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Effect of frictional heating and thermal advection on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law

Laboratory experiments on simulated faults in rocks clearly show the temperature dependence of dynamic rock friction. Since rocks surrounding faults are permeable, we have developed a numerical method to describe the thermo-mechanical evolution of the pre-seismic sliding phase which takes into account both the rate-, state-and temperature-dependent friction law and the heat advection term in the energy equation. We consider a laminar fluid motion perpendicular to a vertical fault plane and assume that fluids move away from the fault plane. A semi-analytical temperature solution which accounts for the variability of slip velocity and stress on the fault has been found. This solution has been generalized to the case of a time varying fluid velocity and then was used to include the thermal pressurization effect. After discretizing the temperature solution, the evolution of the system is obtained by the solution of a system of first order differential equations which allows us to determine the evolution of slip, slip rate, friction coefficient, effective normal stress, temperature and fluid velocity. The numerical solutions are found using a Runge-Kutta method with an adaptative stepsize control in time. When the thermal pressurization effects can be neglected, the heat advection effect gives rise to a delay, with respect to the purely conductive case, of the earthquake occurrence time. This delay increases with increasing permeability H of the system. When the thermal pressurization effects are taken into account the situation is opposite, i.e. the onset of instability tends to precede that of the purely conductive case.

The advance in the time of occurrence of instability increases with increasing coefficient of thermal pressurization. In the small permeability range (H≤10 -18 m 2 ), the seismic moment and nucleation length of the pre-seismic phase are significantly smaller than those predicted by the purely conductive model.

INTRODUCTION

Many studies have concerned aseismic slip on faults before an earthquake (e.g. Lockner and Byerlee, 1995 and references therein). Laboratory and theoretical studies of the mechanical A c c e p t e d M a n u s c r i p t 2 evolution of a fault during the earthquake seismic cycle show that a significant amount of slip could be generated before the unstable sliding phase, causing an degree of crustal deformation that could be measured by modern instruments [START_REF] Lorenzetti | Geodetic predictions of a strike-slip fault model: Implications for intermediate-and short-term earthquake prediction[END_REF]. Although seismic risk studies are actually in a very early stage, this aspect is very important for future studies aimed at determining possible precursors of earthquake instability (e.g. [START_REF] Dieterich | Earthquake nucleation on faults with rate-and state-dependent strength[END_REF]. For this reason, several studies have been dedicated to the development of predictive models of the pre-seismic sliding phase (Kato, 2001 and references therein).

In describing the dynamical evolution of a fault, the seismic cycle is usually modelled considering the formal analogy with an elastic system comprising an elastic spring connected to a rigid block and assuming a constitutive friction law derived from laboratory studies. In earlier works, [START_REF] Dieterich | Modeling of rock friction, 1, Experimental results and constitutive equations[END_REF] and [START_REF] Ruina | Slip instability and state variable friction laws[END_REF] found a rate-and state-dependent friction law to explain a large amount of laboratory data on rock friction. These relations, which constitute the basis of all the subsequent studies of the seismic cycle, have been further improved to incorporate the effect of temperature variations on the friction coefficient [START_REF] Chester | Multimechanism friction constitutive model for ultrafine quartz gouge at hydrothermal conditions[END_REF][START_REF] Blanpied | Effects of slip, slip rate, and shear heating on the friction of granite[END_REF][START_REF] Hirose | Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting[END_REF][START_REF] Toro | Natural and experimental evidence of melt lubrication of faults during earthquakes[END_REF][START_REF] Beeler | The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments[END_REF].

Starting from the pioneering work of [START_REF] Mckenzie | Melting on fault planes during large earthquakes[END_REF], many kinematical and dynamical approaches have been developed to obtain detailed models of the temperature distribution due to the frictional heating along a fault and around it (e.g. [START_REF] Cardwell | Frictional heating on a fault zone with finite thickness[END_REF][START_REF] Fialko | Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth[END_REF]Caggianelli et al. 2005 and references therein). In all these studies the thermal evolution is inferred by considering only the conduction term in the energy equation, without accounting for the heat transport related to fluid movement through the permeable rocks.

It is well known that purely conductive heat models are actually unable to explain heat flow data recorded in the proximity of faults. One of the most debated questions is, in fact, the so-called heat flux paradox, namely the discrepancy between the high heat fluxes predicted by theoretical conductive models and the small values of heat flux measured immediately after the earthquakes along the S. Andreas fault (e.g. [START_REF] Lachenbruch | Frictional heating, fluid pressure and the resistance to fault motion[END_REF]). The possible reasons for this discrepancy have been largely debated in seismological literature. In particular, [START_REF] Madariaga | Slippery When Hot[END_REF] has summarized the main results of the on-going researches and pointed out the need of taking into account the role of fluids along the faults. [START_REF] Sibson | Interaction between temperature and pore-fluid pressure during earthquake faulting-A mechanism for partial or total stress relief[END_REF] observed that if fluids are present in interconnected pores in the fault zone, the frictional heating could increase the fluid pressure, causing a reduction of the effective normal stress on the fault plane and favoring slipping along it. Starting from this observation, many studies (e.g. [START_REF] Lachenbruch | Frictional heating, fluid pressure and the resistance to fault motion[END_REF][START_REF] Mase | Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault[END_REF]Bizzarri andCocco 2006A, 2006B;[START_REF] Rice | Heating and weakening of faults during earthquake slip[END_REF]) have focused on the effect of frictional heating and pore fluid pressure during the coseismic stage. In addition, [START_REF] Segall | Does shear heating of pore fluid contribute to earthquake nucleation?[END_REF] have analyzed the conditions for A c c e p t e d M a n u s c r i p t 3 which the shear heating effect on pore fluid can contribute to the nucleation phase. However, with the exception of the article of [START_REF] Mase | Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault[END_REF], where the heat advection term is included in the energy equation, in all other studies the heat equation is usually decoupled from the fluid pressure equation, by neglecting the heat advection term in the energy equation. This is because, as argued by [START_REF] Lachenbruch | Frictional heating, fluid pressure and the resistance to fault motion[END_REF], if we consider the small values of permeability of the fault core (< 10 -17 m 2 ), the effect of heat advection can be considered negligible in the coseismic time interval (seconds or tens of seconds). A commonly accepted model of a fault zone (e.g. [START_REF] Sibson | Thickness of the seismic slip zone[END_REF] consists in fact of a thin fault core, having a small permeability, embedded in a much broader fractured zone, called the damage zone [START_REF] Chester | Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California[END_REF]) and having a greater permeability.

As concerns the fault core, even if some studies [START_REF] Scholz | The mechanics of earthquakes and faulting[END_REF] and references therein) suggest that the fault core has a thickness of the order of several millimeters or centimeters, the validity of the above simplified assumption is approximately maintained if the average properties of the fault core are considered in the modeling of the slip along the fault plane. As we will discuss in the following, this is particularly true in the case of the description of the pre-seismic sliding phase which involves long time scales, in the order of several hundred of days.

As concerns the permeability, at present there is no general agreement on permeability values around the fault zone. In some cases (e.g. [START_REF] Cappa | Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements[END_REF][START_REF] Cappa | Stress and fluid transfer in a fault zone due to overpressures in the seismogenic crust[END_REF] a higher permeability (from 10 -12 to 10 -8 m 2 ) has been inferred inside the damage zone, whereas in other studies (e.g. [START_REF] Wibberley | Internal structure and permeability of major strike-slip fault zones: The Median Tectonic Line in mid prefecture, southwest Japan[END_REF] a smaller permeability has been estimated in this zone (from 10 -15 to 10 -18 m 2 ). Moreover, results of many studies (e.g. [START_REF] Noir | Fluid flow triggered migration of events in the 1989 Dobi earthquake sequence of central Afar[END_REF][START_REF] Miller | Aftershocks driven by a high-pressure CO2 source at depth[END_REF][START_REF] Antonioli | Fluid flow and seismicity pattern: Evidence from the 1997 Umbria-Marche (central Italy) seismic sequence[END_REF] indicate that the average permeability inferred from seismological investigations may be, in some cases, eight orders of magnitude greater (until to 10 -8 m 2 ) than the laboratory estimates on cataclastic rocks. An increase of permeability in the neighborhood of the fault plane in respect to the permeability values measured in laboratory experiments has been also predicted [START_REF] Scholz | Evidence for a strong San Andreas fault[END_REF][START_REF] Andrews | Rupture dynamics with energy loss outside the slip zone[END_REF]).

Based on these considerations, in this article, starting from the conductive model of [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF], we present a thermo-mechanical model of the seismic cycle which incorporates the effect of both heat conduction and heat advection. To allow for an analytical formulation of temperature, we assume that fluids move perpendicularly to the fault plane. An analytical solution to the heat advectionconduction problem is presented for the case where slip velocity and shear stress are constants. By following the approach proposed by [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF], this solution is generalized to the case where slip velocity and shear stress are allowed to vary over the time. The results have been compared with the simulation results of [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF] to evaluate how the advection and pressurization effects modify both the slip during the preseismic phase and the recurrence time of the earthquakes.

THEORY

THE RATE-, STATE-AND TEMPERATURE-DEPENDENT FRICTION LAW

Following [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF], we consider a single spring-block model to simulate pre-seismic sliding on a planar surface (Fig. 1). The fault plane is represented by the interface between the base of the rigid block and the floor. The spring simulates the elastic medium surrounding the fault. In the quasistatic approximation (Belardinelli et al. 2003 and references therein) the relationship between the shear stress acting on the base of the rigid block and its displacement is given by:

  u u k   0  , ( 1 
)
where k is the spring stiffness, 0 u is the load-point displacement and u is the displacement of the rigid block. The shear stress  is related to the effective normal stress by the equation:

eff n    , ( 2 
)
where  is the friction coefficient.

Starting from the early works of [START_REF] Dieterich | Modeling of rock friction, 1, Experimental results and constitutive equations[END_REF] and [START_REF] Ruina | Slip instability and state variable friction laws[END_REF], which inferred the fundamental rate-and state-constitutive equations of dynamic rock friction at low velocity and at a constant effective normal stress, several laboratory studies have investigated the dependence of the friction coefficient on slip velocity and temperature. In what follows we use the rate-, state-and temperature-dependent friction law derived from [START_REF] Chester | Effect of temperature on friction: constitutive equations and experiments with quartz gouge[END_REF] (see also [START_REF] Blanpied | Frictional slip of granite at hydrothermal conditions[END_REF][START_REF] Blanpied | Effects of slip, slip rate, and shear heating on the friction of granite[END_REF] and summarized in [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF]:

   b T T R Q V V a a s s                            1 1 ln (3) In equation (3) R is the universal gas constant, T is the absolute temperature, a Q is an apparent activation energy, dt du V s 
is the sliding velocity of the block, 0  is the value assumed by the friction coefficient for A c c e p t e d M a n u s c r i p t 5

The state variable  quantifies the contact state between sliding surfaces or the internal structure of the gouge layer between sliding surfaces, and its evolution with time is expressed by the so-called slip law [START_REF] Chester | Effect of temperature on friction: constitutive equations and experiments with quartz gouge[END_REF][START_REF] Chester | A rheologic model for wet crust applied to strike-slip faults[END_REF]:

                           * * 1 1 ln T T R Q V V L V dt d b s s s   (4) 
In equation ( 4) b Q is an apparent activation energy and L is the characteristic length controlling the evolution of the state variable [START_REF] Bizzarri | Slip-weakening behavior during the propagation of dynamic ruptures obeying rate-and state-dependent friction laws[END_REF]. In a study of the slip-weakening behavior of rate-and state-dependent constitutive laws, [START_REF] Cocco | On the slip-weakening behavior of rate-and state dependent constitutive laws[END_REF] found that the slip weakening curve displays an equivalent slip-weakening distance eq D 0 which is different from L.

They showed that a scaling relation between eq D 0 and L exists such that 15 / 0  L D eq . Moreover, they discovered a difference between laboratory estimates of the parameter L (of the order of 1÷10 m) and those (of the order of 1÷5 cm) derived from strong motion recordings. Based on these findings, we decided to use L=1 cm in our simulations. In the most general case the state variable will vary during the pre-seismic sliding phase, requiring to solve a system in the unknowns , V s ,  and T. 

                      * * 0 1 1 ln T T R bQ aQ V V b a b a s ss s   (5)
The time derivative of equation (1) gives:

  s V V k dt d   0  , (6) 
where

dt du V 0 0 
is the load point velocity. By combining (2), (3), ( 4) and (5), [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF] obtained:

             ss s a s s eff n L V dt dT R Q a dt dV V a dt d     1 (7)
The rate and state friction laws have been validated in laboratory stick-slip experiments in which the slip velocity varies approximately in the range 10 -6 <V s <10 -1 m/s (Mair and Marone,

1999)
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THE COUPLING BETWEEN TEMPERATURE AND FLUID PRESSURE

Equation ( 6) and ( 7) indicate that the mechanical evolution of the spring-block system depends on the time derivative of the temperature on the sliding surface. [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF] considered the case of a natural system where the temperature evolution is governed only by heat conduction. He reformulated the problem, previously solved by [START_REF] Mckenzie | Melting on fault planes during large earthquakes[END_REF], to incorporate the time dependence of the slip velocity and the shear stress. In what follows, we consider the case of a natural system where the heat is transferred not only by conduction but also by fluid advection. The volumetric flow rate per unit area q can be obtained from the fluid pressure gradient p  using the Darcy's law (e.g. [START_REF] Turcotte | Geodynamics[END_REF]:

p H q     , ( 8 
)
where H is the permeability of the fault-rock system and  the dynamical viscosity of fluids. The volumetric flow rate q has the dimension of a velocity (and therefore it is also named Darcy's velocity) and expresses the average velocity per unit area and not the fluid particle velocity [START_REF] Guéguen | Fundamentals of Poromechanics in Mechanics of Fluid-Saturated Rocks[END_REF]Bizzarri and Cocco 2006A). Fluid velocity v can be inferred from q using the equation (e.g. [START_REF] Miller | Aftershocks driven by a high-pressure CO2 source at depth[END_REF] and references therein):

 q v  ( 9 
)
where  is the porosity of rocks.

In the most general case of a 3D medium, fluids through the permeable rock matrix move both in the direction perpendicular to the fault plane and along it. Many authors [START_REF] Lachenbruch | Frictional heating, fluid pressure and the resistance to fault motion[END_REF][START_REF] Mase | Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault[END_REF]Bizzarri and Cocco 2006A;[START_REF] Segall | Does shear heating of pore fluid contribute to earthquake nucleation?[END_REF] among the others) have considered only the component of the fluid velocity perpendicular to the fault plane. This approximation makes it possible to obtain a mathematical description of the effect of increase of pore pressure perpendicularly to the fault plane due to the increase of temperature near the fault plane and corresponds to the case of a laminar fluid motion related to fluid pressurization (i.e. one dimensional Darcy flow perpendicular to the fault plane), as described in Bizzarri and Cocco (2006A). In what follows we will approximate fluid motion as laminar fluid motion. As we will show, this assumption will allow us to obtain a system of first-order differential equations which can be numerically managed without a prohibitive computational effort.

In particular, to quantify how the temperature variations modify the pore fluid pressure (and therefore the fluid velocity) we have considered the transport model described in [START_REF] Segall | Does shear heating of pore fluid contribute to earthquake nucleation?[END_REF]. This model treats the thermal and hydraulic properties as homogeneous and takes the limit In particular,  depends on the compressibility  , the pressure and the temperature of the rocks surrounding the fault [START_REF] Mase | Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault[END_REF]. For values of  smaller than the compressibility of the water (  ≈10 -10 Pa -1 ),  ranges from 0.6 MPa K -1 and 1.1 MPa K -1 (Segall and Rice 2006). For high values of compressibility (  ≈10 -6 Pa -1 ),  can be smaller than 0.01 MPa K -1 in the whole temperature range of the solid rocks at high pressures (>100 MPa) [START_REF] Mase | Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault[END_REF], so that the effect of thermal pressurization becomes negligible. In this particular case, fluid velocity maintains constant and it is then possible to neglect the thermal pressurization effect.

THE TEMPERATURE EVOLUTION IN THE CASE OF A CONSTANT FLUID VELOCITY

We have built a physical model which replicates the main features of the fluid dynamics around a fault. In the most general case fluids inside the fault core tend to move along the direction of the pressure gradient. For this reason we assume that the pressure gradient is orthogonal to the fault plane and that the fluids in the fault core move perpendicularly to the fault plane with a geometrically averaged velocity v. Moreover, to allow for an analytical approach we assume that Accordingly, we consider the limit situation where the fault core thickness tends to zero and reduces to a fault plane located in z=0. (Fig. 1).

We first consider the case of a constant average fluid velocity in the fault core.

In the 1D case the equation governing the heat redistribution is (e.g. [START_REF] Lachenbruch | Frictional heating, fluid pressure and the resistance to fault motion[END_REF]:

    t T z T v C C z T sf w w sf            2 2 (11)
In equation ( 11 

  sf sf sf C K    (12)
where sf K is the thermal conductivity of the solid-fluid compound. Following [START_REF] Mase | Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault[END_REF] we compute sf K as:

  w s sf K K K   1 (13)
where s K and w K are the thermal conductivity of the solid and fluid phase respectively and  is the porosity. Moreover:

         w w s s sf C C C    1 ( 14 
)
where s  and C s are the density and the specific heat at constant pressure of the solid phase respectively.

As an effect of a relative slip ds of the two blocks respect to the fault plane, the work d done by the frictional force is converted into heat dQ:

Ads d dQ     ( 15 
)
where A is the surface of the blocks in contact. Therefore the fault surface acts as a heat source which produces a heat flux quantity  

t z , 0  
given by:

      t t V dt dQ A t z s      1 , 0 (16) 
The heat production term given by equation ( 16) can therefore be included in the energy equation ( 11) as a boundary condition. In fact, in an infinite medium the heat flux splits in two equal contributions, so that in the half-space z>0 the boundary condition ( 16) gives rise to:
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10     2 0 t t V vT C z T K s z w w sf               (17)
where the first term in the square parenthesis is the conductive heat flux and the second term is the advective heat flux (e.g. [START_REF] Incropera | Fundamentals of heat and Mass Transfer, John Wiley and sons[END_REF].

The analytical solution to the problem (11) with the boundary condition ( 17) and the initial condition:

  0 0 ,   t z T (18)
is derived in Appendix for the case where   

  t V s ,   t 
and T(t) can be assumed to be constants. In this way the expression (a19), given in Appendix, becomes:

T t T V t t K U U t t erf U t t U t t t t U t t U U t t erf U t t U t t t t ini s i i sf sf i N i sf i sf i sf i sf i sf i sf i sf i sf i 0 2 1 2 2 2 4 1 2 2 2 1 1 1 2 1 1 1 , exp b g b g b g b g b g b g b g b g b g b g b g      F H G I K J  F H G I K J       F H G I K J L N M M O Q P P     F H G I K J  F H G I K J                       1 2 1 4 b g b g   sf i sf U t t exp   F H G I K J L N M M O Q P P R S | | | T | | | U V | | | W | | |  ( 19 
)
where:

    v C C U sf w w    (20) 
In equation ( 19) t 0 =0, t N =t and

  0 , 0    t z T T ini
is the background temperature and erf(x) denotes the value assumed in x by the error function. Using the same approach, from equation (a20) of the Appendix we obtain the time derivative of the temperature in z=0: The equations ( 6), ( 7) and (21) represent a system of coupled first order differential equations in the unknowns V s ,  and T to be solved simultaneously.

  F H G I K J     F H G I K J    F H G I K J L N M M O Q P P   F H G I K J    F H G I K J L N M M O Q P P R S | | | T | | | U V | | | W | | |         T t V t t K U erfc U t t t U t t U erfc U t t t U t t z i N s i i sf i sf i i sf i sf i i sf 0 1 1 1 2 1 1 2 1 2 2 2 4 2 2 4 b g b g b g b g b g b g          exp exp ( 

THE TEMPERATURE EVOLUTION IN THE CASE OF A TIME DEPENDENT FLUID

VELOCITY

In the previous paragraph we derived an expression of the temperature field for the case of a constant velocity perpendicular to the fault plane. In the frame of the fluid migration model described in section 2.2, this could happen only in the case of a negligible thermal pressurization effect. In this section we describe how we account for the thermal pressurization effect in our model. If pore pressure varies as a consequence of the temperature variations along the fault (equation 10), the fluid velocity will also vary. In particular, from the equations ( 8) and ( 9) and ( 10) it follows that:

0 2 0 ) ( ) (                 z z z t t T H z p t H t t v   (22)
where z is the coordinate on an axis perpendicular to the fault plane (fig. 1). As an effect of the pore fluid pressure variations, the effective normal stress on the fault plane will also vary over the time:

  t p n eff n     (23) 
From equation (10) it follows that:

0     z eff n dt dT dt d  (24)
To include the velocity variations of fluids, we use the same approach described in the previous section, i.e. we subdivide the time interval max 0 T t   in N sub-intervals where the fluid velocity is a constant:

  max 0 1 0 1 T t t N i t t t t v v N i i- i        (25)
As a consequence, in the time interval , 0 max T t   the energy equation ( 11) is subdivided into N equations:

    N i t T z T v C C z T i sf w w sf           1 2 2    (26)
These equations have to be solved with the same previously described conditions (equations ( 17) and ( 18)) and the continuity of the temperature at each i t . Following the same lines described in the previous paragraph, it can be easily shown that the solution to this problem is simply obtained by 19). The same substitution has to be made in the expression of the time derivative of the temperature (equation ( 21)).

Therefore, the mechanical evolution of the system is, in this case, inferred by solving the system of five first order differential equations given by ( 6), ( 7), ( 21), ( 22) and (24).

RESULTS

In what follows we show the results of the numerical simulations carried out using the two models described in section 2 and compare the results with those arising from the use of the purely conductive energy equation [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF].

The solutions of the systems of first order differential equations have been obtained using a MATLAB® script to incorporate an explicit Runge Kutta method (ode45 in MATLAB® documentation) with an adaptative time-step size control to ensure the accuracy of solutions. Some of the parameters used in the simulations have been fixed, once and for all, to the values summarized in Table 1.

In the simulations we have to assume a constant value of the permeability H. variations depending also on the focal mechanism. [START_REF] Jourde | Computing permeability of fault zones in eolian sandstone from outcrop measurements[END_REF] reported that the presence of joints can give rise to a strong local increase of permeability (until to 10 -9 m 2 ). The same order of magnitude for permeability has been proposed by [START_REF] Jahr | Fluid injection and surface deformation at the KTB location: modelling of expected tilt effects[END_REF] to model the fluid transport around a fault zone near the KTB borehole (> 1 km of depth). In their study on earthquake instability, Lockner and Byerlee (1995) assumed a permeability of the order of 6•10 -12 m 2 .

Moreover, [START_REF] Wibberley | Internal structure and permeability of major strike-slip fault zones: The Median Tectonic Line in mid prefecture, southwest Japan[END_REF] provided evidence that permeability can strongly increase in the direction normal to the fault plane. This result has been supported further by the simulation results of Bizzarri and Cocco (2006A). The local variations in hydraulic properties of the faults have been well summarized by the experiments led by [START_REF] Cappa | Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements[END_REF] which show that fluid flow in the fault zone is controlled by dual-permeability behavior, with highly permeable subfaults (H=10 -12 m 2 ) bounding low-permeable rock-matrix blocks (H=10 -18 m 2 ). In the simulation results of [START_REF] Cappa | Stress and fluid transfer in a fault zone due to overpressures in the seismogenic crust[END_REF], the permeability of the rocks near a fault ranges from a minimum A c c e p t e d M a n u s c r i p t 13 H=10 -19 m 2 for the fault core to an intermediate H=10 -12 m 2 for the inherited planes to a maximum of H=10 -8 m 2 for the fault-related fractures.

SIMULATION RESULTS FOR THE CONSTANT SLIP VELOCITY AND THE CONSTANT SHEAR STRESS

First of all we have analyzed the temperature rise vs. time on the fault plane, considering, for sake of simplicity, a constant slip velocity (V s =10 -5 m s -1 ) and a constant shear stress on the fault 200  eff n  MPa. Fig. 2 shows the temperature on the fault plane for different values of permeability, as given by equation (a19). As expected, the temperature disturbance due to the frictional heating decreases with increasing the rock permeability (and then the fluid velocity). This is because a higher permeability allows heat to be easily transferred far from the fault and therefore only smaller increments of temperature on the fault plane are allowed.

In fig. 2 we have assumed a constant value of the thermal conductivity of the solid phase (K s =2.6 W m -1 K -1 ), as derived from laboratory measurement on crustal rocks [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF]).

In the next simulation (fig. 3) we have evaluated the effect on temperature of small variations of thermal parameters around their typical values. It is in fact well known that the thermal parameters are dependent on the pressure, the temperature and the fluid content of the rocks (e.g. [START_REF] Chapman | Thermal state of the continental crust[END_REF]. Therefore a more rigorous approach to the energy equation should take into account the dependence of K s on the depth z, the temperature T and the fluid content of the rocks. However, since K s (z,T) strongly depends also on the rock type [START_REF] Beardsmore | Crustal Heat Flow, A Guide to Measurement and Modeling[END_REF], the functional form of K s (z,T) for a given rock type could not be the same for another rock type. Moreover the dependence of K s on z and T gives rise to a non linearity of the energy equation and only numerical method can be used to approximately solve this problem. Therefore we have tried to evaluate how much the results can be affected by reasonable variations in the thermal parameters. For this reason, in fig. 3, we consider how the thermal disturbance on the fault plane varies if we vary K s of ±10%, for a fixed value of rock permeability (H=10 -13 m 2 ). As an effect of varying K s also the thermal conductivity of solid phase s  will vary (equations 12 and 13). We note that an increase in K s and s  results in a temperature reduction on the fault plane, as it could be obtained by increasing the permeability of the system (fig. 2). This implies that H is correlated with the thermal parameters s  and K s on the temperature vs. time curves. First, we consider the simulation results for the case of a constant fluid velocity. Even if this model is only an approximation of the most general case where fluid velocity is allowed to vary as a consequence of the thermal pressurization effect, it allows us to understand the key role played by the average permeability of the rocks surrounding the fault. Therefore these simulations refer to real cases of fault planes surrounded by rocks characterized by a small coefficient of pressurization ( < 0.01 MPa K -1 ) [START_REF] Mase | Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault[END_REF].

SIMULATION RESULTS FOR THE TIME VARYING SLIP VELOCITY AND SHEAR STRESS: THE CONSTANT FLUID VELOCITY CASE

In In our simulations, fluid velocity has been derived using equations ( 8) and ( 9) under the assumption of a pressure regime where

g p w   
, being  w the density of the fluids and g the gravity acceleration.

By neglecting the thermal effect on the friction coefficient (unheated case) the critical stiffness, i.e.

the stiffness which separates the stable from the unstable regime, in the velocity weakening regime (a-b<0) is given by [START_REF] Rice | Stability of steady frictional slipping[END_REF][START_REF] Ruina | Slip instability and state variable friction laws[END_REF]:

  L a b k eff n c    0 (27)
Fig. 4 shows the entire temporal evolution of the pre-seismic phase for the case H= 10 -14 m 2 , whereas Fig. 5 shows a zoom on the final evolution of the pre-seismic phase, parameterized as a function of H. In fig. 4 and fig. 5 we assumed 200

 eff n  MPa, -1 8 0 m Pa 10   c k k
, a background temperature T ini = 550 K and the other model parameters summarized in table 1. Independently on permeability, with this choice of the model parameters, an unstable sliding phase occurs. The main effect of including the heat advection effect consists of a time delay of the onset of instability t s with respect to the purely conductive case. This time delay ranges from about 1.8 hours for H=10 -15 m 2 to about 3.8 hours for H=10 -14 m 2 ; it has un upper limit equal to about 4 hours for the unheated case, namely the case where the temperature effects are neglected in the friction laws. In our simulations, for H ≥ 10 -10 m 2 all curves conform to the unheated curves. In contrast, for small permeability values (H ≤ 10 -20 m 2 ) all curves conform to that of the purely conductive case [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF]. Another result consists in the different values attained by the temperature rise on the fault plane, which
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progressively decrease with increasing H (from a maximum of about 175 K after t=1800 s for the case H=10 -20 m 2 until to a nil value for H>10 -10 m 2 ). . In these cases, the system is always subjected to the stable sliding regime, independently on the value of permeability. As for the unstable case, the time at which the maximum of slip velocity is attained increases with increasing the permeability of the fault, even if the differences are smaller. Also in this case, for H< 10 -20 m 2 , the curves conform with that of the purely conductive case, whereas, for H≥10 -10 m 2 , the curves conform with that of the unheated case (Fig. 7). The peak of slip velocity slightly decreases with increasing permeability and the same occurs for the maximum value attained by the slip. As expected, the peak of temperature tends to decrease with increasing H.

SIMULATION RESULTS FOR THE CASE OF A TIME VARYING SLIP VELOCITY AND SHEAR STRESS: THE THERMAL PRESSURIZATION REGIME

Let us consider now the simulation results obtained by using the model which accounts for the pore pressure variation due to temperature, described in section 2.4. Results of simulations are summarized in Fig. 8 and Fig. 9. In figure 8 the curves for

  200 0   t eff n



MPa, k=10 8 Pa/m, H=10 -21 m 2 and two different values of and 1.1 MPa K -1 ) are reported, together with the curves of the purely conductive case [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF]. The simulation results have a physical significance quite different from that inferred for the case of a constant fluid velocity. In fact, as an effect of the thermal pressurization effect, a time advance of the onset of instability t s , with respect to the model of [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF], is now inferred. The reason for this trend is that, as an effect of the increase of pore pressure, the effective normal stress on the fault plane decreases faster than in the purely conductive case, allowing the slip velocity to increase faster. Fig. 8 clearly indicates that this time advance is proportional to the values of the thermal pressurization factor . In fact it increases from about 0.9 hours for the case =0.11 MPa K -1 to about 10.2 hours for the case 1.1 MPa K -1 .

Moreover, whereas in the initial stage of the pre-seismic phase, fluid velocity, pore pressure and the temperature on the fault slowly increase, they suffer a more pronounced increase near to the onset of instability.

Another point we investigated was represented by the values assumed by the critical stiffness of the transition between stable and unstable sliding. [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF] noted that the critical stiffness k c , which is inversely dependent on the critical length of the nucleation zone, is shifted toward higher values in the purely conductive case. Since the seismic moment M 0 of the preseismic phase is proportional A c c e p t e d M a n u s c r i p t

to the cube fault length and therefore is inversely dependent on the stiffness of the system, Kato (2001) concluded that M 0 is smaller than in the unheated case. We have made new calculations, using the two models described in the sections 2.3 and 2.4, to compute the critical stiffness for different values of the ratio V 0 /V ini . Using the model which does not include the effect of thermal pressurization (section 2.3), with H=10 -15 m 2 , eff n  =200 MPa and T ini =550 K, we found out that k c is the same as that found by [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF]. On the contrary, when the effect of thermal pressurization is taken into account (section 2.4) the results are significantly different. We made the simulations assuming =1.1 MPA K -1 , H=10 -20 m 2 , eff n  =200 MPa and T ini =550 K (Fig. 9). We found that k c tends to be systematically higher than that obtained by [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF]. This results indicate that, on a heated fault and in the thermal pressurization regime, unstable sliding may occur with a stiffer system. In particular, the ratio between the critical stiffness in the thermal pressurization regime and the critical stiffness in the purely conductive case ranges from a minimum of 1.13 to a maximum of 1.21. 

  eff n c a b GL l     ,
 being a geometrical, dimensionless, numerical parameter and G the rigidity of rocks surrounding the fault surface, we have:

3 3 0    c c ps k l M
It follows that ps M 0 in the thermal pressurized regime is from 30 to 44 per cent smaller than in the purely conductive regime and that l c in the thermal pressurized regime is from 12 to 18 per cent smaller than in the purely conductive regime.

CONCLUSION

An analytical solution to the energy equation which includes the heat advection effect has been derived, for the case of a constant shear stress and a constant slip velocity on the fault plane. Using the approach proposed by [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF], this solution has been generalized to the case of time Simulation results show important differences from the purely conductive case described by [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF]. The first conclusion that can be drawn from the present study is that, in the case of a constant fluid velocity, the time differences in the occurrence of the unstable sliding phase, with respect to the Kato (2001) model, are very small. For example, for the case described in fig. 4 and5, these differences are in the order of about 0.1-0.2 days (relative variations in the order of 0.02%).

The second conclusion is that the evolution of the pre-seismic sliding phase is primarily controlled by the values of the thermal pressurization factor  and the permeability H of the rocks surrounding the fault plane. For small values of  the description of the evolution of the pre-seismic sliding phase can be simplified by considering the constant fluid velocity model described in section 2.3. In this case, the main effect of heat advection is a delay of the onset of instability of the system with respect to the purely conductive case; it increases with increasing rock permeability. For higher values of ( >.01 MPa K -1 ) the behavior of the pre-seismic phase is the opposite, with the onset of instability always preceding the onset of instability of the purely conductive case. In particular, in this range the trend of curves is strongly dependent on permeability. For H<10 -18 m 2 , pore pressure monotonically increases and the velocity weakening regime is maintained until the instability is reached. Finally, for typical values of permeability of ultracataclastic gouge (H<10 -19 m 2 ) [START_REF] Rice | Heating and weakening of faults during earthquake slip[END_REF], the thermal pressurization effect may result in significantly smaller values of the seismic moment and nucleation length of the pre-seismic phase. Following [START_REF] Kato | Effect of frictional heating on pre-seismic sliding: a numerical simulation using a rate-, state-and temperature-dependent friction law[END_REF], this could imply a smaller crustal deformation before an earthquake.

A further effort has to be made to evaluate the effect of some assumptions made in this study.

First of all, an aspect that has to be considered in future studies is the effect of allowing the state variable  to vary over the time. Moreover, some aspects in the thermal evolution along By applying the Laplace transform to the equation ( 11) it follows that (see [START_REF] Carslaw | Conduction of Heat in Solids[END_REF] for details):

0 2       p dz d U dz d sf  (a2)
where:

    v C C U sf w w    (a3)
The boundary conditions (17) transforms into:

2 1 ' 0                  s z sf sf sf V p U K K (a4)
The solution to equation (a2) which does not diverge when   z is given by:

                                z p U U C sf sf sf    2 2 2 exp (a5)
By substituting (a5) in (a4) the value of the integration constant C is found to be:

                     sf sf sf s p U U pK V C     2 2 2 2 (a6)
and therefore, substituting (a6) in (a4) it follows that:

                                              z U p U U p U pK V sf sf sf sf sf sf sf s        4 1 2 exp 4 1 2 2 2 2 (a7)
The temperature can be found by computing the inverse transform of (a7):

  ) ( , 1 p t z T     (a8)
By posing:

sf U p p  4 ' 2   (a9) 
It follows [START_REF] Carslaw | Conduction of Heat in Solids[END_REF]: has to be computed using the Inversion theorem of the Laplace transform [START_REF] Carslaw | Conduction of Heat in Solids[END_REF]:

         F H G I K J  F H G I K J  F H G I K J z 1 2 1 2 2 2 4 2                b g i V Uz K e U U d s sf sf t z sf sf sf i i sf exp (a11)
The evaluation of the integral in (a11) is performed by using the Cauchy theorem of residuals (e.g. [START_REF] Svesnichov | Teoria delle funzioni di variabili complesse[END_REF]:

1 2 1      i f d res f i i N b g b g c h  z    , (a12) 
where f  b gis an analytical function of the complex variable  in all the points of the complex plane with the exception of N points   1 ,.., N where f has removable singularities. The closed oriented contour  has to be chosen to include all the singularities of f and to leave the domain which includes the singularities at its left. The integrand in equation ( a11) has only a first order singularity (a pole) on the real plane:

  1 2 4  U sf (a13)
and the residual of f in    1 is given by:

res f e U U U e U t U z sf sf sf U Ut z sf sf sf ,               F H G I K J 1 4 4 2 2 2 2 2 2 2 2 4 (a14)
Since f has a branch point in  b  0 , following [START_REF] Carslaw | Conduction of Heat in Solids[END_REF], we used the closed integration contour  reported in fig. (a1). By letting tend the radius R of the great circle to infinity and the radius  of the small circle to zero the contribution to the integral comes only from the oriented branches AB, FE and DC.

By posing     e i along the branch FE and      e i along the branch DC, after some manipulations it follows that the contribution of these two branches to the integral in (a12) is given by: 

        F H G I K J  F H G I K J    F H G I K J  F H G I K J z z                   2 0 2 0 4 2 4 2 (a15)
Therefore, by taking into account (a14), equation (a11) furnishes:
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By substituting (a16) in (a10), after a few manipulations, it follows that:
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In z=0 the previous expression gives:

T t V K U U t e U d s sf sf sf sf t sf 0 2 1 4 4 2 2 2 0 , exp b g    F H G I K J  F H G I K J R S | | | T | | | U V | | | W | | |   z          (a18) 
Integrating by parts, the integral in (a18) reduces to classical tabulated integrals [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. The solution is:

T t V K U Ut erf U t Ut t U t s sf sf sf sf sf sf sf 0 2 1 2 2 2 4 2 , exp b g   F H G I K J F H G I K J    F H G I K J R S | T | U V | W |       (a19) 
where erf(x) denotes the value in x of the error function.

It can be easily verified that, by letting v tend to zero (i.e. no fluid transport), the temperature solution (a19) tends to the solution inferred from [START_REF] Mckenzie | Melting on fault planes during large earthquakes[END_REF] for the purely conductive case.

By carrying out spatial and time derivatives of the temperature field it can be shown that:

    F H G I K J   F H G I K J R S | T | U V | W | T t t V K U erfc U t t U t s sf sf sf sf ( , ) exp 0 2 2 2 4 2      (a20) and: 
A c c e p t e d M a n u s c r i p t

26    F H G I K J   F H G I K J   F H G I K J L N M M O Q P P  2 0 2 2 2 2 1 4 T t z V U K U erfc U t t U t z s sf sf sf sf sf      exp (a21)
where erfc(x) denotes the value in x of the complementary error function.

A c c e p t e d M a n u s c r i p t 27 Table 1. Parameter values assumed in the simulations

μ 0 = 0.6 a = 0.012 b = 0.017 L=10 -2 m Q a =10 5 J mol -1 Q b = 10 5 J mol -1 ρ s =2.6•10 3 kg m -3 ρ w =10 3 kg m -3 C s =1000 J kg -1 K -1 C w =4186 J kg -1 K -1 K s =2.6 W m -1 K -1 K w =0.603 W m -1 K -1 =0.1 η= 10 -6 m 2 s -1 V 0 = 3.5 cm yr -1 •10 -3 Pa s
A c c e p t e d M a n u s c r i p t The different curves are obtained considering a ten percent of variations of thermal parameters. m 2 using the model with a constant fluid velocity. The entire evolution of the system is shown. 1: η=9*10 -7 m 2 s -1 ; K s =2.34W m -1 K -1 2: η=10 -6 m 2 s -1 ; K s =2.60W m -1 K -1 3: η=1.1*10 -6 m 2 s -1 ; K s =2.86W m -1 K -1 A c c e p t e d M a n u s c r i p t Table 1. Parameter values assumed in the simulations μ 0 = 0.6 a = 0.012 b = 0.017 L=10 -2 m Q a =10 5 J mol -1 Q b = 10 5 J mol -1 ρ s =2.6•10 3 kg m -3 ρ w =10 3 kg m -3 C s =1000 J kg -1 K -1 C w =4186 J kg -1 K -1 K s =2.6 W m -1 K -1 K w =0.603 W m -1 K -1 =0.1 η= 10 -6 m 2 s -1 V 0 = 3.5 cm yr -1 •10 -3 Pa s Table I 

  the thermal pressurization effect we consider the hydro-dynamical model, named model II, in[START_REF] Segall | Does shear heating of pore fluid contribute to earthquake nucleation?[END_REF].

  T=T*; a and b are constants representing the time dependent property of friction; T*=T(t=0) is a reference temperature and

  zone thickness, which is the case considered in this article. Under these conditions, the relation between fluid pressure and temperature on the fault plane is given by[START_REF] Mase | Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault[END_REF][START_REF] Segall | Does shear heating of pore fluid contribute to earthquake nucleation?[END_REF]: equality arises because the hydraulic diffusivity of water hyd c is usually at least an order of magnitude smaller than the thermal diffusivity . In equation (10) p * is the pressure at the background temperature T=T * and  is the thermal pressurization factor, defined as the ratio between the fluid volume expansion due to a unit increase in temperature and the fluid volume expansion due a unit decrease in fluid pressure (for a detailed discussions on the values of  in different fluid regimes the reader is referred to Mase and Smith, 1987).

  fluid motion does not have a component in the direction of the fault plane. More sophisticated 2D numerical solutions for the fluid-and thermo-dynamical problem have been developed by Williams and Narasimhan (1989) for the study of the San Andreas fault and by Goyal and Narasimhan (1982) for the case of a fault-controlled geothermal reservoir charged at a constant pressure (1982). However these equations do not incorporate the effect of rate-, stateand temperature-dependent friction laws. In particular, in the case of San Andreas fault, Williams and Narasimhan (1989) pointed out that the topography associated with the fault A c c e p t e d M a n u s c r i p t zone may be the key to a final understanding of the state of stress along the fault. They conclude that the topography may bound a low stress fault with low permeability and high pore pressure gouge, or, alternatively, the topography may serve as a cause of gravity induced fluid flow away from high stress fault characterized by fractured, permeable gouge. The importance of accounting for both the pore fluid pressure and the aseismic slip, in the frame of the rate and state approach, at the San Andreas fault, has been underlined also by Scholz (1998). He pointed out the existence of a 170 km long creeping section of the San Andreas fault where the fault slip aseismically, in the conditionally stable regime of the rate-and statefriction law. He attributed the anomalous behaviour of this section of the fault to the presence of unusually high pore pressures in the fault zone. It is worth noting that, as a consequence of our choice of considering a fluid motion perpendicular to the fault plane, the effect of cooling of the fault plane is maximized, in that, in this case, heat is transported away from the fault more rapidly than in the case of a fluid motion having a component parallel to the fault plane. Finally, the developed solution refers only to the case of a vertical fault plane (fig. 1), since only in this case we can assume the symmetry of the thermo-mechanical solutions with respect to both the sides of the fault plane. The effect of a finite shear zone on the thermo-mechanical evolution of the system has been the subject of several studies (Lachenbruch, 1980; Fialko, 2004; Rice, 2006 among the others). All these studies are in agreement as concerns the reduction of the maximum temperature rise in the fault zone with increasing the fault zone thickness. In particular, Lachenbruch (1980) observed that an initially broad shear zone would tend to contract about the plane where the initial strain rate (and consequently, heat production, temperature, and fluid pressure rise) happened to be greatest. He also pointed out the role of fluid pressure in the narrowing of a fault zone. Moreover, worldwide evidence exists for very thin shear zones in the Earth. Rice (2006) summarized the results of recent field observations and suggested that slip in individual earthquakes may be extremely localized and occurs primarily within a thin shear zone, <1-5 mm thick. The localized shear zone lies within a finely granulated (ultracataclastic) fault core of typically tens to hundreds millimeter thickness, that core itself fitting within a much broader damage zone of granulated or incompletely cracked rock (Rice, 2006). Interestingly, Rice (2006) showed that to avoid melting on the shear zone of the Punchbowl fault of the San Andreas fault system, its thickness should be at least 35 mm or higher, whereas field observations and laboratory data clearly indicate that the thickness of this shear zone is in the order of 1 mm. Therefore fluid pressure could be invoked to reduce the shear A c c e p t e d M a n u s c r i p t stress on a thinner fault and thus avoid the melting. This, or some other weakening mechanism, has to occur along faults where pseudotachylytes are not observed.

  ) sf  is the thermal diffusivity of the solid-fluid compound, w  and C w are, respectively, the density and the specific heat at constant pressure of the fluid phase,   sf C  is the heat capacity for unit volume of the solid-fluid compound and z is the distance from the sliding surface. sf  and   sf C  are related by the equation (e.g. Lachenbruch, 1980):

21 )

 21 In equation (21) erfc(x) denotes the value assumed in x by the complementary error function.The proposed formulation allows us to consider only the evolution of temperature along the fault plane (z=0). For this reason the partial derivative with respect to time in equation (21) K J to be used in equation (7).

  v i-1 in equation (

  For this reason, in what follows, we generally show the simulation results as a function of H. H is known to vary greatly with rock type and thermodynamical state; a great range of variations (10 -20 < H <10 -8 m 2 ) has been inferred for different types of rocks in different conditions (e.g. Turcotte and Schubert 1982). Moreover, near a fault, local variations in permeability have been often inferred. For example, Jourde et al. (2002) studied the permeability of the faults in the Valley of Fire State Park, Nevada. They estimated that the permeability of several fault zones can suffer strong lateral

  now the most general case where slip, stress and temperature vary together. In agreement with recent studies (Belardinelli et al. 2003; Rubin and Ampuero 2005; Antonioli et al. 2006) we assume V=0.1 m s -1 as the limit value for the occurrence of instability.

  these simulations, the model parameters are chosen so that the simulation might express pre-seismic sliding of a large earthquake on the San Andreas fault, California and are summarized in table I. Friction parameters a, b, the effective normal stress eff n  and the initial temperature T ini are approximately the same as those assumed for the nucleation site of a large earthquake on the San Andreas fault in the simulation study by Kato (2001).

Fig. 6

 6 Fig. 6 shows the simulation results using the same model parameters of Fig. 4 (Table I), 200  eff n 

  Ellsworth and Beroza(1995, 1998) identified a nucleation phase of slow moment release and suggested that the duration of this feature could scale with the eventual size of the earthquake. Even if this argument is controversial, owing to the difficulty in distinguishing the source from the path effect in the early stage of the first P pulses (see e.g. de Lorenzo et al. 2008 and references therein), under these assumptions an attempt can be made to estimate the seismic moment of the pre-seismic phase. Since the critical length l c of the nucleation zone scales with L, according to the equation (Bizzarri and Cocco 2003):

  s c r i p t varying shear stress and slip velocity on the fault and therefore can be used to describe the preseismic sliding phase in the frame of the rate-, state-and temperature-dependent friction laws, for both the case of a constant fluid velocity model and the case of fluid velocity variations caused by thermally induced pore pressure variations.

  the fault, such as the changes of state (Stefan 1891), the chemical reactions occurring during faulting (due, for instance, to water absorption) and the mechanical lubrication (Brodsky and Kanamori 2001) have been neglected. This is because it is not possible, in these cases, to infer a pseudo-analytical temperature solution to be used in the frame of a first order system of differential equations and only numerical methods in 2D media can help us to solve all these problems.

Fig. 1

 1 Fig.1-a) representation of the symmetrical flux lines of fluids in the fault core. b) The spring block model and the reference system used to solve the heat advection problem. The surface between the rigid block and the floor simulates the fault plane. 0 u is the load-point displacement and u is the displacement of the rigid block. v is the average value of the fluid velocity in the fault core Fig.2 Temperature vs. time curves for a constant slip rate and a constant shear stress (see the text). The different curves refer to different values of permeability given in the legend. Fig. 3 Temperature vs. time curves for a constant slip rate and a constant shear stress (see the text).

Fig. 4

 4 Fig. 4 Simulated slip, slip rate, shear stress and temperature histories for the cases 1 / 0  c k k and H=10 -14 m 2 using the model with a constant fluid velocity. The entire evolution of the system is shown. Fig. 5 Simulated slip, slip rate, shear stress and temperature histories for the cases 1 / 0  c k k using the model with a constant fluid velocity, for different values of permeability. The evolution of the system around the onset of instability is shown. For H≥10 -8 m 2 the curves superimpose on curve 1, whereas for H≤10 -21 m 2 the curves superimpose on curve 4.

Fig. 6

 6 Fig. 6 Simulated slip, slip rate, stress and temperature histories for the case 5 / 0  c k k and H=10 -14

Fig. 7

 7 Fig. 7 Simulated slip, slip rate, stress and temperature histories for the case 5 / 0  c k k m 2 using the model with a constant fluid velocity, for different values of permeability. The evolution of the system around the peak value of slip velocity is shown. Fig. 8 Simulated slip, slip rate, shear stress, fluid velocity, pore pressure and temperature histories for the cases 1 / 0  c k k using the model with a time varying fluid velocity, for two different values of the thermal pressurization coefficient . The evolution of the system around the onset of instability is shown. Fig. 9 Plot of the critical stiffness vs. V 0 /V ini Fig. a1. The close contour  used to compute the integral (a12)
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To simplify the approach to the numerical solution and to obtain results comparable with those of Kato (2001) we consider the simplified case where the state variable  is in the steady steate 0  dt d . In this case, following Kato (2001), we use the steady state friction

  

	coefficient ss  defined as		ss			  	dt d 		. 0   	From equation (3) and (4) it immediately follows that:
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