it to a gas tight vial (12.5 mL Exetainers, Labco, High 135 Wycombe, UK), allowing it to overflow, fixing it with a bactericide (100 μ L 50 % w/v ZnCl₂) 136 and sealing it. Samples were collected at hourly time intervals (in total 6 to 10 hours depending

on the time of year) over a day for each replicate on alternate months for one year (April 2007 to April 2008, n = 1416 individual measurements). Upon return to the laboratory, a headspace (2) mL analytical grade helium) was introduced to the gas tight vial and the sample was shaken vigorously for 0.5 minutes and then allowed to stand for a further 30 minutes to allow for headspace equilibration, before analysis of the headspace concentration of CH₄ using a gas chromatograph after Sanders *et al.* (2007). Samples (50 μ L) were withdrawn from the headspace of the sample vials and injected into a gas-chromatograph fitted with a flame ionising detector (GC/FID; Agilent Technologies, UK). Headspace concentrations of CH₄ were calculated from peak areas calibrated against known standards (Scientific and Technical gases, Staffs, UK) and the total amount of CH₄ in the gas tight vial (water plus headspace) was calculated using the appropriate solubility coefficients (Yamamoto et al. 1976). Finally, the 1416 individual measurements were reduced in each case to give an average daily pool of dissolved CH_4 for each pond (140 measures over the year for 70 heated and 70 ambient).

151 Methane Efflux

Measurements of the efflux of CH₄ were made simultaneously to those of dissolved CH₄. A single gas chamber was positioned at the water surface of each mesocosm on each sampling occasion. The chambers were made of polycarbonate and enclosed a headspace (300 mL) of ambient air at the air-water interface of the mesocosm (see figure S1 in supporting online material). The lid of the gas chamber was equipped with a Teflon septum port, through which samples of gas (1 mL) were removed using a gas-tight syringe (2 mL VICI gas tight syringe) every 15 minutes for the first hour of the incubation, then hourly for up to 10 hours thereafter. The samples were then transferred to water filled gas tight vials (3 mL, Exetainers; Labco, High Page 9 of 30

Global Change Biology

160 Wycombe, UK) through a two way valve with venting through a narrow bore needle. The gas-161 tight vials were then stored upside down prior to analysis.

The concentration of CH_4 in the headspace of the sample was determined by gas chromatography as described above. The efflux of CH_4 across the water-air interface was calculated by regression analysis of the change in concentration of CH₄ in the chamber headspace over time. Subsequently, one hour was used as an appropriate duration for accurately estimating the flux of CH_4 (Lambert & Frechette 2005) (see figure S2 in supporting online material). As such, only data from the 1st hour of the incubation were used to estimate the efflux of CH₄ and we made a total of 140 measurements (70 heated and 70 ambient) over the annual cycle. Regression slopes with a significance of P > 0.05 and/or an R-squared of below 0.9 were considered non-significant and were excluded from further analyses (9 from the 140 individual flux measurements).

Determination of GPP and ER

GPP and ER were estimated simultaneously with the measurements of dissolved CH₄ and CH₄ efflux, by applying the well established single station dissolved oxygen (DO) change technique (Odum 1956, Marzolf et al. 1994, Mulholland et al. 2001). This technique assumes that changes in DO concentration over a diel cycle represent the metabolic activity (photosynthetic and respiratory) of an aquatic ecosystem. YSI 600XLM multiparameter sondes equipped with 6562 rapid pulseTM dissolved oxygen sensors were deployed for 24 hours in each heated and unheated treatment pair on each of the seven sampling occasions over the year. Measurements of DO and temperature were taken every 15 minutes for 24 hours at the mid depth (0.25m) in the water column of each pond. The daylight and night-time analysis periods were delimited as follows:

the total analysis period was defined from the minimum O₂ concentration on the 1st night and extended for 24 hours to include the minimum O₂ concentration on the 2nd night. Photosynthetic dawn was identified as the minimum O₂ concentration after which all subsequent values were greater than it. Photosynthetic dusk was defined as the maximum O_2 concentration after which all subsequent values were lower (Mulholland et al. 2001, Bales 2007). The change in dissolved oxygen (ΔDO) over each 15 minute time interval was calculated as the difference in O₂ concentration between t_1 and t_2 (i.e., $t_2 - t_1$). Each ΔDO value was then assigned to a day or night-time category. The metabolic parameters GPP and ER were calculated, in turn, by numerical integration according to:

$$GPP = \sum \Delta O_{2day} + R_{day} \tag{1}$$

where R_{day} is day-time respiration. Since it is impossible to measure R_{day} directly it was estimated, in keeping with the literature, by extrapolating the mean night time respiration value across the hours of daylight (Cole et al. 2000). Current biogeochemical techniques cannot discriminate between autotrophic and heterotrophic respiration at the ecosystem level (Mulholland *et al.* 2001) and preclude the estimation of photorespiration (Marzolf *et al.* 1994). Our measures of GPP using the DO change technique may, therefore, be slightly overestimated given the inclusion of heterotrophic respiration in calculation of R_{day} . ER was calculated as:

$$ER = R_{day} + \sum \Delta O_{2night} \tag{2}$$

Estimated Gas Transfer Velocity

Any systematic variability in the rate of gas transfer between the surface water and the atmosphere due to physical forcing (e.g. advection) induced by the experimental treatment (e.g. warming) may have biased the interpretation of our results.

Page 11 of 30

Global Change Biology

The rate of exchange of a gas between the surface water and the atmosphere is dependent on two principal parameters: the concentration gradient of the gas between the water and the atmosphere, and the gas transfer velocity, k. The gas transfer velocity is frequently modelled as a function of wind speed, which controls the rate of gas transfer by determining turbulence in the surface water (Cole & Caraco 1998). When wind speed drops below about 3 m s⁻¹, however, as was the case in > 97 % of our measurements (see Yvon-Durocher et al. in press), gas transfer becomes independent of wind speed, though it can remain substantial by being governed by other physical (advective) processes besides wind (Cole & Caraco 1998). To determine whether our experimental warming systematically altered the gas transfer velocity we estimated k from our measurements of the efflux of CH₄ and dissolved CH₄ from:

$$k = f / (C_{water} - C_{eq})$$

(3)

where *f* is the measured efflux of CH₄ across the air-water interface, C_{water} - C_{eq} is the concentration gradient of the gas in the water and the concentration in the water at equilibrium with the atmosphere (C_{eq}). C_{eq} was calculated using the equations of Yamamoto *et al.* (1976) and the measured mixing ratio for CH₄ in the air and temperature of the water on each occasion.

222 Statistical Analyses

All data were checked for normality using the Shapiro Wilks test for normality and were natural log transformed prior to statistical analysis where necessary. The activation energy of any metabolism is given by the slope of the relationship of an Arrhenius plot between ln(x flux) and l/kT, where *k* is Boltzmann's constant and T is absolute temperature (K). The temperature dependence of $ln(CH_4 efflux)$, ln(GPP) and ln(ER) (i.e. the activation energy) was determined by ANCOVA. Furthermore, we used ANCOVA to test for statistical differences in the slopes and

2
З
4
4
5
6
7
0
0
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
21
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
07
31
38
39
40
44
41
42
43
44
15
40
46
47
48
10
49 50
50
51
52
52
55
54
55
56
57
57
58
59
60

1

229 intercepts of these relationships between treatments and months (i.e. n = 7 sampling occasions), 230 to identify the most parsimonious model for determining the activation energy (i.e. the 231 temperature dependence). Model comparison was carried out using the Akaike Information 232 Criterion (AIC). In the ANCOVA, temperature was delimited as a continuous variable and 233 defined as 1/kT. To account for temporal pseudo-replication in the statistical model pond identity 234 (n = 131) was nested within sampling occasion. ANCOVA computations were carried out in R 235 statistical software (R. Development. Core. 2006). 236 Categorical analyses (treating temperature as a fixed factor i.e. heated or unheated) of 237 CH_4 efflux, dissolved CH_4 pool, k gas transfer, CH_4 efflux /GPP and CH_4 efflux /ER was

238 conducted with restricted maximum likelihood methods using the *lme* (linear mixed-effects

239 model) function in R (R. Development. Core. 2006). In the model treatment (heated or unheated)

240 was the fixed effect, and temporal pseudo-replication from repeated sampling of the mesocosms

241 over the year was accounted for by including mesocosm identity nested with sampling occasion

as random effects. The repeated measures model was used to test for overall statistical

243 differences between treatments in mean annual values of the above parameters.

Results

12

1	
2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
רד ⊿ר∕	
72 12	
40	
44 45	
40	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
51	
00	
59	
60	

245	The concentration of CH ₄ exhibited clear and near identical seasonal trends in the water of both
246	the heated and ambient mesocosms and, on average, over the year, was not significantly different
247	between treatments (Fig. 1a and Table 1). The concentration of CH_4 ranged from 0.04 μ mol L^{-1}
248	to 6.8 μ mol L ⁻¹ , though the distribution of CH ₄ concentration exhibited strong positive skew
249	(Shapiro Wilks test; $W = 0.63$; $P < 0.005$), such that 75% of all measurements were less than
250	0.66 μ mol L ⁻¹ over the seasonal cycle. Using the 75th percentile for dissolved CH ₄ as a
251	conservative estimate, and the average concentration of CH4 that would be at equilibrium with
252	the atmosphere (~3.55 ×10 ⁻³ μ mol L ⁻¹), we estimated that the mesocosms were about 128 times
253	supersaturated with respect to CH ₄ and the atmosphere.
254	Similarly, the rate of CH_4 efflux showed strong seasonal trends with peaks in early
255	summer and lowest rates in winter (Fig. 1b) and was strongly positively correlated $(r - 0.94)$

summer and lowest rates in winter (Fig. 1b) and was strongly positively correlated (r = 0.94; 233 P < 0.005) with the concentration of CH₄ in the water column. The rate of CH₄ efflux ranged from 256 0.35 to 7.02 μ mol m⁻² h⁻¹ in the ambient mesocosms and from 0.96 to 8.14 μ mol m⁻² h⁻¹ in the 257 258 warmed mesocosms. The distribution of CH₄ efflux between heated and ambient mesocosms was 259 also strongly positively skewed (Shapiro Wilks test; W = 0.74; P < 0.005), with 75% of measurements falling below 3.6 μ mol m⁻² h⁻¹. Furthermore, the rate of CH₄ efflux was elevated 260 261 in the warmed mesocosms over parts of the seasonal cycle (April, August and February), and, on 262 average, the mean annual rate of CH₄ efflux was significantly greater in the warmed mesocosms 263 (Table 1). The gas transfer velocity, k, exhibited no clear seasonal variability (Fig. 2) and was not 264 significantly different between treatments (Fig. 2 and Table 1).

The rate of CH_4 efflux was strongly related to temperature (1/*k*T) (Table 2 and Fig. 3), with an apparent activation energy in the order of 0.85 eV (95% confidence interval: 0.64 to 1.02

1
2
3
4
5
6
7
1
8
9
10
11
12
13
11
14
10
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
21
20
32
33
34
35
36
37
38
39
40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
00

267 eV). In addition, CH_4 efflux was also related to GPP, though much more weakly (Table 2 and 268 Fig. 4), with temperature explaining 43% of the variance in rate of CH_4 efflux, while GPP 269 explained only 23% (Fig. 2 and Fig. 4). 270 GPP and ER were also strongly related to temperature, as has been described previously 271 (Yvon-Durocher et al. in press), with apparent activation energies in the order of 0.45 eV (95% 272 confidence interval 0.38 to 0.53 eV) and 0.62 eV (95% confidence interval 0.55 to 0.69 eV) for 273 each, respectively. Importantly, here, the temperature dependence of CH_4 efflux was 274 significantly higher than that for either GPP or ER (Table 2) and, correspondingly, CH₄ efflux 275 increased more rapidly in response to warming than did either GPP or ER. 276 The balance between carbon absorption and CH₄ emission is given by the ratio of CH₄ 277 efflux to GPP, which was found to be significantly elevated in the heated mesocosms, on 278 average, over the year (Table 1 and Fig 5a). The mean annual ratio of CH₄ efflux to GPP was 279 elevated by 20 % in response to the ~4°C experimental warming. Similarly, the ratio of CH₄ 280 efflux to ER was significantly elevated in the heated mesocosms, on average, over the annual 281 cycle (Table 1 and Fig 5b), with warming elevating the mean annual ratio of CH₄ efflux to ER by 282 9%.

14

1	
2	
3	
5	
4	
5	
č	
6	
7	
Ø	
9	
40	
10	
11	
40	
12	
13	
11	
14	
15	
16	
10	
17	
18	
10	
19	
20	
20	
21	
22	
~~	
23	
24	
2.	
25	
26	
27	
27	
28	
20	
29	
30	
24	
31	
32	
22	
33	
34	
35	
55	
36	
37	
57	
38	
за	
00	
40	
41	
40	
42	
43	
11	
44	
45	
16	
40	
47	
<u>4</u> 8	
-10	
49	
50	
20	
51	
52	
50	
ეკ	
54	
 55	
00	
56	
57	
57	
58	
50	
00	
60	

283	Discussion
284	Mesocosm experiments represent a compromise between the control and replication of
285	laboratory studies and the realism of descriptive field surveys but, despite their limitations, can
286	provide a fundamental tool for predicting how global change scenarios might affect ecosystem
287	level processes (Benton <i>et al.</i> 2007). Our measured rates of mesocosm CH_4 efflux (0.35 – 8.14)
288	μ mol CH ₄ m ⁻² h ⁻¹) were comparable to those measured in natural shallow lakes (Rudd &
289	Hamilton 1978, Bastviken et al. 2004), suggesting that our experimental scale was sufficient
290	enough to reproduce the complex biogeochemical cycling of carbon observed in natural
291	ecosystems.
292	Experimental warming might have artificially stimulated advective processes resulting in
293	elevated gas transfer at the air-water interface and a detailed consideration of this potential
294	artefact is fundamental before interpretation of our results. Our estimates of the gas transfer
295	velocity, based on detailed measurement of dissolved CH ₄ and rates of CH ₄ efflux, however,
296	suggest that this was not the case. If the gas transfer velocity was systematically enhanced by

297 artificial warming, we would have expected to observe considerable differences in the 298 concentration of dissolved CH₄ between treatments, but, again, this was not the case. At first 299 glance, the consistency in both the pool size of dissolved CH₄ and the estimated gas transfer 300 velocity between treatments appears at odds with the elevated efflux of CH₄ measured in the 301 warmed mesocosms. According to equation 3, the gas transfer velocity and the concentration 302 gradient (i.e. between the water and the atmosphere) drive the efflux of gas across the air-water 303 interface (Cole & Caraco 1998). This discrepancy can be explained when the relative magnitudes of the respective processes and pool sizes are taken into consideration. Using the 75th percentiles 304 305 for both CH₄ efflux and dissolved CH₄ (scaled to a whole mesocosm) of 11 µmol CH₄

2 3 4	306	mesocosm ⁻¹ h^{-1} and 662 µmol CH ₄ mesocosm ⁻¹ , respectively, 75% of our measurements of the
5 6 7	307	efflux of CH_4 represented <1.7% of the total pool of dissolved CH_4 . The subtle differences
7 8 9	308	detected in the efflux of CH ₄ between treatments would have been masked when analysing for
10 11	309	treatment effects at the level of the pool, because the overall magnitude of the pool size of
12 13 14	310	dissolved CH ₄ was considerable relative to its minor diurnal variability, which drives the efflux.
15 16	311	Therefore, any error associated with the measurement of the CH ₄ pool would likely overwhelm
17 18	312	the detection of any subtle statistical differences between treatments. This evidence suggests that
19 20 21	313	the physical influence of heating the mesocosms by ~4°C had little discernable effect on
22 23	314	advective processes. We can therefore be confident that the biogeochemical patterns revealed by
24 25 26	315	our experiment are due to the biological consequences of warming on aquatic communities.
20 27 28	316	Our experimental results have implications for understanding the mechanisms controlling
29 30	317	CH_4 efflux from freshwater ecosystems, and how CH_4 dynamics in relation to carbon
31 32 33	318	sequestration rates might be affected by future global warming. Our experiment revealed that
34 35	319	temperature was the dominant driver of CH ₄ efflux from our mesocosms. This result agrees with
36 37	320	other studies from a range of natural ecosystems, from soils to wetlands, which also highlight the
38 39 40	321	strong temperature dependence of CH ₄ efflux (Schutz et al. 1990, Whiting & Chanton 2001,
41 42	322	Christensen et al. 2003a, Gedney et al. 2004). Because of the overriding influence of
43 44 45	323	temperature, the overall rates of CH ₄ efflux were consistently elevated in the warmed mesocosms
45 46 47	324	relative to ambient over the course of our annual study, presumably reflecting the strong
48 49	325	physiological response to the temperature stimulation of methanogenesis.
50 51 52	326	To ascertain whether the strong temperature dependence of CH ₄ efflux we observed
52 53 54	327	experimentally was due to the physiological stimulation of methanogenesis, we determined the
55	378	activation anargy of mathemaganesis in sure cultures at a range of temperatures, and under non

activation energy of methanogenesis in pure cultures at a range of temperatures, and under non-

Page 17 of 30

Global Change Biology

limiting conditions, using previously published data (see S5 in supporting online information for details of analysis and data collection). Our re-analysis of these data does indeed show that the production of CH_4 in pure cultures has an equally strong temperature dependence (Fig. 5). Interestingly, the temperature dependence of CH_4 efflux at the ecosystem level ($E_a = 0.85 \text{ eV}$, 95% confidence interval: 0.64 to 1.02 eV) was indistinguishable from that for methanogenesis in pure culture (mean $E_a = 0.88 \text{ eV} 95\%$ confidence interval: 0.80 to 0.96 eV). This coherence between organisational scales suggests that much of the potential complexity associated with ecosystem level efflux of CH₄ might be reduced to the first principals of individual/cellular kinetics. This result suggests that whole ecosystem metabolic fluxes can be scaled from the individual to the ecosystem level, in line with predictions derived from the "metabolic theory of ecology" (Enquist et al. 2003, Allen et al. 2005, Lopez-Urrutia et al. 2006). Our study, therefore, contributes to the growing body of evidence which suggests that metabolism is a fundamental driver of the dynamics of ecological processes across multiple levels of organisation, by demonstrating that CH_4 efflux at the ecosystem level appears to be constrained by the activation energy of methanogenesis. Models derived from the metabolic theory of ecology might therefore provide additional insight into the dynamics and temperature response of whole ecosystem CH₄ efflux in aquatic and other ecosystems. As well as temperature, primary production has been shown to regulate the efflux of CH₄ to the atmosphere. Such regulation stems from the whole autotrophic assemblage providing

348 structural, labile carbon compounds in the form of dead biomass (Whiting & Chanton 1993), and

349 vascular plants producing root exudates in the form of organic acids (Chanton *et al.* 1995,

Joabsson & Christensen 2001, Christensen *et al.* 2003b). Furthermore, rooted aquatic vascular plants can act as conduits for the transport of CH_4 from the anaerobic zone of the sediment to the

atmosphere, by passing the zones of potential CH_4 oxidation in the sediment and water column (Joabsson et al. 1999, Joabsson & Christensen 2001). In our experiment, however, the efflux of CH_4 did not appear to be limited by substrates from GPP, as suggested by three lines of evidence. Firstly, the weak correlation and gentle slope of the relationship between the efflux of CH₄ and GPP indicated that the flux of CH₄ was relatively independent of the simultaneous rate of photosynthesis and carbon fixation. Secondly, warming had no effect on the intercept of the relationship between $\ln(CH_4 \text{ efflux})$ vs 1/kT between treatments (Table 2). If organic substrates were limiting for CH₄ production and efflux, we would expect to see a lower intercept in the warmed treatments because elevated physiological rates would be expected to reduce organic substrates more rapidly, resulting in faster substrate limitation and thus a reduced intrinsic capacity for methanogenesis. Thirdly, on average, the efflux of CH₄ represented a very small fraction of GPP (mean annual value = 0.01%). If oxidation of methane production is assumed to be 95% (King *et al.* 1990), from our average annual CH₄ efflux measures (3 μ mol m⁻² h⁻¹), we estimate mean annual CH₄ production to be ~290 μ mol m⁻² h⁻¹ which would represent only 10% of the mean annual rate of GPP (2862 μ mol m⁻² h⁻¹). Therefore, carbon sequestration and fixation by photosynthesis is likely to exceed the demand of methanogenesis throughout the annual cycle. The response of the greenhouse carbon gas balance of freshwater ecosystems to warming could affect the strength of biotic feedbacks on a potentially global scale (Woodwell *et al.* 1998). In our experiment, the fraction of carbon absorbed by GPP and subsequently remineralised via the methanogenic pathway to efflux as CH_4 increased by 20% in response to the simulated global warming scenarios projected for the end of the century. In addition, the efflux of CH₄ as a proportion of ER was 9% greater in the warmed mesocosms. If, as aquatic ecosystems warm, carbon remineralisation becomes increasingly dominated by methanogenesis this could result in

375more CH4 being emitted to the atmosphere relative to CO2 emission and carbon draw-down.376These patterns can be explained by the differential activation energies of the three metabolic377processes involved in the greenhouse carbon balance of ecosystems.378Here, and in previous research (Yvon-Durocher *et al. in press*), it has been demonstrated379that the three key ecosystem level carbon fluxes have progressively higher activation energies380(i.e., GPP = 0.45eV; ER = 0.62eV; CH4 efflux = 0.85eV). The relative response of the381greenhouse carbon gas balance to warming observed here might be predictable from these382respective activation energies. To test this hypothesis, equations were derived from the metabolic383theory of ecology (Brown *et al.* 2004) to predict the response of the mean ratio of CH4 efflux to384GPP over the year between heated and unheated treatments (RfisedH:U) which was given by:385
$$R_{fised}H:U = \frac{a_H/p_H}{a_U/p_U} e^{\frac{[kx-k_P/TH-TU]}{VHT}}}$$
 (4)386where a_H and a_U are the allometric equations for the efflux of CH4 in the heated and unheated387treatments respectively, while p_H and p_U are the allometric equations for GPP in heated and388unheated treatments. E_a and E_p are the activation energies for the efflux of CH4 and GPP in our389experiment (0.85 and 0.45eV respectively), T_H and T_U are the mean annual temperatures (K) for390the heated and unheated treatments, respectively, and k is Boltzmann's constant (see S3 in391supporting online information for the full derivation of equation 4). Equation 4 predicts a 1.30

395 over the year between heated and unheated treatments (R_{emitted}H:U) should be predicted by:

measured value of 1.20. Similarly, the response of the mean ratio for the efflux of CH₄ to ER

396
$$R_{emitted} H : U = \frac{a_H / r_H}{a_U / r_U} = e^{\frac{[(Ea - Er)(T_H - T_U)]}{kT_H T_U}}$$
(5)

where E_a and E_r are the empirically determined activation energies for the efflux of CH₄ and ER (0.85 and 0.62eV respectively), respectively (see S4 in supporting online information for the full derivation of equation 4). Using equation 5, we would expect a 1.16 fold increase in R_{emitted}H:U (range 0.17 to 1.24; based on the 95% confidence intervals of the respective empirically measured activation energies). Our empirically measured value of R_{fixed}H:U was 1.09, again very close to our prediction.

Interestingly, equations 4 and 5 suggest that the relative offset of the carbon balance between the ambient and warmed mesocosms can be predicted by the differences in activation energies of metabolism and the degree of expected warming. This result is important because it highlights the potential for a positive feedback between warming and the carbon cycle of freshwater ecosystems, especially given the greater radiative forcing potential of CH₄ (Rodhe 1990, Lelieveld et al. 1991, Whiting & Chanton 2001). Finally, accepting the caveats associated with mesocosms, the close coherence between the activation energy of methanogenesis in pure culture and that of whole system CH₄ efflux, suggests that much of the complexity of ecosystem level fluxes can be reduced to produce simpler predictive models.

Acknowledgements

We thank Brian Godfrey, Dan Perkins, and the Freshwater Biological Association for their help with the experiment. Andrew P Allen and Ricard Solé discussed ideas and provided comments on early drafts. G. Yvon-Durocher was supported by a Natural Environment Research Council studentship (NER/S/A2006/14029). J. Montoya was funded by the NERC Fellowship Scheme (NE/C002105/1), and a Ramon y Cajal Fellowship (RYC-2008-03664).

2		
3	419	References
4		
5 6	420	Allen AP, Gillooly JF, Brown JH (2005) Linking the global carbon cycle to individual
7	421	metabolism. <i>Functional Ecology</i> , 19 , 202-213.
8	422	Bales ID and Nardi M R (2007) Automated routines for calculating whole stream metabolism
9	423	In: Theoretical background and users guide: US Geological Survey Techniques and
10	423	Methods A.C.2 (ed Bales ID and Nardi M.R.) US Geological Survey
11	424 425	Bartlett KB Harriss PC (1001) In: Nato Advanced Research Workshop on Atmospheric Methane
12	425	Sources Sinks and Polo in Clobal Change, pp. 261–220. Dergemon Elequior Science
13	420	Ltd. Mt Hood. On
14	427	Liu, Mi Hoou, OI. Destriken D. Cele I. Dese M. Trenzville I. (2004) Methone emissions from lakes. Denendence of
16	428	Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: Dependence of
17	429	lake characteristics, two regional assessments, and a global estimate. Global
18	430	Biogeochemical Cycles, 18, 12.
19	431	Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of
20	432	ecology. <i>Ecology</i> , 85 , 1771-1789.
21	433	Chanton JP, Bauer JE, Glaser PA, et al. (1995) Radiocarbon evidence for the substrates
22	434	supporting methane formation within northern minnesota peatlands. Geochimica Et
23 24	435	<i>Cosmochimica Acta</i> , 59 , 3663-3668.
25	436	Christensen TR, Ekberg A, Strom L, et al. (2003a) Factors controlling large scale variations in
26	437	methane emissions from wetlands. Geophysical Research Letters, 30, 4.
27	438	Christensen TR, Panikov N, Mastepanov M, et al. (2003b) Biotic controls on CO2 and CH4
28	439	exchange in wetlands - a closed environment study. <i>Biogeochemistry</i> , 64 , 337-354.
29	440	Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic
30	441	lake measured by the addition of SF6. <i>Limnology and Oceanography</i> , 43 , 647-656.
32	442	Cole JJ, Pace ML, Carpenter SR, Kitchell JF (2000) Persistence of net heterotrophy in lakes
33	443	during nutrient addition and food web manipulations. <i>Limnology and Oceanography</i> . 45.
34	444	1718-1730.
35	445	Conrad R. Wetter B (1990) Influence of temperature on energetics of hydrogen metabolism in
36	446	homoacetogenic methanogenic and other anaerobic bacteria Archives of Microbiology
37	447	155 94-98
38 20	448	Enquist BL Economo EP Huxman TE Allen AP Janace DD Gillooly IE (2003) Scaling
40	110	metabolism from organisms to ecosystems Nature 123 630-612
41	450	Gedney N Cox PM Huntingford C (2004) Climate feedback from wetland methane emissions
42	451	Geophysical Pasagrah Latters 31 A
43	452	Deophysical Research Letters, 51, 4.
44	452	Crown Lto the Fourth Aggeggment Perpert of the Interconcernmental Panel on Climate
45	433	Group I to the Fourth Assessment Report of the Intergovernmental Function Climate
40 ⊿7	454	Change. (ed Party ML, Canziani, O.F., Palutikoi, J. P., van der Linden, P.J. & Hanson,
48	455	C. E.), pp. 7-22. Cambridge University Press, Cambridge.
49	456	Joabsson A, Christensen IR (2001) Methane emissions from wetlands and their relationship with
50	457	vascular plants: an Arctic example. Global Change Biology, 7, 919-932.
51	458	Joabsson A, Christensen TR, Wallen B (1998) In: International Symposium on Polar Aspects of
52	459	Global Change, pp. 215-220. Norwegian Polar Inst, Tromso, Norway.
53	460	Joabsson A, Christensen TR, Wallen B (1999) Vascular plant controls on methane emissions
54 55	461	from northern peatforming wetlands. Trends in Ecology & Evolution, 14, 385-388.
56	462	Kelker D, Chanton J (1997) The effect of clipping on methane emissions from Carex.
57	463	Biogeochemistry, 39 , 37-44.
58		
59		
60		

1		21
2		
3	161	
4	464	King GM, Roslev P, Skovgaard H (1990) Distribution and rate of methane oxidation in the
5	465	sediments of the Florida Everglades. Applied and Environmental Microbiology, 56, 2902-
6	466	2911.
7	467	King JY, Reeburgh WS, Regli SK (1998) Methane emission and transport by arctic sedges in
8	468	Alaska: Results of a vegetation removal experiment. Journal of Geophysical Research-
9	469	Atmospheres, 103, 29083-29092.
10	470	Kuivila KM, Murray JW, Devol AH, Lidstrom ME, Reimers CE (1988) Methane cycling in the
11	471	sediments of Lake Washington Limnology and Oceanography 33 , 571-581
12	472	Lambert M Frechette I-L (2005) Analytical Techniques for Measuring Fluxes of CO2 and CH4
14	172	from Hydroelectric Reservoirs and Natural Water Bodies. In: Graenhouse Gas Emission -
15	473	Eluxas and Processes (eds Trembley & Verfelyy I. Dohom C. & Corney M) pp. 27
16	4/4	60. Springer
17	4/5	ou. springer.
18	4/6	Lelieveld J, Crutzen PJ, Bruni C (1991) In: Nato Advanced Research Workshop on Atmospheric
19	477	Methane : Sources, Sinks and Role in Global Change, pp. 739-768. Pergamon-Elsevier
20	478	Science Ltd, Mt Hood, Or.
21	479	Lopez-Urrutia A, San Martin E, Harris RP, Irigoien X (2006) Scaling the metabolic balance of
22	480	the oceans. Proceedings of the National Academy of Sciences of the United States of
23	481	America, 103 , 8739-8744.
24	482	Marzolf ER, Mulholland PJ, Steinman AD (1994) Improvements to the diurnal upstream-
26	483	downstream dissolved-oxygen change techniques for determining whole stream
27	484	metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences. 51.
28	485	1591-1599
29	486	McKee D Atkinson D Collings SE <i>et al.</i> (2003) Response of freshwater microcosm
30	400	communities to nutrients fish and elevated temperature during winter and summer
31	407	Limnology and Oceanography 19 , 707,722
32	400	Linnology and Oceanography, 40 , 707-722.
30 31	409	Munionand PJ, Fellows CS, Tank JL, <i>et al.</i> (2001) Inter-biome comparison of factors controlling
35	490	stream metabolism. Freshwater Biology, 46, 1503-1517.
36	491	Odum HT (1956) Primary production in flowing waters. <i>Limnology and Oceanography</i> , 1, 102-
37	492	117.
38	493	R. Development. Core. T (2006). R Foundation for Statistical Computing,
39	494	, Vienna, Austria.
40	495	Rodhe H (1990) A comparison of the contribution of various gases to the greenhouse-effect.
41	496	Science, 248 , 1217-1219.
4Z	497	Rudd JWM, Hamilton RD (1978) Methane cycling in a eutrophic shield lake and its effects on
43 11	498	whole lake metabolism. <i>Limnology and Oceanography</i> , 23 , 337-348.
45	499	Sanders IA, Heppell CM, Cotton JA, Wharton G, Hildrew AG, Flowers EJ, Trimmer M (2007)
46	500	Emission of methane from chalk streams has potential implications for agricultural
47	501	practices. Freshwater Biology. 52, 1176-1186.
48	502	Schutz H. Holzanfelnschorn A. Conrad R. Rennenberg H. Seiler W (1989) A 3 year continuous
49	502	record on the influence of daytime season and fertilizer treatment on methane emission
50	503	rates from an Italian rice noddy. <i>Journal of Geophysical Research Atmospheres</i> 9 4
51	505	16405 16416
52 53	505	1040J-10410. Schutz H. Sailar W. Conrod D. (1000) Influence of soil temperature on methods amission from
53 54	507	schutz ri, scher w, Conrau K (1990) influence of son-temperature on methane emission from
55	507	rice paddy fields. <i>Biogeochemistry</i> , 11, 77-95.
56	508	Segers R (1998) Methane production and methane consumption: a review of processes
57	509	underlying wetland methane fluxes. <i>Biogeochemistry</i> , 41 , 23-51.
58		
59		
60		

Global Change Biology

2		
3	510	Walter BP. Heimann M (2000) A process-based, climate-sensitive model to derive methane
4	511	emissions from natural wetlands: Application to five wetland sites sensitivity to model
5	512	narameters and climate Global Riogeochemical Cycles 14 745-765
6 7	512	Westermann P. Abring PK. Meh PA (1080) Temperature companyation in Methanosarcine
/ Q	515	westerniam F, Annig DK, Man KA (1969) Temperature compensation in Methanosatema
a	514	barkeri by modulation of hydrogen and acetate affinity. Applied and Environmental
10	515	Microbiology, 55 , 1262-1266.
11	516	Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands
12	517	<i>Nature</i> , 364 , 794-795.
13	518	Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission
14	519	versus carbon sequestration. Tellus Series B-Chemical and Physical Meteorology, 53,
15	520	521-528.
16	521	Woodwell GM, Mackenzie FT, Houghton RA, Apps M, Gorham E, Davidson E (1998) Biotic
17	522	feedbacks in the warming of the earth <i>Climatic Change</i> 40 495-518
18	522	Vamamoto S. Aleauskas IP. Crozier TE (1076) Solubility of mothana in distilled water and
19	525	Tanianoto S, Alcauskas JD, Cioziel TE (1970) Solubility of incluane in distinct water and $L = \frac{1}{2} \int C L$
20	524	seawater. Journal of Chemical and Engineering Data, 21, 78-80.
21	525	Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, & Montoya JM (<i>in press</i>) Expected
22	526	Warming Alters the Metabolic Balance of Ecosystems. <i>Philosophical Transactions of</i>
24	527	Royal Society of London,
25	528	
26		
27		
28		
29		
30		
31		
32		
33		
34 25		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
40 ∕\0		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

Variable	d.f.	F-ratio	P – Value
ln(CH ₄ Pool)	1,123	0.0001	0.992(NS)
ln(CH ₄ efflux)	1,123	6.22	0.014
ln (<i>k</i>)	1,123	3.46	0.068(NS)
ln(CH ₄ efflux) / ln(GPP)	1,123	6.33	0.013
ln(CH ₄ efflux) / ln(ER)	1,123	6.23	0.0139

Table 1. Linear mixed effects model analysis. Analysing differences between heated and
unheated treatments in the annual means of methane efflux [ln(CH₄ efflux)], the dissolve
methane pool [ln(CH₄ Pool)], the ratio of methane efflux to GPP [ln(CH₄ efflux)/ln(GPP)], and

the ratio of methane efflux to ER $[\ln(CH_4 \text{ efflux})/\ln(ER)]$. Significant *P*-values are given in bold.

333	Relationship	d.f.	F-ratio	P – Value
	ln(CH ₄ efflux) vs 1/kT	1,127	97.98	<0.0001
	Difference in slope of $ln(CH_4 \text{ efflux})$ vs	1,127	1.23	0.23
	Difference in intercept of $ln(CH_4 \text{ efflux})$ vs 1/kT between treatments	1,127	2.29	0.132
	ln(CH ₄ efflux) vs ln(GPP)	1,127	38.61	<0.0001
	Difference in intercept of ln(CH ₄ efflux) vs ln(GPP) between treatments	1,127	1.28	0.26
	Difference in slope of ln(CH ₄ efflux) vs ln(GPP) between treatments	1,127	0.38	0.54
	Difference in slope between $ln(CH_4 \text{ efflux})$ vs $1/kT$ and $ln(GPP)$ vs $1/kT$	1,258	21.61	<0.0001
	Difference in slope between ln(CH ₄ efflux) vs 1/kT and ln(ER) vs 1/kT	1,258	8.36	0.0042
536				
537		relationshin	s between ln(CI	Hefflux) ln(
	Table 2. Analysis of Co-Variance table for the	renationship		14 OIIIux), III(
538	and $\ln(\text{ER})$ vs $1/k\text{T}$. Significant <i>P</i> -values are g	iven in bold.		14 ciliux), iii(
538 539	and $\ln(ER)$ vs $1/kT$. Significant <i>P</i> -values are g	iven in bold.		ių einux), ni
538539540	and $\ln(ER)$ vs $1/kT$. Significant <i>P</i> -values are g	iven in bold.		ių einux), m(
538539540541	and $\ln(ER)$ vs $1/kT$. Significant <i>P</i> -values are g	iven in bold.		14 ciriux <i>)</i> , iii(
538 539 540 541	and $\ln(ER)$ vs $1/kT$. Significant <i>P</i> -values are g	iven in bold.		14 ciriux <i>)</i> , iii(
538 539 540 541	and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		14 ciriux <i>)</i> , iii(
538 539 540 541	and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	Table 2. Analysis of Co-Variance table for the and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	and ln(ER) vs 1/ <i>k</i> T. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	Table 2. Analysis of Co-Variance table for the and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		
538 539 540 541	Table 2. Analysis of Co-Variance table for the and ln(ER) vs 1/kT. Significant <i>P</i> -values are g	iven in bold.		

Fig. 1. (a) Differences in the pool of dissolved methane [In(CH4)] (±SE) between heated (red lines) and unheated treatments (black lines). The pool of dissolved methane exhibited strong seasonal trends and which were identical between treatments. Furthermore, the average annual pool of dissolved methane was identical between treatments (Table 1). (b) Differences in methane efflux, In(ME) (±SE) between heated (red lines) and unheated (black lines) treatments. Methane efflux showed a strong seasonal pattern and was elevated, on average, over the annual cycle in warmed treatments reflecting its strong temperature dependence (Table 1). (149x179mm (72 x 72 DPI)

Fig. 2. Seasonal trends in the gas transfer velocity (k), between heated (red lines) and unheated (black lines) treatments. The gas transfer exhibited little seasonal variability and was not systematically affected by the heating of the mesocosms (Table 1). Data were natural log transformed for statistical analysis but presented here untransformed for ease of interpretation. 213x126mm (72 x 72 DPI)

Fig. 3. Temperature dependence of whole ecosystem methane efflux. The slope of the temperature response of methane efflux in our experiment was equivalent to the activation energy of methanogenesis. Each data point corresponds to the CH4 efflux from a single mesocosm on each of the seven sampling occasions (n = 131). There were no significant differences in the slopes of the temperature dependences of CH4 efflux between heated and unheated mesocosms nor any effects due to repeatedly sampling individual ponds (Table 2): this facilitated the use of a single model to characterise the activation energy.

254x160mm (72 x 72 DPI)

Fig. 4. Positive correlation between methane efflux [ln(ME)] and gross primary production and [ln(GPP)]. Each data point corresponds to the CH4 efflux and GPP of a single mesocosm on each of the seven sampling occasions (n = 131). There were no significant differences in the slope or intercepts of the relationship between ln(ME) vs ln(GPP) between heated and unheated mesocosms nor any effects due to repeatedly sampling individual ponds (Table 2), facilitating the use of a single model to characterise the relationship.

239x149mm (72 x 72 DPI)

Fig. 5. (a) Differences in the ratio of methane efflux to GPP $[ln(ME)/ln(GPP)] (\pm SE)$ and (b) methane efflux to ER $ln(ME)/ln(ER) (\pm SE)$ between heated (red lines) and unheated (black lines) experimental treatments. Both ln(ME)/ln(GPP), and ln(ME)/ln(ER), were elevated, on average over the annual cycle in the warmed treatments. The magnitude of the increase in ln(ME)/ln(GPP) and ln(ME)/ln(ER) reflected the differences in activation energies of these three metabolic processes. Correspondingly, the fraction of GPP respired via the methanogenic pathway increased by 20% in the warmed mesocosms. Furthermore, the fraction of ER due to methanogenesis was 9% greater in the heated treatment.

220x264mm (72 x 72 DPI)

Fig. 6. Temperature dependence of methanogenesis in pure cultures of the methanogens. (a) Methanogenesis of Methanosarcina barkeri using H2 as a substrate; (b) methanogenesis of an enrichment culture using CH3COOH as a substrate; (c) methanogenesis of M. barkeri using CH3COOH as a substrate; and (d) methanogenesis of Methanothrix soehngenii using CH3COOH as a substrate. Data in a and c were reanalysed from Vmax values and temperatures reported in Westermann et al. (1989). Data for b was reanalysed from data on rates of CH3COOH conversion to CH4 in Van den Berg et al., (1976), and data for c was reanalysed from data on rates of CH4 production in Huser et al., (1982). In each case, the slope of the temperature response equates to the activation energy of methanogenesis and agree very well with that derived in Fig. 3. 294x267mm (72 x 72 DPI)