

A method for comparing flexibility performance for the lifecycle of manufacturing systems under capacity planning constraints

Kosmas Alexopoulos, Nikolaos Papakostas, Dimitris Mourtzis, George

Chryssolouris

▶ To cite this version:

Kosmas Alexopoulos, Nikolaos Papakostas, Dimitris Mourtzis, George Chryssolouris. A method for comparing flexibility performance for the lifecycle of manufacturing systems under capacity planning constraints. International Journal of Production Research, 2010, pp.1. 10.1080/00207543.2010.482566. hal-00599497

HAL Id: hal-00599497 https://hal.science/hal-00599497

Submitted on 10 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A method for comparing flexibility performance for the lifecycle of manufacturing systems under capacity planning constraints

Journal:	International Journal of Production Research
Manuscript ID:	TPRS-2009-IJPR-0330.R2
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	18-Mar-2010
Complete List of Authors:	Alexopoulos, Kosmas; University of Patras, Department of Mechanical Engineering and Aeronautics Papakostas, Nikolaos; University of Patras, Department of Mechanical Engineering and Aeronautics Mourtzis, Dimitris; University of Patras, Dept of Mech Engineering and Aeronautics Chryssolouris, George; University of Patras, Department of Mechanical Engineering and Aeronautics
Keywords:	FLEXIBILITY, MANUFACTURING SYSTEMS
Keywords (user):	LIFE CYCLE

A method for comparing flexibility performance for the lifecycle of manufacturing systems under capacity planning constraints

KOSMAS ALEXOPOULOS, NIKOLAOS PAPAKOSTAS, DIMITRIS MOURTZIS, and GEORGE CHRYSSOLOURIS *

LMS, Laboratory for Manufacturing Systems and Automation Department of Mechanical Engineering and Aeronautics University of Patras, Patras 26500, Greece Tel.: +30 2610 997262 Fax: +30 2610 997744

- 1 -

^{*} Corresponding author E-mail: xrisol@lms.mech.upatras.gr

Abstract. The objective of this work is to describe a method for comparing the flexibility performance of manufacturing systems, in an uncertain environment, under lifecycle considerations and capacity planning constraints. The manufacturing systems costs are estimated over a time horizon and for a large variety of possible market scenarios. In order for the lifecycle cost values to be comparable among different systems, their values are calculated with the use of a special purpose algorithm. Statistical analysis of the estimated cost values is then employed for assessing the flexibility of each manufacturing system. The method is applied in an industrial case for checking, also from a flexibility point of view, the investment on a production system, using real life industrial data.

Keywords: Flexibility; Lifecycle; manufacturing systems

1 Introduction

Shorter product lifecycles and the increased number of new models and variants have forced companies to produce products that would meet the demands of a diversified customer base, in a short development cycle, yielding low cost, high quality and sufficient quantity. This makes manufacturing flexibility an increasingly important attribute of modern manufacturing systems (Chryssolouris 2005). However, flexibility cannot be properly considered in the decision making process, if it is not defined in quantifiable terms.

Several methods of measuring manufacturing system flexibility have been proposed. The entropy concept of thermodynamics that provides similarities to flexibility measures is used by Kumar (1987); the entropy concept has been further revised by Chang *et. al.* (2001). A number of methods based on the analogy between a manufacturing and a mechanical system have been proposed (Chryssolouris 1996, Alexopoulos *et. al.* 2007a, Alexopoulos *et. al.* 2008). Tsourveloudis and Phillis (1998) have employed fuzzy logic rules that include engineers' and managers' expertise for measuring machine flexibility. Similarly, Das and Caprihan (2008) use fuzzy logic to compute an overall manufacturing flexibility index for a company as an aggregation of individual flexibility factors. Wahab *et. al* (2008) measure machine flexibility as a function of the probability of assigning a part to a machine, the

- 2 -

efficiency of the machine and the relative importance of the machining operation on the part and Hua and He (2009) measure process flexibility under the consideration of constraints imposed by the products' Bill Of Material. Hua and Benerjee (2000a, 2000b) presented a detailed capacity planning method that considers realistic constraints such as capacity and budget constraints in order to assist investment decisions in a multi-product, flexible manufacturing environment. Their work focuses more on the development of the planning method than on flexibility assessment. A practical example, from the automotive industry, is presented by Elkins et. al. (2004) that uses the Net Present Value (NPV) for assessing the risk of acquiring manufacturing systems with a different degree of flexibility. A measure for evaluating the convertibility of manufacturing systems that considers configuration, machine and material handling level is proposed by Koren et. al. (2003), while Wiendahl and Heger (2004) propose a method of justifying changeability in economical terms, using the scenario planning technique. An approach that provides an integration of different flexibility measures in the form of a "toolbox" is proposed by Georgoulias et. al. (2007). Extensive reviews on the subject of flexibility in manufacturing systems can be found in De Toni and Tonchia (1998) and Beach et. al. (2000).

The work presented in this paper is based on the definition that '*flexibility of a manufacturing system is determined by its sensitivity to change*' (Chryssolouris and Lee 1992). In Chryssolouris and Lee (1992) flexibility is evaluated by calculating the expected cost for accommodating possible changes in the operating environment. The smaller the expected "change cost" is, the less sensitive the system is to changes in its operating environment and thus, the system is considered as more flexible.

- 3 -

Alexopoulos *et. al.* (2005) applied this approach to a real case study of the commercial refrigerators production industry.

The purpose of this paper is to define a measure of flexibility for the lifecycle of a manufacturing system and to describe an algorithm for calculating this measure. The approach in this work is an evolution of the work presented in Alexopoulos *et. al.* (2007b). The reader may refer to that work for detailed description of the approach used for evaluating the flexibility. In the present paper a short description of the method is given for consistency reasons. The current work takes into account additional capacity planning constraints that were not considered in the previous work and refines the flexibility evaluation formula in order to be applicable for flexibility comparison of systems with different scales of initial investment cost. The approach is applied to the selection of a configuration for a real automotive facility.

2 A method to assess flexibility for the lifecycle of a manufacturing system

The manufacturing system can be in any configuration $Conf_m$, $m \in [1,M]$ whereby M is the number of possible configurations. Changes in the configuration of the system can expand or contract its capacity and this usually has a switching cost. The switching cost addresses several aspects such as purchase of new equipment and opportunity cost that is related to the time required for switching between configurations. The switching cost has normally positive values when expanding capacity and negative when contracting. The switching cost between two configurations $Conf_k$, $Conf_1$, is denoted by S_{kl} , with $S_{kk}= 0$. The values of the switching cost could be indicative of the flexibility performance; low switching costs could reflect high flexibility and vice versa. However, flexibility depends not only on the manufacturing system itself, but also on the external demands placed upon it in order to be industrially relevant (Chryssolouris and Lee 1992). The external demand

- 4 -

International Journal of Production Research

is described as a set of market scenarios which are usually generated based on forecast data. A market scenario defines the volume of a product that should be produced at each period *t* of the lifecycle T. In the case of S different market scenarios, an [S*T] matrix **D** holds all of the possible volume demands of a product $(D=\{D_1, D_2, ..., D_S\})$.

$$\mathbf{D} = \begin{bmatrix} D_1 \\ D_2 \\ \vdots \\ D_S \end{bmatrix}_{S \times T} = \begin{bmatrix} D_1(1) & D_1(2) & \dots & D_1(T) \\ D_2(1) & D_2(2) & \dots & D_2(T) \\ \vdots & \vdots & \ddots & \vdots \\ D_S(1) & D_S(2) & \dots & D_S(T) \end{bmatrix}_{S \times T}$$

Each row vector $\mathbf{D}_{\mathbf{i}}$ ($\mathbf{i} \in [1...S]$) in \mathbf{D} represents a market scenario.

Due to the uncertainty of external demand and the large number of possible future market scenarios, which represent a sample of the whole range of possible market scenarios, the flexibility of a manufacturing system can be assessed statistically (Alexopoulos et. al 2007b). The Discounted Cash Flow (DCF) of the system is calculated for each market scenario and the spread of the DCF defines the flexibility of the system in the given market environment. The lower the spread of the DCF, the more flexible the system is considered, since it is less sensitive to the changes of the environment as it "stabilizes" better its lifecycle costs. We can calculate the spread of the DCF by the standard deviation of the values. This is measured by DEVDCF in equation (2). Moreover, if the systems have considerably different initial investment costs the *DEVDCF* values are divided to the initial investment cost. In this case the *NDEVDCF* measure should be used for comparing the flexibility of systems with different scales of initial investment cost. The NDEVDCF calculates dimensionless numbers and thus it is more appropriate when comparing production systems evaluated in different monetary units. On the other hand, NDEVDCF is not valid in the case that the initial investment cost is not a relevant factor (i.e. it is near or equal to zero) such as the case of comparing the flexibility of already installed production

Deleted: the

equipment with no initial investment cost. Moreover, the expected DCF (*EDCF*) is also calculated in (1) in order to be able to have an indication of the trade-off between the flexibility of the system and the expected lifecycle cost.

$$EDCF = \frac{\sum_{i=1}^{S} DCF_i}{S}$$
(1)

$$DEVDCF = \sqrt{\frac{1}{S-1} * \sum_{i=1}^{S} \left[(DCF_i - EDCF)^2 \right]}$$
(2)

$$NDEVDCF = \frac{DEVDCF}{Inv}$$
(3)

Where: DCF_i is the Discounted Cash Flow score for scenario D_i , $i \in [1...S]$ *S* is the total number of scenarios *Inv* is the initial investment cost

Planning in the lifecycle

3.1 Planning problem

In order for the flexibility measure defined in the previous paragraph to be industrially applicable, the DCF estimates for the different manufacturing systems should be comparable. Thus the minimum DCF is calculated for each scenario. In order to calculate the minimum DCF of the system in the lifecycle T, for a given scenario D_i , it is necessary to decide on which of the M possible configurations the system will operate for each period of the lifecycle T. The costs at each period *t* of T arise from the total cost of the selected configuration in period *t* and the switching cost from the configuration selected for period *t*-1. The demand in period *t* determines the total cost $O_m(t)$ of each possible configuration $Conf_m$, $m \in [1...M]$ at period *t*. The $O_m(t)$ value also depends on the 'learning-by-doing' (see equation (5)). The problem of calculating minimum DCF can be formulated as follows:

$$DCF_{i} = Inv + \text{minimize}\left\{\sum_{t=1}^{T} \frac{\{O_{m}(t) + S_{km}(t)\}}{(1+r)^{t}}\right\}$$

Subject to $C_m \ge D_i(t) \forall t \in [1...T], m \in [1...M] \text{ and } i \in [1...S]$ (4)

International Journal of Production Research

Where:

*DCF*_i is the minimum Discounted Cash Flow score for market scenario \mathbf{D}_{i} , $i \in [1...S]$ *Inv* is the investment cost which occurs at period t=0 $O_{m}(t)$: is the total cost for period t if configuration $Conf_{m}$ is assigned for period t $S_{km}(t)$: is the switching cost for period t if configuration $k \in [1...M]$ is assigned for period t-1 and configuration $m \in [1...M]$ is assigned for period t C_{m} is the capacity of the selected configuration $(m \in [1...M])$ for period t $D_{i}(t)$ is the demand at period t according to scenario \mathbf{D}_{i} , $i \in [1...S]$ T: the total number of periods and r: is the interest rate which remains constant for whole T

3.2 Planning constraints

The above planning problem has to be considered under several constraints in order to

be relevant for industrial practice. The constraints that have been considered in this

work are given below.

3.2.1 Fulfil demand constraint

This constraint implies that if configuration m has capacity C_m , the demand at period t

is $\mathbf{D}_{\mathbf{n}}(t)$ and $C_{\mathbf{m}} < \mathbf{D}_{\mathbf{n}}(t)$, then configuration *m* cannot be assigned in period *t* because it

cannot fulfil the demand.

3.2.2 Predefined configuration for some periods

This constraint enables the engineer to define that one or more configurations among the possible ones, should be chosen in specific periods. This is very useful, when for instance, the configuration of the first period, which is known, has to be defined, or when configurations representing the maintenance state of the system have to be defined as well.

3.2.3 Man-hours limit constraint

In many cases due to legislation or company rules, the amount of time that a worker may work should not exceed a certain limit of successive time periods. For instance, such a constraint may imply that the average working hours per week should not exceed 40 for a period of two months. This limits the alternatives that could be adopted for successive periods.

- 7 -

3.2.4 Learning by doing

In industrial practice the production cost function is often "shifted down" as a company accumulates '*experience/learning by doing*' (Alvarez and Cerda 2003). This has been incorporated by providing the ability to define a function that modifies the total costs of a configuration, as the configuration remains valid for a number of successive periods. Such a function has the following general form:

$$CP_{\rm m}(t) = f(t, CP_{\rm m}(t_0))$$
Where:
(5)

t is the period index and $t \in (t_0, T]$

 $CP_{\rm m}(t)$ is the cost per piece in t, for configuration m

 $CP_{\rm m}(t_0)$ is the cost per piece of configuration *m* at the first period in which the

configuration is applied

f is a user defined function that calculates the production cost for a given period and a given initial cost per part $CP_m(t_0)$

The application of "learning by doing" restricts the costs of a configuration $Conf_m$ when it is applied in successive periods.

3.3 Solution

The problem can be described as having to find the shortest path in a tree, where a node represents one possible configuration, and a stage represents a period *t*. A number of possible nodes (configurations) are available for each stage (period). An edge from node $Conf_k$ to node $Conf_l$, a stage below, shows that the change $Conf_k$ to node $Conf_l$ is possible with a switching cost S_{kl} (see Figure 1). For each stage the algorithm should select the node, which would lead to the minimum lifecycle cost of the system without violating the constraints. In order to address this issue a

- 8 -

International Journal of Production Research

customised backward optimization algorithm (Denardo 2003) has been developed.

The steps of the algorithm are given below.

<u>Step 1</u>: Set *t*=T-1

- <u>Step 2</u>: Take the next node $Conf_k$ in stage t.
- <u>Step 3</u>: Take the next node $Conf_m$ in stage t+1.
- <u>Step 4</u>: Calculate the $(t+1)^{\text{th}}$ term of equation (4) for $Conf_m$ considering that $Conf_k$ is assigned in period *t*: $partialScore_{m,t+1} = \frac{O_m(t+1) + S_{km}}{(1+r)^{t+1}}$. If *t*=T-1 Go directly to Step 5 else GoTo Step 4.1

<u>Step 4.1</u>: Set *partialScore*_{m,t+1} = $\frac{O_m(t+1) + S_{km}}{(1+r)^{t+1}} + minScore_{m,t+1}$ (see

details for calculating $minScore_{m,t+1}$ in Step 6).

- <u>Step 5</u>: If there is another node in (t+1) GoTo Step 3 else GoTo Step 6
- <u>Step 6</u>: For node $Conf_k$ store plans up to stage T and their partial scores, for each node of stage t+1. The plans are sorted in descending order. The minimum DCF score for $Conf_k$ (*minScore*_{k,t}) is the score of the first partial solution score for node $Conf_k$.
- <u>Step 7</u>: If there is another node in *t* GoTo Step 2 else GoTo Step 8.
- <u>Step 8</u>: If t=0 then STOP else set t=t-1 and GoTo Step 1.

Although this algorithm is capable of generating the solution with the minimum DCF, it should, however, be ameliorated in order for the constraints to be taken into account, since the generated solution may not satisfy one or more constraints. An approach to implement the constraints is to extend this algorithm to generate L best solutions instead of one and then apply the complex constraint formulas in each solution until a solution that satisfies all constraints is reached. The extension of the algorithm that has been implemented is capable of generating L successive solutions. The constraint formulas are applied gradually in parts of the solution and thus they radically reduce the possible solution space. The extension of the algorithm is schematically presented with an example for up to two stages/periods in Figure 2.

As shown in Figure 2 each node has a list of k possible partial solution paths, ranked in successive order, with the one that has the minimum DCF being first. Then

- 9 -

the solutions move from nodes of the bottom to nodes in higher level to replace solutions that have either been popped to replace a part of the solution or have been examined and failed to satisfy one or more constraints. Then the list of k partial solutions of the higher-level node is sorted again so as the best partial solution to be first. The constraint formulas may be applied either at the partial solution path of each internal node or directly at the final solution. This movement of the partial solutions from node to node resembles the movement of bubbles within a glass of sparkle water as one pushes the other to the top.

[Insert figure 1 about here]

[Insert figure 2 about here]

4 Industrial case study

In this section, the proposed method is applied to an investment decision in the automotive industry. Two different production systems have been proposed for the production of the body of a car:

- System A uses conventional welding equipment and
- *System B* uses advanced welding equipment.

For both systems, five different configurations are possible, which are $Conf_A$ = (Conf_{A1}, Conf_{A2}, Conf_{A3}, Conf_{A4}, Conf_{A5}) and Conf_B = (Conf_{B1}, Conf_{B2}, Conf_{B3}, Conf_{B4}, Conf_{B5}). The configurations, within each vector Conf_A, and Conf_B, differ in the number of available equipment and working shifts. For each system the individual cost figures and the capacity for each of the configurations are given in Table 1, including the fixed cost terms on a yearly basis, such as area cost, energy cost, labour cost, the variable costs, such as waste cost per piece, additional cost per piece. Furthermore, the organizational capacity and the capacity of each configuration are given. The cost figures show that *System B* has higher total costs than *System A*.

The 'Organizational capacity limit' refers to the capacity of the configuration when the system operates in its "normal" state, while the 'Capacity' term refers to the maximum level of products that can be produced, given the technical limitations of the configuration. The system may have higher production than its 'Organizational capacity limit' by overtimes and working during weekends. When the production exceeds the 'Organizational capacity limit' then the 'Additional cost per piece' is included in the variable cost term. The switching costs for each one of the systems are given in Table 2 and Table 3. $Conf_{A0}$ and $Conf_{B0}$ are configurations that are not actually applied and are used only for defining the initial switching cost S_{0k} , from the initial investment cost. The initial investment cost, *Inv*, is 5 500 000€ for *System A* and 7 500 000€ for *System B*. The learning-by-doing curve is usually calculated based on statistical data. Since statistical data were lacking, the 'power law' formula has been used, assuming a 90% learning percent (Zangwill and Kantor 1998):

$$CP_{\rm m}(t) = CP_{\rm m}(t_0) \times t^{\frac{\ln 0.9}{\ln 2}}$$
(6)

The scenarios are generated by using uniform and normal probability distributions as well as forecast data based on realistic information, coming from the marketing department. This information defines the minimum and maximum demand in 70 000 and 200 000 parts annually, for a time horizon T = 10 years which is typical lifetime for the production systems under study. A number of 1000 scenarios are generated within these limits for different demand boundaries (see first column in Table 4). The number of 1000 has been selected in order to give statistically relevant results.

The results of the experiments are presented in Table 4 and clearly indicate that *System B* is less sensitive to the diverse market environment than *System A*. In all cases studied, the *DEVDCF and NDEVDCF* value of *System B* are less than that in

- 11 -

System A. However since the *EDCF* is higher for *System B*, the trade-off between flexibility and its cost becomes more transparent. Additionally, in comparison to the (Alexopoulos et. al. 2007b) results, in which the 'learning-by-doing' constraint was not applicable, it appears that both the *EDCF* and *DEVDCF* values are lower in all scenario profiles. This reduction (approximately 10%) in *DEVDCF* values is due to the reduction of the individual reduction in the *DCF* values due to the application of the 'learning by doing'.

[Insert tables 1-4 about here]

5 Conclusions

This paper takes the perspective that the flexibility of a manufacturing system is related to its insensitivity to external changes; the less sensitive a system is the more flexible it should be considered. Taking this perspective and applying it in a lifecycle context, a method of modelling and assessing the flexibility of a manufacturing system is presented. The proposed method can be applied during the initial planning phase for quantifying the tolerance of the manufacturing system during its lifecycle to changes in the market environment, which is a strong flexibility benefit. In order to make the method applicable to the complex industrial reality, a number of capacity constraints, which are relevant in the lifecycle context, have been considered and the method has been extended in order to account for these constraints. The industrial case study indicates that the proposed method can give valuable results when comparing alternative manufacturing system solutions. However, the method does not provide any suggestions for improving the system in terms of flexibility performance. It does not tell the engineers about the flexibility that is actually required in order for a feedback to the design parameters of the manufacturing system to be established; this is subject to future research. Finally, future research will

Deleted: . Deleted: T

- 12 -

investigate the impact of different learning curves and different demand distribution

profiles on the results of the proposed flexibility measure.

Acknowledgements

This work has been partially funded by the European Commission through IST-NMP-Project X-Change, Flexible Change Management for the Factory of the Future.

References

- Alexopoulos, K., Mamassioulas, A., Mourtzis, D. and Chryssolouris, G., 2005. Volume and Product Flexibility: a Case Study for a refrigerators Producing Facility. 10th IEEE International Conference on Emerging Technologies and Factory Automation, Catania, Italy, 891-897.
- Alexopoulos, K., N. Papakostas, D. Mourtzis, P. Gogos and G. Chryssolouris, 2007a. Quantifying the flexibility of a manufacturing system by applying the transfer function. *International Journal of Computer Integrated Manufacturing*, 20(6), 538-547.
- Alexopoulos, K., D.Mourtzis, N. Papakostas and G. Chryssolouris, 2007b. DESYMA
 Assessing flexibility for the lifecycle of manufacturing systems. International Journal of Production Research, 45(7), 1683-1694.
- Alexopoulos, K., N. Papakostas, D. Mourtzis, P. Gogos and G. Chryssolouris, 2008. Oscillator analogy for modelling the manufacturing systems dynamics. *International Journal of Production Research*, 46(10), 2547-2563.
- Alvarez, F. and Cerda, E., 2003. Learning by doing in a T-period production planning: Analytical solution. *European Journal of Operational Research*, 150, 353–369.
- Beach, R., Muhleman, A.P., Price, D.H.R., Paterson, A. and Sharp, J.A., 2000. A review of manufacturing flexibility. *European Journal of Operational Research*, 122, 41-57.
- Chang, A.Y, Whitehouse, D.J., Chang S.L. and Hsieh, Y.C., 2001. An approach to the measurement of single-machine Flexibility. *International Journal of Production Research*, 39(8),1589-1601.
- Chryssolouris, G., 2005. *Manufacturing Systems-Theory and Practice*. 2nd ed. New York: Springer-Verlag
- Chryssolouris, G., 1996. Flexibility and its Measurement. *Proceedings of the CIRP* Annals, 45(2), 581-587.
- Chryssolouris, G. and Lee, M., 1992. An Assessment of Flexibility in Manufacturing Systems. *Manufacturing Review*, 5(2), 105-116.
- Das, A. and Caprihan, R., 2008. A rule-based fuzzy-logic approach for the measurement of manufacturing flexibility. *International Journal of Advanced Manufacturing Technology*, 38, 1098–1113.
- Denardo, E.V., 2003. *Dynamic programming: models and applications*. New York: Dover Publications
- De Toni, A. and Tonchia, S., 1998. Manufacturing Flexibility: a literature review. International Journal of Production Research, 36(6), 1587 – 1617.
- Elkins, D.A., Huang, N. and Alden, 2004. J.M., Agile manufacturing systems in the automotive industry. *International Journal of Production Economics*, 91(3), 201-214.

- Georgoulias, K., Papakostas, N., S. Makris, S. and G. Chryssolouris, G., 2007. A Toolbox Approach for Flexibility Measurements in Diverse Environments. *Annals of CIRP*, 56(1), 423-426.
- Hua, Z. and He,P., 2009. Process flexibility under bill of material constraints: part I an effective measuring approach. *International Journal of Production Research*, accessed on line.
- Hua, Z.S. and Banerjee, P. 2000. A model for line capacity design for PWB assembly systems. Robotics and Computer-Integrated Manufacturing, 16 (4), 241-257.
- Hua, Z.S. and Banerjee, P. 2000. Aggregate line capacity design for PWB assembly systems. International Journal of Production Research, 38 (11), 2417-2441.
- Koren, Y., Maier-Speredelozzi, V. and Hu, S.J., 2003. Convertibility Measures for Manufacturing Systems. Annals of the CIRP, 52(1), 367-370.
- Kumar, V., 1987. Entropic Measures of Manufacturing Flexibility. International Journal of Production Research, 25(7), 957-966.
- Tsourveloudis, N. and Phillis, Y., 1998. Fuzzy Assessment of Machine Flexibility. *IEEE Transactions on Engineering Management*, 45(1), 78-87.
- Wahab, M.I.M., Wu,D. and Lee,C., 2008. A generic approach to measuring the machine flexibility of manufacturing systems. *European Journal of Operational Research*, 186, 137–149.
- Wiendahl, H.P. and Heger, C.L., 2004. Justifying changeability. A methodological approach to achieving Cost Effectiveness. *The manufacturing Journal for Manufacturing Science and Production*, 6(1), 33-39.
- Zangwill I. W. and Kantor B. P., 1998, Toward a Theory of Continuous Improvement and the Learning Curve, *Management Science*, 44(7), 910-920.

- 14 -

Table 1. Total costs for both systems.

			Variab	le Cost	Org.	
	Config.	Fixed Costs (€)	Waste Cost (€)	Addit. Cost (€)	Cap. limit (x1000)	Capacity (x1000)
1	Conf _{A1}	157 920	0.33€	1	96.25	110
iiona nent	Conf _{A2}	230 640	0.33€	1	113.75	130
Convent Equipr	Conf_{A3}	163 337	0.33€	1	122.5	140
	Conf_{A4}	237 874	0.33€	1	140	160
	Conf _{A5}	252 411	0.33€	1	175	200
	$\operatorname{Conf}_{\operatorname{B1}}$	167 835	0.33€	1	96.25	110
vanced ipment	Conf_{B2}	248 187	0.33€	1	113.75	130
	$\operatorname{Conf}_{\mathrm{B3}}$	173 650	0.33€	1	122.5	140
Ad Equ	$\operatorname{Conf}_{\mathrm{B4}}$	256 910	0.33€	1	140	160
	Conf_{B5}	280 169	0.33€	1	175	200

2
2
3
4
5
ĉ
ю
7
8
õ
9
10
11
40
12
13
14
15
15
16
17
10
18
19
20
24
21
22
23
24
24
25
26
20
27
28
29
20
30
31
32
02
33
34
35
00
36
37
38
00
39
40
11
40
42
43
44
1
45
46
47
40
4ŏ
49
50
E 4
21
52
53
E /
54
55
56
57
57
58
59
60
DU

Table 2. Change cost (in \in) matrix for System A.	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Config.	Conf _{A1}	Conf _{A2}	Conf _{A3}	Conf _{A4}	Conf _{A5}
Conf _{A1} 0 0 1 434 214 1 434 214 3 430 614 Conf _{A2} 0 0 1 434 214 1 434 214 3 430 614 Conf _{A3} -403 333 -403 333 0 0 1766 400 Conf _{A4} -403 333 -403 333 0 0 0 1996 400 Conf _{A5} -761 333 -761 333 -412 000 -412 000 0	$\operatorname{Conf}_{\operatorname{A0}}$	0	0	1 434 214	1 434 214	3 430 614
Conf _{A2} 0 0 1 434 214 1 434 214 3 430 614 Conf _{A3} -403 333 -403 333 0 0 1766 400 Conf _{A4} -403 333 -403 333 0 0 0 1996 400 Conf _{A5} -761 333 -761 333 -412 000 -412 000 0	$\operatorname{Conf}_{\operatorname{A1}}$	0	0	1 434 214	1 434 214	3 430 614
Conf _{A3} -403 333 -403 333 0 0 1766 400 Conf _{A4} -403 333 -403 333 0 0 1996 400 Conf _{A5} -761 333 -761 333 -412 000 -412 000 0	Conf_{A2}	0	0	1 434 214	1 434 214	3 430 614
Conf _{A4} -403 333 -403 333 0 0 1996 400 Conf _{A5} -761 333 -761 333 -412 000 -412 000 0	Conf_{A3}	-403 333	-403 333	0	0	1 766 400
Conf _{A5} -761 333 -761 333 -412 000 -412 000 0	$\operatorname{Conf}_{\operatorname{A4}}$	-403 333	-403 333	0	0	1 996 400
	Conf _{A5}	-761 333	-761 333	-412 000	-412 000	0

- 16 -

2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
25
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
20
30
39
40
41
42
42
43
44
45
46
/7
40
48
49
50
51
50
52
53
54
55
56
50
57
58
50

Table 3	Change cost	(in €) matrix	for System B.
---------	-------------	---------------	---------------

Config	Conf _{B1}	Conf _{B2}	Conf _{B3}	Conf _{B4}	Conf _{B5}
$\operatorname{Conf}_{\operatorname{B0}}$	0	0	1 251 514	1 251 514	2 666 314
$Conf_{B1} \\$	0	0	1 251 514	1 251 514	2 666 314
Conf_{B2}	0	0	1 251 514	1 251 514	3 173 914
$\operatorname{Conf}_{\mathrm{B3}}$	-457 333	-457 333	0	0	1 234 800
Conf_{B4}	-457 333	-457 333	0	0	1 003 200
$\operatorname{Conf}_{\mathrm{B5}}$	-814 667	-881 333	-357 333	-357 333	0
			47		
			- 17 -		

	Table 4:	Case	study	results.
--	----------	------	-------	----------

Scenario Profile ^a EDCF J(70 000,200 000) 9 888 399 J(70 000,190 000) 9 660 931 J(80 000,160 000) 8 308 482 J(90 000,150 000) 8 202 413 J(110000,140000) 8 184 877 X(15000,50000) 10 265 421 X(15000,40000) 10 236 499 Note that U(i, j) is uniform di listribution with <i>m</i> as mean an	System A DEVDCF 550 220 579 951 277 364 245 207 156 016 525 077 474 642 406 037 istribution betw n d as deviation	NDEVDCF 10,00% 10,54% 5,04% 4,46% 2,84% 9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> .	EDCF 11 290 760 11 092 476 10 227 861 10 122 060 10 098 834 11 658 148 11 628 984 11 594 422 While N(m	System B DEVDCF 495 685 482 558 269 478 227 394 129 334 514 868 468 471 387 661 1, d) is a nor	NDEVDCF 6,61% 6,43% 3,59% 3,03% 1,72% 6,86% 6,25% 5,17% rmal
Profile a EDCF $J(70\ 000,200\ 000)$ 9 888 399 $J(70\ 000,190\ 000)$ 9 660 931 $J(80\ 000,160\ 000)$ 8 308 482 $J(90\ 000,150\ 000)$ 8 202 413 $J(10\ 000,140\ 000)$ 8 184 877 $S(15\ 000,50\ 000)$ 10 265 421 $S(15\ 0000,40\ 000)$ 10 238 873 $S(15\ 0000,40\ 000)$ 10 236 499 Note that U(i, j) is uniform dilistribution with <i>m</i> as mean an $S(15\ 000,50\ 000)$ $S(15\ 000,50\ 000)$	DEVDCF 550 220 579 951 277 364 245 207 156 016 525 077 474 642 406 037 istribution betw n d as deviation	NDEVDCF 10,00% 10,54% 5,04% 4,46% 2,84% 9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> .	EDCF 11 290 760 11 092 476 10 227 861 10 122 060 10 098 834 11 658 148 11 628 984 11 594 422 While N(m	DEVDCF 495 685 482 558 269 478 227 394 129 334 514 868 468 471 387 661 1, d) is a nor	NDEVDCF 6,61% 6,43% 3,59% 3,03% 1,72% 6,86% 6,25% 5,17% rmal
110110 110110 J(70 000,200 000) 9 888 399 J(70 000,190 000) 9 660 931 J(80 000,160 000) 8 308 482 J(90 000,150 000) 8 202 413 J(110000,140000) 8 184 877 J(150000,50000) 10 265 421 J(150000,40000) 10 238 873 J(150000,40000) 10 236 499 Note that U(i, j) is uniform di listribution with <i>m</i> as mean an	550 220 579 951 277 364 245 207 156 016 525 077 474 642 406 037 istribution betw n <i>d</i> as deviation	10,00% 10,54% 5,04% 4,46% 2,84% 9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> .	11 290 760 11 092 476 10 227 861 10 122 060 10 098 834 11 658 148 11 628 984 11 594 422 While N(m	495 685 482 558 269 478 227 394 129 334 514 868 468 471 387 661 a, d) is a nor	6,61% 6,43% 3,59% 3,03% 1,72% 6,86% 6,25% 5,17% rmal
J(70 000,190 000) 9 660 931 J(80 000,160 000) 8 308 482 J(90 000,150 000) 8 202 413 J(110000,140000) 8 184 877 J(150000,50000) 10 265 421 J(150000,40000) 10 236 499 Note that U(i, j) is uniform di listribution with <i>m</i> as mean an	579 951 277 364 245 207 156 016 525 077 474 642 406 037 istribution betw n <i>d</i> as deviation	10,50% 10,54% 5,04% 4,46% 2,84% 9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> . 1	11 290 700 11 092 476 10 227 861 10 122 060 10 098 834 11 658 148 11 628 984 11 594 422 While N(m	482 558 269 478 227 394 129 334 514 868 468 471 387 661 a, d) is a nor	6,43% 3,59% 3,03% 1,72% 6,86% 6,25% 5,17% crmal
(10 000,190 000) 9 000 931 (80 000,160 000) 8 308 482 (90 000,150 000) 8 202 413 (110000,140000) 8 184 877 (150000,50000) 10 265 421 (150000,40000) 10 236 499 Note that U(i, j) is uniform di istribution with <i>m</i> as mean an	277 364 245 207 156 016 525 077 474 642 406 037 istribution betw 1 <i>d</i> as deviation	10,54% 5,04% 4,46% 2,84% 9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> .	10 092 476 10 227 861 10 122 060 10 098 834 11 658 148 11 628 984 11 594 422 While N(m	482 538 269 478 227 394 129 334 514 868 468 471 387 661 a, d) is a nor	0,43% 3,59% 3,03% 1,72% 6,86% 6,25% 5,17% rmal
J(80 000,160 000) 8 308 482 J(90 000,150 000) 8 202 413 J(110000,140000) 8 184 877 J(150000,50000) 10 265 421 J(150000,40000) 10 238 873 J(150000,40000) 10 236 499 Note that U(i, j) is uniform di listribution with <i>m</i> as mean an	277 364 245 207 156 016 525 077 474 642 406 037 istribution betw n <i>d</i> as deviation	5,04% 4,46% 2,84% 9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> .	10 227 861 10 122 060 10 098 834 11 658 148 11 628 984 11 594 422 While N(m	269 478 227 394 129 334 514 868 468 471 387 661 a, d) is a nor	3,59% 3,03% 1,72% 6,86% 6,25% 5,17% rmal
J(90 000,150 000) 8 202 413 J(110000,140000) 8 184 877 J(150000,50000) 10 265 421 J(150000,40000) 10 238 873 J(150000,40000) 10 236 499 Note that U(i, j) is uniform di Listribution with <i>m</i> as mean an	245 207 156 016 525 077 474 642 406 037 istribution betw n <i>d</i> as deviation	4,46% 2,84% 9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> .	10 122 060 10 098 834 11 658 148 11 628 984 11 594 422 While N(m	227 394 129 334 514 868 468 471 387 661 a, d) is a nor	3,03% 1,72% 6,86% 6,25% 5,17% rmal
I(110000,140000) 8 184 877 I(150000,50000) 10 265 421 I(150000,40000) 10 238 873 I(150000,40000) 10 236 499 Note that U(i, j) is uniform di istribution with <i>m</i> as mean an	156 016 525 077 474 642 406 037 istribution betw n <i>d</i> as deviation	2,84% 9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> .	10 098 834 11 658 148 11 628 984 11 594 422 While N(m	129 334 514 868 468 471 387 661 a, d) is a nor	1,72% 6,86% 6,25% 5,17% rmal
(150000,50000) 10 265 421 (150000,40000) 10 238 873 (150000,40000) 10 236 499 Note that U(i, j) is uniform di istribution with <i>m</i> as mean an	525 077 $474 642$ $406 037$ istribution betwn <i>d</i> as deviation	9,55% 8,63% 7,38% ween <i>i</i> and <i>j</i> .	11 658 148 11 628 984 11 594 422 While N(m	514 868 468 471 387 661 a, d) is a nor	6,86% 6,25% 5,17% rmal
(150000,40000) 10 238 873 (150000,40000) 10 236 499 Note that U(i, j) is uniform di stribution with <i>m</i> as mean an	474 642 406 037 istribution betw n <i>d</i> as deviation	8,63% 7,38% ween <i>i</i> and <i>j</i> .	11 628 984 11 594 422 While N(m	468 471 387 661 , d) is a nor	6,25% 5,17% rmal
150000,40000) 10 236 499 Note that U(i, j) is uniform di estribution with <i>m</i> as mean an	406 037 istribution betw h d as deviation	7,38% ween <i>i</i> and <i>j</i> .	11 594 422 While N(m	<u>387 661</u> ,, d) is a nor	5,17% rmal
Note that U(i, j) is uniform distribution with <i>m</i> as mean an	istribution betw	ween <i>i</i> and <i>j</i> .	While N(m	, d) is a nor	rmal
tribution with <i>m</i> as mean an	a d as deviation	1 1	. while R(m		
tribution with <i>m</i> as mean an	a d as deviation	1			
	-	18 -			

Figure 1: Tree representation of the minimum DCF problem instance

- 20 -

Figure 2: Algorithm extension to generate first *L* best solutions

A method for comparing flexibility performance for the lifecycle of manufacturing systems under capacity planning constraints

KOSMAS ALEXOPOULOS, NIKOLAOS PAPAKOSTAS, DIMITRIS MOURTZIS, and GEORGE CHRYSSOLOURIS

<text> LMS, Laboratory for Manufacturing Systems and Automation Department of Mechanical Engineering and Aeronautics

^{*} Corresponding author E-mail: xrisol@lms.mech.upatras.gr

Abstract. The objective of this work is to describe a method for comparing the flexibility performance of manufacturing systems, in an uncertain environment, under lifecycle considerations and capacity planning constraints. The manufacturing systems costs are estimated over a time horizon and for a large variety of possible market scenarios. In order for the lifecycle cost values to be comparable among different systems, their values are calculated with the use of a special purpose algorithm. Statistical analysis of the estimated cost values is then employed for assessing the flexibility of each manufacturing system. The method is applied in an industrial case for checking, also from a flexibility point of view, the investment on a production system, using real life industrial data.

Keywords: Flexibility; Lifecycle; manufacturing systems

1 Introduction

Shorter product lifecycles and the increased number of new models and variants have forced companies to produce products that would meet the demands of a diversified customer base, in a short development cycle, yielding low cost, high quality and sufficient quantity. This makes manufacturing flexibility an increasingly important attribute of modern manufacturing systems (Chryssolouris 2005). However, flexibility cannot be properly considered in the decision making process, if it is not defined in quantifiable terms.

Several methods of measuring manufacturing system flexibility have been proposed. The entropy concept of thermodynamics that provides similarities to flexibility measures is used by Kumar (1987); the entropy concept has been further revised by Chang *et. al.* (2001). A number of methods based on the analogy between a manufacturing and a mechanical system have been proposed (Chryssolouris 1996, Alexopoulos *et. al.* 2007a, Alexopoulos *et. al.* 2008). Tsourveloudis and Phillis (1998) have employed fuzzy logic rules that include engineers' and managers' expertise for measuring machine flexibility. Similarly, Das and Caprihan (2008) use fuzzy logic to compute an overall manufacturing flexibility index for a company as an aggregation of individual flexibility factors. Wahab *et. al* (2008) measure machine flexibility as a function of the probability of assigning a part to a machine, the

- 2 -

efficiency of the machine and the relative importance of the machining operation on the part and Hua and He (2009) measure process flexibility under the consideration of constraints imposed by the products' Bill Of Material. Hua and Benerjee (2000a, 2000b) presented a detailed capacity planning method that considers realistic constraints such as capacity and budget constraints in order to assist investment decisions in a multi-product, flexible manufacturing environment. Their work focuses more on the development of the planning method than on flexibility assessment. A practical example, from the automotive industry, is presented by Elkins et. al. (2004) that uses the Net Present Value (NPV) for assessing the risk of acquiring manufacturing systems with a different degree of flexibility. A measure for evaluating the convertibility of manufacturing systems that considers configuration, machine and material handling level is proposed by Koren et. al. (2003), while Wiendahl and Heger (2004) propose a method of justifying changeability in economical terms, using the scenario planning technique. An approach that provides an integration of different flexibility measures in the form of a "toolbox" is proposed by Georgoulias et. al. (2007). Extensive reviews on the subject of flexibility in manufacturing systems can be found in De Toni and Tonchia (1998) and Beach et. al. (2000).

The work presented in this paper is based on the definition that '*flexibility of a manufacturing system is determined by its sensitivity to change*' (Chryssolouris and Lee 1992). In Chryssolouris and Lee (1992) flexibility is evaluated by calculating the expected cost for accommodating possible changes in the operating environment. The smaller the expected "change cost" is, the less sensitive the system is to changes in its operating environment and thus, the system is considered as more flexible.

- 3 -

 Alexopoulos *et. al.* (2005) applied this approach to a real case study of the commercial refrigerators production industry.

The purpose of this paper is to define a measure of flexibility for the lifecycle of a manufacturing system and to describe an algorithm for calculating this measure. The approach in this work is an evolution of the work presented in Alexopoulos *et. al.* (2007b). The reader may refer to that work for detailed description of the approach used for evaluating the flexibility. In the present paper a short description of the method is given for consistency reasons. The current work takes into account additional capacity planning constraints that were not considered in the previous work and refines the flexibility evaluation formula in order to be applicable for flexibility comparison of systems with different scales of initial investment cost. The approach is applied to the selection of a configuration for a real automotive facility.

2 A method to assess flexibility for the lifecycle of a manufacturing system

The manufacturing system can be in any configuration $Conf_m$, $m \in [1,M]$ whereby M is the number of possible configurations. Changes in the configuration of the system can expand or contract its capacity and this usually has a switching cost. The switching cost addresses several aspects such as purchase of new equipment and opportunity cost that is related to the time required for switching between configurations. The switching cost has normally positive values when expanding capacity and negative when contracting. The switching cost between two configurations $Conf_k$, $Conf_i$, is denoted by S_{kl} , with $S_{kk}= 0$. The values of the switching cost could be indicative of the flexibility performance; low switching costs could reflect high flexibility and vice versa. However, flexibility depends not only on the manufacturing system itself, but also on the external demands placed upon it in order to be industrially relevant (Chryssolouris and Lee 1992). The external demand

- 4 -

is described as a set of market scenarios which are usually generated based on forecast data. A market scenario defines the volume of a product that should be produced at each period *t* of the lifecycle T. In the case of S different market scenarios, an [S*T] matrix **D** holds all of the possible volume demands of a product $(D=\{D_1, D_2, ..., D_S\})$.

$$\mathbf{D} = \begin{bmatrix} D_1 \\ D_2 \\ \vdots \\ D_s \end{bmatrix}_{s \times T} = \begin{bmatrix} D_1(1) & D_1(2) & \dots & D_1(T) \\ D_2(1) & D_2(2) & \dots & D_2(T) \\ \vdots & \vdots & \ddots & \vdots \\ D_s(1) & D_s(2) & \dots & D_s(T) \end{bmatrix}_{s \times T}$$

Each row vector $\mathbf{D}_{\mathbf{i}}$ ($\mathbf{i} \in [1...S]$) in \mathbf{D} represents a market scenario.

Due to the uncertainty of external demand and the large number of possible future market scenarios, which represent a sample of the whole range of possible market scenarios, the flexibility of a manufacturing system can be assessed statistically (Alexopoulos et. al 2007b). The Discounted Cash Flow (DCF) of the system is calculated for each market scenario and the spread of the DCF defines the flexibility of the system in the given market environment. The lower the spread of the DCF, the more flexible the system is considered, since it is less sensitive to the changes of the environment as it "stabilizes" better its lifecycle costs. We can calculate the spread of the DCF by the standard deviation of the values. This is measured by DEVDCF in equation (2). Moreover, if the systems have considerably different initial investment costs the *DEVDCF* values are divided to the initial investment cost. In this case the NDEVDCF measure should be used for comparing the flexibility of systems with different scales of initial investment cost. The NDEVDCF calculates dimensionless numbers and thus it is more appropriate when comparing production systems evaluated in different monetary units. On the other hand, NDEVDCF is not valid in the case that the initial investment cost is not a relevant factor (i.e. it is near or equal to zero) such as the case of comparing the flexibility of already installed production

Page 27 of 42

International Journal of Production Research

equipment with no initial investment cost. Moreover, the expected DCF (*EDCF*) is also calculated in (1) in order to be able to have an indication of the trade-off between the flexibility of the system and the expected lifecycle cost.

$$EDCF = \frac{\sum_{i=1}^{5} DCF_i}{S}$$
(1)

$$DEVDCF = \sqrt{\frac{1}{S-1} * \sum_{i=1}^{S} \left[\left(DCF_i - EDCF \right)^2 \right]}$$
(2)

$$NDEVDCF = \frac{DEVDCF}{Inv}$$
(3)

Where: DCF_i is the Discounted Cash Flow score for scenario D_i , $i \in [1...S]$ *S* is the total number of scenarios *Inv* is the initial investment cost

Planning in the lifecycle

3.1 Planning problem

In order for the flexibility measure defined in the previous paragraph to be industrially applicable, the DCF estimates for the different manufacturing systems should be comparable. Thus the minimum DCF is calculated for each scenario. In order to calculate the minimum DCF of the system in the lifecycle T, for a given scenario D_i , it is necessary to decide on which of the M possible configurations the system will operate for each period of the lifecycle T. The costs at each period *t* of T arise from the total cost of the selected configuration in period *t* and the switching cost from the configuration selected for period *t*-1. The demand in period *t* determines the total cost $O_m(t)$ of each possible configuration $Conf_m$, $m \in [1...M]$ at period *t*. The $O_m(t)$ value also depends on the 'learning-by-doing' (see equation (5)). The problem of calculating minimum DCF can be formulated as follows:

$$DCF_{i} = Inv + \text{minimize} \left\{ \sum_{t=1}^{T} \frac{\{O_{m}(t) + S_{km}(t)\}}{(1+r)^{t}} \right\}$$

Subject to $C_{\rm m} \ge D_{\rm i}(t) \forall t \in [1...T], m \in [1...M] \text{ and } i \in [1...S]$ (4)

Where:

*DCF*_i is the minimum Discounted Cash Flow score for market scenario \mathbf{D}_i , $i \in [1...S]$ *Inv* is the investment cost which occurs at period t=0 $O_m(t)$: is the total cost for period t if configuration $Conf_m$ is assigned for period t $S_{km}(t)$: is the switching cost for period t if configuration $k \in [1...M]$ is assigned for period t-1 and configuration $m \in [1...M]$ is assigned for period t C_m is the capacity of the selected configuration $(m \in [1...M])$ for period t $D_i(t)$ is the demand at period t according to scenario \mathbf{D}_i , $i \in [1...S]$ T: the total number of periods and r: is the interest rate which remains constant for whole T

3.2 Planning constraints

The above planning problem has to be considered under several constraints in order to

be relevant for industrial practice. The constraints that have been considered in this

work are given below.

3.2.1 Fulfil demand constraint

This constraint implies that if configuration m has capacity C_m , the demand at period t

is $\mathbf{D}_{\mathbf{n}}(t)$ and $C_{\mathbf{m}} < \mathbf{D}_{\mathbf{n}}(t)$, then configuration *m* cannot be assigned in period *t* because it

cannot fulfil the demand.

3.2.2 Predefined configuration for some periods

This constraint enables the engineer to define that one or more configurations among the possible ones, should be chosen in specific periods. This is very useful, when for instance, the configuration of the first period, which is known, has to be defined, or when configurations representing the maintenance state of the system have to be defined as well.

3.2.3 Man-hours limit constraint

In many cases due to legislation or company rules, the amount of time that a worker may work should not exceed a certain limit of successive time periods. For instance, such a constraint may imply that the average working hours per week should not exceed 40 for a period of two months. This limits the alternatives that could be adopted for successive periods.

- 7 -

3.2.4 Learning by doing

In industrial practice the production cost function is often "shifted down" as a company accumulates '*experience/learning by doing*' (Alvarez and Cerda 2003). This has been incorporated by providing the ability to define a function that modifies the total costs of a configuration, as the configuration remains valid for a number of successive periods. Such a function has the following general form:

$$CP_{\rm m}(t) = f(t, CP_{\rm m}(t_0))$$
(5)
Where:

t is the period index and $t \in (t_0, T]$

 $CP_{\rm m}(t)$ is the cost per piece in t, for configuration m

 $CP_{\rm m}(t_0)$ is the cost per piece of configuration *m* at the first period in which the

configuration is applied

f is a user defined function that calculates the production cost for a given period and a given initial cost per part $CP_{\rm m}(t_0)$

The application of "learning by doing" restricts the costs of a configuration $Conf_m$ when it is applied in successive periods.

3.3 Solution

The problem can be described as having to find the shortest path in a tree, where a node represents one possible configuration, and a stage represents a period *t*. A number of possible nodes (configurations) are available for each stage (period). An edge from node *Conf*_k to node *Conf*_l, a stage below, shows that the change *Conf*_k to node *Conf*_l is possible with a switching cost S_{kl} (see Figure 1). For each stage the algorithm should select the node, which would lead to the minimum lifecycle cost of the system without violating the constraints. In order to address this issue a

- 8 -

customised backward optimization algorithm (Denardo 2003) has been developed.

The steps of the algorithm are given below.

<u>Step 1</u>: Set *t*=T-1

- <u>Step 2</u>: Take the next node $Conf_k$ in stage t.
- <u>Step 3</u>: Take the next node $Conf_m$ in stage t+1.
- <u>Step 4</u>: Calculate the $(t+1)^{\text{th}}$ term of equation (4) for *Conf*_m considering that *Conf*_k is assigned in period *t*: *partialScore*_{m,t+1} = $\frac{O_m(t+1) + S_{km}}{(1+r)^{t+1}}$. If *t*=T-1 Go directly to Step 5 also CoTo Step 4.1

to Step 5 else GoTo Step 4.1

<u>Step 4.1</u>: Set $partialScore_{m,t+1} = \frac{O_m(t+1) + S_{km}}{(1+r)^{t+1}} + minScore_{m,t+1}$ (see

details for calculating $minScore_{m,t+1}$ in Step 6).

- <u>Step 5</u>: If there is another node in (t+1) GoTo Step 3 else GoTo Step 6
- <u>Step 6</u>: For node $Conf_k$ store plans up to stage T and their partial scores, for each node of stage t+1. The plans are sorted in descending order. The minimum DCF score for $Conf_k$ (*minScore*_{k,t}) is the score of the first partial solution score for node $Conf_k$.
- <u>Step 7</u>: If there is another node in *t* GoTo Step 2 else GoTo Step 8.
- <u>Step 8</u>: If t=0 then STOP else set t=t-1 and GoTo Step 1.

Although this algorithm is capable of generating the solution with the minimum DCF, it should, however, be ameliorated in order for the constraints to be taken into account, since the generated solution may not satisfy one or more constraints. An approach to implement the constraints is to extend this algorithm to generate L best solutions instead of one and then apply the complex constraint formulas in each solution until a solution that satisfies all constraints is reached. The extension of the algorithm that has been implemented is capable of generating L successive solutions. The constraint formulas are applied gradually in parts of the solution and thus they radically reduce the possible solution space. The extension of the algorithm is schematically presented with an example for up to two stages/periods in Figure 2.

As shown in Figure 2 each node has a list of k possible partial solution paths, ranked in successive order, with the one that has the minimum DCF being first. Then

- 9 -

the solutions move from nodes of the bottom to nodes in higher level to replace solutions that have either been popped to replace a part of the solution or have been examined and failed to satisfy one or more constraints. Then the list of k partial solutions of the higher-level node is sorted again so as the best partial solution to be first. The constraint formulas may be applied either at the partial solution path of each internal node or directly at the final solution. This movement of the partial solutions from node to node resembles the movement of bubbles within a glass of sparkle water as one pushes the other to the top.

[Insert figure 1 about here]

[Insert figure 2 about here]

4 Industrial case study

In this section, the proposed method is applied to an investment decision in the automotive industry. Two different production systems have been proposed for the production of the body of a car:

- System A uses conventional welding equipment and
- *System B* uses advanced welding equipment.

For both systems, five different configurations are possible, which are $Conf_A$ = (Conf_{A1}, Conf_{A2}, Conf_{A3}, Conf_{A4}, Conf_{A5}) and Conf_B = (Conf_{B1}, Conf_{B2}, Conf_{B3}, Conf_{B4}, Conf_{B5}). The configurations, within each vector Conf_A, and Conf_B, differ in the number of available equipment and working shifts. For each system the individual cost figures and the capacity for each of the configurations are given in Table 1, including the fixed cost terms on a yearly basis, such as area cost, energy cost, labour cost, the variable costs, such as waste cost per piece, additional cost per piece. Furthermore, the organizational capacity and the capacity of each configuration are given. The cost figures show that *System B* has higher total costs than *System A*.

The 'Organizational capacity limit' refers to the capacity of the configuration when the system operates in its "normal" state, while the 'Capacity' term refers to the maximum level of products that can be produced, given the technical limitations of the configuration. The system may have higher production than its 'Organizational capacity limit' by overtimes and working during weekends. When the production exceeds the 'Organizational capacity limit' then the 'Additional cost per piece' is included in the variable cost term. The switching costs for each one of the systems are given in Table 2 and Table 3. $Conf_{A0}$ and $Conf_{B0}$ are configurations that are not actually applied and are used only for defining the initial switching cost S_{0k} , from the initial investment cost. The initial investment cost, *Inv*, is 5 500 000€ for *System A* and 7 500 000€ for *System B*. The learning-by-doing curve is usually calculated based on statistical data. Since statistical data were lacking, the 'power law' formula has been used, assuming a 90% learning percent (Zangwill and Kantor 1998):

$$CP_{\rm m}(t) = CP_{\rm m}(t_0) \times t^{\frac{\ln 0.9}{\ln 2}}$$
(6)

The scenarios are generated by using uniform and normal probability distributions as well as forecast data based on realistic information, coming from the marketing department. This information defines the minimum and maximum demand in 70 000 and 200 000 parts annually, for a time horizon T = 10 years which is typical lifetime for the production systems under study. A number of 1000 scenarios are generated within these limits for different demand boundaries (see first column in Table 4). The number of 1000 has been selected in order to give statistically relevant results.

The results of the experiments are presented in Table 4 and clearly indicate that *System B* is less sensitive to the diverse market environment than *System A*. In all cases studied, the *DEVDCF and NDEVDCF* value of *System B* are less than that in

- 11 -

International Journal of Production Research

System A. However since the *EDCF* is higher for System B, the trade-off between flexibility and its cost becomes more transparent. Additionally, in comparison to the (Alexopoulos et. al. 2007b) results, in which the 'learning-by-doing' constraint was not applicable, it appears that both the *EDCF* and *DEVDCF* values are lower in all scenario profiles. This reduction (approximately 10%) in *DEVDCF* values is due to the reduction of the individual reduction in the *DCF* values due to the application of the 'learning by doing'.

[Insert tables 1-4 about here]

5 Conclusions

This paper takes the perspective that the flexibility of a manufacturing system is related to its insensitivity to external changes; the less sensitive a system is the more flexible it should be considered. Taking this perspective and applying it in a lifecycle context, a method of modelling and assessing the flexibility of a manufacturing system is presented. The proposed method can be applied during the initial planning phase for quantifying the tolerance of the manufacturing system during its lifecycle to changes in the market environment, which is a strong flexibility benefit. In order to make the method applicable to the complex industrial reality, a number of capacity constraints, which are relevant in the lifecycle context, have been considered and the method has been extended in order to account for these constraints. The industrial case study indicates that the proposed method can give valuable results when comparing alternative manufacturing system solutions. However, the method does not provide any suggestions for improving the system in terms of flexibility performance. It does not tell the engineers about the flexibility that is actually required in order for a feedback to the design parameters of the manufacturing system to be established; this is subject to future research. Finally, future research will

- 12 -

investigate the impact of different learning curves and different demand distribution

profiles on the results of the proposed flexibility measure.

Acknowledgements

This work has been partially funded by the European Commission through IST-NMP-Project X-Change, Flexible Change Management for the Factory of the Future.

References

- Alexopoulos, K., Mamassioulas, A., Mourtzis, D. and Chryssolouris, G., 2005. Volume and Product Flexibility: a Case Study for a refrigerators Producing Facility. 10th IEEE International Conference on Emerging Technologies and Factory Automation, Catania, Italy, 891-897.
- Alexopoulos, K., N. Papakostas, D. Mourtzis, P. Gogos and G. Chryssolouris, 2007a. Quantifying the flexibility of a manufacturing system by applying the transfer function. *International Journal of Computer Integrated Manufacturing*, 20(6), 538-547.
- Alexopoulos, K., D.Mourtzis, N. Papakostas and G. Chryssolouris, 2007b. DESYMA
 Assessing flexibility for the lifecycle of manufacturing systems. International Journal of Production Research, 45(7), 1683-1694.
- Alexopoulos, K., N. Papakostas, D. Mourtzis, P. Gogos and G. Chryssolouris, 2008. Oscillator analogy for modelling the manufacturing systems dynamics. *International Journal of Production Research*, 46(10), 2547-2563.
- Alvarez, F. and Cerda, E., 2003. Learning by doing in a T-period production planning: Analytical solution. *European Journal of Operational Research*, 150, 353–369.
- Beach, R., Muhleman, A.P., Price, D.H.R., Paterson, A. and Sharp, J.A., 2000. A review of manufacturing flexibility. *European Journal of Operational Research*, 122, 41-57.
- Chang, A.Y, Whitehouse, D.J., Chang S.L. and Hsieh, Y.C., 2001. An approach to the measurement of single-machine Flexibility. *International Journal of Production Research*, 39(8),1589-1601.
- Chryssolouris, G., 2005. *Manufacturing Systems-Theory and Practice*. 2nd ed. New York: Springer-Verlag
- Chryssolouris, G., 1996. Flexibility and its Measurement. *Proceedings of the CIRP* Annals, 45(2), 581-587.
- Chryssolouris, G. and Lee, M., 1992. An Assessment of Flexibility in Manufacturing Systems. *Manufacturing Review*, 5(2), 105-116.
- Das, A. and Caprihan, R., 2008. A rule-based fuzzy-logic approach for the measurement of manufacturing flexibility. *International Journal of Advanced Manufacturing Technology*, 38, 1098–1113.
- Denardo, E.V., 2003. *Dynamic programming: models and applications*. New York: Dover Publications
- De Toni, A. and Tonchia, S., 1998. Manufacturing Flexibility: a literature review. International Journal of Production Research, 36(6), 1587 – 1617.
- Elkins, D.A., Huang, N. and Alden, 2004. J.M., Agile manufacturing systems in the automotive industry. *International Journal of Production Economics*, 91(3), 201-214.

- Georgoulias, K., Papakostas, N., S. Makris, S. and G. Chryssolouris, G., 2007. A Toolbox Approach for Flexibility Measurements in Diverse Environments. *Annals of CIRP*, 56(1), 423-426.
 - Hua, Z. and He,P., 2009. Process flexibility under bill of material constraints: part I an effective measuring approach. *International Journal of Production Research*, accessed on line.
 - Hua, Z.S. and Banerjee, P. 2000. A model for line capacity design for PWB assembly systems. Robotics and Computer-Integrated Manufacturing, 16 (4), 241-257.
 - Hua, Z.S. and Banerjee, P. 2000. Aggregate line capacity design for PWB assembly systems. International Journal of Production Research, 38 (11), 2417-2441.
 - Koren, Y., Maier-Speredelozzi, V. and Hu, S.J., 2003. Convertibility Measures for Manufacturing Systems. *Annals of the CIRP*, 52(1), 367-370.
 - Kumar, V., 1987. Entropic Measures of Manufacturing Flexibility. International Journal of Production Research, 25(7), 957-966.
 - Tsourveloudis, N. and Phillis, Y., 1998. Fuzzy Assessment of Machine Flexibility. *IEEE Transactions on Engineering Management*, 45(1), 78-87.
 - Wahab, M.I.M., Wu,D. and Lee,C., 2008. A generic approach to measuring the machine flexibility of manufacturing systems. *European Journal of Operational Research*, 186, 137–149.
 - Wiendahl, H.P. and Heger, C.L., 2004. Justifying changeability. A methodological approach to achieving Cost Effectiveness. *The manufacturing Journal for Manufacturing Science and Production*, 6(1), 33-39.
 - Zangwill I. W. and Kantor B. P., 1998, Toward a Theory of Continuous Improvement and the Learning Curve, *Management Science*, 44(7), 910-920.

- 14 -

			Variab	le Cost	Org.	
	Config.	Fixed Costs (€)	Waste Cost (€)	Addit. Cost (€)	Cap. limit (x1000)	Capacity (x1000)
	Conf _{A1}	157 920	0.33€	1	96.25	110
iona	Conf_{A2}	230 640	0.33 €	1	113.75	130
vent uipn	Conf_{A3}	163 337	0.33€	1	122.5	140
Con Equ	Conf_{A4}	237 874	0.33€	1	140	160
U	Conf_{A5}	252 411	0.33€	1	175	200
	Conf_{B1}	167 835	0.33 €	1	96.25	110
sed	Conf_{B2}	248 187	0.33€	1	113.75	130
vanc ipm	Conf_{B3}	173 650	0.33€	1	122.5	140
Aď Equ	$\operatorname{Conf}_{\mathrm{B4}}$	256 910	0.33€	1	140	160
	Conf_{B5}	280 169	0.33 €	1	175	200

2
2
3
4
5
6
7
1
8
9
10
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
22
23
24
25
26
20
27
28
20
29
30
31
32
02
33
34
35
26
30
37
38
20
39
40
41
42
40
43
44
45
10
40
47
48
10
49
50
51
52
52
53
54
55
50
30
57
58
50
59

60

Table 2. Change cost (in €) matrix for System A.	
	_

Config.	Conf_{A1}	Conf_{A2}	Conf_{A3}	Conf_{A4}	Conf_{A5}
$\operatorname{Conf}_{\operatorname{A0}}$	0	0	1 434 214	1 434 214	3 430 614
Conf_{A1}	0	0	1 434 214	1 434 214	3 430 614
Conf_{A2}	0	0	1 434 214	1 434 214	3 430 614
Conf_{A3}	-403 333	-403 333	0	0	1 766 400
$\operatorname{Conf}_{\operatorname{A4}}$	-403 333	-403 333	0	0	1 996 400
Conf_{A5}	-761 333	-761 333	-412 000	-412 000	0
			- 16 -		

- 16 -

2	
3	
4	
5	
5	
6	
7	
8	
õ	
9	
10	
11	
12	
12	
13	
14	
15	
16	
47	
17	
18	
19	
20	
20	
21	
22	
23	
24	
24	
25	
26	
27	
20	
28	
29	
30	
31	
00	
32	
33	
34	
25	
30	
36	
37	
38	
20	
39	
40	
41	
42	
40	
43	
44	
45	
16	
40	
47	
48	
49	
50	
50	
51	
52	
52	
55	
54	
55	
56	
57	
57	
58	
50	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Config	Conf _{B1}	Conf_{B2}	Conf _{B3}	Conf _{B4}	Conf _{B5}
$\begin{array}{c ccccc} Conf_{\rm B1} & 0 & 0 & 1\ 251\ 514 & 1\ 251\ 514 & 3\ 173\ 914 \\ Conf_{\rm B2} & 0 & 0 & 1\ 251\ 514 & 1\ 251\ 514 & 3\ 173\ 914 \\ Conf_{\rm B3} & -457\ 333 & -457\ 333 & 0 & 0 & 1\ 234\ 800 \\ Conf_{\rm B4} & -457\ 333 & -457\ 333 & 0 & 0 & 1\ 003\ 200 \\ Conf_{\rm B5} & -814\ 667 & -881\ 333 & -357\ 333 & -357\ 333 & 0 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Conf_{B0}	0	0	1 251 514	1 251 514	2 666 314
Conf _{B2} 0 0 1251514 1251514 3173914 Conf _{B3} -457333 -457333 0 0 1234800 Conf _{B4} -457333 -457333 0 0 1003200 Conf _{B5} -814667 -881333 -357333 -357333 0	Conf _{B2} 0 0 1251 514 1251 514 3 173 914 Conf _{B3} -457 333 -457 333 0 0 1234 800 Conf _{B4} -457 333 -457 333 0 0 1003 200 Conf _{B5} -814 667 -881 333 -357 333 -357 333 0	Conf_{B1}	0	0	1 251 514	1 251 514	2 666 314
Conf _{B3} -457 333 -457 333 0 0 1 234 800 Conf _{B4} -457 333 -457 333 0 0 1 003 200 Conf _{B5} -814 667 -881 333 -357 333 -357 333 0	Conf _{B3} -457 333 -457 333 0 0 1234 800 Conf _{B4} -457 333 -457 333 0 0 1003 200 Conf _{B5} -814 667 -881 333 -357 333 -357 333 0	Conf_{B2}	0	0	1 251 514	1 251 514	3 173 914
Conf _{B4} -457 333 -457 333 0 0 1003 200 Conf _{B5} -814 667 -881 333 -357 333 -357 333 0	Conf _{B5} -814 667 -881 333 -357 333 0 0 1 003 200 Conf _{B5} -814 667 -881 333 -357 333 0	Conf_{B3}	-457 333	-457 333	0	0	1 234 800
Conf _{B5} -814 667 -881 333 -357 333 -357 333 0	Conf _{B5} -814 667 -881 333 -357 333 -357 333 0	$\operatorname{Conf}_{\mathrm{B4}}$	-457 333	-457 333	0	0	1 003 200
		Conf_{B5}	-814 667	-881 333	-357 333	-357 333	0

Table 3. Change cost (in €) matrix for System B.

Table 4: Case study results.

Scenario		System A			System B		
Profile ^a	EDCF	DEVDCF	NDEVDCF	EDCF	DEVDCF	NDEVDCF	
U(70 000,200 000)	9 888 399	550 220	10,00%	11 290 760	495 685	6,61%	
U(70 000,190 000)	9 660 931	579 951	10,54%	11 092 476	482 558	6,43%	
U(80 000,160 000)	8 308 482	277 364	5,04%	10 227 861	269 478	3,59%	
U(90 000,150 000)	8 202 413	245 207	4,46%	10 122 060	227 394	3,03%	
U(110000,140000)	8 184 877	156 016	2,84%	10 098 834	129 334	1,72%	
N(150000,50000)	10 265 421	525 077	9,55%	11 658 148	514 868	6,86%	
N(150000,40000)	10 238 873	474 642	8,63%	11 628 984	468 471	6,25%	
N(150000,40000)	10 236 499	406 037	7,38%	11 594 422	387 661	5,17%	
^a Note that U(i, j) is uniform distribution between i and j. While N(m, d) is a normal							
distribution with m as mean an d as deviation							

List of figures

Figure 1: Tree representation of the minimum DCF problem instance

Figure 2:

Deleted: ¶ Figure 1: Tree representation of the minimum DCF problem instance

Deleted: ¶ Figure 1: Tree representation of the minimum DCF problem instance

Deleted: ¶ Figure 2: Algorithm extension to generate first L best solutions Deleted: ¶

Figure 2: Algorithm extension to generate first L best solutions

Figure 1: Tree representation of the minimum DCF problem instance

Figure 2: Algorithm extension to generate first L best solutions