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Effect of frictional heating and thermal advection on pre-seismic sliding:

a numerical simulation using a rate-, state- and temperature-dependent friction law

Salvatore de Lorenzo and Mariano Loddo

Dipartimento di Geologia e Geofisica and Centro Interdipartimentale Rischio Sismico e Vulcanico -

Università di Bari, Italy

ABSTRACT

Laboratory experiments on simulated faults in rocks clearly show the temperature dependence of 

dynamic rock friction. Since rocks surrounding faults are permeable, we have developed a 

numerical method to describe the thermo-mechanical evolution of the pre-seismic sliding phase 

which takes into account both the rate-, state- and temperature-dependent friction law and the heat 

advection term in the energy equation. We consider a laminar fluid motion perpendicular to a 

vertical fault plane and assume that fluids move away from the fault plane. A semi-analytical 

temperature solution which accounts for the variability of slip velocity and stress on the fault has 

been found. This solution has been generalized to the case of a time varying fluid velocity and then 

was used to include the thermal pressurization effect. After discretizing the temperature solution, 

the evolution of the system is obtained by the solution of a system of first order differential 

equations which allows us to determine the evolution of slip, slip rate, friction coefficient, effective 

normal stress, temperature and fluid velocity. The numerical solutions are found using a Runge-

Kutta method with an adaptative stepsize control in time. When the thermal pressurization effects 

can be neglected, the heat advection effect gives rise to a delay, with respect to the purely 

conductive case, of the earthquake occurrence time. This delay increases with increasing 

permeability H of the system. When the thermal pressurization effects are taken into account the 

situation is opposite, i.e. the onset of instability tends to precede that of the purely conductive case.

The advance in the time of occurrence of instability increases with increasing coefficient of thermal 

pressurization. In the small permeability range (H≤10-18 m2), the seismic moment and nucleation 

length of the pre-seismic phase are significantly smaller than those predicted by the purely 

conductive model.

INTRODUCTION

Many studies have concerned aseismic slip on faults before an earthquake (e.g. Lockner and

Byerlee, 1995 and references therein). Laboratory and theoretical studies of the mechanical
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evolution of a fault during the earthquake seismic cycle show that a significant amount of slip could 

be generated before the unstable sliding phase, causing an degree of crustal deformation that could 

be measured by modern instruments (Lorenzetti and Tullis, 1989). Although seismic risk studies are 

actually in a very early stage, this aspect is very important for future studies aimed at determining

possible precursors of earthquake instability (e.g. Dieterich, 1992). For this reason, several studies 

have been dedicated to the development of predictive models of the pre-seismic sliding phase 

(Kato, 2001 and references therein). 

In describing the dynamical evolution of a fault, the seismic cycle is usually modelled considering 

the formal analogy with an elastic system comprising an elastic spring connected to a rigid block 

and assuming a constitutive friction law derived from laboratory studies. In earlier works, Dieterich 

(1979) and Ruina (1983) found a rate- and state- dependent friction law to explain a large amount of 

laboratory data on rock friction. These relations, which constitute the basis of all the subsequent 

studies of the seismic cycle, have been further improved to incorporate the effect of temperature 

variations on the friction coefficient (Chester and Higgs 1992; Blanpied et al. 1998; Hirose and

Shimamoto 2005; Di Toro et al. 2006; Beeler et al. 2007).

Starting from the pioneering work of McKenzie and Brune (1972), many kinematical and 

dynamical approaches have been developed to obtain detailed models of the temperature 

distribution due to the frictional heating along a fault and around it (e.g.: Cardwell et al. 1978; 

Fialko 2004; Caggianelli et al. 2005 and references therein). In all these studies the thermal

evolution is inferred by considering only the conduction term in the energy equation, without 

accounting for the heat transport related to fluid movement through the permeable rocks.

It is well known that purely conductive heat models are actually unable to explain heat flow data 

recorded in the proximity of faults. One of the most debated questions is, in fact, the so-called heat 

flux paradox, namely the discrepancy between the high heat fluxes predicted by theoretical 

conductive models and the small values of heat flux measured immediately after the earthquakes 

along the S. Andreas fault (e.g. Lachenbruch 1980). The possible reasons for this discrepancy have 

been largely debated in seismological literature. In particular, Madariaga (2007) has summarized 

the main results of the on-going researches and pointed out the need of taking into account the role 

of fluids along the faults. Sibson (1973) observed that if fluids are present in interconnected pores in 

the fault zone, the frictional heating could increase the fluid pressure, causing a reduction of the 

effective normal stress on the fault plane and favoring slipping along it. Starting from this 

observation, many studies (e.g. Lachenbruch 1980; Mase and Smith 1987; Bizzarri and Cocco 

2006A, 2006B; Rice 2006) have focused on the effect of frictional heating and pore fluid pressure 

during the coseismic stage. In addition, Segall and Rice (2006) have analyzed the conditions for 
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which the shear heating effect on pore fluid can contribute to the nucleation phase. However, with 

the exception of the article of Mase and Smith (1987), where the heat advection term is included in 

the energy equation, in all other studies the heat equation is usually decoupled from the fluid 

pressure equation, by neglecting the heat advection term in the energy equation. This is because, as 

argued by Lachenbruch (1980), if we consider the small values of permeability of the fault core (<

10-17 m2), the effect of heat advection can be considered negligible in the coseismic time interval 

(seconds or tens of seconds). A commonly accepted model of a fault zone (e.g. Sibson 2003) 

consists in fact of a thin fault core, having a small permeability, embedded in a much broader

fractured zone, called the damage zone (Chester and Chester 1998) and having a greater

permeability.

As concerns the fault core, even if some studies (Scholz, 1990 and references therein) suggest that

the fault core has a thickness of the order of several millimeters or centimeters, the validity of the 

above simplified assumption is approximately maintained if the average properties of the fault core 

are considered in the modeling of the slip along the fault plane. As we will discuss in the following,

this is particularly true in the case of the description of the pre-seismic sliding phase which involves 

long time scales, in the order of several hundred of days.

As concerns the permeability, at present there is no general agreement on permeability values 

around the fault zone. In some cases (e.g. Cappa et al. 2005, 2007) a higher permeability (from 10-12

to 10-8 m2) has been inferred inside the damage zone, whereas in other studies (e.g. Wibberley and

Shimamoto 2003) a smaller permeability has been estimated in this zone (from 10-15 to 10-18 m2).

Moreover, results of many studies (e.g. Noir et al. 1997; Miller et al. 2004; Antonioli et al. 2005)

indicate that the average permeability inferred from seismological investigations may be, in some 

cases, eight orders of magnitude greater (until to 10-8 m2) than the laboratory estimates on 

cataclastic rocks. An increase of permeability in the neighborhood of the fault plane in respect to 

the permeability values measured in laboratory experiments has been also predicted (Scholz 2002; 

Andrews 2005).

Based on these considerations, in this article, starting from the conductive model of Kato (2001), we

present a thermo-mechanical model of the seismic cycle which incorporates the effect of both heat 

conduction and heat advection. To allow for an analytical formulation of temperature, we assume 

that fluids move perpendicularly to the fault plane. An analytical solution to the heat advection-

conduction problem is presented for the case where slip velocity and shear stress are constants. By 

following the approach proposed by Kato (2001), this solution is generalized to the case where slip 

velocity and shear stress are allowed to vary over the time.
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To account for the thermal pressurization effect we consider the hydro-dynamical model, named 

model II, in Segall and Rice (2006).

The results have been compared with the simulation results of Kato (2001) to evaluate how the

advection and pressurization effects modify both the slip during the preseismic phase and the

recurrence time of the earthquakes. 

2. THEORY

2.1 THE RATE-, STATE- AND TEMPERATURE- DEPENDENT FRICTION LAW

Following Kato (2001), we consider a single spring-block model to simulate pre-seismic sliding on 

a planar surface (Fig.1). The fault plane is represented by the interface between the base of the rigid 

block and the floor. The spring simulates the elastic medium surrounding the fault. In the quasi-

static approximation (Belardinelli et al. 2003 and references therein) the relationship between the 

shear stress acting on the base of the rigid block and its displacement is given by:

 uuk  0 , (1)

where k is the spring stiffness, 0u is the load-point displacement and u is the displacement of the 

rigid block. The shear stress  is related to the effective normal stress by the equation:

eff
n  , (2)

where is the friction coefficient.

Starting from the early works of Dieterich (1979) and Ruina (1983), which inferred the fundamental

rate- and state- constitutive equations of dynamic rock friction at low velocity and at a constant 

effective normal stress, several laboratory studies have investigated the dependence of the friction 

coefficient on slip velocity and temperature. In what follows we use the rate-, state- and 

temperature-dependent friction law derived from Chester (1994) (see also Blanpied et al. 1995, 

1998) and summarized in Kato (2001):

 b
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In equation (3) R is the universal gas constant, T is the absolute temperature, aQ is an apparent

activation energy, 
dt

du
Vs  is the sliding velocity of the block, 0 is the value assumed by the 

friction coefficient for *
ss VV  and T=T*; a and b are constants representing the time dependent 

property of friction; T*=T(t=0) is a reference temperature and  ** TTVV ss  .
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The state variable  quantifies the contact state between sliding surfaces or the internal structure of 

the gouge layer between sliding surfaces, and its evolution with time is expressed by the so-called 

slip law (Chester 1994, 1995):


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TTR

Q
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L

V

dt

d bss

s


(4)

In equation (4) bQ is an apparent activation energy and L is the characteristic length controlling the 

evolution of the state variable (Bizzarri and Cocco 2003). In a study of the slip-weakening behavior 

of rate- and state- dependent constitutive laws, Cocco and Bizzarri (2002) found that the slip

weakening curve displays an equivalent slip-weakening distance eqD0 which is different from L. 

They showed that a scaling relation between eqD0 and L exists such that 15/0 LDeq . Moreover,

they discovered a difference between laboratory estimates of the parameter L (of the order of 1÷10 

m) and those (of the order of 1÷5 cm) derived from strong motion recordings. Based on these 

findings, we decided to use L=1 cm in our simulations. In the most general case the state variable 

will vary during the pre-seismic sliding phase, requiring to solve a system in the unknowns , Vs, 

and T. To simplify the approach to the numerical solution and to obtain results comparable 

with those of Kato (2001) we consider the simplified case where the state variable  is in the 

steady steate 0
dt

d
. In this case, following Kato (2001), we use the steady state friction 

coefficient ss defined as .0





 

dt

d
ss

 From equation (3) and (4) it immediately follows that:
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The time derivative of equation (1) gives:

 sVVk
dt

d
 0


, (6) 

where 
dt

du
V 0

0  is the load point velocity. By combining (2), (3), (4) and (5), Kato (2001) 

obtained:

 
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dt
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V

a

dt

d  1

(7)

The rate and state friction laws have been validated in laboratory stick-slip experiments in 

which the slip velocity varies approximately in the range 10-6<Vs<10-1 m/s (Mair and Marone, 

1999)
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2.2 THE COUPLING BETWEEN TEMPERATURE AND FLUID PRESSURE

Equation (6) and (7) indicate that the mechanical evolution of the spring-block system depends on 

the time derivative of the temperature on the sliding surface. Kato (2001) considered the case of a 

natural system where the temperature evolution is governed only by heat conduction. He 

reformulated the problem, previously solved by McKenzie and Brune (1972), to incorporate the 

time dependence of the slip velocity and the shear stress. In what follows, we consider the case of a 

natural system where the heat is transferred not only by conduction but also by fluid advection. The 

volumetric flow rate per unit area q can be obtained from the fluid pressure gradient p using the 

Darcy’s law (e.g. Turcotte and Schubert, 1982):

p
H

q 


, (8)

where H is the permeability of the fault-rock system and  the dynamical viscosity of fluids. The 

volumetric flow rate q has the dimension of a velocity (and therefore it is also named Darcy’s

velocity) and expresses the average velocity per unit area and not the fluid particle velocity 

(Guéguen et al. 1997; Bizzarri and Cocco 2006A). Fluid velocity v can be inferred from q using the

equation (e.g. Miller et al. 2004 and references therein):


q

v  (9)

where  is the porosity of rocks.

In the most general case of a 3D medium, fluids through the permeable rock matrix move both in 

the direction perpendicular to the fault plane and along it. Many authors (Lachenbruch 1980; Mase 

and Smith 1987; Bizzarri and Cocco 2006A; Segall and Rice 2006 among the others) have

considered only the component of the fluid velocity perpendicular to the fault plane. This 

approximation makes it possible to obtain a mathematical description of the effect of increase of 

pore pressure perpendicularly to the fault plane due to the increase of temperature near the fault 

plane and corresponds to the case of a laminar fluid motion related to fluid pressurization (i.e. one 

dimensional Darcy flow perpendicular to the fault plane), as described in Bizzarri and Cocco

(2006A). In what follows we will approximate fluid motion as laminar fluid motion. As we will 

show, this assumption will allow us to obtain a system of first-order differential equations which 

can be numerically managed without a prohibitive computational effort. 

In particular, to quantify how the temperature variations modify the pore fluid pressure (and 

therefore the fluid velocity) we have considered the transport model described in Segall and Rice

(2006). This model treats the thermal and hydraulic properties as homogeneous and takes the limit 
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of zero fault zone thickness, which is the case considered in this article. Under these conditions, the 

relation between fluid pressure and temperature on the fault plane is given by (Mase and Smith 

1987; Segall and Rice 2006):

   *
*

*

1

TT
c

TT
pp

hyd










(10)

where the last equality arises because the hydraulic diffusivity of water hydc is usually at least an 

order of magnitude smaller than the thermal diffusivity . In equation (10) p* is the pressure at the 

background temperature T=T* and  is the thermal pressurization factor, defined as the ratio 

between the fluid volume expansion due to a unit increase in temperature and the fluid 

volume expansion due a unit decrease in fluid pressure (for a detailed discussions on the 

values of  in different fluid regimes the reader is referred to Mase and Smith, 1987). In 

particular,  depends on the compressibility  , the pressure and the temperature of the rocks 

surrounding the fault (Mase and Smith 1987). For values of  smaller than the compressibility of

the water (  ≈10-10 Pa-1),  ranges from 0.6 MPa K-1 and 1.1 MPa K-1 (Segall and Rice 2006). For

high values of compressibility (  ≈10-6 Pa-1),  can be smaller than 0.01 MPa K-1 in the whole 

temperature range of the solid rocks at high pressures (>100 MPa) (Mase and Smith 1987), so that

the effect of thermal pressurization becomes negligible. In this particular case, fluid velocity 

maintains constant and it is then possible to neglect the thermal pressurization effect.

2.3 THE TEMPERATURE EVOLUTION IN THE CASE OF A CONSTANT FLUID VELOCITY

We have built a physical model which replicates the main features of the fluid dynamics around a 

fault. In the most general case fluids inside the fault core tend to move along the direction of the 

pressure gradient. For this reason we assume that the pressure gradient is orthogonal to the fault 

plane and that the fluids in the fault core move perpendicularly to the fault plane with a 

geometrically averaged velocity v. Moreover, to allow for an analytical approach we assume that 

fluid motion does not have a component in the direction of the fault plane. More sophisticated 2D

numerical solutions for the fluid- and thermo- dynamical problem have been developed by 

Williams and Narasimhan (1989) for the study of the San Andreas fault and by Goyal and 

Narasimhan (1982) for the case of a fault-controlled geothermal reservoir charged at a

constant pressure (1982). However these equations do not incorporate the effect of rate-, state-

and temperature- dependent friction laws. In particular, in the case of San Andreas fault,

Williams and Narasimhan (1989) pointed out that the topography associated with the fault 
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zone may be the key to a final understanding of the state of stress along the fault. They 

conclude that the topography may bound a low stress fault with low permeability and high 

pore pressure gouge, or, alternatively, the topography may serve as a cause of gravity induced 

fluid flow away from high stress fault characterized by fractured, permeable gouge. The 

importance of accounting for both the pore fluid pressure and the aseismic slip, in the frame 

of the rate and state approach, at the San Andreas fault, has been underlined also by Scholz 

(1998). He pointed out the existence of a 170 km long creeping section of the San Andreas

fault where the fault slip aseismically, in the conditionally stable regime of the rate- and state-

friction law. He attributed the anomalous behaviour of this section of the fault to the presence 

of unusually high pore pressures in the fault zone.

It is worth noting that, as a consequence of our choice of considering a fluid motion 

perpendicular to the fault plane, the effect of cooling of the fault plane is maximized, in that,

in this case, heat is transported away from the fault more rapidly than in the case of a fluid 

motion having a component parallel to the fault plane. Finally, the developed solution refers 

only to the case of a vertical fault plane (fig. 1), since only in this case we can assume the 

symmetry of the thermo-mechanical solutions with respect to both the sides of the fault plane.

The effect of a finite shear zone on the thermo-mechanical evolution of the system has been 

the subject of several studies (Lachenbruch, 1980; Fialko, 2004; Rice, 2006 among the others).

All these studies are in agreement as concerns the reduction of the maximum temperature rise 

in the fault zone with increasing the fault zone thickness. In particular, Lachenbruch (1980) 

observed that an initially broad shear zone would tend to contract about the plane where the 

initial strain rate (and consequently, heat production, temperature, and fluid pressure rise) 

happened to be greatest. He also pointed out the role of fluid pressure in the narrowing of a 

fault zone. Moreover, worldwide evidence exists for very thin shear zones in the Earth. Rice 

(2006) summarized the results of recent field observations and suggested that slip in 

individual earthquakes may be extremely localized and occurs primarily within a thin shear 

zone, <1–5 mm thick. The localized shear zone lies within a finely granulated (ultracataclastic) 

fault core of typically tens to hundreds millimeter thickness, that core itself fitting within a 

much broader damage zone of granulated or incompletely cracked rock (Rice, 2006).  

Interestingly, Rice (2006) showed that to avoid melting on the shear zone of the Punchbowl 

fault of the San Andreas fault system, its thickness should be at least 35 mm or higher, 

whereas field observations and laboratory data clearly indicate that the thickness of this shear 

zone is in the order of 1 mm. Therefore fluid pressure could be invoked to reduce the shear 



Page 9 of 39

Acc
ep

te
d 

M
an

us
cr

ip
t

9

stress on a thinner fault and thus avoid the melting. This, or some other weakening 

mechanism, has to occur along faults where pseudotachylytes are not observed.

Accordingly, we consider the limit situation where the fault core thickness tends to zero and reduces 

to a fault plane located in z=0. (Fig. 1). 

We first consider the case of a constant average fluid velocity in the fault core.

In the 1D case the equation governing the heat redistribution is (e.g. Lachenbruch, 1980):

 
  t

T

z

T
v

C

C

z

T

sf

ww
sf 














2

2

(11)

In equation (11) sf is the thermal diffusivity of the solid-fluid compound, w and Cw are,

respectively, the density and the specific heat at constant pressure of the fluid phase,  sfC is the 

heat capacity for unit volume of the solid-fluid compound and z is the distance from the sliding 

surface. sf and  sfC are related by the equation (e.g. Lachenbruch, 1980):

 sf

sf
sf C

K


  (12)

where sfK is the thermal conductivity of the solid-fluid compound. Following Mase and Smith

(1987) we compute sfK as:


wssf KKK  1 (13)

where sK and wK are the thermal conductivity of the solid and fluid phase respectively and  is the 

porosity. Moreover:

     wwsssf CCC  1 (14)

where s and Cs are the density and the specific heat at constant pressure of the solid phase

respectively.

As an effect of a relative slip ds of the two blocks respect to the fault plane, the work d done by 

the frictional force is converted into heat dQ:

AdsddQ  (15)

where A is the surface of the blocks in contact. Therefore the fault surface acts as a heat source 

which produces a heat flux quantity  tz ,0 given by:

     ttV
dt

dQ

A
tz s 

1
,0 (16)

The heat production term given by equation (16) can therefore be included in the energy equation 

(11) as a boundary condition. In fact, in an infinite medium the heat flux splits in two equal 

contributions, so that in the half-space z>0 the boundary condition (16) gives rise to:
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


 







(17)

where the first term in the square parenthesis is the conductive heat flux and the second term is the 

advective heat flux (e.g. Incropera and DeWitt, 1996).

The analytical solution to the problem (11) with the boundary condition (17) and the initial 

condition:

  00, tzT (18)

is derived in Appendix for the case where  tVs and  t are constants. Since  tVs and  t vary 

over the time and are temperature dependent, following Kato (2001), we subdivide the time interval 

[0,t] in a discrete number N of sub-intervals where  tVs ,  t and T(t) can be assumed to be 

constants. In this way the expression (a19), given in Appendix, becomes:
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where:
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In equation (19) t0=0, tN=t and  0,0  tzTTini is the background temperature and erf(x) 

denotes the value assumed in x by the error function. Using the same approach, from equation 

(a20) of the Appendix we obtain the time derivative of the temperature in z=0:
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In equation (21) erfc(x) denotes the value assumed in x by the complementary error function.

The proposed formulation allows us to consider only the evolution of temperature along the 

fault plane (z=0). For this reason the partial derivative with respect to time in equation (21)




F
HG

I
KJ 

T

t z 0

coincides with the total time derivative 
dT

dt
F
HG

I
KJ to be used in equation (7). 
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The equations (6), (7) and (21) represent a system of coupled first order differential equations in the 

unknowns Vs,  and T to be solved simultaneously. 

2.4 THE TEMPERATURE EVOLUTION IN THE CASE OF A TIME DEPENDENT FLUID 

VELOCITY

In the previous paragraph we derived an expression of the temperature field for the case of a 

constant velocity perpendicular to the fault plane. In the frame of the fluid migration model 

described in section 2.2, this could happen only in the case of a negligible thermal pressurization 

effect. In this section we describe how we account for the thermal pressurization effect in our 

model. If pore pressure varies as a consequence of the temperature variations along the fault 

(equation 10), the fluid velocity will also vary. In particular, from the equations (8) and (9) and (10)

it follows that:

0
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(22) 

where z is the coordinate on an axis perpendicular to the fault plane (fig. 1). As an effect of the pore 

fluid pressure variations, the effective normal stress on the fault plane will also vary over the time:

 tpn
eff
n  (23)

From equation (10) it follows that:

0


z

eff
n dt

dT

dt

d  (24)

To include the velocity variations of fluids, we use the same approach described in the previous 

section, i.e. we subdivide the time interval max0 Tt  in N sub-intervals where the fluid velocity is 

a constant:
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As a consequence, in the time interval ,0 maxTt  the energy equation (11) is subdivided into N

equations:
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These equations have to be solved with the same previously described conditions (equations (17) 

and (18)) and the continuity of the temperature at each it . Following the same lines described in the 

previous paragraph, it can be easily shown that the solution to this problem is simply obtained by
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substituting v with vi-1 in equation (19). The same substitution has to be made in the expression of 

the time derivative of the temperature (equation (21)). 

Therefore, the mechanical evolution of the system is, in this case, inferred by solving the system of

five first order differential equations given by (6), (7), (21), (22) and (24).

3. RESULTS

In what follows we show the results of the numerical simulations carried out using the two models

described in section 2 and compare the results with those arising from the use of the purely 

conductive energy equation (Kato 2001).

The solutions of the systems of first order differential equations have been obtained using a

MATLAB® script to incorporate an explicit Runge Kutta method (ode45 in MATLAB® 

documentation) with an adaptative time-step size control to ensure the accuracy of solutions. Some 

of the parameters used in the simulations have been fixed, once and for all, to the values 

summarized in Table 1.

In the simulations we have to assume a constant value of the permeability H. For this reason, in

what follows, we generally show the simulation results as a function of H. H is known to vary 

greatly with rock type and thermodynamical state; a great range of variations (10-20 < H <10-8 m2) 

has been inferred for different types of rocks in different conditions (e.g. Turcotte and Schubert

1982). Moreover, near a fault, local variations in permeability have been often inferred. For

example, Jourde et al. (2002) studied the permeability of the faults in the Valley of Fire State Park, 

Nevada. They estimated that the permeability of several fault zones can suffer strong lateral 

variations depending also on the focal mechanism. Jourde et al. (2002) reported that the presence of 

joints can give rise to a strong local increase of permeability (until to 10-9 m2). The same order of 

magnitude for permeability has been proposed by Jahr et al. (2005) to model the fluid transport 

around a fault zone near the KTB borehole (> 1 km of depth). In their study on earthquake 

instability, Lockner and Byerlee (1995) assumed a permeability of the order of 6·10-12 m2. 

Moreover, Wibberley and Shimamoto (2003) provided evidence that permeability can strongly 

increase in the direction normal to the fault plane. This result has been supported further by the 

simulation results of Bizzarri and Cocco (2006A). The local variations in hydraulic properties of the 

faults have been well summarized by the experiments led by Cappa et al. (2005)  which show that 

fluid flow in the fault zone is controlled by dual-permeability behavior, with highly permeable 

subfaults (H=10-12 m2) bounding low-permeable rock-matrix blocks (H=10-18 m2). In the simulation 

results of Cappa et al. (2007), the permeability of the rocks near a fault ranges from a minimum 
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H=10-19 m2 for the fault core to an intermediate H=10-12 m2 for the inherited planes to a maximum 

of H=10-8 m2 for the fault-related fractures.

3.1 SIMULATION RESULTS FOR THE CONSTANT SLIP VELOCITY AND THE CONSTANT SHEAR STRESS

First of all we have analyzed the temperature rise vs. time on the fault plane, considering, for sake 

of simplicity, a constant slip velocity (Vs=10-5 m s-1) and a constant shear stress on the fault

200eff
n MPa. Fig.2 shows the temperature on the fault plane for different values of permeability, 

as given by equation (a19). As expected, the temperature disturbance due to the frictional heating 

decreases with increasing the rock permeability (and then the fluid velocity). This is because a 

higher permeability allows heat to be easily transferred far from the fault and therefore only smaller 

increments of temperature on the fault plane are allowed.

In fig. 2 we have assumed a constant value of the thermal conductivity of the solid phase (Ks=2.6 W 

m-1 K-1), as derived from laboratory measurement on crustal rocks (Kato 2001).

In the next simulation (fig. 3) we have evaluated the effect on temperature of small variations of 

thermal parameters around their typical values. It is in fact well known that the thermal parameters 

are dependent on the pressure, the temperature and the fluid content of the rocks (e.g. Chapman and

Furlong 1991). Therefore a more rigorous approach to the energy equation should take into account

the dependence of Ks on the depth z, the temperature T and the fluid content of the rocks. However, 

since Ks(z,T) strongly depends also on the rock type (Beardsmore and Cull 2001), the functional

form of Ks(z,T) for a given rock type could not be the same for another rock type. Moreover the 

dependence of Ks on z and T gives rise to a non linearity of the energy equation and only numerical 

method can be used to approximately solve this problem. Therefore we have tried to evaluate how 

much the results can be affected by reasonable variations in the thermal parameters. For this reason, 

in fig. 3, we consider how the thermal disturbance on the fault plane varies if we vary Ks of ±10%, 

for a fixed value of rock permeability (H=10-13 m2). As an effect of varying Ks also the thermal 

conductivity of solid phase s will vary (equations 12 and 13). We note that an increase in Ks and 

s results in a temperature reduction on the fault plane, as it could be obtained by increasing the 

permeability of the system (fig.2). This implies that H is correlated with the thermal parameters s

and Ks on the temperature vs. time curves. 

3.2 SIMULATION RESULTS FOR THE TIME VARYING SLIP VELOCITY AND SHEAR STRESS: THE CONSTANT 

FLUID VELOCITY CASE
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Let us consider now the most general case where slip, stress and temperature vary together. In 

agreement with recent studies (Belardinelli et al. 2003; Rubin and Ampuero  2005; Antonioli 

et al. 2006) we assume V=0.1 m s-1as the limit value for the occurrence of instability.

First, we consider the simulation results for the case of a constant fluid velocity. Even if this model 

is only an approximation of the most general case where fluid velocity is allowed to vary as a 

consequence of the thermal pressurization effect, it allows us to understand the key role played by 

the average permeability of the rocks surrounding the fault. Therefore these simulations refer to real 

cases of fault planes surrounded by rocks characterized by a small coefficient of pressurization ( < 

0.01 MPa K-1) (Mase and Smith 1987).

In these simulations, the model parameters are chosen so that the simulation might express 

pre-seismic sliding of a large earthquake on the San Andreas fault, California and are 

summarized in table I. Friction parameters a, b, the effective normal stress eff
n and the initial 

temperature Tini are approximately the same as those assumed for the nucleation site of a 

large earthquake on the San Andreas fault in the simulation study by Kato (2001).

In our simulations, fluid velocity has been derived using equations (8) and (9) under the assumption 

of a pressure regime where gp w , being wthe density of the fluids and g the gravity 

acceleration.

By neglecting the thermal effect on the friction coefficient (unheated case) the critical stiffness, i.e. 

the stiffness which separates the stable from the unstable regime, in the velocity weakening regime 

(a-b<0) is given by (Rice and Ruina 1983; Ruina 1983):

 
L

ab
k

eff
n

c


0 (27)

Fig.4 shows the entire temporal evolution of the pre-seismic phase for the case H= 10-14 m2, 

whereas Fig. 5 shows a zoom on the final evolution of the pre-seismic phase, parameterized as a 

function of H. In fig.4 and fig. 5 we assumed 200eff
n MPa, -180 mPa10 ckk , a background 

temperature Tini= 550 K and the other model parameters summarized in table 1. Independently on 

permeability, with this choice of the model parameters, an unstable sliding phase occurs. The main 

effect of including the heat advection effect consists of a time delay of the onset of instability ts with 

respect to the purely conductive case. This time delay ranges from about 1.8 hours for H=10-15 m2

to about 3.8 hours for H=10-14 m2; it has un upper limit equal to about 4 hours for the unheated case, 

namely the case where the temperature effects are neglected in the friction laws. In our simulations, 

for H ≥ 10-10 m2 all curves conform to the unheated curves. In contrast, for small permeability 

values (H ≤ 10-20 m2) all curves conform to that of the purely conductive case (Kato 2001). Another 

result consists in the different values attained by the temperature rise on the fault plane, which 
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progressively decrease with increasing H (from a maximum of about 175 K after t=1800 s for the 

case H=10-20 m2 until to a nil value for H>10-10 m2).

Fig. 6 shows the simulation results using the same model parameters of Fig. 4 (Table I), 200eff
n

MPa and .mPa1055 -180  ckk Fig.7 shows the simulation results, parameterized as a function of 

H, using the model parameters of Table I and -18 mPa105 k . In these cases, the system is always 

subjected to the stable sliding regime, independently on the value of permeability. As for the 

unstable case, the time at which the maximum of slip velocity is attained increases with increasing 

the permeability of the fault, even if the differences are smaller. Also in this case, for H< 10-20 m2, 

the curves conform with that of the purely conductive case, whereas, for H≥10-10 m2, the curves

conform with that of the unheated case (Fig. 7). The peak of slip velocity slightly decreases with 

increasing permeability and the same occurs for the maximum value attained by the slip. As 

expected, the peak of temperature tends to decrease with increasing H.

3.3 SIMULATION RESULTS FOR THE CASE OF A TIME VARYING SLIP VELOCITY AND SHEAR STRESS: THE 

THERMAL PRESSURIZATION REGIME

Let us consider now the simulation results obtained by using the model which accounts for the pore 

pressure variation due to temperature, described in section 2.4. Results of simulations are 

summarized in Fig. 8 and Fig. 9. In figure 8 the curves for   2000 teff
n MPa, k=108 Pa/m, 

H=10-21 m2 and two different values of and 1.1 MPa K-1) are reported, together with the 

curves of the purely conductive case (Kato 2001). The simulation results have a physical 

significance quite different from that inferred for the case of a constant fluid velocity. In fact, as an 

effect of the thermal pressurization effect, a time advance of the onset of instability ts, with respect 

to the model of Kato (2001), is now inferred. The reason for this trend is that, as an effect of the 

increase of pore pressure, the effective normal stress on the fault plane decreases faster than in the 

purely conductive case, allowing the slip velocity to increase faster. Fig. 8 clearly indicates that this 

time advance is proportional to the values of the thermal pressurization factor . In fact it increases 

from about 0.9 hours for the case =0.11 MPa K-1 to about 10.2 hours for the case 1.1 MPa K-1.

Moreover, whereas in the initial stage of the pre-seismic phase, fluid velocity, pore pressure and the 

temperature on the fault slowly increase, they suffer a more pronounced increase near to the onset 

of instability. 

Another point we investigated was represented by the values assumed by the critical stiffness of the 

transition between stable and unstable sliding. Kato (2001) noted that the critical stiffness kc, which 

is inversely dependent on the critical length of the nucleation zone, is shifted toward higher values

in the purely conductive case. Since the seismic moment M0 of the preseismic phase is proportional 
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to the cube fault length and therefore is inversely dependent on the stiffness of the system, Kato

(2001) concluded that M0 is smaller than in the unheated case. We have made new calculations, 

using the two models described in the sections 2.3 and 2.4, to compute the critical stiffness for 

different values of the ratio V0/Vini. Using the model which does not include the effect of thermal 

pressurization (section 2.3), with H=10-15 m2, eff
n =200 MPa and Tini=550 K, we found out that kc is 

the same as that found by Kato (2001). On the contrary, when the effect of thermal pressurization is 

taken into account (section 2.4) the results are significantly different. We made the simulations

assuming =1.1 MPA K-1, H=10-20 m2, eff
n =200 MPa and Tini=550 K (Fig.9). We found that kc

tends to be systematically higher than that obtained by Kato (2001). This results indicate that, on a 

heated fault and in the thermal pressurization regime, unstable sliding may occur with a stiffer 

system. In particular, the ratio between the critical stiffness in the thermal pressurization regime and 

the critical stiffness in the purely conductive case ranges from a minimum of 1.13 to a maximum of 

1.21.

Ellsworth and Beroza (1995, 1998) identified a nucleation phase of slow moment release and

suggested that the duration of this feature could scale with the eventual size of the 

earthquake. Even if this argument is controversial, owing to the difficulty in distinguishing

the source from the path effect in the early stage of the first P pulses (see e.g. de Lorenzo et al.

2008 and references therein), under these assumptions an attempt can be made to estimate the

seismic moment of the pre-seismic phase. Since the critical length lc of the nucleation zone 

scales with L, according to the equation (Bizzarri and Cocco 2003):  

  eff
n

c ab

GL
l





 ,  

 being a geometrical, dimensionless, numerical parameter and G the rigidity of rocks 

surrounding the fault surface, we have: 

33
0

 cc
ps klM

It follows that psM 0 in the thermal pressurized regime is from 30 to 44 per cent smaller than in the 

purely conductive regime and that lc in the thermal pressurized regime is from 12 to 18 per cent 

smaller than in the purely conductive regime. 

4. CONCLUSION

An analytical solution to the energy equation which includes the heat advection effect has been 

derived, for the case of a constant shear stress and a constant slip velocity on the fault plane. Using 

the approach proposed by Kato (2001), this solution has been generalized to the case of time 
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varying shear stress and slip velocity on the fault and therefore can be used to describe the pre-

seismic sliding phase in the frame of the rate-, state- and temperature-dependent friction laws, for 

both the case of a constant fluid velocity model and the case of fluid velocity variations caused by

thermally induced pore pressure variations. 

Simulation results show important differences from the purely conductive case described by Kato 

(2001). The first conclusion that can be drawn from the present study is that, in the case of a 

constant fluid velocity, the time differences in the occurrence of the unstable sliding phase,

with respect to the Kato (2001) model, are very small. For example, for the case described in 

fig. 4 and 5, these differences are in the order of about 0.1- 0.2 days (relative variations in the 

order of 0.02%).

The second conclusion is that the evolution of the pre-seismic sliding phase is primarily controlled 

by the values of the thermal pressurization factor  and the permeability H of the rocks surrounding 

the fault plane. For small values of  the description of the evolution of the pre-seismic sliding 

phase can be simplified by considering the constant fluid velocity model described in section 2.3. In 

this case, the main effect of heat advection is a delay of the onset of instability of the system with 

respect to the purely conductive case; it increases with increasing rock permeability. For higher 

values of ( >.01 MPa K-1) the behavior of the pre-seismic phase is the opposite, with the onset 

of instability always preceding the onset of instability of the purely conductive case. In particular, in 

this range the trend of curves is strongly dependent on permeability. For H<10-18 m2, pore 

pressure monotonically increases and the velocity weakening regime is maintained until the 

instability is reached. Finally, for typical values of permeability of ultracataclastic gouge (H<10-19

m2) (Rice 2006), the thermal pressurization effect may result in significantly smaller values of the 

seismic moment and nucleation length of the pre-seismic phase. Following Kato (2001), this could 

imply a smaller crustal deformation before an earthquake.

A further effort has to be made to evaluate the effect of some assumptions made in this study. 

First of all, an aspect that has to be considered in future studies is the effect of allowing the 

state variable  to vary over the time. Moreover, some aspects in the thermal evolution along 

the fault, such as the changes of state (Stefan 1891), the chemical reactions occurring during 

faulting (due, for instance, to water absorption) and the mechanical lubrication (Brodsky and 

Kanamori 2001) have been neglected. This is because it is not possible, in these cases, to infer 

a pseudo-analytical temperature solution to be used in the frame of a first order system of 

differential equations and only numerical methods in 2D media can help us to solve all these 

problems.
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APPENDIX

We consider the Laplace transform  z of the temperature  tzT , :

  0   ,
0

 


 pTdtezp pt (a1)

By applying the Laplace transform to the equation (11) it follows that (see Carslaw and Jaeger, 

1959 for details):

0
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dz

d
U

dz

d
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where:
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The boundary conditions (17) transforms into:
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The solution to equation (a2) which does not diverge when z is given by:
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By substituting (a5) in (a4) the value of the integration constant C is found to be:
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(a6)

and therefore, substituting (a6) in (a4) it follows that:
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The temperature can be found by computing the inverse transform of (a7):

  )(, 1 ptzT   (a8)

By posing:

sf

U
pp

4
'

2

 (a9)

It follows (Carslaw and Jaeger, 1959):
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exp(, 1
2

p
tU

tzT
sf

 


(a10)

where )'(1 p has to be computed using the Inversion theorem of the Laplace transform 

(Carslaw and Jaeger, 1959):

 



 

 



F
HG

I
KJ


F
HG

I
KJ 
F
HG

I
KJ

z1

2

1

2

2

2

4 2








 






 






b g
i

V
Uz

K

e

U U
d

s
sf

sf

t z

sf sf sf

i

i sf
exp

(a11)

The evaluation of the integral in (a11) is performed by using the Cauchy theorem of residuals (e.g. 

Svesnichov and Tichonov, 1984):

1

2 1
   

i
f d res f i

i

N

b g b gc h

z 



, (a12)

where f b g is an analytical function of the complex variable  in all the points of the complex 

plane with the exception of N points  1,.., N where f has removable singularities. The closed 

oriented contour  has to be chosen to include all the singularities of f and to leave the domain 

which includes the singularities at its left. The integrand in equation (a11) has only a first order 

singularity (a pole) on the real plane:
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(a13)

and the residual of f in   1 is given by:
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(a14)

Since f has a branch point in  b  0 , following Carslaw and Jaeger (1959), we used the closed 

integration contour  reported in fig. (a1).  By letting tend the radius R of the great circle to infinity 

and the radius  of the small circle to zero the contribution to the integral comes only from the 

oriented branches AB, FE and DC.

By posing    ei along the branch FE and    e i along the branch DC, after some 

manipulations it follows that the contribution of these two branches to the integral in (a12) is given 

by:
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Therefore, by taking into account (a14), equation (a11) furnishes:
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By substituting (a16) in (a10), after a few manipulations, it follows that:
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In z=0 the previous expression gives:
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Integrating by parts, the integral in (a18) reduces to classical tabulated integrals (Abramowitz and 

Stegun, 1965). The solution is:
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where erf(x) denotes the value in x of the error function.

It can be easily verified that, by letting v tend to zero (i.e. no fluid transport),  the temperature 

solution (a19) tends to the solution inferred from McKenzie and Brune (1972) for the purely 

conductive case.

By carrying out spatial and time derivatives of the temperature field it can be shown that:
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and:
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where erfc(x) denotes the value in x of the complementary error function.
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Table 1. Parameter values assumed in the simulations

μ0= 0.6 
a = 0.012
b = 0.017
L=10-2 m
Qa =105 J mol-1

Qb = 105 J mol-1

ρs=2.6·103 kg m-3

ρw=103 kg m-3

Cs=1000 J kg-1 K-1

Cw=4186 J kg-1 K-1

Ks=2.6 W m-1K-1

Kw=0.603 W m-1K-1

=0.1
η= 10-6 m2 s-1

V0= 3.5 cm yr-1

·10-3 Pa s
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Figure Caption

Fig.1- a) representation of the symmetrical flux lines of fluids in the fault core.  b) The spring block 

model and the reference system used to solve the heat advection problem. The surface between the 

rigid block and the floor simulates the fault plane. 0u is the load-point displacement and u is the 

displacement of the rigid block. v is the average value of the fluid velocity in the fault core

Fig.2 Temperature vs. time curves for a constant slip rate and a constant shear stress (see the text). 

The different curves refer to different values of permeability given in the legend.

Fig. 3 Temperature vs. time curves for a constant slip rate and a constant shear stress (see the text). 

The different curves are obtained considering a ten percent of variations of thermal parameters.

Fig. 4 Simulated slip, slip rate, shear stress and temperature histories for the cases 1/ 0 ckk and 

H=10-14 m2 using the model with a constant fluid velocity. The entire evolution of the system is 

shown.

Fig. 5 Simulated slip, slip rate, shear stress and temperature histories for the cases 1/ 0 ckk using 

the model  with a constant fluid velocity, for different values of permeability. The evolution of the 

system around the onset of instability is shown. For H≥10-8 m2 the curves superimpose on curve 

1, whereas for H≤10-21 m2 the curves superimpose on curve 4.

Fig. 6 Simulated slip, slip rate, stress and temperature histories for the case 5/ 0 ckk and H=10-14

m2 using the model  with a constant fluid velocity. The entire evolution of the system is shown.

Fig. 7 Simulated slip, slip rate, stress and temperature  histories for the case 5/ 0 ckk m2 using the 

model  with a constant fluid velocity, for different values of permeability. The evolution of the 

system around the peak value of slip velocity is shown.

Fig. 8 Simulated slip, slip rate, shear stress, fluid velocity, pore pressure and temperature  histories 

for the cases 1/ 0 ckk using the model  with a time varying fluid velocity, for two different values 

of the thermal pressurization coefficient . The evolution of the system around the onset of  

instability is shown.

Fig. 9 Plot of the critical stiffness vs. V0/Vini

Fig. a1. The close contour  used to compute the integral (a12)
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Table 1. Parameter values assumed in the simulations

μ0= 0.6 
a = 0.012
b = 0.017
L=10-2 m
Qa =105 J mol-1

Qb = 105 J mol-1

ρs=2.6·103 kg m-3

ρw=103 kg m-3

Cs=1000 J kg-1 K-1

Cw=4186 J kg-1 K-1

Ks=2.6 W m-1K-1

Kw=0.603 W m-1K-1

=0.1
η= 10-6 m2 s-1

V0= 3.5 cm yr-1

·10-3 Pa s

Table I


