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Abstract 

 

Non-allelic homologous recombination (NAHR) is responsible for the recurrent 

rearrangements that give rise to genomic disorders. Although meiotic NAHR has been 

investigated in multiple contexts, much less is known about mitotic NAHR despite its 

importance for tumorigenesis. Since type-2 NF1 microdeletions frequently result from mitotic 

NAHR, they represent a good model in which to investigate the features of mitotic NAHR. 

We have used microsatellite analysis and SNP arrays to distinguish between the various 

alternative recombinational possibilities, thereby ascertaining that 17 of 18 type-2 NF1 

deletions, with breakpoints in the SUZ12 gene and its highly homologous pseudogene, 

originated via intrachromosomal recombination. This high proportion of intrachromosomal 

NAHR causing somatic type-2 NF1 deletions contrasts with the interchromosomal origin of 

germline type-1 NF1 microdeletions, whose breakpoints are located within the NF1-REPs 

(low-copy repeats located adjacent to the SUZ12 sequences). Further, meiotic NAHR causing 

type-1 NF1 deletions occurs within recombination hotspots characterized by high GC-content 

and DNA duplex stability, whereas the type-2 breakpoints associated with the mitotic NAHR 

events investigated here do not cluster within hotspots and are located within regions of 

significantly lower GC-content and DNA stability. Our findings therefore point to 

fundamental mechanistic differences between the determinants of mitotic and meiotic NAHR.  
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Introduction 

Genomic disorders result from microdeletions or microduplications of several hundred 

kilobases whose formation is mediated by the local DNA sequence architecture, in particular 

region-specific low-copy repeats (LCRs) or segmental duplications [Shaw and Lupski, 2004; 

Lupski, 2009; Mefford and Eichler, 2009; Zhang et al., 2009a; Carvalho et al., 2010]. 

Recurrent microdeletions and their reciprocal microduplications are caused predominantly by 

non-allelic homologous recombination (NAHR) [Gu et al., 2008; Stankiewicz and Lupski, 

2010]. The molecular mechanisms underlying NAHR are assumed to be similar to those of 

allelic homologous recombination (AHR), but, instead of an allelic homologous template, 

NAHR employs a similar yet non-allelic template to repair the initiating double strand break 

(DSB) [Steele et al., 1991; Hurles and Lupski, 2006; Sasaki et al., 2010]. Homologous 

recombination (HR) is in general a very precise repair mechanism for DNA lesions such as 

DSBs [Mao et al., 2008]. Thus, no 'scars' of the DSB-repair process, such as small insertions 

or deletions, are apparent at the breakpoint junctions repaired by HR, as they often are at the 

breakpoints of DNA lesions repaired by non-homologous end-joining (NHEJ) [Lieber, 2010]. 

Chromosomal regions harbouring multiple duplicated sequences, such as the NF1 gene 

region, are inherently prone to recurrent NAHR-mediated rearrangements. By contrast, non-

recurrent rearrangements tend to be mediated by NHEJ or by replication-based mechanisms 

such as 'fork stalling and template switching' (FoSteS) [Lee et al., 2007; Vissers et al., 2009; 

Zhang et al., 2009b]. Although the breakpoint regions of non-recurrent chromosomal 

rearrangements do not exhibit extensive sequence similarity, they often occur close to LCRs 

[Shaw et al., 2004; Lupski and Stankiewicz, 2005; Bauters et al., 2008; Zhang et al., 2010]. 

This suggests that the unusual genome architecture associated with LCRs may serve to 

‘confuse’ the DNA replication machinery resulting in replication errors that generate 

breakpoints which in turn lead to complex genomic rearrangements [Lee et al., 2007; 

Hastings et al., 2009; Zhang et al., 2009b, 2009c]. 

Deleted: between LCRs 
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   Large deletions in the NF1 gene region at 17q11.2 (MIM# 613113) belong to the 

abovementioned group of genomic disorders [Jenne et al., 2003; Forbes et al., 2004]. Two 

common types of recurrent NF1 deletion have been identified which differ in terms of their 

size and breakpoint location: type-1 NF1 deletions span 1.4-Mb and are mediated by NAHR 

between LCRs termed NF1-REP A and NF1-REP C [Dorschner et al., 2000; Jenne et al., 

2001; Lopez-Correa et al., 2001]. The majority of type-1 NF1 deletions are maternally 

inherited germ-line deletions [Upadhyaya et al., 1998; López-Correa et al., 2000; Steinmann 

et al., 2008] whose breakpoints are located within two hotspot regions of meiotic 

recombination termed PRS1 and PRS2 [López-Correa et al., 2001; Forbes et al., 2004]. By 

contrast, type-2 NF1 deletions encompass only 1.2-Mb and their breakpoints are located 

within the SUZ12 gene (MIM# 606245) and its pseudogene SUZ12P which immediately flank 

the NF1-REPs (Fig. 1). In individuals with type-2 NF1 deletions, somatic mosaicism with 

normal cells is frequently observed, indicating an early postzygotic (mitotic) origin for these 

deletions [Petek et al., 2003; Kehrer-Sawatzki et al., 2004; Steinmann et al., 2007]. Whereas 

an estimated 70% of all NF1 deletions are type-1, only 10-20% are type-2 which are therefore 

much less frequently encountered than the germline type-1 NF1 deletions [Kehrer-Sawatzki et 

al., 2004]. 

   Although NAHR is a major cause of genome instability in humans, the underlying 

molecular mechanisms are not well understood. Different types of NAHR have been observed 

that are distinguishable by virtue of the chromosomal origin of the resulting rearrangements, 

in other words whether they have arisen via inter- or intra-chromosomal NAHR [reviewed by 

Gu et al., 2008]. The chromosomal origins of the various deletions or duplications known to 

be responsible for genomic disorders have been generally ascertained by microsatellite marker 

analysis [Thomas et al., 2006 and references therein]. Although type-1 NF1 deletions have 

previously been shown to arise by interchromosomal NAHR during maternal meiosis I 

[López-Correa et al., 2000], much less is known about the chromosomal origin and 

Deleted: , their occurrence being 
strongly influenced by the local genomic 

architecture

Deleted: however 

Deleted: ; Steinmann et al., 2008
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underlying generative mechanism of type-2 NF1 deletions. Until now, only four type-2 

deletions had been analysed in terms of their chromosomal origin [Steinmann et al., 2007]. In 

this study, we have used microsatellite markers and SNP arrays to characterize 14 additional 

type-2 NF1 deletions in order to acquire insight into the molecular mechanism(s) underlying 

these unusual somatic deletions. Our study has demonstrated that SNP array analysis 

represents a valuable tool not only to characterize genomic rearrangements such as 

microdeletions and microduplications, but also to determine their chromosomal origin. In 

addition, comparative analysis of type-1 and type-2 deletion breakpoint junctions revealed 

substantial differences in terms of the precise locations and DNA sequence characteristics of 

the microdeletion breakpoints that appear to be suggestive of basic mechanistic differences 

between NAHR events depending upon whether they have occurred during meiosis or during 

early postzygotic/mitotic cell divisions.  

 

Patients, Materials and Methods 

Patients and deletion breakpoint identification 

In this study, we have investigated the mechanisms underlying 18 type-2 NF1 deletions. The 

precise breakpoints of 13 of the 18 type-2 deletions studied here have been previously 

described [Kehrer-Sawatzki et al., 2004; Steinmann et al., 2007]. The breakpoints of 5 newly 

identified type-2 NF1 deletions were characterized in this study employing the methods 

summarized in Supp. Table S1. The sequences of the PCR primers used to identify the 

breakpoints are available from the authors upon request. The clinical features of these 5 newly 

identified patients with type-2 NF1 deletions are summarized in Supp. Table S2.  

 

Search for the reciprocal duplication  

In order to search for duplications reciprocal to the somatic deletions observed in patients 

with type-2 NF1 deletions mediated by NAHR, we performed duplication-specific 

Deleted: Petek et al., 2003; Kehrer-
Sawatzki et al., 2004; 
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breakpoint-spanning PCRs with forward primers designed to bind specifically to the SUZ12 

sequence, and a reverse primer specific for the SUZ12P sequence according to the assay 

principle described by Turner et al. [2008] (Supp. Table S3). PCR reactions with paralog-

specific primers were performed using genomic DNA isolated from peripheral blood of the 

patients and Platinum Taq polymerase (Invitrogen). 

 

Analysis of somatic mosaicism  

Mosaicism for cells with and without the deletion was investigated in the 5 newly identified 

type-2 NF1 deletions characterized in this study. To this end, FISH analysis was performed on 

primary blood lymphocytes cultivated for 72h with phytohaemagglutinin. In each case, at 

least 200 blood cells were evaluated by interphase FISH. FISH analysis was not performed on 

whole blood cell populations without cultivation. If buccal cells were available for FISH 

analysis, ~100 interphase nuclei were evaluated. Mosaicism was also investigated by 

microsatellite marker analysis of DNA isolated from peripheral blood samples and buccal 

swabs as described [Kehrer-Sawatzki et al., 2004]. The results of the mosaicism analysis in all 

18 patients with type-2 NF1 deletions so far characterized by ourselves are summarized in 

(Supp. Table S4). 

In order to investigate potential mosaicism for the type-2 deletion in peripheral blood 

samples taken from the parents of patients 2358 and 2429, deletion-specific breakpoint-

spanning PCR was performed. The primers used for these assays bind to sites of paralogous 

sequence variants (PSVs) between SUZ12 and SUZ12P. Using such specific primer 

combinations, only the deletion-specific breakpoint-spanning fragments are amplified by PCR 

and not sequences that derive from SUZ12 or SUZ12P on the wild-type chromosome 17. The 

primer sequences used to PCR amplify across the deletion breakpoints of patients 2358 and 

2429 are available on request. 
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Microsatellite marker analysis 

Polymorphic microsatellite markers located on chromosome 17 were investigated to 

determine the chromosomal origin of the deletions, viz. whether the deletions originated via 

intrachromosomal or interchromosomal recombination. Four of the eighteen deletions (those 

of patients IL-39, KCD, HC and 697) were previously analysed by this method [Steinmann et 

al., 2007], whereas 14 patients were investigated for the first time here (Supp. Fig. S1). The 

parental origin of each chromosome 17 carrying a deletion was also determined. To this end, 

DNA from all patients was investigated together with DNA from their parents and, if 

available, their siblings. Genomic DNA was extracted either from venous blood, from buccal 

swabs or from saliva as indicated in Supp. Fig. S1. Microsatellite markers were also 

genotyped using DNA extracted from human/mouse somatic cell hybrids containing either the 

deletion-bearing or the wild-type chromosome 17 of the patient (Supp. Fig. S1). Primer 

sequences used to PCR-amplify microsatellite markers are available from the authors on 

request.  

 

SNP array analysis 

Sixteen of the 18 patients harbouring somatic type-2 NF1 deletions were genotyped by means 

of the Human SNP arrays 6.0 (Affymetrix, St. Clara, CA) using DNA extracted from 

peripheral blood lymphocytes from the patients as previously described [Roehl et al., 2010; 

Supp. Table S5]. 

  

Bioinformatic and statistical analysis 

Sequences spanning the breakpoint (recombination) regions of the 16 type-2 NF1 deletions 

mediated by NAHR were screened for the presence of 109 different DNA sequence motifs 

(and their complements) of length ≥5 nucleotides (nt) which have been reported to be 

associated with DNA breakage, repair and recombination [Cullen et al., 2002; Abeysinghe et 
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al., 2003; Ball et al., 2005; Myers et al., 2008; Chuzhanova et al., 2009; Makridakis et al., 

2009]. A similar analysis was performed in our previous study [Steinmann et al., 2007] but 

this time the number of recombination-associated motifs investigated was increased from 37 

to 109, since in the meantime many more recombination-associated motifs have been 

identified. In addition, both the actual recombination regions and 100 nt segments flanking 

them on either side, were analysed by complexity analysis [Gusev et al., 1999] in order to 

identify direct, inverted and symmetric repeats ≥ 6 nt separated by no more than 20 bp. Such 

repeats are capable of non-B DNA formation, in particular slipped, cruciform and triplex 

structures [Wells, 2007].  

   For each of the above searches, the statistical significance of our findings was assessed by 

comparison with 1000 control datasets using z-score statistics [as described in Chuzhanova et 

al., 2009]. Two regions of chromosome 17, flanking the NF1 gene but not including any of 

the known recombination hotspots, were used to generate matching control datasets: 

[coordinates 26,109,477 to 26,359,000 (centromeric to the NF1 gene, between but not 

including either SUZ12P or the NF1-REPs A and B) and 26,889,356 to 27,203,003 (telomeric 

to the NF1 gene up to, but not including either SUZ12 or NF1-REP C); human genome 

assembly hg18 (NCBI build 36)].  

   The GC-content of the deletion breakpoint regions was determined using RepeatMasker 

(http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) and a program provided by EnCor 

Biotechnology Inc. (http://www.encorbio.com/protocols/Nuc-MW.htm).  

   The potential clustering of type-2 deletion breakpoints mediated by NAHR was assessed by 

means of the Kolmogorov-Smirnov-test, comparing the distribution function FN(X) of the 

breakpoint localizations within the SUZ12 gene identified in the patients with a theoretical 

uniform distribution.  

 

DNA stability 
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DNA helix stability was determined by calculating the average dissociation free energy (∆G°) 

of each overlapping dinucleotide according to the method described by Breslauer et al. 

[1986]. 

 

Results 

Deletion breakpoint localization 

We initiated this study by identifying the breakpoints of five previously uncharacterized type-

2 NF1 deletions. Utilizing paralogous sequence variants (PSVs) to differentiate between the 

SUZ12 gene and its pseudogene, the breakpoint regions were identified with the highest 

possible resolution and assigned to recombination regions (RRs) of between 64 bp and 225 bp 

(Table 1; patients 2358, 585, 1956, 2429, UC172). These RRs represent segments of absolute 

sequence identity between SUZ12 and SUZ12P and must contain the deletion breakpoints 

themselves. NAHR is the mechanism underlying all five newly characterized type-2 NF1 

deletions since the breakpoints were identified at homologous sites between SUZ12 and 

SUZ12P. The breakpoint data from these five newly characterized type-2 deletions were then 

combined with the breakpoint data from 13 previously reported cases [Steinmann et al., 2007] 

in order to make a general assessment of the molecular mechanism underlying type-2 NF1 

deletions.  

 

Recombinational mechanism underlying type-2 NF1 deletions 

Non-allelic homologous recombination (NAHR) was responsible for the type-2 deletions in 

16 of the 18 NF1 patients analysed (Table 1).  In only two of the 18 patients studied (patients 

HC and 928) were the deletion breakpoints not located at homologous sites within SUZ12 and 

SUZ12P [Steinmann et al., 2007].  

 

Somatic mosaicism 

Deleted: was deemed to be 

Deleted: most likely 

Deleted: , since the deletion 
breakpoints were found to be located at 

homologous sites within the SUZ12 gene 

and its pseudogene SUZ12P. Indeed, 
NAHR appears to be the major 

mechanism responsible for type-2 NF1 

deletions (Table 1) since

Deleted: i

Deleted: Kehrer-Sawatzki et al., 2004; 
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Somatic mosaicism of cells with and without the type-2 NF1 deletion was noted in 3 of the 5 

newly identified patients with type-2 deletions. Taken together with the results of our 

previous analysis on mosaicism in patients with type-2 NF1 deletions [Steinmann et al., 

2007], 16 of the 18 patients studied exhibited somatic mosaicism, indicative of an early 

postzygotic/mitotic origin for the deletions (Supp. Table S4). 

   In two patients (2429 and 2358), neither FISH performed on primary blood samples, nor 

microsatellite marker analysis using DNA from buccal swabs, provided any hint as to the 

presence of normal cells lacking the NF1 deletion. In addition, neither breakpoint-spanning 

PCR with primers designed to amplify across the deletion breakpoints, nor FISH analysis of 

peripheral blood samples, revealed any evidence of low-level mosaicism for the respective 

deletions in the parents of these patients. The 16 year-old male patient 2429 presented with a 

severe clinical phenotype characterized by multiple cutaneous and subcutaneous 

neurofibromas, an MPNST and dysmorphic facial features (Supp. Table S2). The severe 

manifestations of NF1 exhibited by patient 2429 are consistent with the conclusion that he 

possesses a de novo germline type-2 NF1 deletion.  

   Female patient 2358 was 10 years old at the time of investigation and had multiple café-au-

lait spots, mild facial dysmorphism, mild developmental delay and a plexiform neurofibroma. 

Although it is very likely that patient 2358 possesses a de novo germline type-2 NF1 deletion, 

we were unable to confirm this postulate by skin biopsy analysis since it was declined by the 

parents of patient 2358.  

 

Chromosomal origin of the type-2 NF1 deletions mediated by NAHR 

NAHR causing 16 of the 18 type-2 NF1 deletions under investigation is initiated by the 

misalignment of the SUZ12 and SUZ12P sequences which exhibit 96.2% similarity over their 

shared 45 kb lengths. In principle, NAHR could occur within a chromatid, between sister-

chromatids or between chromosomes.  at different stages during the cell cycle. Thus, 

Deleted: (intrachromosomal NAHR) 

Deleted:  (interchromosomal NAHR)

Deleted: Moreover, NAHR can occur 
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intrachromosomal NAHR during G1-phase, which has been found to occur in mammalian 

cells [Stanfield and Helinski, 1984], would be expected to give rise to a deletion plus an 

excised circular DNA (Fig. 2A). By contrast, intrachromosomal NAHR post-replication may 

occur either within one chromatid (intrachromatid NAHR) or between sister chromatids 

(interchromatid NAHR) (Fig. 2B). Finally, interchromosomal NAHR may occur between non 

sister-chromatids either in G1-phase (Fig. 3A) or post-replication (Fig. 3B). Depending upon 

the stage in the cell cycle, the chromosomal consequences of NAHR will be very different. 

When NAHR occurs between chromosomes, the deletion-causing NAHR event would be 

expected to give rise to sequence homozygosity distal to the deletion (Fig. 3B). 

Interchromosomal (allelic) homologous recombination does indeed occur in somatic cells and 

leads to loss of heterozygosity (LOH) which is a common cause of tumorigenesis [Hagstrom 

and Dryja, 1999; Howarth et al., 2009] and has been well documented in NF1-associated 

tumours [Serra et al., 2010; Stephens et al., 2006; Upadhyaya et al., 2009; Steinmann et al., 

2009; Garcia-Linares et al., 2010]. In order to investigate the presence of extended regions of 

homozygosity encompassing the majority of 17q distal to the NF1 type-2 deletions, which 

would be indicative of the deletions having resulted from interchromosomal NAHR, we 

evaluated SNP array results for the 16 patients in whom it could be established that the 

somatic deletions had been mediated by NAHR. The use of SNP arrays to detect somatic loss 

of heterozygosity was used here for the first time to ascertain the chromosomal origin of type-

2 NF1 deletions.       

In our previous study, SNP arrays were used to analyse runs of homozygosity (ROHs) in 

the NF1 gene and its immediate flanking regions [Roehl et al., 2010]. However, in the context 

of the present study, these SNP array data acquired new utility by helping to determine the 

presence or absence of an extended region of homozygosity encompassing the majority of 

chromosome 17q distal to the type-2 NF1 deletions. The presence of homozygosity extending 

over many Mb of 17q would have suggested that interchromosomal NAHR had caused these 
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deletions. However, evaluation of the SNP array data for the complete set of SNPs on 

chromosome 17 served to exclude the occurrence of extended regions of homozygosity distal 

to the NF1 deletions. Only short ROHs (between 202 kb and 568 kb in length) immediately 

flanking the type-2 NF1 deletions in a telomeric direction were noted (Supp. Table S6, Fig. 

4). It is most unlikely that these ROHs had originated via interchromosomal recombination 

events mediating the NF1 deletions since similarly sized ROHs (between 200 kb and 600 kb) 

were also observed in 41 of 60 CEU individuals evaluated as controls [Roehl et al., 2010; 

Supp. Table S7]. Since the prevalence of ROHs ranging in size from 200 to 600 kb turned out 

not to be significantly different in patients with type-2 NF1 deletions as compared with CEU 

controls (p = 0.37; two-tailed Fisher's Exact test), we concluded that the 16 type-2 NF1 

deletions were not generated via interchromosomal NAHR because this mechanism would 

have given rise to extended regions of homozygosity on 17q. Instead, the 16 deletions were 

considered to have been caused by intrachromosomal NAHR. To confirm this initial 

assessment, we performed microsatellite marker analysis using DNA from the patients and 

their family members as well as DNA from human/mouse somatic cell hybrids containing 

either the wild-type or the deletion-containing chromosome 17 from the respective patients 

(Supp. Fig. S1). This analysis indicated that 17 of the 18 type-2 NF1 deletions originated from 

intrachromosomal recombination. Only in one of the 18 patients, patient 2429, was the type-2 

deletion probably caused by interchromosomal NAHR during paternal meiosis since this was 

the most likely mechanism to account for the observed haplotypes (Supp. Fig. S1-N, Table 2). 

FISH analysis of primary blood lymphocytes failed to yield any evidence for somatic 

mosaicism for the deletion in either patient 2429 (Supp. Table S4) or his parents. Deletion 

breakpoint-specific PCR assays did not detect the deletion in peripheral blood samples of the 

parents of patient 2429. We therefore concluded that this patient possesses a de novo germline 

type-2 NF1 deletion. 
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   In 13 of the 18 type-2 NF1 deletions investigated, we were able to establish unequivocally 

whether the deletion had occurred on the paternal or maternal chromosome 17. Four deletions 

were found to have occurred on the paternal chromosome whereas 9 deletions had occurred 

on the maternal chromosome (Table 2). Hence, there was no significant preference for the 

deletions to occur on either the maternal or paternal chromosome (p = 0.267; two-sided exact 

version of the goodness-of-fit χ
2
-test). 

   As schematically depicted in Figure 2B, intrachromosomal NAHR between sister-

chromatids should in principle also yield cells harbouring duplications reciprocal to the 

deletions. In order to search for these reciprocal duplications, we performed breakpoint-

spanning PCR with forward primers designed to bind specifically to the SUZ12 sequence, and 

a reverse primer specific for the SUZ12P sequence according to the assay principle described 

by Turner et al. [2008] (Supp. Table S3). However, no such reciprocal duplications were 

detected in DNA isolated from the primary blood samples of any of the patients with type-2 

NF1 deletions. 

 

Analysis of a possible clustering of type-2 NF1 deletion breakpoints 

Meiotic recombination hotspots have been identified that are confined to genomic regions of 

between ~500 bp and ~4 kb [Reiter et al., 1998; Lopez-Correa et al., 2001; Kauppi et al., 

2004; Paigen and Petkov, 2010]. Much less is however known about the existence of mitotic 

recombination hotspots in general. Using our combined dataset of a total of 16 type-2 

deletions of postzygotic origin, we did not identify any significant clustering of breakpoints in 

the patients tested (Kolmogorov-Smirnov-test, p = 0.205). Despite the general absence of 

breakpoint clusters, the deletion breakpoints in patients WB and UC172 were nevertheless 

found to occur within the same 177 bp interval (Fig. 1). 

 

Structural features of the recombination regions which could have promoted NAHR 
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The breakpoint regions of the 16 deletions mediated by NAHR were assigned by reference to 

the paralogous sequence variants (PSVs) which serve to distinguish SUZ12 and SUZ12P. 

These breakpoint regions, also termed recombination regions (RRs), span between 46bp and 

225 bp (as summarized in Table 1) and represent segments of absolute sequence identity 

between SUZ12 and SUZ12P. Since the RRs must contain the deletion breakpoints, they were 

screened for the presence of known recombination-promoting motifs potentially involved in 

DNA breakage and repair. However, the only recombination-associated motif found to be 

overrepresented within the RRs as compared to a control dataset was the χ-like element 

(CCWCCWGC) and its complementary motif (p < 0.05). Although this motif was found to be 

overrepresented as compared with the control dataset, it was only observed in 2 of the 16 RRs 

examined (Supp. Table 8). 

   In addition to the above motif search, the RRs and extended RRs (which included additional 

100 bp segments flanking the RRs on either side) were screened for the presence of repeats 

capable of mediating non-B DNA structure formation. Inverted repeats were found to be 

overrepresented within the RRs (p < 0.001) whereas both direct and inverted repeats were 

overrepresented within the extended RRs (p < 0.001) as compared to control datasets. Taken 

together, the RRs of 14 of the 16 deletions (88%) caused by NAHR were found to harbour 

short repeats capable of forming non-B DNA structures (Supp. Figure S2). 

 

Prevalence of Alu elements within the recombination regions  

The breakpoints of structural variants in the human genome, such as deletions and insertions 

mediated by NAHR, have been found to be disproportionately associated with SINE/Alu 

elements [Witherspoon et al., 2009; Lam et al., 2010]. Consistent with these findings, Alu 

elements were found to be significantly overrepresented at the type-2 deletion breakpoints as 

compared with the Alu frequency within the 45 kb segment of the SUZ12 gene homologous to 
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SUZ12P (p < 0.0001; exact goodness-of-fit χ
2
 test) (Supp. Table S9). Indeed, 10 of the 16 

type-2 NF1 deletions mediated by NAHR actually overlapped with SINE/Alu elements.  

 

DNA stability and GC content 

In previous studies, breakpoint regions of structural variants generated by meiotic NAHR 

events have been found to be (i) biased towards GC-rich regions and (ii) to manifest higher 

DNA helix stability and lower DNA flexibility as compared with rearrangements caused by 

non-homologous end joining (NHEJ) [Lopes-Correa et al., 2001; Visser et al., 2005; Lam et 

al., 2010]. In order to permit comparison of the physical features of the breakpoints 

respectively associated with meiotic and mitotic NAHR events within the NF1 gene region, 

DNA stability and GC-content were determined for both the mitotic type-2 deletion 

breakpoint regions characterized here, and the PRS1 and PRS2 hotspot regions of meiotic 

recombination which contain the type-1 NF1 deletion breakpoints. Both the DNA stability 

and GC-content of the breakpoint regions of type-2 NF1 deletions were found to be 

significantly lower than in the PRS1 and PRS2 hotspots (p < 0.0001, one-sample t-test; Supp. 

Tables S10, S11).  

 

Discussion 

In this study, we have employed a combination of SNP array and microsatellite marker 

analysis to determine the chromosomal origin of type-2 NF1 microdeletions and to ascertain 

the underlying generational mechanism(s). Our analysis revealed that 17 of the 18 type-2 NF1 

deletions were generated by an intrachromosomal mechanism. Further, 16 of the 18 type-2 

NF1 deletions resulted from intrachromosomal NAHR, whereas the remaining two deletions 

exhibited breakpoints at non-homologous locations within SUZ12 and SUZ12P (Tables 1 and 

2). The postzygotic origin of 16 of the 17 type-2 deletions caused by intrachromosomal 

recombination was evidenced by the presence of mosaicism with normal cells without the 
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deletion (Supp. Table S4). Only one of the 18 type-2 NF1 deletions under investigation, the 

deletion in patient 2429, was mediated by interchromosomal NAHR. In our view, it is 

unlikely to be a mere coincidence that this was also a documented case of de novo germline 

type-2 NF1 deletion. Taken together, our findings indicate that type-2 NF1 deletions of early 

postzygotic origin arise predominantly by intrachromosomal NAHR (Fig. 2). However, the 

occasionally encountered germline type-2 NF1 deletion mediated by interchromosomal 

NAHR serves to demonstrate that meiotic recombination is feasible between SUZ12 and 

SUZ12P even although it is infrequent. 

   Whereas most type-2 NF1 deletions are of postzygotic origin, the vast majority of type-1 

NF1 deletions with breakpoints located within the NF1-REPs A and C are mediated by 

interchromosomal NAHR during maternal meiosis [López-Correa et al., 2000; Steinmann et 

al., 2008]. This mirrors the origin of the germline microdeletions underlying Williams-Beuren 

syndrome, DiGeorge syndrome and Angelman syndrome which are also predominantly 

generated by interchromosomal NAHR during either maternal or paternal meiosis [Thomas et 

al., 2006 and references therein]. The predominance of interchromosomal NAHR events 

during meiosis may be related to the unique pairing of homologous chromosomes during 

synapsis, which differs quite radically from any chromosome pairing during the postzygotic 

cell cycle. Interchromosomal recombination during meiosis may be facilitated by the close 

synapsis between homologous chromosomes during the prophase of meiosis I, which in 

mammals lasts for many hours [Adler, 1996]. Synapsis is fully established at the zygotene 

stage of meiotic prophase I and involves the intimate association of homologues in the 

synaptonemal complex (SC) [reviewed in Roeder, 1997; Gerton and Hawley, 2005; Ding et 

al., 2010]. The SC appears to facilitate recombination between non-sister chromatids, as 

evidenced by the observation that yeast mutants which lack the ability to form SCs display a 

~10-fold lower recombination rate [Rockmill and Roeder, 1990; Xu et al., 1997].   The 

pairing of homologous chromosomes in human somatic cells has been visualized by the 
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analysis of chromosome territories in interphase nuclei, although both inter-chromosome and 

tissue-specific differences in pairing frequency exist [Zeitz et al., 2009]. However, the pairing 

of homologous chromosomes during mammalian mitosis is probably different in nature and 

much less stable than the inter-homologue pairing within the meiotic SC [reviewed by 

Meaburn and Misteli, 2007]. Despite these surmised differences in chromosome pairing, 

observations made in yeast mitotic cells have suggested that meiotic and mitotic 

recombination are likely to share mechanistic similarities. In yeast, it has been shown that 

homologous recombination is mediated by joint molecule intermediates whose strand 

composition and size are identical to those of the canonical double Holliday junctions (DHJ) 

structures observed in yeast meiosis [Bzymek et al., 2010]. DHJs form preferentially between 

yeast sister chromatids during mitotic DSB repair whereas in meiosis a preference for inter-

homologue recombination has been observed [Bzymek et al., 2010]. These observations are 

analogous to the situation we observe in humans in the context of NF1 deletions: 

intrachromosomal NAHR is the major mechanism causing type-2 NF1 deletions of 

postzygotic origin, whereas interchromosomal NAHR during maternal meiosis is responsible 

for the germline type-1 NF1 deletions. 

   It is unclear at what point, during the cell cycle, intrachromosomal NAHR gives rise to 

type-2 NF1 deletions. Most mitotic recombination events are likely to occur during G1-, S- or 

G2-phase rather than mitosis proper [LaFave and Sekelsky, 2009; Moynahan and Jasin, 

2010]. The methods adopted in our study (SNP array and microsatellite marker analysis) did 

not allow us to ascertain whether the intrachromosomal NAHR events occurred in cells 

during G1-phase or post-replication. The outcomes of intrachromosomal NAHR in the 

different phases of the cell cycle can be quite diverse. If intrachromosomal NAHR were to 

have occurred between sister-chromatids (post-replication), then cells bearing the reciprocal 

duplication might also have arisen in addition to those cells harbouring the type-2 deletion 

(Fig. 2B). We therefore sought evidence for the presence of the duplication reciprocal to the 
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type-2 deletions by performing FISH on interphase blood cells and PCR on peripheral blood 

lymphocytes using primers specifically designed to PCR amplify across the predicted 

duplication breakpoints. In principle, this latter method should have been capable of detecting 

even small numbers of cells harbouring the duplication. This notwithstanding, we failed to 

detect the presence of any such duplication in the peripheral blood lymphocytes of patients in 

whom intrachromosomal NAHR had been established. It is possible that the putative 

duplication is not represented in the DNA isolated from peripheral blood cells. Even although 

no evidence for the presence of duplications was forthcoming in this study, we cannot exclude 

the possibility that post-replication recombination events caused the type-2 NF1 deletions 

(Fig. 2B). In yeast mitotic cells, homologous recombination is largely confined to the S- and 

G2-phases. During these time periods, the sister chromatid is available to mediate DBS repair 

[Sjögren and Nasmyth, 2001; Krogh and Symington, 2004; Moynahan and Jasin, 2010]. Thus, 

we may also infer that type-2 NF1 deletions are likely to have been generated by 

intrachromosomal NAHR between sister chromatids rather than within one chromatid. 

Analogous to this situation, intrachromosomal NAHR between sister chromatids has been 

shown to be the major mechanism underlying duplications at the α-globin locus in human 

blood cells [Lam and Jeffreys, 2007].  

   Allelic and non-allelic meiotic recombination events occur preferentially at specific 

hotspots, which are usually confined to regions of ~500 bp up to ~3−4 kb [Reiter et al., 1998; 

Lopez-Correa et al., 2001; Kauppi et al., 2004; Lupski, 2004; Kurotaki et al., 2005; Myers et 

al., 2005; Visser et al., 2005; De Raedt et al., 2006; Lindsay et al., 2006; Torres-Juan et al., 

2007; Turner et al., 2008; Wu et al., 2010; Zhang et al., 2010; Paigen and Petkov, 2010]. 

Importantly, some NAHR hotspots have been shown to operate exclusively during meiosis 

and not during mitosis [Turner et al., 2008]. In the NF1 context, ~80% of all meiotic type-1 

deletions display breakpoints located within the PRS1 and PRS2 hotspots, which span 2.9 kb 

and 3.5 kb, respectively [Forbes et al., 2004; De Raedt et al., 2006]. No such hotspot of 
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mitotic NAHR, confined to a few kilobases and occurring in the majority of patients, is 

evident with type-2 NF1 deletions. This notwithstanding, the breakpoints of type-2 NF1 

deletions are not randomly distributed. Indeed, we noted a disproportionate number of short 

sequences within the recombination regions (RRs) that are capable of forming non-B DNA. 

These repeats may well have contributed to the formation of DSBs (Wells, 2007) that then 

triggered the NAHR events which ultimately gave rise to the type-2 NF1 deletions. There 

may also have been some synergy between these repeats and the Alu elements noted at the 

breakpoints of 10 of the 16 intrachromosomal NAHR-mediated type-2 deletions. Alu elements 

are well known recombinogenic sequences [Witherspoon et al., 2009; Konkel and Batzer, 

2010] and hence probably also contributed to local DSB formation and subsequent NAHR 

underlying the type-2 deletions. 

   A degenerate 13 bp sequence motif has recently been found to be enriched within 

recombination hotspots [Myers et al., 2008]. Although this motif is present within the PRS2 

hotspot in the NF1-REPs, it was absent from the breakpoint regions of the type-2 NF1 

deletions (Supp. Table S8). However, while primary sequence determinants appear to be 

necessary, they are insufficient to activate recombination [Arnheim et al., 2007; Jeffreys and 

Neumann, 2009; Myers et al., 2010]. Thus, in addition to the presence of specific sequence 

motifs, other factors such as histone modification [Buard et al., 2009], the binding of specific 

proteins e.g. Prdm9 [Mets and Myers, 2009; Parvanov et al., 2009; Baudat et al., 2010] and 

chromatin structure [Berchowitz et al., 2009] are likely to influence both the location and 

activity of meiotic recombination hotspots [Székvölgyi and Nicolas, 2009; Paigen and Petkov, 

2010]. We have noted marked differences between type-1 and type-2 NF1 deletion 

breakpoints in terms of their physical properties. Thus, both GC-content and DNA duplex 

stability were considerably higher within the meiotic PRS1 and PRS2 NAHR hotspots 

causing type-1 NF1 deletions than within the mitotic type-2 NF1 deletion breakpoints (Supp. 

Tables S10, S11 ). Hence, we conclude that in addition to differences in chromosomal origin, 
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there are probably substantial differences between mitotic and meiotic NAHR events in the 

NF1 gene region with respect to the presence or absence of recombination hotspots as well as 

GC-content and DNA stability in the respective breakpoint regions. Perhaps significantly, 

Spo11, which binds to DSBs and initiates meiotic NAHR, is not expressed in mammalian 

mitotic cells [Shannon et al., 1999; Nogués et al., 2009]. It remains to be seen whether these 

differences between meiotic and mitotic NAHR are specific to the NF1 gene region or 

whether they may instead reflect a more general difference in the mechanism(s) underlying 

germline and somatic gross chromosomal rearrangements.  
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Legends to Figures 

 

Figure 1: Map of the NF1 gene region at 17q11.2 showing the positions of the breakpoints 

identified in the 18 patients with type-2 NF1 deletions. (A) The relative positions of the NF1 

gene, the SUZ12 gene and its pseudogene (SUZ12P) are specifically indicated. The other 

genes located in this region are represented by black bars. (B) The positions of the type-2 

deletion breakpoints arising from NAHR identified in most patients (indicated by vertical red 

lines) were located at homologous sites within SUZ12 and SUZ12P. By contrast, the type-2 

deletion breakpoints in patients HC and 928 (indicated by vertical blue lines) were not located 

at homologous sites within SUZ12 and SUZ12P. The exons within the SUZ12 and SUZ12P 

sequences are denoted by numbered vertical bars. The circles represent the juxtaposed 

breakpoints of patients WB and UC172 which occurred within identical 174 bp intervals.  

 

Figure 2: Intrachromosomal NAHR between the SUZ12 gene (red rectangle) and the highly 

homologous SUZ12P sequence (blue rectangle) is accompanied by the maintenance of 

heterozygosity distal to the rearrangements. (A) If intrachromosomal NAHR occurs during 

G1-phase, this yields, after replication and mitosis, cells bearing the deletion on one 

chromosome. The reciprocal acentric fragment is lost during subsequent cell divisions. Type-

2 NF1 deletions occur during the embryonic development of affected patients and hence, in 

addition to cells harbouring the deletion, normal cells lacking the deletion are invariably also 

present in the soma of the respective patients (not shown in this schema). (B) If 

intrachromosomal NAHR occurs post-replication, this could either be within one chromatid or 

between sister-chromatids. Only NAHR between sister-chromatids yields cells with the 

reciprocal duplication.  
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Figure 3: Interchromosomal NAHR between the SUZ12 gene (red rectangle) and the highly 

homologous SUZ12P sequence (blue rectangle) giving rise to type-2 NF1 deletions. (A) 

Interchromatid NAHR in G1-phase would not result in a detectable copy number change 

since the deletions and their reciprocal duplications would be present in the same cells. (B) 

Interchromosomal NAHR between non-sister chromatids would either not result in a 

detectable copy number change or would lead to loss of heterozygosity (homozygosity) distal 

to the deletion depending upon the segregation of the chromatids after the subsequent mitosis. 

 

Figure 4: Map of the NF1 gene region (and the genes located therein) in relation to the 

relative positions of runs of homozygosity (ROHs; indicated as blue bars) in a size range of 

202 kb to 568 kb immediately flanking the type-2 NF1 deletions in a telomeric direction. 

Such ROHs were noted in 13 patients. The type-2 NF1 deletions are depicted as grey bars. 
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Table 1: Localization and extent of the type-2 deletion breakpoint regions 

(recombination regions) identified in 18 NF1 patients  

 

Patient Deletion breakpoint 

regions in SUZ12P 

Deletion breakpoint 

regions in SUZ12 

Length of the 

recombination 

region (bp) 

Breakpoint 

localization within 

SUZ12P/SUZ12 

811-M
a
 26,093,151-26,093,196 27,297,456-27,297,501 46 Intron 3 

KCD
b
 26,095,311-26,095,419 27,299,613-27,299,721 109 Intron 4 

697
a
 26,100,313-26,100,381 27,304,631-27,304,699 69 Intron 4 

736
a
 26,104,591-26,104,678 27,308,895-27,308,982 88 Intron 4 

1630
a
 26,108,823-26,108,934 27,313,160-27,313,271 112 Intron 4 

2358
c
 26,109,915-26,109,978 27,316,556-27,316,619 64 Intron 4 

585
c
 26,109,980-26,110,109 27,316,621-27,316,750 130 Intron 4 

488
a
 26,111,549-26,111,605 27,318,189-27,318,245 57 Intron 5 

1502
a
 26,111,715-26,111,905 27,318,355-27,318,545 191 Intron 5 

1956
c
 26,112,365-26,112,510 27,318,916-27,319,061 146 Intron 5 

IL39
b
 26,115,506-26,115,552 27,322,062-27,322,108 47 Intron 5 

1104
a
 26,115,602-26,115,677 27,322,154-27,322,229 76 Intron 5 

928
a
 26,117,984 27,327,893  Intron 6/Intron 8 

2429
c
 26,122,947-26,123,171 27,329,593-27,329,817 225 Intron 8 

WB
b
 26,125,230-26,125,406 27,331,894-27,332,070 177 Intron 8 

UC172
c
 26,125,230-26,125,406 27,331,894-27,332,070 177 Intron 8 

938
a
 26,127,646-26,127,756 27,334,336-27,334,446 111 Exon 9 

HC
a
 26,104,116 27,339,771  Intron 4/Intron 10 

a 
as determined in Steinmann et al. [2007] 

b 
as determined in Kehrer-Sawatzki et al. [2004] 

c 
as determined in this study 

: the deletion was not caused by NAHR and hence recombination regions were not 

observed. Since the breakpoints of the deletions were located in regions that are not 

homologous between SUZ12 and SUZ12P, the breakpoints could be determined precisely.  

Nucleotide numbering is according to hg18, NCBI 36. 
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Table 2: Mechanisms underlying the 18 type-2 NF1 deletions and parental origin of the 

chromosomes 17 harbouring the deletions 

Patient Type of 

recombination 

causing the 

deletions 

Mechanism as 

determined by 

SNP arrays 

Mechanism as 

determined by 

microsatellite 

marker analysis
b
 

Parental origin of the 

chromosome 17 harbouring 

the type 2 NF1 deletion 

811-M NAHR intrachromosomal intrachromosomal paternal 

KCD NAHR intrachromosomal intrachromosomal n.d. 

697 NAHR intrachromosomal intrachromosomal maternal 

736 NAHR intrachromosomal intrachromosomal n.d. 

1630 NAHR intrachromosomal intrachromosomal paternal 

2358 NAHR n.d. intrachromosomal maternal 

585 NAHR intrachromosomal intrachromosomal maternal 

488 NAHR intrachromosomal intrachromosomal paternal 

1502 NAHR intrachromosomal intrachromosomal maternal 

1956 NAHR intrachromosomal intrachromosomal n.d. 

IL39 NAHR intrachromosomal intrachromosomal maternal 

1104 NAHR intrachromosomal intrachromosomal n.d. 

928
a
 NHEJ intrachromosomal intrachromosomal maternal 

2429 NAHR n.d. interchromosomal paternal 

WB NAHR intrachromosomal intrachromosomal n.d. 

938 NAHR intrachromosomal intrachromosomal maternal 

HC
a
 NHEJ n.d. intrachromosomal maternal 

UC172 NAHR intrachromosomal intrachromosomal maternal 

n.d.: not determined 

a: The deletions of patients 928 and HC have breakpoints in apparently non-homologous 

regions between SUZ12 and SUZ12P. 
NHEJ: non-homologous end joining; NAHR: non-allelic homologous recombination 
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Supplementary Figure S1-A: Analysis of microsatellite markers on chromosome 17 using DNA extracted from blood samples taken 
from patient 811-1 and his family members. Patient 811-1 has a constitutional type-2 NF1 deletion. He is the son of patient 811-M (his 
mother) who is mosaic for the deletion. Some 93% of cells in the blood of patient 811-M were found to exhibit the deletion as determined 
by FISH [Steinmann et al., 2007]. The horizontal rectangular box includes those markers located within the deletion region. Marker alleles 
in parentheses displayed reduced signal intensity, indicative of somatic mosaicism involving both normal cells and cells bearing the 
deletion. 
--: reduced signal intensity of markers which would have been indicative of somatic mosaicism but could not be formally assessed as a 
consequence of homozygosity. 
--*: a second allele was not visible, although heterozygosity was inferred from the grandpaternal haplotype.  
del: deletion of the allele. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-B: Analysis of microsatellite markers on chromosome 17 using DNA extracted from peripheral blood taken 
from patient KCD and hybrid cell lines containing only one chromosome 17 from this patient. Hybrid cell line #3 contains the chromosome 
17 with the type-2 NF1 deletion whereas hybrid cell line #25 contains the normal chromosome 17 which was subject to the deletion in a 
number of cells. Hybrid cell line #101 contains the wild-type chromosome 17 of the patient. All three somatic cell hybrids were obtained 
by fusion of skin fibroblasts from patient KCD with mouse cell line B82. In skin fibroblasts from patient KCD, 51% of cells carried the 
deletion whilst 49% of cells were normal. In peripheral blood, the deletion was detected in 92% of cells as determined by FISH [Kehrer-
Sawatzki et al., 2004; Steinmann et al., 2007]. Marker alleles in parentheses displayed reduced signal intensity, indicative of somatic 
mosaicism involving both normal cells and cells bearing the deletion. The horizontal rectangular box includes those markers located 
within the deletion region. del: deletion of the allele.  
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-C: Analysis of microsatellite markers on chromosome 17 using DNA extracted from blood samples taken 
from patient 697 and her family members. Patient 697 has a mosaic type-2 NF1 deletion; the proportion of cells harbouring the deletion in 
peripheral blood was 97% and in buccal smears 59% as determined by FISH [Kehrer-Sawatzki et al., 2004; Steinmann et al., 2007]. The 
horizontal rectangular box includes those markers located within the deletion region. del: deletion of the allele. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-D: Analysis of microsatellite markers on chromosome 17 using DNA extracted from blood taken from patient 
736 and hybrid cell lines #1 and #26 containing either the deletion-bearing or the normal chromosome 17 from the patient, respectively. 
Hybrid cell line #15 contains the wild-type chromosome 17 which was subject to the deletion in a number of cells. Patient 736 displays 
mosaicism for the type-2 NF1 deletion. In peripheral blood, the deletion was detected in 94% of cells while 59% of her buccal smear cells 
had the deletion as determined by FISH [Kehrer-Sawatzki et al., 2004; Steinmann et al., 2007]. Marker alleles in parentheses displayed 
reduced signal intensity, indicative of somatic mosaicism involving both normal cells and cells bearing the deletion. The horizontal 
rectangular box includes those markers located within the deletion region. del: deletion of the allele. --: reduced signal intensity of 
markers which would have been indicative of somatic mosaicism but could not be formally assessed as a consequence of homozygosity. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-E: Analysis of microsatellite markers on chromosome 17 using DNA extracted from blood taken from patient 
1630 and hybrid cell line #36 containing the wild-type chromosome 17 of the patient. Patient 1630 displays mosaicism for the type-2 NF1 
deletion. In peripheral blood, the deletion was detected in 92% of cells as determined by FISH [Steinmann et al., 2007]. The horizontal 
rectangular box includes those markers located within the deletion region. Marker alleles in parentheses displayed reduced signal 
intensity, indicative of somatic mosaicism involving normal cells and cells bearing the deletion.  
--: reduced signal intensity of markers which would have been indicative of somatic mosaicism but could not be formally assessed as a 
consequence of homozygosity. 
--*: a second allele was not visible, although heterozygosity was inferred form the paternal haplotype. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-F: Analysis of microsatellite markers on chromosome 17 using DNA from blood samples and buccal mucosa 
taken from patient 2358 and family members. The horizontal rectangular box includes those markers located within the deletion region. 
del: deletion of the allele; n.d.: not determined.  
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-G: Analysis of microsatellite markers on chromosome 17 using DNA extracted from blood samples taken 
from patient 585 and her parents. Patient 585 has a mosaic type-2 NF1 deletion. The horizontal rectangular box includes those markers 
located within the deletion region. n.d.: not determined. Marker alleles in parentheses displayed reduced signal intensity, indicative of 
somatic mosaicism involving both normal cells and cells bearing the deletion.   
--: reduced signal intensity of markers which would have been indicative of somatic mosaicism but could not be formally assessed as a 
consequence of homozygosity. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-H: Analysis of microsatellite markers on chromosome 17 using DNA from blood samples taken from patient 
488. The proportion of cells harbouring the deletion was 98% in peripheral blood and 56% of buccal smear cells, as determined by FISH 
[Kehrer-Sawatzki et al., 2004; Steinmann et al., 2007]. The horizontal rectangular box includes those markers located within the deletion 
region. del: deletion of the allele.  
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-I: Analysis of microsatellite markers on chromosome 17 using DNA from patient 1502 and her family 
members as well as DNA extracted from somatic cell hybrid cells (hybrid #Kl.1-5) containing only the deletion-bearing chromosome 17 
from patient 1502. The proportion of cells harbouring the deletion was 97% in peripheral blood and 70% in buccal smear cells, as 
determined by FISH [Steinmann et al., 2007]. Marker alleles in parentheses displayed reduced signal intensity indicative of somatic 
mosaicism involving both normal cells and cells bearing the deletion. The horizontal rectangular box includes those markers located 
within the deletion region. del: deletion of the allele; n.d.: not determined.  
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-J: Analysis of microsatellite markers on chromosome 17 using DNA extracted from a blood sample from 
patient 1956 and hybrid cell lines containing only one chromosome 17 from the patient. Hybrid cell line #FIII-1 contains only the 
chromosome 17 harbouring the type-2 NF1 deletion; hybrid cell line #FV-2-1 contains the wild-type chromosome 17 which was subject to 
the deletion in a number of cells. Hybrid cell line #FV-4 contains the wild-type chromosome 17 of the patient. In blood lymphocytes of 
patient 1956, 92% of the cells harboured the deletion as determined by FISH (in the present study). The horizontal rectangular box 
includes those markers located within the deletion region. Marker alleles in parentheses displayed reduced signal intensity, indicative of 
somatic mosaicism involving both normal cells and cells bearing the deletion.  
--: reduced signal intensity of markers which would have been indicative of somatic mosaicism but could not be formally assessed as a 
consequence of homozygosity.  
del: deletion of the allele. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-K: Analysis of microsatellite markers on chromosome 17 using DNA extracted from blood from patient IL39-
III2 and his family members. Patient IL39-III2 has a constitutional type-2 NF1 deletion inherited from his mother (patient IL39) who is 
mosaic for a type-2 deletion as determined by FISH [Petek et al., 2003]. The deletion was observed in 70% of peripheral blood 
lymphocytes and 15% of fibroblasts from patient IL39. DNAs extracted from somatic cell hybrids containing only the chromosome 17 with 
the deletion of patient IL39-III2 (hybrid cell line #15) and from hybrids containing the wild-type chromosome from patient IL39-III2 (#17) 
were also analysed. The horizontal rectangular box includes those markers located within the deletion region. del: deletion of the allele. 
--: reduced signal intensity of markers which would have been indicative of somatic mosaicism but could not be formally assessed as a 
consequence of homozygosity.  
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-L: Analysis of microsatellite markers on chromosome 17 using DNA from blood samples from patient 1104 
as well as DNA extracted from somatic cell hybrids bearing the two wild-type chromosomes 17 of the patient. The deletion was observed 
in 84% of peripheral blood lymphocytes, 15% of urine cells and 8% of buccal smear cells from this patient [Steinmann et al., 2007]. 
Marker alleles in parentheses displayed reduced signal intensity, indicative of somatic mosaicism involving both normal cells and cells 
bearing the deletion. The horizontal rectangular box includes those markers located within the deletion region. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-M: Analysis of microsatellite markers on chromosome 17 using DNA from blood samples from patient 928 
and her father. DNA samples extracted from somatic cell hybrids carrying only the deletion-bearing chromosome 17 (hybrid #Kl.1) or the 
wild-type chromosome (hybrid #Kl.3) from patient 928 were also analysed. The deletion was observed in 80% of neurofibroma cells and 
55% of buccal smear cells in patient 928 as determined by FISH [Kehrer-Sawatzki et al., 2004; Steinmann et al., 2007]. The horizontal 
rectangular box includes those markers located within the deletion region. del: deletion of the allele; n.d.: not determined.  
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-N: Analysis of microsatellite markers on chromosome 17 using DNA from blood samples from patient 2429 
and his family members as well as DNA extracted from hybrid cell line #Kl.1-5 containing only the chromosome 17 with the deletion from 
patient 2429. In the brother of patient 2429, a crossover between markers D17S1833 and D17S1788 has to be assumed on the paternal 
chromosome whilst a crossover between markers D17S1861 and D17S1809 on the maternal chromosome has to be assumed to explain 
the observed haplotypes. The horizontal rectangular box includes those markers located within the deletion region. del: deletion of the 
allele; n.d.: not determined.  
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-O:  Analysis of microsatellite markers on chromosome 17 using DNA from blood samples from patient SB 
and her family members as well as DNA extracted from somatic cell hybrids #S10 and hybrid #B9 containing respectively only the wild-
type chromosome 17 and only the deletion-bearing chromosome 17 from patient SB. The horizontal rectangular box includes those 
markers located within the deletion region. Patient SB has a germline type-2 NF1 deletion inherited from her mother (patient WB) who 
exhibited somatic mosaicism for the deletion. The deletion was observed in 94% of blood cells from patient WB, as determined by FISH 
[Kehrer-Sawatzki et al., 2004; Steinmann et al., 2007]; del: deletion of the allele.  
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-P: Analysis of microsatellite markers on chromosome 17 using DNA from blood samples from patient UC172 
and her family members as well as DNA extracted from somatic cell hybrids #1 and #2 containing only the wild-type chromosome 17 and 
only the deletion-bearing chromosome 17 from patient UC172, respectively. The deletion was observed in 86% of blood cells from this 
patient as determined by FISH (this study). The horizontal rectangular box includes those markers located within the deletion region. 
Marker alleles in parentheses displayed reduced signal intensity, indicative of somatic mosaicism involving normal cells and cells bearing 
the deletion.  
--: reduced signal intensity of markers which would have been indicative of somatic mosaicism but could not be formally assessed as a 
consequence of homozygosity. del: deletion of the allele. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-Q: Analysis of microsatellite markers on chromosome 17 using DNA from blood samples from patient 938 
and her family members as well as DNA extracted from a somatic cell hybrid containing only the chromosome 17 bearing the deletion of 
patient 938. The deletion was observed in 91% of peripheral blood lymphocytes and 80% of buccal smear cells in patient 938 as 
determined by FISH [Kehrer-Sawatzki et al., 2004; Steinmann et al., 2007]. Marker alleles in parentheses were visible as peaks with 
strongly reduced signal intensity, indicative of somatic mosaicism involving normal cells and cells bearing the deletion. The horizontal 
rectangular box includes those markers located within the deletion region.  
--: reduced signal intensity of markers which would have been indicative of somatic mosaicism but could not be formally assessed as a 
consequence of homozygosity. --*: a second allele was not visible, although heterozygosity was inferred form the maternal haplotype. 
del: deletion of the allele. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S1-R: Analysis of microsatellite markers on chromosome 17 using DNA from blood samples from patient HC and 
his parents. DNAs derived from somatic cell hybrids either carrying the chromosome 17 with the deletion (hybrid #Kl.1) or bearing the 
wild-type chromosome 17 of patient HC (hybrid # Kl.6), were also analysed. The horizontal rectangular box includes those markers 
located within the deletion region. Marker alleles in parentheses displayed reduced signal intensity indicative of somatic mosaicism 
involving both normal cells and cells bearing the deletion.  
--: reduced signal intensity of markers which would have been indicative of somatic mosaicism but could not be formally assessed as a 
consequence of homozygosity. 
--*: a second allele was not visible, although heterozygosity was inferred form the maternal haplotype.  
del: deletion of the allele. n.d.: not determined. 
Nucleotide numbering is according to hg18, NCBI 36. 
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Supplementary Figure S2: Non-B DNA-forming repeats in the breakpoint-spanning 
regions, also termed recombination regions (RRs; grey), of the 16 type-2 NF1 
deletions mediated by NAHR. Sequences flanking the RRs in a proximal direction are 
marked in yellow. Sequences flanking the RRs in a telomeric direction are marked in 
blue. Paralogous sequence variants are highlighted in bold. Direct repeats are shown 
in pink or red letters. Inverted repeats are highlighted in green. Symmetric repeats 
are underlined. Inverted repeats capable of non-B DNA structure formation were 
found to be overrepresented within the RRs (p<0.001) whereas both direct and 
inverted repeats were overrepresented within the extended RRs (p<0.001). Extended 
RRs also encompass 100 bp in centromeric and telomeric directions, marked in 
yellow and blue, respectively. 
Nucleotide numbering is according to hg18, NCBI 36. 
 

Patient 811-M 
AGTTGAATACAATAAATAGCTCTTTTTTGGCCAGGCATGGTGGCTCACAC  26,093,051-26,093,100 

CTTTAATCCTAGCACTTTGGGAGACAGGGGTGGATAGATCACCTGAGGTC  26,093,101-26,093,150 

AGGAGTTCAAGACCAGCCTGACCAACATGGTGAAACCCTGTCTCTA.     26,093,151-26,093,196 

                                                   (27,297,456-27,297,501) 

CAAAATGCAAAAATTAGCCAGGCGTGGTGGTGCACACCTGTAGTCCCAGC  27,297,502-27,297,551 

TACTCGGGAGGCTGAGGCAGGAGAATTGCCTGAACCCGGGAGGTGGAGGT  27,297,552-27,297,601 

 

Patient KCD 
GCTTGGGTGGTGTTTGTTCATTCATTAACTACCTTTAGAGAGAATGCAGA  26,095,211-26,095,260 

ACTAAAAATATTAGATTCTTAAAAAAATAGAGTTGGAAAATTTGTCACAG  26,095,261-26,095,310 

TGCATTTTTCTTTTCCTTCTAGTTTTAAATCACAGCTTACGAATTTAGAT  26,095,311-26,095,419 

AGGATACACACTTAATGATGCATCATTTATGCATCTCATTGTTTTCCCAT (27,299,613-27,299,721) 

TGTTCTGTT 

GACTGGTAAAAGACTTCCTTTTTTTCAGTTTGGCTTCCTTCTATTTTAAG  27,299,722-27,299,771 

TTTGGCTTTGGAATTAAGTGATTTTTTTACTTGGATTATAAAATGATATT  27,299,772-27,299,821 

 

Patient 697 
CCATGCCTGGCCTTATTTTTATTTTTTGAGACAAGGTCTCGCTTTGTCAC  26,100,213-26,100,262 

CGAGGCTGGAGTGTAGTGGCATAATGATAGGTCACTGATGGATTGAACTC  26,100,263-26,100,312 

GTGGACTAAAGGGATCCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTAC  26,100,313-26,100,381 

AGGCATGTACTGTCACACC                                (27,304,631-27,304,699) 

TCACTAATTTTTTGAATTTTTGTAGAGTCAGGGTCTCATCATCTTGCCCA  27,304,700-27,304,749 

GGCCAGTTTTGAACTCCTATCCTCAAGTGATCCTCCCACCTCGACATCCT  27,304,750-27,304,799 

 

Patient 736 
AGCCTCCCAAAGCGCTGGGATTATAGCCGTGAGCCACTGCCCCCAGCCGG  26,104,491-26,104,540 

TTTTTGTATTTTTAGCAGAGACGGAGTTTCACCATGTTGGCCAGGCTGGT  26,104,541-26,104,590 

CTCGAATTCTTGACCTCAAGTTATCCACCAGCCTCAGCCTCCCAAAGTGC  26,104,591-26,104,678 

TGGATTACAGGTGTGAGCCACTGCACCTGGCCCTGGAT          (27,308,895-27,308,982) 

TACAGGTGTGAGCCACTGCACCTGGCCCTGGCTCACCTTTTGTCCTTTTT  27,308,983-27,308,982 

TTTTTTTTTTTTTTTTTTTTGAGACAGAGTCTTGCTCTGTCGCCCAGGCT  27,309,033-27,309,082 

 

Patient 1630 
TTATCTTATGAAAAAAATTTGTTGGGTCATTTTCTGTAAGACACTGCTAG  26,108,723-26,108,772 

GTGCTAGGGACACTAATAAAAAGATGTATATGGAAAAATAGTGACTAAAC  26,108,773-26,108,822 

AGTGGTAAATAAGAGTGCTTGTAAAGGGATAAAGTGGTCATTTAGCTCTT  26,108,823-26,108,934 

GATTGATTGGGTTTAGGGTCTTTGTAGAAGAGGGAGAGAGTATTTTGCTG (27,313,160-27,313,271) 

GATACTTTATTA 

TTTTCTGCAAGCCTGACCAGGCACAGTGGCTCATGCCTATAATCGCAGCA  27,313,272-27,313,321 

CTTGGGGAGGCTGAGGTGGGATGATCACTTGCACCCAGGAGTTCATTACC  27,313,322-27,313,371 
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Patient 2358 
GTTATGAATGTCTCCTGATCAACAGCTGTATTCTGTTTTGCAGTTTAAAG  26,109,815-26,109,864 

GTACTTCAAAAGCTTATTGGTGCTTCTGTTTGTTTTATCCCATCCTTATA  26,109,865-26,109,914 

GTTTTTTTCTATTGTTAATAGATGTTTGTGAAAATAGAAGGAGCACTAGT  26,109,915-26,109,978 

TCTAGTTCATGCTT                                     (27,316,556-27,316,619) 

GCTTTTGCTTTTCCATAGCTTCTAAAACTAACAGTGAAAATGATATATTG  27,316,620-27,316,669 

AAACAGTAAATTATAGATCTATACCAGATTTGTAATTGTGTATTTCATTG  27,316,670-27,316,719 

 

Patient 585 
ATTGGTGCTTCTGTTTGTTTTATCCCATCCTTATAGTTTTTTTCTATTGT  26,109,880-26,109,929 

TAATAGATGTTTGTGAAAATAGAAGGAGCACTAGTTCTAGTTCATGCTTT  26,109,930-26,109,979 

CTTTTGCTTTTCCATAGCTTCTAAAACTAACAGTGAAAATGATATATTGA  26,109,980-26,110,109 

AACAGTAAATTATAGATCTATACCAGATTTGTAATTGTGTATTTCATTGC (27,316,621-27,316,750) 

TATTTGAAGTATAAAGTAATGGTTCTGTAT  

CATTTATTGGGAAGGTTGAATTTCCATAGCTTCAAAATATTCAAATTTTT  27,316,751-27,316,800 

TTGCATGGATTTAGCTACGCTTTTCAAAATTTCCTTTTGATGAAGTCATT  27,316,801-27,316,850 

 

Patient 488 
TTGGAAGGCTGAGGCGGGTGTATCATGAGGCCAGGAGTTCAGGACCAGCC  26,111,449-26,111,498 

TGGCCAATATGGTGAAACCCCATCTCTACTAAAAATATAAACATTAGCCG  26,111,499-26,111,548 

GGCGTGGTGGTGGGTGCCTGTAGTCCCAGTTACTTGGGAGACTTAGGCAG  26,111,549-26,111,605 

AAGAATC                                            (27,318,189-27,318,245) 

ACTTGAACCTGAGAGTCGGAGGTTGCAATGAGCTGAGATTGCGTTACTGC  27,318,246-27,318,295 

ACTCCAGCCTGGGCGACAGAGCGAGACTCCATCTCAAAAAAAAAAAAAAA  27,318,296-27,318,345 

 

Patient 1502 
TGAGAGTCAGAGGTTGCAGTGAGCTGAGATTGTGTTACTGCACTGCAGCC  26,111,615-26,111,664 

TGGGCGACAGAGCGAGACTCCATCTCAGAAAAAAAAAGGGGGGGAAAATT  26,111,665-26,111,714 

ACTTATCAGCTTATCCATCATAAGTCTGTGTATATGGCATATATTTTTAT  26,111,715-26,111,905 

TATGCAATGGAATAAAACCATTATTAGAAACATGCCAGGTTGGTTGTCTT (27,318,355-27,318,545) 

GGTATCGTTTAGTAAGAAACAAAGATTGAAAATGAGTCCTGGTGGGCCGG   

GCACGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGC 

TGAGGCGGGTGGATCACAAGGTCAGGAGATCGAGACTATCCTGGCTAACA  27,318,546-27,318,595 

TGGTGAAACCCCGTCTCTACTAAAATACAAAAAAACTAGCTGGGTGTCGT  27,318,596-27,318,645 

 

Patient 1956 
GCTTGGGCAACACAGACCCCATCTCTACAAAAATTAGCCAGGTATGGTGG  26,112,265-26,112,314 

GTATGTCCTGTAGTTCTAGGTACTTGGAAGTCCAAGATGGCAGGATGGCA  26,112,315-26,112,364 

TAAGCTCAGGAATTCAAGGTTACAGTTACCTATGATTGCACAACTCTACT  26,112,365-26,112,510 

CCAGGCTGGGCAACAGAGTGAGACTCTGTCTCCAAAAAATCCCAAATATT (27,318,916-27,319,061) 

AGACTGGGCATGGTGGCTCACAGCTATAATGTCAACACCTTGGGAG 

GCTGAGATGGAAGAATAGCTTGAGGCTTGCCTGGGCAACATAGGGAGAAC  27,319,062-27,319,111 

CTGTCTGTAAGAAGTAAAAAAAGATTAACTGGGCACAGTGGCACATGCCT  27,319,112-27,319,161 

 

Patient IL39 
GTTGCCCAATGCCTTAGAACAAAAATTTTTTTTTGTATGTTCATGGATTC  26,115,406-26,115,455 

ATCTATTATAATAGTTCTGGATGTTATTGAAGCTATTTGATGAATTATTT  26,115,456-26,115,505 

ATTAAATATTCAGTTATGAACTGTTAATACCTTTGGGACTTTAAAAA     26,115,506-26,115,552 

                                                   (27,322,062-27,322,108) 

CAAGTTATGGAGGACTACTCTAGAACCTTAATTTGTAAAGCCTGTGTTAA  27,322,109-27,322,158 

TTTACATAGAGAATATAGACTATGGTATTCAAAATTAACACCCCTAAATT  27,322,159-27,322,208 

 

Patient 1104 
ATTTATTAAATATTCAGTTATGAACTGTTAATACCTTTGGGACTTTAAAA  26,115,502-26,115,551 

AAAAGTTATGGAGGACTACTCTAGAACCTTAATTTGTAAAGCCTTTGTTA  26,115,552-26,115,601 

GTTAATTTACATAGAGAATATAGACTATGGTATTCAAAATTAACACCCCT  26,115,602-26,115,677 

AAATTTTTTGTAAGCCAAGATATTCT                         (27,322,154-27,322,229) 

AGATAGTAAATAATATCTTGATTTTTGTTATCCCATTTAAACTGTAGAGA  27,322,230-27,322,279 

AATTCTGGGGAAAGCATCTAAAAATAGCTCTGATAGCTCTGTCTCTACGT  27,322,280-27,322,329 
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Patient 2429 
TACCATGCCCAGCTAATTTTTGTGTTTTTAGAGAGATGAGGTTTCACCAT  26,122,847-26,122,896 

GTTGGCCAGGCTGGTCTGGAGCTCCTGACCTCACATCATCCACCTGCCTA  26,122,897-26,122,946 

AGCCTCCCAAAGTGCTGGGATTACAGGTGAGCCACCGTGCCCGGCCAGTG  26,122,947-26,123,171 

TCTTTTTAAAGTCAGAAATTTTATTGTGGATCGAAGATTTAAATGGAAAA (27,329,593-27,329,817) 

CAATAGAACCATAAATGTACTAGAAAATAGTGGTCATGTCTGTGGGGGAA   

ACAATTAGAATGAGGCGCATTGGACTTCATCGATGCTGTTAATTGTTCTA    

TTTTAGGCAGCATGGGGTATGTTCT 

ATTTTCTTTTTTAATCACTGTACCTGACACATATGTTTACACATTTCTTG  27,329,818-27,329,867 

TAAGAAAAAGATAATGCTTTTATTTTAAAGAAAAAGTGCCAAGAAGAAAC  27,329,868-27,329,917 

 

Patients WB and UC172 
TCAGGCTGGTCTTGAACTCCCGACCTCAGGTGATCCTCCCACCTCAGCCT  26,125,130-26,125,179 

CCCGAAGTGTGGGGATTACGGGCATGAGCCACTGCGTCGGGCCAACCTTC  26,125,180-26,125,229 

TCTTACCTCTGCTCTGAAGTTGTGATTTCTTCAAGGAGTCCTGATTCCTT  26,125,230-26,125,406 

ATAGAAGAATAGTATTTTTAAGCCAAAATCTGCATGTTAGATGTGTAAAA (27,331,894-27,332,070) 

ATTGTTTTTAAAATCTCACAGAGGGCTGAGTGCAGTGGCTCACACTTGTA   

ATCTTAGTACTTTGGAAGACCAAGGTG 

AGAGGATCTCTTGAGCCCAGGAGTCTGAGGCTGTAGTGAGCTATGATTGT  27,332,071-27,332,120 

GTCACTGCACTCTAGCCTGGGTGACACAGCGACTGTCAAAAAAAAAAACC  27,332,121-27,332,170 

 

Patient 938 
GCTATGGACTACTTAGAAGGTTGAGCACATTATAGTTATGAACTCCCATT  26,127,546-26,127,595 

TTTGATTGATGTTTTCTTCCCCAAATGCTAATTCATGTTGGAAGTAGAGG  26,127,596-26,127,645 

CCTTTGTTTTTTATACTTTAAAAAACACAAGTAAATGATCTAGTCAGAGC  26,127,646-26,127,756 

ATTTAACGGAAGGTATCATTCCTTTTTTTTTTTTTTTTTTGAGGGGGAGT (27,334,336-27,334,446) 

CTTGCTCTGT T 

GCCCAGGCTGGAGTGCAGTGGCATGGTCTCGGCTCACTGCAACCTCCACC  27,334,447-27,334,496 

TCCCGGGTTCAAGCGATTCTCCTGTCTCAGCCTCCCAAGTAGCTGTGATT  27,334,497-27,334,546 
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Supplementary Table S1: Methods used to identify the type-2 deletion breakpoints in 18 

NF1 patients 

Patient Methods used to identify the deletion breakpoints 

811-M
a
 Breakpoint-spanning PCR on genomic DNA based on SNP array results 

KCD
b
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

697
a
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

736
a
 Breakpoint-spanning PCR on genomic DNA based on SNP array results 

1630
a
 Breakpoint-spanning PCR on genomic DNA based on SNP array results 

2358
c
 Breakpoint-spanning PCR on genomic DNA based on SNP array results 

585
c
 Breakpoint-spanning PCR on genomic DNA based on SNP array results 

488
a
 Breakpoint-spanning PCR on genomic DNA based on SNP array results 

1502
a
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

1956
c
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

IL39
b
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

1104
a
 Breakpoint-spanning PCR on genomic DNA based on SNP array results 

928
a
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

2429
c
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

WB
b
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion  

938
a
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

HC
a
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

UC172
c
 Sequence analysis of PCR products amplified from somatic cell hybrids 

containing only the chromosome 17 with the deletion 

 
a 
breakpoints were identified as previously described [Steinmann et al. 2007]  

b 
breakpoints as determined in Kehrer-Sawatzki et al. [2004]. 

c 
breakpoints were identified in the present study. 
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Supplementary Table S2: Clinical features of the five newly identified type-2 NF1 deletion 

patients 

 

Patient Sex (age 

in years) 

Clinical features 

2358 f (10) 

Multiple CALM, axillary and inguinal freckling, hypotony, hypertelorism, 

plexiform neurofibroma on the right calf, no dermal neurofibromas, no 

spinal or intra-abdominal tumours as determined by MRI, T2 

hyperintensities in the cerebellum, mild developmental delay, attends 

primary school. 

585 f (7) 

Multiple CALM, axillary and inguinal freckling, plexiform neurofibroma 

on the neck, no intellectual disabilities or psychomotor developmental 

delay.  

1956 m (9) 

More than 6 CALM, axillary freckling, Lisch nodules, scoliosis, no 

neurofibromas, attends primary school but is behind normal educational 

level for age, no significant developmental delay or dysmorphic facial 

features. 

2429 m (16) 

Multiple CALM, axillary and inguinal freckling, Lisch nodules, height 

182cm; head circumference 60cm, one MPNST, congenital heart disease, 

>1000 subcutaneous neurofibromas, ~ 500 cutaneous neurofibromas, 

plexiform neurofibromas on face and neck, corpus callosum aplasia, IQ 84, 

learning problems, hypertelorism, saddle nose, dysmorphic facial features, 

large hands and feet, hyperflexibility of joints, funnel chest, broad neck. 

UC172 f (6) 

Multiple CALM, axillary and inguinal freckling, no dermal or 

subcutaneous neurofibromas, no intellectual disabilities or psychomotor 

developmental delay. 

CALM: Cafe-au-lait macules 

MPNST: malignant peripheral nerve sheath tumour 
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Supplementary Table S3: Primers used to investigate the presence of a duplication 

reciprocal to the respective type-2 NF1 deletion 

 

Patient PCR-

product 

(bp) 

Primer Position 
a
 Primer 5’ → 3’

 b
 

811  914  D-F1 27,297,148-27,297,172 GCgCTTCTTACTATACTCTATTGGA 

  D-R2 26,093,737-26,093,756 TGATCCATCAAATCG---cAAAA 

     

 873  D-F1/2 27,297,189-27,297,220 AAGTTTTCAGTAACTCTAAAGGTAAAGAGAGA 

  D-R2/2 26,093,736-26,093,756 TGATCCATCAAATCG---cAAAAC 

KCD  438  D-F3 27,299,533-27,299,559 TCATTCATTAACT-CCTTTAGAGAG--TGC 

  D-R4 26,095,648-26,095,668 CCCTGGGCATTAACAGATgTA 

     

 904  D-F3/2 27,299,532-27,299,558 CATTCATTCATTAACT-CCTTTAGAGAG--TG 

  D-R4/2 26,096,112-26,096,135 cTTTGAGTTGCTATTGAACCACTG 

697  2,024  D-F5 27,303,631-27,303,655 TgGTATATGCTAGCAGGATTCTAGG 

  D-R6 26,101,315-26,101,334 TACGGAAATGAAACGTGCAA 

736 4,673  D-F7 27,306,085-27,306,107 TTGGTCTTAAGAAAGTCGTTTGT 

  D-R8 26,106,439-26,106,456 CTGCTAGCgGCAGGcATA 

1630  1,398 D-F9 27,312,802-27,312,830 GTTGTTAGTAGTAgTCTCAAtTTCTTGAG 

  D-R10 26,109,839-26,109,862 TTAAACTGCAAAACAgAATACAGc 

     

 909  D-F9/2 27,312,386-27,312,411 gATAATGGCTGGTTGGCTGGGCatAg 

  D-R10/2 26,108,935-26,108,957 TGCGCAGTCAGGCTTGCAGAAAG 

585 668 NJ7f 27,316,459-27,316,480 ATGAATGTCTCCTGATCAACAa 

  NJ8r 26,110,458-26,110,483 CCTGTTAAATATGACATCCAAAAGTt 

488/ 

1502 

2,608  D-F11/2 27,317,289-27,317,308 CATTTGCAGCTTACGTTTAC 

  D-R12 26,113,233-26,113,256 ATAATTTAAGGAAAACAAAAAtCa 

1956 1,436  D-F13 27,318,373-27,318,397 CATAAGTCTGTGTATATGGCATATc 

  D-R14 26,113,233-26,113,257 AATAATTTAAGGAAAACAAAAAtCa 

IL39/ 

1104 

1,610  D-F15 27,320,718-27,320,739 CGCCTATGTTGAAAATAACTat 

  D-R16 26,115,749-26,115,770 CGTAGAGA--------CAGAGCTATTTTTA 

     

 427 D-F15/2 27,322,040-27,322,061 GAAGCTATTTGATGAATTAgTg 

  D-R16/2 26,115,891-26,115,914 AACATTTGAATTAAATCAGTTACt 

WB/ 

UC172 

3,320  D-F19 27,329,085-27,329,109 GGCAAGAAACACAGACtTATtAAat 

  D-R20 26,125,718-26,125,740 CATTCTTCTATTGGGCA----aC-TTTA 

     

 531  D-F19/2 27,331,874-27,331,893 cCcGGCCtACCTTCTTCTTt 

  D-R20 26,125,718-26,125,740 CATTCTTCTATTGGGCA----aC-TTTA 

938 2,257  D-F21 27,333,149-27,333,171 TGGTTGAAGAATGGTGTTTAGAG 

  D-R22 26,128,656-26,128,679 ACACCTTTATCAT-AAACTATTTCA 

a: according to the human genome assembly hg18, NCBI 36 

b: Primers bind to regions of sequence divergence between the SUZ12 gene and its pseudogene SUZ12P. The 

forward primer has been designed according to the sequence of the SUZ12 gene, whereas the reverse primer has 

been designed according to the sequence of SUZ12P. Nucleotides given in low letters indicate paralogous 

sequence variants (PSVs) between SUZ12 and SUZ12P. Hyphens indicate deletions between SUZ12 and 

SUZ12P, whereas underlined nucleotides represent insertions with respect to the paralogous sequence. 
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Supplementary Table S4: Investigation of mosaicism with normal cells and cells harbouring 

the type-2 deletion in 18 NF1 patients 

 

Patient Sex 

(age in 

(years) 

Mosaicism detected 

by marker analysis 
a
 

of 

Proportion (%) of cells harbouring the deletion as 

determined by FISH analysis of 

  blood buccal cells blood buccal 

cells 

skin fibroblast 

cultures 

neuro-

fibroma 

urine 

811-M
b
 f (35) yes  93     

KCD
c
 f (34) yes  92  51   

697
b
 f (11) no  97 59    

736
b
 f (68) yes  94 59    

1630
b
 f (15) yes  92     

2358
d
 f (10) no no 100     

585
d
 f (7) yes yes      

488
b
 f (33) no  98 56    

1502
b
 f (26) no yes 97 70    

1956
d
 m (9) yes  92     

IL39
c
 f (60) yes  70  15   

1104
b
 f (36) yes  84 8   15 

928
b
 f (39) no  100 55  80  

2429
d
 m (16) no no 100     

WB
c
 f (65) no  94     

938
a
 f (35) yes  91 80    

HC
a
 m (9) no yes 100     

UC172
d
 f (6) yes  86 

 
   

a: mosaicism was investigated by microsatellite marker analysis and putative heterozygosity 

of markers located within the deletion interval using DNA isolated from peripheral blood 

samples (primary blood cells) and not from lymphoblastoid cell lines.  

b: as determined in Steinmann et al., [2007] 

c: as determined in Kehrer-Sawatzki et al., [2004] 

d: as determined in this study 

: not determined 
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Supplementary Table S5: Results of the SNP array analysis using DNA isolated from uncultivated blood cells of 16 patients with type-2 NF1 

deletions. Heterozygous SNPs are indicated as (+), homozygous SNP are assigned as (-) 
 

 

SNP Position
a
 Array results observed in patient 

  811-M KCD 697 736 1630 2358 585 488 1502 1956 IL39 1104 928 WB UC172 938 

rs7222696 24,721,745 + - - - - + - - - + - + + - - - 

rs2138852 24,727,475 + - - - - + - + - + + + - - - + 

rs12449974 24,731,012 - - - - - - - + - - + - + - - + 

rs4794854 24,749,129 + + - - - + - - - - - + - - - - 

rs11651087 24,761,030 - + - - - - - + - + + - - - - + 

rs11654359 24,761,045 - + - - - - - + - + + - - - - + 

rs12602428 24,764,399 + - - - - - - - - - - + + - - - 

rs9906280 24,771,580 + + - - - + - - - - - + - - - - 

rs17225878 24,803,564 + - - - - - - - - - - + + - - - 

rs6505138 24,833,230 + - - - - - - - - - - + + - - - 

rs559972 24,838,622 + - - - - + - + - + + + - - - + 

rs8081085 24,891,441 - - - - - - - + - - + - + - - + 

rs17766675 24,895,151 - + - - - - - + - + + - - - - + 

rs11868722 24,908,731 - + - - - - - + - + + - - - - + 

rs636000 24,915,990 + - - + + - - - + - - - - - + + 

rs550818 24,926,101 - + + + + - + + - - - + + - + - 

rs894606 24,933,478 + + - - - - - - + - - + + - - + 

rs3744626 24,935,683 - - + + + - + + + - - - - - + - 

rs1017529 24,936,541 - - - - + - - - + - - - - - - + 

rs3115094 24,937,933 - - - + + - + + - - - + + - + - 

rs3110496 24,941,897 - + - + + - - - - + - + + - + - 

rs3809789 24,979,887 - + + - + - + - - + - + - - - + 

rs2289629 24,984,029 - + + + + - + + - + - + - - - - 
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rs4794859 24,986,519 - + + - + - + - - + - + - - - + 

rs3110495 25,002,581 - + + - - - + - - + - + - - - + 

rs3098949 25,002,820 - + + + - - + - - + - + - - - + 

rs3115092 25,060,476 - + + + - - + - - + - + - - - + 

rs2874505 25,062,049 - + + + - - + - - + - + - - - + 

rs2617881 25,087,401 - + + - - - + - - + - + - - - + 

rs2617874 25,109,298 - + + - - - + - - + - + + - - + 

rs2617875 25,114,150 - + + - - - + - - + - + + - - + 

rs11654222 25,123,086 - + - - - - - - - + - + - - - - 

rs2628165 25,145,292 - + + - - - + - - + - + - - - + 

rs4474741 25,172,243 - + + - - - + - - + - + - - - + 

rs17226179 25,192,699 - + + - - - + - - + - + - - - + 

rs7223455 25,196,483 - - + - + - - - - - - - - - - + 

rs4294865 25,229,862 - + + - - - + - - + - + + - - + 

rs6505145 25,273,428 - - + - + - - - - - - - - - - - 

rs4598962 25,318,074 - + + + - - + - - + - + - - - + 

rs9897794 25,320,453 - + + + - - + - - + - + - - - + 

rs12150261 25,344,599 - + + - - - + - - + - + - - - + 

rs12939344 25,352,945 - + + + - - + - - + - + - - - + 

rs9902453 25,373,221 - + + + - - + - - + - + - - - + 

rs7213462 25,413,702 - + - + + - + + - + - + - - + - 

rs4465650 25,420,847 - + + + - + + - - - - + - - - + 

rs9906340 25,423,103 - + + + - - + - - + - + - - - + 

rs6505162 25,468,309 - + + + - - + - - + - + - - - + 

rs4429345 25,482,231 - + + + - - + - - + - + - - - + 

rs11080118 25,499,505 - + + + - - + - - + - + - - - + 

rs9902340 25,500,584 - + + + - - + - - + - + - - - + 

rs7221154 25,529,150 - + + + - - + - - + - + - - - + 
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rs2054846 25,531,819 - + + + - - + - - + - + - - - + 

rs1906451 25,539,605 - + + + - - + - no Call + - + - - - + 

rs7224199 25,547,852 - + + + - - + - - + - + no Call - - + 

rs140701 25,562,658 - + + + - - + - - + - + + - - + 

rs4583306 25,562,841 - + + + - - + - - + - + + - - + 

rs8076005 25,571,336 - - + - + - - - - - - - - - - + 

rs11080122 25,571,461 - - + - + - - - - - - - - - - + 

rs2020939 25,574,858 - + + + - - + - - + - + + - - + 

rs2020936 25,574,940 - - + - + - - - - - - - - - - + 

rs16965628 25,579,551 - - + - - - - + - - - - - - - - 

rs7214991 25,596,486 + + + + + - + + + + - - + - - + 

rs1050565 25,600,202 + + - + + - + + + + - - + - - + 

rs7223821 25,603,446 + + - + + - + + + + - - + - + + 

rs17767256 25,605,169 + + - + + - + + + + - - + - - + 

rs16965656 25,615,876 - - + - - - - - - - - - - - - - 

rs7209807 25,627,320 - - + - - - - - - - - - - - - - 

rs8072345 25,628,415 + + + + + - + - + + - + + - - - 

rs8081598 25,666,506 - - - - - - - - - - - - - - - - 

rs3110452 25,671,878 + + - + + - + + + + - - + - - + 

rs6505178 25,688,181 + + - - + - + + + + - - + - - + 

rs8079175 25,691,408 + + - - + - + + + + - - + - - + 

rs8068438 25,692,866 + + - - + - + + + + - - + - - + 

rs8082169 25,700,653 - - - - - - - - - - - - - - - - 

rs7215966 25,711,322 + + - - + - + + + + - - + - - + 

rs16965693 25,711,818 - - - - - - - - - - - - + - - - 

rs4794869 25,715,226 - - - - - - - - - - - - - - - - 

rs12952168 25,723,214 + + - - - - + - - + - + + + - - 

rs17803815 25,728,007 - - - - - - - + - - - + - - - + 
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rs12453652 25,754,986 + + - - - - + - - + - + + + - - 

rs719601 25,755,541 + + - - - - + - - + - + + + - - 

rs4794873 25,772,478 - - - - + - - - + - - - - - - - 

rs6505188 25,808,508 + + - + - - + + - + - - + + + + 

rs10491108 25,817,443 - - - - - - - + - - - + - - - + 

rs9406 25,818,146 + + - - - - + + - + - - + + - + 

rs9303633 25,831,576 + + - - - - + + - + - - + + - + 

rs9897725 25,889,787 - - - - - - - + - - - + - - - + 

rs216475 25,890,095 + + - - - - + + - + - - + + - + 

rs9898690 25,892,465 - - - - - - - + - - - + - - - + 

rs216480 25,892,855 + + - - - - + + - + - - + + - + 

rs216481 25,893,195 + + - - - - + - - + - + + + - - 

rs216483 25,894,853 - + - - - - + - - + - + + + - - 

rs216485 25,896,751 - + - - - - + - - + - + + + - - 

rs216450 25,902,943 - + - - - - + + - + - - + + - - 

rs216459 25,917,773 - + - - - - + + - + - - + + + - 

rs216460 25,917,804 - + - - - + + + - - - + - + + - 

rs17606460 25,923,150 - + - - + - - + + + - - + - - - 

rs216412 25,927,520 - - - - - - - - + - - - - - + - 

rs122898 25,929,380 - - - - - - - - + - - - - - + - 

rs216443 25,955,997 - - - - - - - - + - - - - - + - 

rs423151 25,976,412 - - - - - - - - + - - - - - + - 

rs9904033 26,024,145 - + - - - - + + - + - + - - + + 

rs8081187 26,040,486 - - - - - - - + - - - + - - + + 

rs11657662 26,100,473 - - - - - - - - + - - - - - + - 

rs9898084 26,106,460 - - - - - - - - + - - - - - + - 

rs9895785 26,131,834 - - - - - - - - - - - - + - + - 

rs7214570 26,171,290 - - - - - - - - - - - - - - + - 
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rs9912440 26,172,898 - - - - - - - - - - - - - - + - 

rs9915139 26,182,641 - - - - - - - - - - - - - - - - 

rs3816780 26,185,484 - - - - - - + - - - - - - - + - 

rs11080134 26,185,629 - - + - - - - - + + - - - - - - 

rs9890032 26,190060 - - - - - - - - - - - - - - - - 

rs11657270 26,238,513 - - - - - - + - - - - - - - + - 

rs9914242 26,240,371 - - - - - - + - - - - - - - + - 

rs9889755 26,258,631 - - - - - - + - - - - - - - + - 

rs9911989 26,261,828 - - - - - - + - - - - - - - + - 

rs7225461 26,284,025 - - - - - - - - - - + - - - - - 

rs6505219 26,289,747 + - - - - - - - - - - - - - + - 

rs2232281 26,307,729 - - - - - - - - - - - - - - - - 

rs17826255 26,357,642 + + - + + + + + + + + + + + + - 

rs9900686 26,360,463 - - - - - - - - - + - - - - - - 

rs11657989 26,419,872 - + - - - - - - - - - - - - - - 

rs7217921 26,420,423 - + - - - - - - - - - - - - - + 

rs8076441 26,430,004 + + + - + + + + + + + + + + - + 

rs12603885 26,490,848 - - - - - - - - - - - - - - - - 

rs1124918 26,516,549 - - - + - - + + + - - - - - + - 

rs2953013 26,520,469 - + - - - - - - + - - - - - - - 

rs1801052 26,532,901 - - - - - - - - - - - - - - - - 

rs1013948 26,554,835 - - + - - - - - + - - - - - - - 

rs1034705 26,560,259 + - - + + + + + - + + + + + + + 

rs2905877 26,567,395 - + + - - - - - + - - - - - - - 

rs2905880 26,570,301 - + - - - - - - - - - - - - - - 

rs7215555 26,588,729 - - - - + + + + - - + + - + - + 

rs9303642 26,602,486 - + - - - - - - + - - - - - - - 
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rs11870910 26,626,536 + - - + - - - - - - - - - - - - 

rs11080149 26,647,414 - + - - - - - - - - - - - - - - 

rs11655238 26,648,301 - - - - - - - - - - - - - - - - 

rs2040792 26,652,675 + - + - - - - - + - - - - - - - 

rs10512434 26,663,716 + - + - + + - - + + + + + + - + 

rs2189525 26,692,934 - - - - - - + + - - - - - - + - 

rs7405740 26,694,316 + - - + - - - - - - - - - - - - 

rs2854311 26,695,453 - - - - - - - - - - - - - - - - 

rs2854322 26,723,542 - - - - - - - - + - - - - - - - 

rs8067440 26,732,281 - - - - - - - - - - - - - - - - 

rs2525578 26,735,537 - - + - - - - - + - - + - - - - 

rs757378 26,746,745 - - - - - - - - - - - - - - - - 

rs731759 26,746,935 + - - - + - - - - - + + + - - + 

rs735053 26,766,853 - - - - - - - - - - - - - - + - 

rs7218430 26,773,570 - + - - - - - - - - - - - - + - 

rs12941005 26,779,135 - - - - - - - - - - - - - - - - 

rs733276 26,786,518 - - - - - - - - + - - - - - - - 

rs12951187 26,791,212 - - - - - - - - - - - - - - - - 

rs178853 26,791,321 - - - - - - - - - - - - - - - - 

rs7502433 26,809,334 + - - - - + - - - + - - - - - - 

rs4327103 26,809,496 - - + - - - - - - - - - - - - - 

rs178886 26,818,596 - + - - - - - - - - - - - - + - 

rs4794889 26,819,348 - - + - - - - - - + - - - - - - 

rs11868735 26,820,323 - - + - - - - - - + - - - - - - 

rs178889 26,820,440 + - - + + - + - - - + + + + - + 

rs9909944 26,853,742 - - - - - - - - - - - - - - - - 

rs9901597 26,853,794 - - - - - - - - + - - - - - + - 
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rs2343244 26,858,750 - - - - - - - - - - - + - - - - 

rs9908879 26,859482 - - - - - - - - - - - - + - - + 

rs882545 26,862,502 - - - - - - - - - - - - - - - - 

rs2023795 26,876,212 + - + - + - - - - + - + + + + + 

rs12602681 26,879,455 - - - - - - - - - - - - - - - - 

rs2074150 26,880,052 - - + - - - - - + - + - - - - - 

rs2074151 26,881,062 - - - - - - - - - - - - - - - - 

rs4795616 26,892,260 - - - - - - + - + - + - - - + - 

rs2018971 26,896,751 - - - - - - - - - - - - - - - - 

rs7216082 26,914,065 - - + - - - - - - - - - - - + - 

rs223143 26,927,449 - - + - - - - - - - - + - - - - 

rs17181665 26,932,784 - - - - - - - - - - - - - - - - 

rs1020628 26,935,918 + - - - + - - - - - - - - - - + 

rs8069530 26,939,821 - + - + + - - - + - - + + + + - 

rs17181735 26,945,053 - - - - - - - - - - - - - - - - 

rs192001 26,955,139 - - - - + + - - - - - - - - - - 

rs11080162 26,961,108 - - - - - - - - - - + - + - - - 

rs710962 26,963,489 - + + - - - - - - - - - - - + - 

rs315429 26,966,079 - - - - - - - - - - - - - - - - 

rs812776 26,977,514 - - - - - - - - - - - - - - - + 

rs167564 26,980,258 + + + + - - - - + - - - - - + - 

rs430432 26,989,426 - - - - - - - - - - - - - - - + 

rs407713 26,990,364 - - - - - - - - - - - - - - - - 

rs770497 26,997,435 - - - - + - - - - + + + + + - - 

rs16972368 27,000,763 - - - - - - - - - - - - - - - - 

rs770520 27,004,572 + - + - + + - - + + + + + + - + 

rs770521 27,004,671 + - - - + + - - + + + + + + - - 
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rs315431 27,005,299 - - - - - - - - - - - - - - - - 

rs315437 27,007,946 - - - - - + - - - - - - - - - - 

rs315439 27,009,191 - - - + - - - - - - - - - - + + 

rs373531 27,011,628 - - - - - - - - - - - - - - - - 

rs12936664 27,024,408 + - - - - - + - + + - + - - - - 

rs447750 27,024,517 - + + - - - - + - - - - - - - - 

rs9893718 27,025,948 - - + - - - - + - - - + - - - - 

rs9893975 27,026,066 - - - - - - - - - - - - - - - - 

rs425083 27,028,247 - - + + - - + - - - - - - - + - 

rs427272 27,029,068 - - - - - - - - - - - - - + + + 

rs425967 27,038,309 - + - + - - - - - - - - - + + + 

rs385559 27,038,826 - + - + + - - - - - - - - + + + 

rs421875 27,041,382 - + - + - - - - - - - - + + + + 

rs11658518 27,047,758 - - - - - - - - - - - - - - - - 

rs7222438 27,057,935 - - - - - + - - + - - - - - - - 

rs16966835 27,060,691 - - - - - - - - - - + - - - - - 

rs315495 27,060,818 - - - - - - - - - - - - - - - - 

rs9890598 27,061,309 - - - - - - - - - - - - - - - - 

rs9898609 27,061,818 - - - - - - - - - - - - - - - - 

rs315502 27,062,713 + - - - - - + - - - - - + - + - 

rs17182078 27,072,868 - - - - - - - - - - - - - - - - 

rs884351 27,073,028 - - - - - - - - - + - + - - - - 

rs8066501 27,075,820 - - + - - - - + - - - + - - + - 

rs12939349 27,076,025 - + - + - - - - - - - - - - - + 

rs2111662 27,079,871 - + - - + - - - - - - - - - - - 

rs16966855 27,088,333 - - - - - - - - - - - - - - - - 

rs17827108 27,088,517 - - - + - - - - + + - - - - - + 
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rs16966858 27,088,939 - - + - - - - - - - - - - - - - 

rs17246714 27,089,201 - - - - - - - - - - - - - - - - 

rs9914500 27,091,540 - - - - - - - - - - - - - - - - 

rs8074803 27,093,316 - - - - - - - - - - - - - - - - 

rs11871038 27,094,989 - - - - - - - - - - - - - - - - 

rs2111666 27,102,412 - - - + - - - - - - - - - - - - 

rs9910565 27,109,313 - - - - + + - - - - - + - + - + 

rs8066989 27,109,945 - - - - - + - - - - - - - - - - 

rs11651399 27,129,435 - - - - - - - - - - - - - - - - 

rs9902100 27,138,441 + + + - + + - + + - + + + + + - 

rs13380855 27,139,087 - - - - - - + - - - - - - - - - 

rs9898619 27,141,418 - - - - - - - - - - - - - - - - 

rs16966942 27,144,777 - - - - - - - - + - - - - - - - 

rs11080170 27,145,874 - - - - - - - - - - - - - - - - 

rs9905200 27,147,900 - - - - - - + - - - - - - - - - 

rs757288 27,148,090 + - + + + - + + + + + + + + + + 

rs757289 27,148,193 - + + + - - + - + + - - + - - - 

rs4795653 27,163,735 - + + + - - - - + + - - + - - - 

rs1468263 27,171,997 - - - - - - - - - - - - - - - - 

rs8068039 27,182,757 - - - - - - - - - - - - - - - - 

rs8074024 27,182,912 - - - - - - - - - + - - + - - + 

rs4795658 27,185,863 - - - - - - - - - - - - - - - - 

rs6505265 27,196,693 - - + - - - - - - - - - - - - - 

rs7223225 27,197,449 - - - - - - - - - - - - - - - - 

rs16967012 27,198,077 - - - - - - - - + - - - - - + - 

rs2344310 27,205,319 - + - + - - + - + - - - + - + - 

rs12941700 27,209,135 + - - - + + + + + + + + - - + + 
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rs9906443 27,209,678 - - - - - - - - - + - - - - - - 

rs9899093 27,216,067 - - - - - - - - - - - - - - - - 

rs16967029 27,219,405 - - - - - - - - - - - - - - + - 

rs7209493 27,221,436 - - - - - - - - - - - - - - - - 

rs8079471 27,242,430 - - - - - - - - - - - - - - - - 

rs1034626 27,243,613 - - - - - - - - - - - - - - - - 

rs1034627 27,243,682 - - + - - - - - + + - + - - - - 

rs3760454 27,246,115 - - - - - - - - - - - - - - - - 

rs7222814 27,248,984 - - - - - - - - + - - - - - - - 

rs7216102 27,283,563 - - - - - - - - - - - - - - - - 

rs578635 27,314,010 - + - + - + - - + + + + - + + - 

rs501957 27,338,617 - + - + - - - - - - - - + - - - 

rs508192 27,339,260 - + + + - - - - - - - - + - - - 

rs497479 27,352,718 - + - + - - - - - - - - + - - - 

rs8066156 27,385,742 - + - + - - - - - - - - + - - - 

rs8076067 27,460,756 - + - + + - - - - - - - + - - + 

rs7212461 27,470,861 - + - + + - - - - - - - + - - + 

rs7210088 27,474,705 - + - + + - - - - - - - + - - + 

rs1993791 27,525,515 - + - + + - - - - - - - + - - + 

rs1993790 27,525,531 - + - + + - - - - - - - + - - + 

rs2036376 27,558,424 - + - + + - + - - - - - + - - + 

rs7216187 27,568,352 - + - + + - - - - - - - + - - + 

rs9902253 27,573,486 - + - + + - - - - - - - + - - + 

rs17182658 27,573,557 - - - - - - - - - - - - - - - - 

rs16967213 27,580,395 - + - + + - - - - - - - + - - + 

rs3744616 27,593,261 - - - - - - - - - - - - - - - - 

rs12944565 27,604,385 - + - - - - - + - + + - + + + - 

rs12452958 27,605,972 - - - - - - - - - - - - - + - - 
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rs12325966 27,606,107 + - - - - - - - - + - + - + + - 

rs1039402 27,610,212 + - - - - - - - - + - + - + + - 

rs726502 27,612,377 + - - - + - - + - - + + + - - - 

rs12453610 27,619,952 + - - - + - - + - + + + + - - - 

rs9907164 27,620,126 - + - - - - - - - + + - + + + - 

rs4795686 27,620,615 - + - - - - - - - + + - + + + - 

rs5002530 27,622,256 + - - - + - - + - + + - + - - + 

rs1530381 27,626,251 + - - - + - - + - + + + + - - - 

rs17780388 27,630,414 + + - - + - - + - - - + - + + - 

rs16967244 27,636,926 + + - - + - - + - - - - - + + - 

rs17732573 27,651,777 - - - - + - + + - + + - - + + - 

rs4794915 27,658,476 - + - - + - + - - + + + + - + - 

rs1019152 27,683,119 - + - - - - - - + + + - - - + - 

rs8069673 27,685,363 - + - - + + + - + + + + + - + - 

rs9904964 27,686,945 - + - - + - + - + + + + + - + - 

rs9901737 27,705,467 - + - - + - + - + + + + + - + - 

rs3795244 27,716,509 - + - - - - - - - - - + + - - - 

rs2344977 27,744,686 - - - - + - + + + + + - - + + - 

rs8070777 27,789,577 - + - - - - - + - - - + + + - - 

rs9910731 27,808,147 - + - - + - + + + - + + + - + - 

rs9889607 27,809,698 - + - - + - + + + - + + + - + - 

rs12162135 27,829,908 - - - - + - - + + - + - - + + - 

rs735555 27,841,563 - - - - + - + - + + + - - + + - 

rs731880 27,842,822 - + - - - - - + - - - + - + - - 

rs2285428 27,844,289 - + - - + - + + + - + + + - + - 

rs9889771 27,847,120 + + - + + - - + - - - + + + - - 

rs1018866 27,853,777 - - - - - - + + + + + - - + + - 

rs17806303 27,855,741 - - - - - - - - + - - - - - - - 

Page 83 of 91

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 38 

rs916663 27,859,946 + - - - + - + - + + - - - + + - 

rs17806429 27,882,512 + - - - - - - - - - - - - - - - 

rs2706755 27,883,082 - - - + - - + - - + - - - - - + 

rs1034593 27,885,978 + + - + - + + + - + - - - - + + 

rs6505300 27,894,053 + + - + - + + + - + - - - - + + 

rs2519861 27,895,953 + - + + - + + - - - + - - - - - 

rs4794928 27,896,684 - + - - - - - - - + - - - - - - 

rs1989805 27,897,975 + - + + - + + - - + + - - - - - 

rs225188 27,902,283 + + + + - + + - - + + - - - - - 

rs9903536 27,902,861 + + + + - + - + - + + - - - + - 

rs9890602 27,904,495 - - - - - - - - - - - - - - + - 

rs225186 27,905,012 - + + + - - + + + - + + + - + + 

rs225184 27,906,240 + - + + + - - + - - - + - + - - 

rs389774 27,909,678 + - + + + - - + - - - + - + - - 

rs11657700 27,917,684 + + + - - + + + - - + - + + - - 

rs225205 27,918,399 + - + + - + + + - - + - - + - - 

rs225206 27,918,485 - - + + - + + + - - + - - + + - 

rs225207 27,918,837 + - + + + - - + - - - + - + - - 

rs225209 27,918,999 - - + + - + + + - - + - - + + - 

rs225211 27,919,415 + - + + - + + + - - + - - + - - 

rs6505303 27,,919,727 - - - - + + + - - - + + - - - - 

rs225212 27,920,568 + - + + - + + + - - + - - + - - 

rs225214 27,920,869 + - + + - + + + - - + - - + - - 

rs225215 27,921,023 - - + + - + + + - - + - - + + - 

a: according to the human, gen,ome assembly hg18, NCBI 36 
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Supplementary Table S6: Position of runs of homozygosity (ROHs) ≥ 200 kb located distal 

to the type-2 NF1 deletions in 13 of 16 patients investigated by SNP arrays  

 

Patient Position
a
 of the ROH on chromosome 17 Length (bp) 

 start end  

811-M 27,314,010 27,605,972 291,962 

697 27,314,010 27,894,053 580,043 

736 27,593,261 27,882,512 289,251 

2358 27,338,617 27,883,082 544,465 

585 27,338,617 27,636,926 298,309 

488 27,338,617 27,593,261 254,644 

1502 27,338,617 27,658,476 319,859 

1956 27,338,617 27,593,261 254,644 

IL39 27,338,617 27,593,261 254,644 

1104 27,338,617 27,605,972 267,355 

WB 27,338,617 27,593,261 254,644 

UC172 27,314,010 27,593,261 279,251 

938 27,593,261 27,882,512 289,251 

a: Nucleotide numbering of chromosome 17 according to hg18, NCBI build 36.1, Ensembl 

database version 54.36p. 
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Supplementary Table S7: Positions of runs of homozygosity (ROHs) ≥ 200 kb located distal 

to the type-2 NF1 deletion interval in 60 CEU individuals as determined by the analysis of 

phased haplotypes downloaded from HapMap (HapMap Data Rel 24/phaseII Nov08, on 

NCBI B36, assembly dbSNPb126) [Roehl et al., 2010] 

 

CEU individuals Position
a
 of the ROH on chromosome 17 Length (bp) 

 start end  

NA06985 27,352,718 27,593,261 240,544 

NA06993 27,352,718 27,580,395 227,678 

NA06994 27,605,972 27,904,495 298,524 

NA07000 27,352,718 27,605,972 253,255 

NA07022 27,420,000 27,651,777 231,778 

NA07055 27,651,777 27,853,777 202,001 

NA07056 27,651,777 27,883,082 231,306 

 27,352,718 27,605,972 253,255 

NA07345 27,352,718 27,580,395 227,678 

 27,630,414 27,909,678 279,265 

NA11831 27,352,718 27,636,926 284,209 

NA11832 27,352,718 27,580,395 227,678 

NA11839 27,352,718 27,593,261 240,544 

NA11840 27,651,777 27,883,082 231,306 

 27,352,718 27,605,972 253,255 

NA11881 27,352,718 27,636,926 284,209 

NA11882 27,633,000 27,853,777 220,778 

 27,352,718 27,580,395 227,678 

NA11992 27,352,718 27,580,395 227,678 

NA11995 27,651,777 27,883,082 231,306 

NA12003 27,352,718 27,573,486 220,769 

NA12004 27,352,718 27,593,261 240,544 

NA12005 27,352,718 27,593,261 240,544 

NA12006 27,352,718 27,593,261 240,544 

NA12043 27,352,718 27,610,212 257,495 

NA12044 27,352,718 27,580,395 227,678 

NA12056 27,352,718 27,593,261 240,544 

 27,605,972 27,883,082 277,111 

NA12057 27,651,777 27,883,082 231,306 

 27,352,718 27,605,972 253,255 

NA12145 27,651,777 27,855,741 203,965 

NA12146 27,352,718 27,593,261 240,544 

NA12154 27,352,718 27,580,395 227,678 

NA12155 27,352,718 27,883,082 530,365 

NA12156 27,633,000 27,844,289 211,290 

NA12236 27,352,718 27,636,926 284,209 

NA12249 27,352,718 27,897,975 545,258 

NA12264 27,352,718 27,593,261 240,544 

NA12716 27,352,718 27,855,741 503,024 
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NA12717 27,651,777 27,853,777 202,001 

 27,352,718 27,605,972 253,255 

NA12750 27,352,718 27,921,023 568,306 

NA12760 27,352,718 27,580,395 227,678 

NA12763 27,630,414 27,853,777 223,364 

 27,352,718 27,593,261 240,544 

NA12812 27,352,718 27,894,053 541,336 

NA12814 27,352,718 27,605,972 253,255 

NA12875 27,352,718 27,593,261 240,544 

NA12892 27,352,718 27,558,424 205,707 

a: Nucleotide numbering of chromosome 17 according to hg18, NCBI build 36.1, Ensembl 

database version 54.36p. 
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Supplementary Table S8: Motifs identified in the recombination regions (RRs) of 16 type-2 

deletions caused by NAHR  between SUZ12 and SUZ12P 

 

 
a
: R=A/G, Y=C/T, W=A/T, S=G/C, M=A/C, K=G/T, N= any base. The complementary sequence was 

also investigated, but the corresponding sequence motifs are not listed. 

* Sequences significantly overrepresented at the 5% level in RRs. 

 

 

 

Motif
 
 Consensus sequence

 a
 Number of motifs (and 

their complements) 

identified within the RRs 

   

Vaccinia topoisomerase I consensus 

cleavage site 

YCCTT 7 

Immunoglobulin heavy chain class 

switch repeat 

GAGCT, TGGGG, 

GGGCT,GGGGT, TGAGC 

13 

Chi and chi-like elements CCWCCWGC 2* 

Human minisatellite consensus sequence GCWGGWGG 2* 

Short polypurine/ polypyrimidine tracts R5/Y5 16 

Long polypurine/ polypyrimidine tracts R10/Y10 1/2 

Murine parvovirus recombination hotspot CTWTTY 9 

Deletion hotspot consensus sequence TGRRKM 13 

DNA polymerase arrest site WGGAG 7 

DNA polymerase β frameshift hotspot ACCCWR 3 

Hamster deletion hotspot sequence TGGAG 2 

Hamster and human APRT deletion 

hotspot 

TTCTTC 3 

Super hotspot motifs
 c
 CCAAR, 

CCCAG 

AGCTG 

CCACCA 

13 

6 

4 

4 
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Supplementary Table S9: Frequency of Alu elements within the recombination regions 

(RRs) of 16 type-2 NF1 deletions mediated by NAHR  

 

Patient Position of the RR within 

the SUZ12 gene 

RR 

length (bp) 

Type of Alu element identified 

within the RR (length in bp) 

811-M 27,297,456-27,297,501 46 Alu Sx 

(46) 

KCD 27,299,613-27,299,721 109 − 

697 27,304,631-27,304,699 69 Alu Jo 

(67) 

736 27,308,895-27,308,982 88 Alu Sz 

(82) 

1630 27,313,160-27,313,271 112 − 

2358 27,316,556-27,316,619 64 − 

585 27,316,621-27,316,750 130 − 

488 27,318,189-27,318,245 57 Alu Y 

(56) 

1502 27,318,355-27,318,545 191 Alu Yc 

(47) 

1956 27,318,916-27,319,061 146 Alu Jo 

(96) 

IL39 27,322,062-27,322,108 47 − 

1104 27,322,154-27,322,229 76 − 

2429 27,329,593-27,329,817 225 Alu FLAM C 

(58) 

WB 27,331,894-27,332,070 177 Alu Yk11 

(54) 

UC172 27,331,894-27,332,070 177 Alu Yk11 

(54) 

938 27,334,336-27,334,446 111 Alu Sx 

(41) 

 

To determine whether Alu elements were overrepresented in the breakpoint regions of the 16 

type-2 NF1 deletions mediated by NAHR, the number of Alu sequences in the breakpoint 

regions was ascertained by Repeatmasker analysis (http://www.repeatmasker.org/cgi-

bin/WEBRepeatMasker). Ten Alu sequences were identified in the 16 breakpoint regions with 

a mean length of 114 bp. The SUZ12 gene and SUZ12P pseudogene are highly homologous 

over 45 kb as determined by BLAT analysis (http://genome.ucsc.edu/). Within this 45 kb 

sequence, 71 Alu elements were identified. Accordingly, in 1825 bp of SUZ12 (the total 

length of the breakpoint regions), 2.9 Alu elements would be expected. However, since we 

observed 10 Alu elements in the breakpoint regions, it was concluded that Alu elements were 

significantly overrepresented at the type-2 deletion breakpoints (p < 0.0001; exact exact 

goodness-of-fit χ
2
 test). 
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Supplementary Table S10: DNA stability, measured as ∆G° values, within the 

recombination regions (RR) of 14 patients with mosaic type-2 NF1 deletions mediated by 

NAHR 

 

Patient ∆G° (kcal) of 50 bp in 

the centre of the RR 

∆G° (kcal) within the RR 

(bp) 

∆G° of a 3 kb sequence including 

and flanking  the RR 

811-M 1.94 1.94 (45) 1.78 

KCD 1.75 1.75 (108) 1.79 

697 1.96 1.95 (68) 1.94 

736 2.04 2.03 (87) 1.94 

1630 1.77 1.79 (111) 1.87 

585 1.6 1.66 (129) 1.86 

488 1.97 1.96 (56) 1.88 

1502 1.82 1.81 (190) 1.87 

1956 1.87 1.89 (145) 1.89 

IL39 1.61 1.61 (46) 1.87 

1104 1.63 1.63 (75) 1.86 

WB 1.75 1.77 (174) 1.8 

UC172 1.75 1.77 (174) 1.8 

938 1.68 1.7 (110) 1.79 

Mean 1.8 1.8 1.85 

[95% CI: 1.82–1.88] 
 

The DNA stability of the RRs of the type-2 NF1 deletions was significantly lower than in the 

PRS1 (∆G°: 2.008) and PRS2 (∆G°: 2.152) hotspot regions of type-1 NF1 deletions (P < 

0.0001; one-sample t-test). CI: confidence interval assigned under the assumption of a normal 

distribution. The average ∆G° of the complete SUZ12 gene is 1.871, of the SUZ12P 

pseudogene 1.877, and of the NF1-REP A 1.976. 
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Supplementary Table S11: GC-content of the recombination regions (RRs) of the 14 type-2 

NF1 deletions mediated by NAHR during the mitotic cell cycle 

 

Patient GC-content of the RRs within the 

SUZ12 gene (%) 

GC-content of 3 kb including and flanking 

the RRs within the SUZ12 gene (%) 

811-M 50.0 34.8 

KCD 31.2 36.6 

697 56.5 46.3 

736 54.6 46.3 

1630 36.6 43.3 

585 26.2 40.2 

488 56.1 41.9 

1502 41.9 42.0 

1956 47.3 44.1 

IL39 23.4 40.4 

1104 26.3 40.8 

WB 37.3 36.0 

UC172 37.3 36.0 

938 29.7 36.1 

Mean 39.1 40.3 

[95% CI: 38.1−42.6] 

The GC-content of the type-2 NF1 deletion RRs is significantly lower than the GC-content of 

the PRS1 (50.9%) and PRS2 (58.2%) hotspot regions of type-1 deletions (P < 0.0001; one-

sample t-test). CI: confidence interval assigned under the assumption of a normal distribution. 

The average GC-content of the complete SUZ12 gene is 42.6%, of the SUZ12P pseudogene 

43.1%, and of the NF1-REP A 33.8%. 
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