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Abstract

Free Form Deformation (FFD) is a well established technique for
deforming arbitrary object shapes in space. Although more re-
cent deformation techniques have been introduced, amongst them
skeleton-based deformation and cage based deformation, the simple
and versatile nature of FFD is a strong advantage, and justifies its
presence in nowadays leading commercial geometric modeling and
animation software systems. Since its introduction in the late 80’s,
many improvements have been proposed to the FFD paradigm, in-
cluding control lattices of arbitrary topology, direct shape manip-
ulation and GPU implementation. Several authors have addressed
the problem of volume preserving FFD. These previous approaches
either make use of expensive non-linear optimization techniques, or
resort to first order approximation suitable only for small-scale de-
formations. In this paper we take advantage from the multi-linear
nature of the volume constraint in order to derive a simple, exact
and explicit solution to the problem of volume preserving FFD.
Two variants of the algorithm are given, without and with direct
shape manipulation. Moreover, the linearity of our solution enables
to implement it efficiently on GPU.

1 Introduction

Freeform deformation is a versatile and powerful shape deforma-
tion method. Most of leading commercial geometric modeling and
computer animation systems such as Maya, Softimage XSI, 3DS
MAX have integrated an FFD tool. FFD is a global space defor-
mation method. Herein, an object is embedded into a deformable
space such that each point of the object has a unique parameter in
the space. The object is then deformed accordingly to a deformation
defined on the space. It works independently of the representation
of the embedded object.

Traditionally, the deformations are defined by parametric poly-
nomial trivariate functions parameterized over the unit cube. The
control points of a Bézier or B-spline representation form a paral-
lelepipedical lattice which serves as deformation tool. The posi-
tions of the deformed object are calculated as the image of their
initial parameterization using the control points and the basis func-
tions. While the deformation is independent of the representation
of the embedded geometry, FFD is commonly used to deform poly-
gonal models. Even very complex models with hundreds of thou-
sands of vertices can be deformed quite intuitively by moving only
a few control points.
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Figure 1: Animation of an deformable object (called RedBox) flattened out
on the ground. Frames 1, 25, 30, and 35 are shown. Left column: standard
FFD without volume preservation. Loss of volume 28%, 51% and 64%
in the frames 25,30 and 35. Right column: volume preserving FFD with
volume correcting displacements of the grid points restricted to horizontal
directions.
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Many extensions and improvements of the basic FFD method
[23] have been proposed. Extensions are generally concerned with
modifications of the structure of the lattice. Improvements aim to
increase the realism of the deformations obtained with FFD. A first
extension [5] allows a user to generate non-parallelepipedical lat-
tices and the combination of many lattices to form arbitrary shaped
spaces. However, the linear precision property gets lost, numerical
techniques have to be employed for object embedding and continu-
ity constraints are reducing the flexibility. A second extension intro-
duces deformation methods defined on lattices of arbitrary topology
[16]. The deformable space is defined by using a volumetric anal-
ogy of subdivision surfaces. This method gains in flexibility but
looses in efficiency. The subdivision steps and embedding proce-
dure are quite time consuming. Furthermore the construction of the
lattice is complex.

Shape improvements for FFD seek to increase realism of de-
formation and animation of 3D objects either by proposing di-
rect shape manipulation tools, by using physical-based deformation
techniques, or by introducing volume preservation methods. Direct
shape manipulation offers the possibility to place exactly the object
points instead of manipulating FFD control points. Shape manip-
ulation becomes thus more intuitive. [10, 11] propose to manip-
ulate the embedded object directly by specifying source points on
the object and the target points. Repositioning of the lattice con-
trol points is computed using a least-squares formulation. Hsu et
al. [10] use a pseudo-inverse matrix and perform iterative computa-
tions. Hu et al. [11] add linear constraints to the least-squares for-
mulation and derive an explicit closed form solution. The objective
of physical-based animations is to increase realism by generating
plausible behaviors. However, real-time animations are generally
limited to small models with a thousand of control points [6].

Volume preservation is a well known principle in Computer
Graphics and Animation leading to more realistic looking defor-
mations [14]. It is a popular tool not only for FFD. Rappaport et
al. [19] introduce volume preserving parametric free-form solids.
The volume preservation of the lattice cells is obtained by least-
squares with non-linear constraint. A non-linear optimization algo-
rithm is employed. Convergence is not guaranteed and many time
consuming iterations are necessary to approximate the given vol-
ume up to 10−4. Aumann and Bechmann [1] propose a volume
preserving FFD combined with position constraints for triangular
models. A least-squares problem with linear constraints is solved
using a pseudo-inverse matrix. However, the volume constraint is
linearized by a first order Taylor approximation, which is valid only
for small scale deformations. Several iterations are necessary with-
out any guarantee of convergence. Hirota et al. [9] solve volume
preserving FFD on triangular models by using non-linear minimiza-
tion techniques. Convergence is not guaranteed. An extension to
parametric surfaces uses multi-level optimization techniques. Both
approaches are extremely time consuming.

All of these methods propose a volume correction step by re-
computing the FFD lattice as close as possible to the user defined
deformation. However, either the use of non-linear optimization
techniques is required which is very time consuming, or the volume
constraint is linearized by using a first order approximation, which
limits the method to small scale deformations. Many iterations are
generally needed in order to get acceptable precision, whereas no
guarantee of convergence can be given.

Although CPUs have become more powerful, it is still a chal-
lenge to obtain both realism through volume preservation, and real-
time FFDs for complex objects. In [21] a first step towards real-time
is made by providing an implementation of FFD on programmable
graphics hardware but without volume preservation.

The goal of the present paper is to propose a volume preserv-
ing FFD which exactly preserves the volume and which makes a
step further towards real-time FFD with volume preservation. We

achieve this goal by making the following two contributions:

• first, based on the trilinearity of the volume constraint, we
propose an explicit closed form solution for exact volume
preservation which optionally can include a point constraint
for direct shape manipulation. No linear system has to be
solved and no iterative optimization method is necessary;

• second, we provide for the first time a GPU implementation
for volume preserving FFD.

2 FFD

An FFD is defined as a mapping D : Ω ⊂ IR3 → IR3, deform-
ing a region of IR3 into another region of IR3. An object which
is embedded in the parameter domain Ω undergoes the same de-
formation. Even though D can be an arbitrary function, trivariate
tensor product Bézier or B-spline functions are usually used due to
their robustness and direct control via control points. The partition
of unity property of the basis functions ensures linear precision. B-
splines however offer more flexibility and low degree functions. We
use a B-spline FFD defined as

D(u, v, w) =

nu∑
i=0

nv∑
j=0

nw∑
k=0

PijkBijk(u), u = (u, v, w) ∈ Ω,

where
Bijk(u) := Bi(u)Bj(v)Bk(w) (1)

and where Pijk are the control points and Bi(u) are the univari-
ate B-spline basis functions of degree d relative to some knot se-
quence T . In the rest of the paper we replace the triple sum∑nu

i=0

∑nv
j=0

∑nw
k=0 by the notation

∑
ijk. Let u = (u, v, w) de-

note the parameter value. Without loss of generality we assume the
parameter domain Ω = [0, 1]3 to be the unit cube. More details
about B-splines can be found in standard text books [7, 4].

Let S be a polygonal surface model to be deformed by D.
The exact deformation of a polygonal model is approximated by
applying the deformation function D only to the vertices xi =
(xi, yi, zi)

T ∈ IR3 of S. S is supposed to be embedded in the para-
metric domain of D, otherwise an affine transformation is applied
to the vertices xi.

3 Volume Preserving FFD

Our goal is to conserve the volume Vref embedded inside a given
model, when the model is deformed by an FFD. We propose to pro-
ceed in two steps. First, a classical FFD given by D(u, v, w) =∑

ijk PijkBi(u)Bj(v)Bk(w) is applied to the model. Let us de-
note the deformed model by M . This operation may change the
volume enclosed by the model, thus in general V (M) ̸= Vref .
In a second step, a volume correction step, the FFD grid is ad-
justed in order to recover the original volume. The adjustment
to the FFD grid should be minimal in order to respect the de-
formation prescribed by the user. To this end a set of offsets
δijk = (δxijk, δ

y
ijk, δ

z
ijk)

T is computed that will be applied to the
original control points of D so that the volume of the embedded
object is conserved. Let us denote the final volume preserving FFD
by

D(u, v, w) =
∑
ijk

(Pijk + δijk)Bijk(u), (2)

and M the resulting surface model deformed by D which satisfies
the volume constraint V (M) = Vref .
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Additionally, the volume preservation part can be coupled with
a direct manipulation mechanism [10, 11]. Direct manipulation is
related to the process where the user picks a source point S on
the model and moves it to a target position T in space. Then, the
system computes a set of offsets that is compatible with the target
position. As stated above, the requirements on the unknowns are
twofold, satisfying the volume constraint and keeping the surface
as close as possible to the deformed surface M . Mathematically
the problem states as follows:

Problem 1 Volume preservation
Compute offsets (displacements) δijk for the volume correcting
FFD (2) such that

min
∑
ijk

∥δijk∥2 subject to ∆V (M) = 0 (3)

where ∆V (M) := V (M)− Vref , see also Section 4.

Problem 2 Volume preservation and direct manipulation
Compute offsets (displacements) δijk for the volume correcting
FFD (2) such that

min
∑
ijk

∥δijk∥2 subject to (4)

∆V (M) = 0 and (5)

T = S +
∑
ijk

δijkBijk(us) (6)

where (us) is the parameter value of the constraint surface point
S in the parameter domain Ω of D.

Remark 1: Cost functions
Instead of minimizing squared distances ∥δijk∥2 between FFD
grid points it could also be possible to minimize the squared
distance between surface mesh points before and after adjustment.
But it can be easily shown that this implies to solve a linear system
of equations. Our method based on the FFD grid distance however
leads to an explicit solution and avoids inverting a linear system.
Other quadratic cost functions could be used, such as least squares
edge lengths [9] or classical linearized bending energy functionals
[19]. The way to solve the problem would be analogous to the
present solution. The resulting surface however would not be as
close as possible to the user’s defined deformation as it is our goal
here.

Remark 2: Local volume preservation
Alternatively we can use weighted least-squares ωijk∥δijk∥2, and
use the weights ωijk in order to localize the measure of deforma-
tion. For example, a large weight ωijk tends to keep the FFD point
Pijk fixed. This weighted version thus enables to control where
the adjustment takes place. It still leads to an explicit solution. An
illustration of local volume preservation is given in Figure 7 with
including comments in Section 5.2.

4 Volume computation

The oriented interior volume of a closed, orientable, piecewise tri-
angular surface S with vertices xi is given by

V (S) =
∑

face(l,m,n)∈S

zl + zm + zn
6

∣∣∣∣ (xm − xl) (ym − yl)

(xn − xl) (yn − yl)

∣∣∣∣ ,
(7)

where face(l,m, n) = ∆(xl,xm,xn) is a triangle of S. This
trilinear expression can be derived from the volume functional
for smooth surfaces, see [15]. It corresponds to the sum of the
(signed) volumes of the prisms spanned by the surface triangles
and their projections onto the xy-plane. The vertices xs of
the resulting volume preserving surface M are obtained by
applying the FFD function D to the vertices of the initial model,
i.e. xs =

∑
ijk(Pijk + δijk)Bi(us)Bj(vs)Bk(ws), where

(us, vs, ws) are the parameter values of the initial surface model
in Ω. Injecting these vertices into (7) shows the dependence of the
volume of M on the unknown offset vectors:

VOLUME of M

V (M) =
∑

face(l,m,n)∈M

z̄l + δzl + z̄m + δzm + z̄n + δzn
6

· (8)

∣∣∣∣ (x̄m − x̄l) + (δxm − δxl ) (ȳm − ȳl) + (δym − δyl )

(x̄n − x̄l) + (δxn − δxl ) (ȳn − ȳl) + (δyn − δyl )

∣∣∣∣ ,
(9)

where
δxl :=

∑
ijk δ

x
ijkBi(ul)Bj(vl)Bk(wl)

x̄s =
∑

ijk PijkBi(us)Bj(vs)Bk(ws).

The volume of M is therefore a trilinear function of the offset vec-
tor’s coordinates.

5 Closed form solutions

In this section we derive an exact and closed form solution of prob-
lems 1 and 2 defined in Section 3. We avoid solving a time con-
suming non-linear optimization problem which is caused by the
non-linear volume constraint. Instead we propose to transform the
problem into a least-squares fitting problem with linear constraints.
But we don’t linearize the volume constraint by a first order Tay-
lor approximation as it has been done in [1]. Instead, we use the
trilinearity of the volume constraint in order to satisfy the volume
constraint exactly. Furthermore, we do not solve a linear system of
equations, instead we develop closed form solutions.

The volume constraint ∆V (M) = 0 is a trilinear function of
the unknowns δxijk, δyijk, δzijk, see equation (8). Thus separating
the volume correcting deformation according to the axes makes it
linear in each axis. We therefore set equal to zero two coordinate
functions, for example δyijk, δzijk, and express the volume linearly
with respect to the remaining δxijk, i.e. δijk = (δxijk, 0, 0). This
amounts to replace the trilinear volume constraint by a linear con-
straint in the optimization problems (3) and (4). In order to avoid a
non-symmetric solution, we perform three successive deformations
by repeating the volume correction successively according to the
x, y and z-axes separately.

In order to better visualize the linearity, let us introduce the fol-
lowing linearized but exact volume formulas for the volume cor-
recting surface M :

V x(M) :=
∑
ijk

αijk δxijk + V (M) (10)

V y(M) :=
∑
ijk

βijk δyijk + V (M) (11)

V z(M) :=
∑
ijk

γijk δzijk + V (M) (12)
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where

αijk :=
∑

face(l,m,n)∈M

(Bijk(ul) +Bijk(um) +Bijk(un))

6

(13)

·

∣∣∣∣∣ ȳm − ȳl ȳn − ȳl

z̄m − z̄l z̄n − z̄l

∣∣∣∣∣ (14)

βijk :=
∑

face(l,m,n)∈M

(Bijk(ul) +Bijk(um) +Bijk(un))

6

(15)

·

∣∣∣∣∣ z̄m − z̄l z̄n − z̄l

x̄m − x̄l x̄n − x̄l

∣∣∣∣∣ (16)

γijk :=
∑

face(l,m,n)∈M

(Bijk(ul) +Bijk(um) +Bijk(un))

6

(17)

·

∣∣∣∣∣ x̄m − x̄l x̄n − x̄l

ȳm − ȳl ȳn − ȳl

∣∣∣∣∣ (18)

A detailed development of the preceeding formulas can be found in
Appendix A.

Problems 1 and 2 can now be re-formulated and explicitly solved
as follows: in each step the amount of the volume will be corrected
by a third with respect to one of the three axes. Therefore, we
solve the problem three times by replacing the volume constraint
∆V (M) = 0 successively by one of the following linear volume
constraints V x,y,z(M)

!
= V (M) + 1

3
(Vref − V (M)) which are

equivalent to ∑
ijk

αijk δxijk = a (19)

∑
ijk

βijk δyijk = a (20)

∑
ijk

γijk δzijk = a, (21)

with a = 1
3
(Vref − V (M)). These equations are linear in δxijk,

δyijk, and δzijk respectively. Note that after the three steps the
volume will be satisfied exactly with V (M) = Vref .

5.1 Solution of Problem 1

The first of the three optimization steps solves

min
∑
ijk

(δxijk)
2 subject to (22)

volume constraint:
∑
ijk

αijk δxijk = a. (23)

The problem can be converted to a saddle point problem using a
Lagrangian multiplier λ:

max
λ

min
δx
ijk

L(δxijk, λ)

where

L(δxijk, λ) =
∑
ijk

(δxijk)
2 + λ(

∑
ijk

αijk δxijk − a).

A closed form solution of (22) is given by

δxijk =
a∑

rst α
2
rst

αijk. (24)

Proof:
The solution satisfies ∇L = 0 which is equivalent to

∂L
∂λ

= 0 ⇔
∑
rst

αrst δ
x
rst = a (25)

∂L
∂δxijk

= 0 ⇔ 2δxijk + λαijk = 0. (26)

Inserting (26) into (25) gives the value of λ and thus the result. ⊓⊔

The same procedure is then repeated by replacing the linearized
volume constraint in (22) by (20) and then by (21). Note that βijk of
the second volume constraint (20) is computed using the output of
the first step. And analogously for γijk. The corresponding closed
form solutions are obtained analogously. The final solutions δijk
will precisely satisfy the volume constraint ∆V (M) = 0 (to within
machine precision).

Figure 2: Sculptured cup with volume preservation.

Examples:

We applied our algorithm to various FFDs and analyzed its results
in terms of design effects and visual realism. We used the fact that
the linearization of the volume constraint results from applying the
volume correction step only in one axis direction at the time, pos-
sibly followed by the other directions. The possibility of selecting
only one or two axis directions in order to satisfy the volume con-
straint can have a desired design effect which we will show in the
following examples.

General volume preservation is achieved by applying the
volume correction successively following the x, y, and z-axis, i.e.
by computing δijk = (δxijk, δ

y
ijk, δ

z
ijk) in three steps. Figure 2

shows such a general volume preserving deformation. On the left
the original model (5.668 vertices) is shown with its initial grid.
Then a specific deformation has been applied combined with a
general volume correction. The result is shown in Figure 2-right.

Sometimes it might be desirable to limit the volume correction
displacements δijk of the grid points to one or two axis directions.
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A typical example is the ”bouncing ball”, see Figure 1. The ball
when falling on the ground (e.g. in z-direction) is flattened out
and simultaneously stretched horizontally (in x- and y-direction)
while the inner volume is maintained constant. Thus when sim-
ulating the bouncing ball, volume correction should be limited to
horizontal directions (x- and y-directions in the present case). Vol-
ume correction in vertical z-direction here would act against the
natural physical behavior. Such a volume correction limited to hor-
izontal directions can be achieved with our method by computing
δijk = (δxijk, δ

y
ijk, 0) in two steps by using constraints (19) and

(20) with a = 1
2
(Vref − V (M)) when solving problem (22). In

Figure 1 four frames of a bouncing ball animation are shown, except
that we replaced the geometrically simple sphere by the complex
RedBox example (710.322 vertices) which has many fine details.
This model as well as the cup and the screw driver are provided
via the Aim@Shape1 repository. The three deformations on the left
column of Figure 1 represent a loss of volume of 28%, 51% and
64% using standard FFD. The right column shows the correspond-
ing volume preserving deformations.

Figure 3: RedBox flattened. Left image shows the user defined FFD with-
out volume preservation. The volume increased by 300% with respect to
the initial model. Right: The flattening effect can be maintained through
volume preserving FFD as well. To this end the displacement of the grid
points has been limited to horizontal directions.

The next two Figures 3 and 4 used the same RedBox model and
applied some FFDs where the grids have been deformed by displac-
ing some of the grid points in order to achieve special deformations,
see Figures 3,4-left. In Figure 3-left the standard FFD is shown.
The object triples the volume. In Figure 3-right the volume pre-
serving FFD is shown. It can be observed that the flattening of the
model is further enforced by the volume preservation. This effect
is achieved by limiting the displacements of the grid points in hori-
zontal directions only (i.e. x and y directions here). In Figure 4-left
the FFD transforms the RedBox model into a squared object with a
loss of volume of 60%. This squared effect is maintained through
volume preservation. In Figure 4-middle volume correction limited
to horizontal displacements of the grid points is applied. In Fig-
ure 4-right volume correction limited to vertical displacements is
applied. The vertical volume correction δijk = (0, 0, δzijk) is ob-
tained by solving problem (22) only in z-direction with constraint
(21) where a = (Vref − V (M)).

Further special FFDs are applied to a screw driver in Figure 5.
The original model is shown on the left, the two volume preserving
deformations can be seen on the right.

1http://shapes.aim-at-shape.net

Figure 4: RedBox squared. Left: standard FFD with 40% loss of vol-
ume. Middle: Volume preserving FFD with volume correction displace-
ments only in horizontal directions δijk = (δxijk, δ

y
ijk, 0). Right: Volume

correction displacements only in vertical direction δijk = (0, 0, δzijk).

Figure 5: Screwdriver redesigned. Left: initial model with 27.152 ver-
tices. Middle: volume preserving deformation with volume correcting
displacements restricted to horizontal directions δijk = (δxijk, δ

y
ijk, 0)

. Right: Correction displacements restricted to vertical direction δijk =
(0, 0, δzijk).

Continuously twisting an object is a classical FFD. We applied
this deformation in Figure 6 to a cube model (6146 vertices) with
and without volume preservation. In the first row the volume de-
creases during the animation. At the last frame 66% of the initial
volume is lost. In the second row volume preservation is enforced
along the vertical axis only, i.e. δxijk = δyijk = 0. The third row
shows the same animation with exact volume preservation using

5
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only the x- and y-directions, i.e. by keeping δzijk = 0. The ad-
vantage is that the upper and lower face of the cube remain flat
during animation. This might be a desired effect, which can not be
achieved with general volume preservation.

5.2 Solution of Problem 2

In addition to the volume constraint, a position constraint is added
in Problem 2. Once again, a closed form solution can be derived by
decomposing the problem accordingly to a correction with respect
to the x, y and z-axes. In a first step we solve

min
∑
ijk

(δxijk)
2 subject to (27)

volume constraint:
∑
ijk

αijk δxijk = a (28)

position constraint: T x = Sx +
∑
ijk

δxijkBijk(us) (29)

where (us, vs, ws) is the parameter of S in the parameter domain
of D. Using Lagrangian multipliers λ and µ we solve the minmax
problem:

max
λ,µ

min
δx
ijk

L(δxijk, λ, µ)

with the Lagrangian function

L(δxijk, λ, µ) =
∑
ijk

(δxijk)
2 + λ((T x − Sx)−

∑
ijk

δxijkBijk(us))

(30)

+ µ(
∑
ijk

αijk δxijk − a). (31)

A closed form solution of (27) is given by

δxijk = λ
Bijk(us)

2
− µ

αijk

2
(32)

where

λ =
2(T x − Sx)(

∑
ijk α

2
ijk)− 2a

∑
ijk αijkBijk(us)

(
∑

ijk α
2
ijk)(

∑
ijk B

2
ijk(us))− (

∑
ijk αijkBijk(us))2

and

µ =
2(T x − Sx)(

∑
ijk αijkBijk(us))− 2a

∑
ijk B

2
ijk(us)

(
∑

ijk α
2
ijk)(

∑
ijk B

2
ijk(us))− (

∑
ijk αijkBijk(us))2

.

Proof:
The solution satisfies ∇L = 0 which is equivalent to the following
three equations:

∂L
∂λ

= 0 ⇔ T x = Sx +
∑
rst

δxrstBrst(us) (33)

∂L
∂µ

= 0 ⇔
∑
rst

αrst δ
x
rst = a (34)

∂L
∂δxijk

= 0 ⇔ 2δxijk − λBijk(us) + µαijk = 0. (35)

δxijk from equation (35) is inserted into (33) and (34). One obtains
a linear system of two equations in two unknowns λ and µ. An
explicit solution of the system is calculated and inserted into (35).
⊓⊔

We then repeat this step by replacing the linearized volume con-
straint in (27) by (20) and then by (21) and by applying the position
constraint to the y and z-coordinate. The final solutions δijk will
satisfy exactly the volume constraint ∆V (M) = 0 and the position
constraint T = S.

Example:

Figure 7 illustrates two effects: direct shape manipulation and
local volume preservation. The top left picture shows the original
armadillo model (52.971 vertices). In the top middle picture, the
tip of the ear is constraint to a position chosen by the user, but no
volume correction is applied. Two undesired effects occur: first the
inner volume increases, second the head is deformed by the FFD.
We successfully solve both unwanted behaviors by using a local
volume correction, as explained in Section 3, Remark 2. In order
to localize the deformation along the ear, we use large weights
ωijk for FFD points Pijk far away from the constraint point. In
practice we set in this example the weights for each FFD point
Pijk as an exponential function of the distance between Pijk and
the constraint point at the tip of the ear.

Figure 7: Direct shape manipulation with one specified position. Top left:
original model. Top middle: the position of the tip of the ear is constrained,
without volume preservation. Top right: same position constraint, with a
local volume preservation. Bottom left (resp. bottom right): same as top
middle (resp. top right), with the FFD grid in red.

Conclusion: It has been illustrated with many examples the pos-
sibility offered by our method to compute volume correction dis-
placements of grid points only in horizontal or only in vertical di-
rection. This may be a benefit for FFD where a privileged direction
can be figured out. In other cases the general volume correction has
to be applied.

We want however draw attention to the main advantage of our
method : it presents an explicit solution to volume preserving FFDs
and thus allows for an efficient GPU implementation, as explained
in the next section.

6
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Figure 6: Animation of Twisting cube. First row is without volume preservation. At the last frame 66% of volume is lost. Second row with volume preservation
displacement are limited to horizontal directions δijk = (δxijk, δ

y
ijk, 0). Third row with volume preservation limited to vertical direction δijk = (0, 0, δzijk).

6 GPU accelerated volume preserving
FFD

Most existing surface deformation techniques, including
FFD [21], skinning [20], physically-based deformations [18, 13, 8],
deformation displacement maps [22], cage-based deformations [3],
have been implemented on the GPU. Because the technique is not
adapted to parallelism, or due to memory limitations, some of these
deformation methods have a GPU implementation that is less effi-
cient or less general than the CPU implementation ([20, 17, 12]).
In [21] it has been shown that FFD can be accelerated significantly
using programmable graphics hardware, but without volume preser-
vation. In the present section we will focus on how to perform our
volume preserving FFD fully on GPU.

In contrast to previous works on volume preserving FFD our
method has the following advantages:

1. the volume is precisely preserved (to within machine preci-
sion),

2. the method is linear (non-linear optimization techniques are
not needed),

3. an explicit solution is provided (no linear system has to be
solved).

These properties turn out to be essential for an efficient GPU
implementation.

In section 3 we have described the framework in which our vol-
ume preservation procedure is applied. An FFD grid given as input
is adjusted in such a way that the volume inside the resulting mesh
M has a given value Vref . In our current implementation the input

FFD grid is given either by user interaction or by some animation
technique (we have implemented twist, bend, and simple physical-
based deformation of the FFD-grid). The overall pipeline of the
volume preserving FFD grid adjustment is given in Figure 8.

The following four steps are implemented on the graphics card:

• the computation of the current volume (7),

• the computation of the coefficients αijk, βijk, γijk (13-17),

• the computation of the offsets δijk by (24) or (32) and the
update of the FFD grid according to these offsets,

• the computation of the FFD deformation (1).

The three first steps are implemented using CUDA kernels and
the last one using a vertex shader. Context switches are done dur-
ing the pipeline without new GPU memory allocation. The final
rendering is performed using GLSL shaders. We detail more pre-
cisely these four steps in the following subsections.

6.1 Volume Computation Kernels

The current volume is obtained using two CUDA kernels directly
from the equation (7). This formula can be decomposed into two
successive steps: the computation of

• the terms zl+zm+zn
6

∣∣∣∣ (xm − xl) (ym − yl)

(xn − xl) (yn − yl)

∣∣∣∣ (volume below

each face),

• their sum.

7
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Figure 8: GPU Pipeline of our volume preserving FFD.

The first step is performed for each face where each face is consid-
ered independently as a thread. An array of size F is generated,
where F is the number of faces. The resulting sum is computed us-
ing a parallel scan [24]. The current volume is then recorded into
the GPU memory.

6.2 Coefficient Computation Kernels

The computation of the volume preservation coefficients given in
equations (13-17) is performed in three steps: computation of

• the terms

∣∣∣∣∣ ȳm − ȳl ȳn − ȳl

z̄m − z̄l z̄n − z̄l

∣∣∣∣∣
(resp.

∣∣∣∣∣ z̄m − z̄l z̄n − z̄l

x̄m − x̄l x̄n − x̄l

∣∣∣∣∣ or

∣∣∣∣∣ x̄m − x̄l x̄n − x̄l

ȳm − ȳl ȳn − ȳl

∣∣∣∣∣ ),

• the coefficients αijk (resp. βijk or γijk),

• sum of squares
∑

rst α
2
rst (resp.

∑
rst β

2
rst or

∑
rst γ

2
rst).

To compute the coefficients αijk, equation (13) is rewritten
for efficiency. Indeed, implementing directly the sum as in for-

mula (13) would require the computation of a parallel scan for
each coefficient, which is prohibitively time-consuming. Instead,
we compute all coefficients αijk in one step using the following
sparse matrix-vector multiplication:

A = B.V

where

B(N×F ) =


...

· · · (Bijk(ul)+Bijk(um)+Bijk(un))
6

· · ·
...



A(N) =


...

αijk

...

 ,V(F ) =



...∣∣∣∣∣ ȳm − ȳl ȳn − ȳl

z̄m − z̄l z̄n − z̄l

∣∣∣∣∣
...

 .

B is a sparse rectangular matrix of size (N × F ) where N =
nunvnw denotes the FFD grid size, see Section 2, and F is the
number of mesh faces of S. V is a vector of size F . A is the
resulting (N)-vector containing the αijk coefficients.

Note that B is a sparse-matrix due to the local support property
of the B-Spline basis functions [6]. B is precomputed once and
loaded into the GPU memory in a sparse matrix format. Uniform
basis functions can be evaluated efficiently directly from their ana-
lytic, piecewise polynomial form [7, 4]:

B0(t)

B1(t)

B2(t)

B3(t)

 =
1

6


1 −3 3 −1

4 0 −6 3

1 3 3 −3

0 0 0 1




1

t

t2

t3

 .

V is computed on-the-fly with a CUDA kernel applied to each face,
Then a sparse-matrix-vector multiplication is applied following [2]
in order to compute all coefficients in parallel.

The third step computes the square of the coefficients using a
parallel-scan algorithm [24].

The coefficients αijk and their sum square
∑

rst α
2
rst are stored

in the GPU memory.

6.3 FFD grid update kernel

The current volume V (M), the coefficients αijk and their sum
square

∑
rst α

2
rst as well as the reference volume Vref are already

computed at this step. A CUDA kernel is launched for each vertex
of the FFD grid in order to compute and add the offsets given by
(24) or (32). Notice that in our implementation, the FFD grid is
stored as a 2D texture to efficiently compute the mesh transforma-
tion. The texture is consequently transformed into a CUDA array
using pixel buffer object and is then remapped as texture at the end
of the kernel execution.

6.4 FFD deformation shader

The FFD deformation (1) is implemented in a vertex shader, as first
proposed in [21]. Contrary to [21], the parameters us of the mesh
vertices do not change in our framework. Therefore we precompute
the B-Spline coefficients Bijk(us), and we stored them as a buffer
object. The new mesh vertices are stored into a transform feedback
buffer and can be used for the final rendering.

8
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7 Experimental results

The benefits of volume preservation for getting more plausible
deformations have been pointed out by many authors and need not
be proven anymore. We therefore focus on experiments on the
performance estimation of our volume correction step onto current
graphics hardware. All models have been put into a FFD grid of
size N = nunvnw where N = 63 and N = 103 has been chosen
for establishing the tables below. The same FFD deformation is
applied to all models. The statistics we report on in this section
don’t depend on the particular FFD applied, but only on the grid
size and the size of the model. We therefore have chosen publicly
available models2 with known sizes, but we don’t show the FFD
we applied in order to compute the performances. We performed
a series of experiments with models of varying size on a PC Intel,
2.13 GHz with 3.5 GB Ram equipped with a GForce 8800 GTS,
512 MB with 128 Cuda cores. The computation time we measure
only includes the time needed for a volume preservation in one
privileged direction, i.e. the time needed to compute the δx,y,zijk . The
time needed for computation of the FFD is computed separately.
The quantities Bijk(us) are pre-computed for all vertices xs

of the input model since they stay fix when several succeeding
deformations are applied to the same model.
For the sake of completeness, and because a sequential CPU
implementation might be useful on mobile terminals without GPU,
we first briefly study the sequential complexity of our algorithm.

Sequential complexity:
The complexity to solve problems 1 and 2 (see Section 3) is the
same. We give the details for problem 1. First the volume of the
deformed mesh V (M) must be computed. According to Section
4 this costs O(F ). Then the coefficients αijk, βijk and γijk
have to be computed, using equations (13), (15) and (17). In a
CPU implementation this can be done efficiently by traversing the
faces of the mesh, and for each face by updating the contribution
of this face to the coefficients αijk, βijk and γijk. Due to the
compact support of the B-Spline functions, one face contributes to
a constant number of coefficients αijk, βijk and γijk. Therefore
the cost of computing the α′s, β′s and γ′s is O(F ). The squared
sum of these coefficients must be computed. This costs O(N).
Finally, the FFD grid points must be updated using the values of
δijk in (24). This costs O(N). The total complexity of a sequential
implementation of volume preserving FFD is therefore O(F +N).

Parallel complexity:
Note that in order to allow for parallelization, the GPU implemen-
tation imposes to compute all offsets δijk independently from each
other (see Sect. 6.2). It is not possible in a GPU implementation
to traverse the faces in parallel and to update the contribution
of this face to different α′s, β′s and γ′s. Here a matrix-vector
multiplication is used. However, the matrix of size (N × F ) is
sparse and the sparse matrix encoding ensures that the number of
basic operations for such a matrix-vector multiplication is linearly
proportional to the number of non-zero elements in the matrix.
Furthermore, for our particular application it can be shown that the
number of non-zero elements essentially depends of the number
of mesh faces F and not on the FFD grid size N . In fact, the
grid nodes corresponds to the knots on which the B-spline basis
functions are defined. Each mesh vertex lies in the support of
exactly 64 cubic B-spline basis functions. An element (i, j) in the

2porsche : www-roc.inria.fr/gamma/gamma.php
happy, bunny : graphics.stanford.edu/data/3Dscanrep
horse : shapes.aim-at-shape.net
handskel, dragon : www.cc.gatech.edu/projects/large models
balljoint : www.cs.caltech.edu/̃ njlitke/meshes
sphere : icosahedron, subdivided 4 times, projected on unit sphere.

matrix B is non-zero, if one of the vertices of the face j lies in the
support of one basis function corresponding to line i in the matrix.
If the three vertices of a face j lie in the same FFD cell, there are
exactly 64 non-zero elements in the corresponding column. This
is the case for almost all faces in the mesh, for reasonable size N
of the FFD grid. This is confirmed by Table 1. This table reports
the exact number of non-zero elements in matrix B for all test
models. It can be observed that the number of non-zero elements
in the N = 63 grid and in the N = 103 grid is very similar and
approximatively equal to 64× F for each test model.
The cost of the matrix-vector multiplication applied to compute
the α′s, β′s and γ′s is thus O(F ). The squared sum of these
coefficients and the FFD grid updating costs O(N). The total
complexity of O(F + N) for the GPU version is thus the same as
for the sequential CPU implementation.

Efficiency:
In our GPU implementation, the sparse-matrix-vector multiplica-
tion (SpMV) (see section 6.2) is the most expensive step. Since
the matrix B is sparse with variable number of non zeros per row
but without any particular sparsity pattern, we used the compressed
sparse row CSR-format for matrix representation. It explicitly
stores column indices and nonzero values in arrays. A third array of
row pointers takes the CSR representation. We mapped the SpMV
to the GPU using the CSR implementation proposed by Bell and
Garland [2]. Our matrix B has the particularity that the number
of rows is limited and much smaller than the number of columns
(N << F ). The comparison of several SpMV kernels in [2] shows
that efficiency decreases for non-square matrices but that the CSR
kernel performs best for these unstructured non-square matrices. In
our case however, increasing the number of rows, i.e. the grid size,
from 63 to 103 e.g. in order to equilibrate the matrix sizes may re-
duce the computation time for the matrix-vector multiplication, but
it is compensated by increasing the cost for the remaining opera-
tions of order O(N). Thus finally, we didn’t observe any influence
of the grid size on the computation time of our volume preserving
FFD kernel and therefore chose N = 103 for all timings.

model # faces F # non zeros # non zeros
(grid size 103) (grid size 63)

Sphere 5,120 322,598 (6.3%) 301,916 (27,3%)
Porsche 10,474 680,098 (6.5%) 635,637 (28,1%)
Horse 39,698 2,306,680 (5.8%) 2,304,791 (26,9%)
Bunny 69,451 4,026,316 (5.8%) 4,006,614 (26,7%)
BallJoint 274,120 15,716,692 (5.7%) 15,649,260 (26,4%)
HandSkel 654,666 37,662,714 (5.8%) 37,474,881 (26,5%)
Dragon 871,414 49,929,232 (5.7%) 49,674,401 (26,4%)
Happy 1,087,716 62,388,900 (5.7%) 62,479,049 (26,6%)

Table 1: Sparsity of the matrix B of size (N × F ). The number of non
zeros in the matrix is compared to two different FFD grid sizes: N = 103

and N = 63.

Table 2 reports the model statistics and computation times in mil-
liseconds. We measured the times needed for computing one FFD
and a volume preservation in one privileged direction on CPU and
on GPU. The times needed for computing an FFD is negligible.
We computed in the last column the factor which tells how many
times the GPU volume preservation is faster than a volume preser-
vation performed on CPU. For example, volume preservation for
the HandSkel model is 6.5 times faster on GPU than on CPU. Fig-
ure 9 compares the computation time for both implementations as
linear functions of the number of mesh vertices. This plot also il-
lustrates the linear complexity for both CPU and GPU implementa-
tions.

Our CPU algorithm can manage interactive rates until 50, 000
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model # vertices GPU CPU GPU factor
FFD VOL VOL

Sphere 2,562 0.02 6 10 0.6
Porsche 5,247 0.05 12 12 1.0
Horse 19,851 0.23 46 16 2.9
Bunny 31,947 0.34 96 19 5.1
Armadillo 52,971 0.45 154 27 5.7
BallJoint 137,062 1.84 383 59 6.5
HandSkel 327,323 2.66 749 116 6.5
Dragon 437,645 3.56 1,206 156 7.7

Table 2: Timings (in milliseconds). Column ”GPU FFD” shows the time
to compute the FFD on GPU, without volume correction. Column ”CPU
VOL” (resp. ”GPU VOL”) indicates the time to adjust the FFD grid for
volume correction, on CPU (resp. GPU). Column ”factor” shows the ratio
between GPU and CPU volume correction timings. We use a PC Intel,
2.13GHz, 3.5 GB RAM equipped with an NVIDIA GeForce 8800 GTS,
512 MB with 128 Cuda cores. Grid size is N = 103 for all tests.

vertices ( 7 fps for a volume preserving FFD). Using the GPU im-
plementation, more than 400, 000 vertices are deformed with vol-
ume preservation at the same frame rate.
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Figure 9: Computation time of a volume preserving FFD as a function of
the number of mesh vertices. The red (resp. blue) line corresponds to the
CPU (resp. GPU) implementation.

Volume preserving FFD in real-time (20 fps) for large meshes is
thus still a challenge, even though this GPU implementation im-
proves the computation time with respect to an analogous CPU
implementation and provides interactive frame rates even for large
models. Different directions for further research in order to reduce
the computational cost will be discussed in the next section.

8 Conclusion and future work

We have presented a novel algorithm for computing volume pre-
serving FFD exactly and proposed an implementation on pro-
grammable graphics hardware. We derived an exact and explicit
solution to the problem of volume preserving FFD including the
possibility of direct shape manipulation. We further demonstrated
that an efficient implementation on the GPU is possible thanks to
the explicit formulas we derived.

It turns out that most models can be deformed with exact volume
preservation in real-time (20 fps), while large models can still be
deformed at interactive frame rates (7 fps). The gain with respect to
standard CPU implementation is thus important and justifies a GPU

implementation. As with every other algorithm, our GPU volume
preserving FFD has its limitations. Even though the gain in compu-
tation time is respectable, the method is limited by the performance
of the matrix-vector multiplication on the GPU. In fact, a recent
study of Bell and Garland [2] states this problem in case of our gen-
eral unstructured matrices with a great disparity between number of
rows and columns. This disparity could be reduced by adapting the
algorithm to locally correct the volume, e.g. only in regions where
the loss of volume is the most important. In this case the number of
mesh faces involved would decrease and so the number of columns
in the matrix. We would expect the efficiency of the matrix-vector
multiplication to increase. How to detect these regions and how
to apply the volume correction locally should be approached in the
future.

Another direction to be considered for reducing the cost of the
method is approximation and multiresolution. In the case where
an approximate volume correction is sufficient, one could create a
coarse approximation of the model and apply the method to this
approximation. The resulting volume correcting FFD would thus
approximately preserve the volume of the fine mesh.

Further extensions are possible which are concerned with gen-
eral free-form deformations and thus apply to volume preserving
FFD as well : First, one could improve visual quality of the defor-
mation by adaptively subdividing the triangles following the defor-
mation. Indeed, a large triangle will stay flat even if the deforma-
tion bent it and should be tesselated adaptively. Second, a negative
Jacobian in the FFD function would hint on the possibility of creat-
ing self intersections in the mapped model (and negative volume).
One could detect a negative Jacobian by computing the Jacobian
function of the mapping as a trivariate spline (on the GPU) only
to examine its zeros. If the Jacobian has only positive coefficients
clearly there is no self-intersection. Otherwise one can still do a
more closer examination (like insert a certain number of knots in
the suspected area and reexamine). Doing it on the fly could cre-
ate an FFD system that prevents self-intersections in the deformed
mesh.
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Appendix A

The volume formula in equation (7) is obtained by computing for
mesh faces the prism between the face and its projection following
the z-axis onto the x − y-plane. The volume of the model is then
the sum of the signed volumes of all prisms. The same volume is
obtained by projecting the faces to the x − z-plane or the y − z-
plane. Therefore we have the following three identical formulas
for the volume of a triangular mesh whether the projection is done
following the x-, y-, or z-axis:

V (S) =
∑

face(l,m,n)∈S

xl + xm + xn

6

∣∣∣∣ (ym − yl) (zm − zl)

(yn − yl) (zn − zl)

∣∣∣∣
(36)

(37)

=
∑

face(l,m,n)∈S

yl + ym + yn
6

∣∣∣∣ (zm − zl) (xm − xl)

(zn − zl) (xn − xl)

∣∣∣∣
(38)

(39)

=
∑

face(l,m,n)∈S

zl + zm + zn
6

∣∣∣∣ (xm − xl) (ym − yl)

(xn − xl) (yn − yl)

∣∣∣∣ ,
(40)

where face(l,m, n) = ∆(xl,xm,xn) is a triangle of M . Re-
member that the deformed model M is obtained by applying a vol-
ume preserving FFD to the vertices of the original model, using
equation (2). Thus the volume V (M) can also be expressed in
terms of the deformed control points x̄s and the volume correcting

11
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terms δijk as follows, see also (8):

V (M) =
∑

face(l,m,n)∈M

x̄l+δxl +x̄m+δxm+x̄n+δxn
6

·
∣∣∣∣ (ȳm − ȳl) + (δym − δyl ) (z̄m − z̄l) + (δzm − δzl )

(ȳn − ȳl) + (δyn − δyl ) (z̄n − z̄l) + (δzn − δzl )

∣∣∣∣
=

∑
face(l,m,n)∈M

ȳl+δ
y
l
+ȳm+δym+ȳn+δyn

6

·
∣∣∣∣ (z̄m − z̄l) + (δzm − δzl ) (x̄m − x̄l) + (δxm − δxl )

(z̄n − z̄l) + (δzn − δzl ) (x̄n − x̄l) + (δxn − δxl )

∣∣∣∣
=

∑
face(l,m,n)∈M

z̄l+δzl +z̄m+δzm+z̄n+δzn
6

·
∣∣∣∣ (x̄m − x̄l) + (δxm − δxl ) (ȳm − ȳl) + (δym − δyl )

(x̄n − x̄l) + (δxn − δxl ) (ȳn − ȳl) + (δyn − δyl )

∣∣∣∣

with δxijk, δyijk, δzijk as unknowns. V x(M) is the linearized vol-
ume function of M , where δyijk and δzijk are set to zero. There-
fore V x(M) is a linear function in the unknowns δxijk. In Section
5, equation (10) we have denoted the linearized volume formula
V x(M) as follows:

V x(M) = V (X̄ + δX, Ȳ , Z̄) (41)

=
∑
ijk

αijkδ
x
ijk + V (M). (42)

Let us now compute the coefficients αijk:

V x(M) = V (X̄ + δX, Ȳ , Z̄) (43)

=
∑

face(l,m,n)∈M

(x̄l + δxl ) + (x̄m + δxm) + (x̄n + δxn)

6

(44)

·

∣∣∣∣∣ (ȳm − ȳl) (ȳn − ȳl)

(z̄m − z̄l) (z̄n − z̄l)

∣∣∣∣∣ (45)

(46)

= V (M) +
∑

face(l,m,n)∈M

δxl + δxm + δxn
6

(47)

·

∣∣∣∣∣ (ȳm − ȳl) (ȳn − ȳl)

(z̄m − z̄l) (z̄n − z̄l)

∣∣∣∣∣ (48)

(49)

Replace now δxl =
∑

ijk δ
x
ijkBijk(ul) and δym, δzn analogously:

V x(M) =
∑

face(l,m,n)∈M

∑
ijk

δxijkBijk(ul) + δxijkBijk(um) + δxijkBijk(un)

6

(50)

·

∣∣∣∣∣ (ȳm − ȳl) (ȳn − ȳl)

(z̄m − z̄l) (z̄n − z̄l)

∣∣∣∣∣+ V (M)

(51)

(52)

=
∑
ijk

δxijk

 ∑
face(l,m,n)∈M

Bijk(ul) +Bijk(um) +Bijk(un)

6

∣∣∣∣∣ (ȳm − ȳl) (ȳn − ȳl)

(z̄m − z̄l) (z̄n − z̄l)

∣∣∣∣∣


(53)

(54)

+ V (M) (55)

The expression in square brackets is denoted by αijk. βijk (resp.
γijk) in equation (11) (resp. equation (12)) are computed analo-
gously by setting equal zero δxijk, δ

z
ijk (resp. δxijk, δ

y
ijk ).
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